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Abstract

We prove that any Turing machine running on inputs of arbitrary length can be
simulated by a constant bit-size transformer, as long as the context window is suffi-
ciently long. This improves previous works, which require scaling up either the
model’s precision or the number of parameters on longer inputs. Furthermore, we
prove that the complexity class SPACE[s(n)] exactly characterizes the expressive
power of a constant bit-size transformer with a context window of length s(n).
Our approach relies on simulating Post machines, a Turing-complete computa-
tional model. Post machines can be modeled as automata equipped with a queue,
exhibiting computational behaviors naturally aligned with those of transformers.
The behavioral similarity between transformers and Post machines may offer new
insights into the mechanisms underlying the reasoning abilities of transformers.

1 Introduction

Transformer-based large language models (LLMs) with chain-of-thought (CoT) steps [Achiam et al.,
2023, Gemini et al., 2023, Anthropic, 2024, Dubey et al., 2024, Guo et al., 2025] have demonstrated
exceptional capabilities across a wide range of complex reasoning tasks, such as mathematical
problem solving and code generation [Hendrycks et al., 2021, Jimenez et al., 2023, Rein et al., 2023].
These remarkable empirical successes raise a fundamental question: What enables transformers to
support such general reasoning capabilities, and what are the limits of this capability? Understanding
this question is not only of theoretical interest but also of practical significance for further enhancing
the reasoning abilities of transformers.

Motivated by this fundamental question, a line of theoretical works [Pérez et al., 2021, Bhattamishra
et al., 2020, Merrill and Sabharwal, 2023, 2024, Li et al., 2024, Qiu et al., 2024, Zubić et al., 2024,
Merrill and Sabharwal, 2025, Yang et al., 2025] have studied the reasoning abilities of transformers
through the lens of expressiveness. A central result from these works is that transformers (using CoT
steps) are Turing complete; that is, transformers have sufficient expressive power to simulate arbitrary
Turing machines (TMs). However, in all these results, the bit-size of the transformers (i.e., the total
number of bits representing the model) is not constant: either the precision bit [Pérez et al., 2021,
Bhattamishra et al., 2020, Merrill and Sabharwal, 2024, Qiu et al., 2024] or the embedding dimension
[Li et al., 2024] must grow with the input length, meaning that larger models are required to handle
longer inputs. This scaling requirement raises a fundamental barrier to approaching transformer-based
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Table 1: Comparing the existing Turing-completeness proofs in terms of required precision, em-
bedding dimension, effective window size, and CoT length. We focus on the nontrivial case where
t(n), s(n) ≥ n. We remark that these constructions typically do not employ the vanilla architecture
but instead introduce specific modifications; see Appendix A for a summary.

Source Precision Dimension Window CoT per TM-step
Pérez et al. [2021] O(log t(n)) O(1) n+ t(n) 1
Bhattamishra et al. [2020] unbounded O(1) n+ t(n) 1
Merrill and Sabharwal [2024] O(log t(n)) O(1) n+ t(n) 1
Li et al. [2024]∗ O(1) O(log t(n)) O(t(n) log t(n)) O(log t(n)) (amortized)
Qiu et al. [2024] O(log t(n)) O(1) O(t(n) log t(n)) O(log t(n)) (amortized)
This work O(1) O(1) s(n) s(n)

∗ Any multi-tape TM running in time t(n) can be simulated by a Boolean circuit of size O(t(n) log t(n))

[Arora and Barak, 2009].

AGI [Lecun, 2024, Goldblum et al., 2024], particularly for lifelong learning agents that interact with
an open environment and accumulate an ever-growing history (e.g., the AIXI agent [Hutter, 2005]),
where the input length grows unboundedly over time.

This motivates the following critical question:

Problem 1: Is it necessary to continue scaling up the bit size of transformers to handle longer inputs?

1.1 Our contribution

We answer Problem 1 in the negative. We prove that constant bit-size transformers2 are Turing
complete. Specifically, given any TM, there exists a transformer with fixed numerical precision and a
fixed number of parameters that can simulate the TM on inputs of arbitrary length, provided that the
transformer’s context window is sufficiently long. In particular, by applying it to the universal Turing
machine, which takes as input a description TM of a TM and an input string x and outputs TM(x),
we can conclude that a single, constant bit-size transformer can compute any computable function, as
long as the description of a relevant TM is loaded in the prompt.
Remark 1. In fact, it is not even necessary to load the task-specific TM description into the prompt
or to pre-inject it during pre-training. Instead, the transformer can be instantiated to simulate a TM
that performs the meta-task of designing an algorithm for the given reasoning problem. For example,
one can design the transformer to simulate Levin’s universal search algorithm [Levin, 1973, 1984,
Schmidhuber, 2004], which solves arbitrary search problems, such as theorem proving and planning,
as quickly as the fastest possible algorithm in an asymptotic sense. This suggests that, in principle,
a single constant bit-size transformer has sufficient expressive power to achieve a form of general
reasoning ability.

We emphasize that the context window length is the minimal resource needed to scale up to handle
longer inputs: The context window must be at least as long as the input length n, otherwise the
transformer cannot even access the entire input. Moreover, we provide an exact characterization of
the expressive power of constant bit-size transformers as a function of their context window length.
Specifically, let WINDOW[s(n)] denote the complexity class consisting of decision problems solvable
by a constant bit-size transformer with a context window of length O(s(n)), SPACE[s(n)] the class
of decision problems solvable by a TM using O(s(n)) space, and PSPACE :=

⋃
k∈N SPACE[nk]

the class of decision problems solvable in polynomial space. We now state the main theorem of this
paper:
Theorem 1. For any non-decreasing function s(n) ≥ n, we have WINDOW[s(n)] = SPACE[s(n)].
In particular, WINDOW[poly(n)] = PSPACE.

Previous proofs establishing the Turing completeness of transformers suggested that the context
window length must scale with the time complexity for solving the task. In contrast, Theorem 1
implies that it is sufficient for the context window length to scale only with the space complexity
instead. This distinction is crucial, since many problems exhibit a significant gap between space

2Transformers are allowed to generate arbitrarily long CoTs before producing the final output.
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complexity and time complexity. For instance, solving Boolean satisfication problems, Sokoban
puzzles [Hearn and Demaine, 2005], model checking tasks [Sistla and Clarke, 1985], or other
PSPACE-complete problems, require only polynomial space by tracking the current configuration,
whereas the time complexity is widely conjectured to be superpolynomial [Arora and Barak, 2009]
or even 2poly(n) [Impagliazzo and Paturi, 2001]. Recently, Williams [2025] proved that every multi-
tape Turing machine running in time t(n) can be simulated in space only O(

√
t(n) log t(n)). As a

consequence, there are problems solvable in O(s(n)) space that require Ω̃(s(n)2) time on multitape
Turing machines.

In addition, the simulation of a TM by a transformer in Theorem 1 is uniform and easily generalizable
with respect to the context window length. Specifically, to simulate a given TM on increasingly long
inputs, the transformer just needs to extend its context window by adjusting the relative positional
encoding according to an explicit formula, without changing all other model parameters.
Remark 2. Aiming for stronger deductive reasoning ability, a line of engineering efforts tend to
lengthen context window instead of growing parameter count. Our result formally justifies this
strategy: extending the window alone is sufficient. Moreover, a window that grows only polynomially
with the input already suffices to solve every PSPACE problem, including game-tree search and
mathematical proofs.
Remark 3. There is a ongoing debta on whether transformers can approach AGI. A common negative
view (e.g. [Lecun, 2024, Goldblum et al., 2024]) argues that transformers, limited by finite size and
window, cannot approximate unbounded computation. Our result shows that, at least for deductive
reasoning tasks (whose solutions depend only on explicit information), scaling window length alone
is theoretically sufficient, and continually scaling up size is not a principled requirement.

Our proof strategy is to simulate Post machines [Post, 1936] with transformers. A Post machine
can be modeled as an automaton equipped with a queue. By storing the TM’s tape within the
queue in a cyclic manner, Post machines can faithfully simulate Turing machines, and thus are
Turing complete [Post, 1936, Davis et al., 1994]. By viewing the transformer’s context window as
a queue-like structure, one can observe that the behavior of Post machines naturally aligns with
that of transformers. Leveraging this behavioral similarity, we can then design a transformer that
faithfully simulates the step-by-step execution of a Post machine. In general, this alignment offers
a new interpretation of the attention mechanism: not only as a statistical aggregator, but also as a
discrete computational operation over queue-like structures.

1.2 Other related work

Recent theoretical studies have examined the computational capabilities of transformers under various
architectural constraints. Feng et al. [2023], Merrill and Sabharwal [2023, 2024], Li et al. [2024]
proved that CoT steps can improve the reasoning capabilities of transformers: Transformers without
CoT can only solve problems that can be solved by shallow circuits, whereas allowing polynomially
long CoT steps enables the same model to solve any problem in P. In addition, Merrill and Sabharwal
[2025] showed that a transformer with depth growing only logarithmically in the input length can
recognize regular languages and solve graph connectivity problems without CoT, whereas a constant-
depth transformer requires CoT steps of length Ω(n). We remark that these papers assume either
a O(log n)-bit precision or a O(log n)-embedding size, and require the context window to be long
enough to cover the entire context. The survey by Strobl et al. [2024] provides a comprehensive
overview on formal-language expressivity of transformers, clarifying how design choices affect
expressivity.

Aiming to reduce the required context window length and the memory, Yang et al. [2025] proposed the
PENCIL framework, which incorporates a reduction mechanism to recursively “erase” intermediate
CoT steps. This allows the context window length to scale with the space complexity of the
computation, rather than the time complexity. We remark that their results still require increasing the
bit-size of the transformer as the input length grows.

Schuurmans et al. [2024] considered a generalization of autoregressive decoding where, given a long
input, emitted tokens are appended to the end of the sequence as the context window advances, and
proved that the resulting system is Turing complete. This work also exploits the similarity between
the behaviors of Post machines and Transformers. In fact, they analyze an even restrictive model, the
so-called Lag system, where the next token depends solely on the leftmost two tokens in the queue
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and not on the state q of PM. The main technical challenge in their construction is thus to compensate
for the absence of access to the state q. As a result, their simulation requires Θ(s(n)3) CoT tokens
per TM step, whereas ours are only O(s(n)).

2 Notations and preliminaries

Let R be the set of real numbers and N be the set of natural numbers. For n ∈ N, let [n] denote
{1, 2, · · · , n}. We use bold lowercase letters to represent vectors or sequences (e.g., x), and bold
uppercase letters to represent matrices (e.g., A). Given a vector x and indices j ≤ i, we use xj:i to
denote the sub-vector (xj , xj+1, . . . , xi). Let 0n denote the n-dimensional all-zeros vector. Given a
vocabulary V , let Vn denote the set of length-n strings over V , and let V∗ :=

⋃+∞
n=1 Vn denote the set

of all finite strings over V .

2.1 Turing machines

A (single-tape) Turing machine (TM) is defined as a tuple ⟨Σ, Q, δ⟩ where

• Σ is the tape alphabet, including a designated “blank” symbol ⊥, a designated “start” symbol
▷, and numbers 0 and 1.

• Q is a finite set consisting of possible states. We assume Q contains a designated start state
qstart and a designated halting state qhalt.

• δ : Q × Σ → Q × Σ × {Left,Right} is a transition function describing the rules used in
performing each step of the TM.

The machine has a single tape that is infinite to the right and bounded on the left. The tape is equipped
with a tape head. Initially, the tape (from the leftmost cell rightward) contains the start symbol ▷, a
finite {0, 1}-string x (the input), and the blank symbols ⊥ on the rest of its cells. The head starts at
the leftmost tape cell, and the machine starts in the state qstart. The computation then repeats the
following step until the machine enters qhalt: if the machine is in some state q ∈ Q and is reading
symbol σ from the tape, and if δ(q, σ) = (q′, σ′, z) for some z ∈ {Left,Right}, then the machine
replaces σ with σ′ in the current cell, changes state from q to q′, and moves the tape head one cell in
direction z.

Space complexity Let s : N → N be a non-decreasing function. The complexity class
SPACE[s(n)] consists of all decision problems {0, 1}∗ → {0, 1} that can be decided by a
single-tape Turing machine using at most O(s(n)) tape cells on inputs of length n.3 The class
PSPACE :=

⋃
k∈N SPACE[nk] is defined as the class of decision problems that can be solved in

polynomial space.

2.2 Post machines

A Post machine (PM) [Post, 1936] is defined as a tuple ⟨Σ, Q, δ⟩ where

• Σ is the tape alphabet, including a designated “blank” symbol ⊥, a designated “start” symbol
▷, and numbers 0 and 1.

• Q is a finite set consisting of possible states. We assume Q contains a designated start state
qstart and a designated halting state qhalt.

• δ : Q× Γ → Q× Γ× {Stay,Right} is the transition function, specifying how the machine
updates the tape and state.

The machine has a single tape that is infinite to the right and bounded on the left. The tape is equipped
with two tape heads: the front head and the rear head. Initially, the tape (from leftmost cell rightward)
contains the start symbol ▷, a finite {0, 1}-string x (the input), and the blank symbols ⊥ on the rest of
its cells. The front head starts at the leftmost tape cell, the rear head starts at the right end of the input,
and the machine starts in state qstart. The computation repeats the following step until the machine

3We implicitly assume that s(n) ≥ n, since n tape cells are required to load an input of length n.
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enters qhalt: if the machine is in state q ∈ Q with the front head reading symbol σ from the tape, and
if δ(q, σ) = (q′, σ′, z) for some z ∈ {Stay,Right}, then the machine (i) changes the state from q to
q′, (ii) moves the front head either one cell to the right if z = Right, and (iii) moves the rear head one
cell to the right, and then write σ′.

One can see that a PM can also be modeled as an automaton equipped with a queue of unbounded
size: the queue is initialized as the input x, the front head points to the first element of the queue, and
the rear head points to the last one. In each step, the PM reads and deletes the first element of the
queue and may append a string to the tail.

Turing completeness of PM The model of PM is Turing complete, i.e., equivalent in computational
power to TMs. Specifically,
Theorem 2. Given any single-tape TM running in t(n) time and s(n) space, there is an equivalent
PM running in O(t(n)× s(n)) time and using a s(n)-size queue.

This theorem has been implicitly proved in several places, e.g., [Umans, 2025] and Section 9.1 of
[Pettorossi, 2014]. For completeness, we present a proof in Appendix B. The intuition is as follows.
The PM’s queue stores the non-blank part of the TM’s tape in a cyclic manner: If the TM head
changes a symbol σ to σ′ and moves right, the queue shifts by deleting σ from the front and appending
σ′ to the end. If the TM head moves left, the queue cyclically rotates by moving the last symbol to
the front, where the appended symbol may need to depend on the leftmost two queue symbols. To
avoid explicitly pre-reading the next queue cell, we apply a one-step delayed append trick: initially,
pop the leftmost queue symbol and store it in the finite-state controller, without appending; thereafter,
at each step, (i) pop the next leftmost symbol, and (ii) append a symbol determined by the two most
recently popped symbols.

2.3 Transformers

For simplicity of notation, we present the definition of a single-head transformer, since only single-
head attention is used in our proof. The definition of general multi-head transformers is deferred to
Appendix C.

Let V be a finite vocabulary. A decoder-only transformer is a parameterized neural network TFθ

mapping from V∗ to V . Specifically, a transformer is a composition TF := out ◦ decL−1 ◦ · · · ◦
dec0 ◦ pos ◦ emb of four kinds of layers. Given a sequence v = (v1, · · · , vi) ∈ Vi, it computes the
next token vi+1 as follows:

1. Token embedding layer (emb): For j ≤ i, map each vj ∈ V to a vector emb(vj) ∈ Rd. Here, d
is called the embedding size.

2. Positional encoding layer (pos): For j ≤ i, add a positional encoding pos(i − j) ∈ Rd to the
token embedding emb(vj), resulting in the initial input representation h0

j := emb(vj) + pos(i− j).
Here, we assume a relative positional encoding scheme, where the encoding depends only on the
distance between vj and vi.

3. Decoder Layer (decℓ for ℓ = 0, · · · , L− 1): Each decoder layer decℓ consists of two sublayers:
an self-attention layer, followed by a fully-connected feed-forward network. Residual connections
are applied around each sub-layer 4. Here, following common practice Pérez et al. [2021], Merrill
and Sabharwal [2024, 2023], Qiu et al. [2024], Yang et al. [2025], we use hardmax as a realistic
abstraction of softmax. In fact, hardmax is the instance-wise limit of zero temperature limit of
softmax [Yang et al., 2025]. Consider a vector s ∈ Rn. If the maximum value in s appears at t
positions, then the hardmax function is defined coordinate-wise as:

hardmax(s)j :=

{
1
t , if sj = maxk sk,

0, otherwise.

3.1. Single-head self-attention layer: Compute the attention score

sℓi = hardmax
(
⟨hℓ

1 ·Q
ℓ,hℓ

i ·K
ℓ⟩, · · · , ⟨hℓ

i ·Q
ℓ,hℓ

i ·K
ℓ⟩
)
,

4For simplicity, we ignore layer normalizations from the standard transformer architecture [Radford et al.,
2019] in our analysis. With a little more technical treatment as in [Li et al., 2024], our results can be extended to
transformers with layer normalizations.
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and then

aℓ
i =

i∑
j=1

sℓi,j · vℓ(h
ℓ
i), where vℓ(h) := h · V ℓ and sℓi,j is the j-th entry of sℓi .

Here, Qℓ,Kℓ,V ℓ ∈ Rd×d are parametrized matrices. Then, this sublayer returns

hℓ+0.5
i := W ℓ · aℓ

i + bℓ + hℓ
i ,

where W ℓ ∈ Rd×d and bℓ ∈ Rd are parametrized.

3.2. Feed-forward network: Apply a multi-layer fully-connected ReLU neural network FF to hℓ+0.5
i ,

and returns
hℓ+1
i = FF(hℓ+0.5

i ) + hℓ+0.5
i .

4. Output layer (out): The final output representations hL
i are projected onto the vocabulary space

using a linear transformation followed by a argmax function:

vi+1 := out(hL
i ) = argmax(W out · hL

i + bout), where W out ∈ R|V|×d and bout ∈ R|V|.

We say that a transformer operates with a context window of length s if the generation of vi+1

depends only on the last s tokens vi−s+1, · · · , vi. A transformer is said to be of p-bit precision if
each parameter is represented using p bits. We define the bit-size of a transformer TFθ as p × |θ|,
meaning that the entire model can be represented by using p× |θ| bits. In this paper, when we refer
to transformers, we mean transformers that are allowed to generate arbitrarily long immediate CoT
steps, unless stated otherwise.
Definition 1. We define WINDOW[s(n)] as complexity class consisting of the problems {0, 1}∗ →
{0, 1} that can be solved by a constant bit-size transformer with context window of length O(s(n))
on inputs of length n.

3 Proof of main results

In this section, we prove Theorem 1, which characterizes the expressive power of constant bit-size
transformers with context window of length s(n) in terms of the complexity class SPACE[s(n)]. In
particular, it implies that constant bit-size transformers are Turing complete.

First, we prove that any constant bit-size transformer with a context window of length s(n) can be
simulated by a Turing machine using O(s(n)) space.
Theorem 3. For any non-decreasing function s(n) ≥ n, WINDOW[s(n)] ⊆ SPACE[s(n)].

Proof. Let L : {0, 1}∗ → {0, 1} be a decision problem that can be solved by a constant bit-size
transformer using a context window of length s(n). We sketch a Turing machine using O(s(n))
space that solves L by simulating the transformer. The Turing machine maintains a buffer of size
s(n) storing the latest s(n) tokens in the transformer’s context. To compute the next token generated
by the transformer, the Turing machine simulates the computation procedure described in Section
2.3, using an additional O(s(n)) working space. After generating the next token, the Turing machine
updates the buffer by appending the new token and deleting the oldest token that slides out of the
window, and then cleans the working space. By iteratively repeating this procedure, one can see that
the Turing machine can faithfully simulate the transformer’s behavior and solve the problem L.

In the following, we prove the reverse direction, which is the main technical part.
Theorem 4. Let TM be a single-tape Turing machine that, on input x ∈ {0, 1}n, uses at most s(n)
space and runs for at most t(n) steps. There exists a constant bit-size transformer with a context
window of length O(s(n)) that, on input x, takes O(t(n) · s(n)) CoT steps and then outputs TM(x).

As a consequence, we have WINDOW[(s(n))] ⊇ SPACE[s(n)] for s(n) ≥ n.

Proof. Let TM be a single-tape Turing machine that runs in t(n) steps and uses at most s(n) tape
cells. By Theorem 2, the TM can be simulated by a Post machine that runs in O(t(n) · s(n)) time and
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uses a queue of size s(n). We slightly adapt the Post machine to ensure that the queue size remains
exactly s(n) throughout the computation, or equivalently, that the distance between the front and rear
heads on the tape remains fixed at s(n). Specifically, we pad the input x with s(n)− n copies of a
special symbol # to the right initially, and in each computation step, both the front and rear heads
always move one cell to the right. One can easily see that such an adapted PM = (Σ, Q, δ) simulates
the Turing machine as well. Furthermore, without loss of generality, we assume Σ = {0, 1,#},
Q = {0, 1}c for some c ∈ N, and that qstart /∈ δ(σ, q) for any (σ, q), meaning that once the
computation starts, the Post machine leaves qstart immediately and never comes back.

We now construct a constant bit-size transformer TF with a context window of length s(n) to
faithfully simulate PM. The intuition is as follows:

• The s(n)-size queue is simulated by the s(n)-long context window, where the first element
in the queue (or the tape cell pointed by the front head) corresponds to the oldest token in
the window, and the last element in the queue (or the tape cell pointed by the rear head)
corresponds to the newest token. Besides, we will let the vocabulary of the transformer be
V = Σ×Q, so that a token also tracks the PM state information.

• As mentioned above, in each computation step of PM, the first element in the queue is
removed, and a new element is added, so that the queue size remains the same. Correspond-
ingly, in each CoT step of the transformer, the oldest token in the window slides out, and a
new token is appended.

• The transition function of PM takes the last element in the queue and the current state
as input, and outputs the next state and the next element. Correspondingly, by carefully
choosing the parameters, the self-attention layer retrieves the last element from the oldest
token in the window, and the current state from the current token; subsequently, a feed-
forward network is used to implement the transition function δ.

We formally define the transformer TF as follows: let V = Σ×Q = {0, 1,#} × {0, 1}c.

1. Token embedding layer Map each token v = (σ, q) to a vector emb(σ, q) ∈ Rc+8 as follows:

emb(σ, q) =


(1, 1, 0, 0, q, 0, 0, 0, 0), if σ = 0;

(1, 0, 1, 0, q, 0, 0, 0, 0), if σ = 1;

(1, 0, 0, 1, q, 0, 0, 0, 0), if σ = #.

(1)

2. Positional encoding layer Add a relative positional encoding pos(i − j) ∈ Rc+8 to the token
embedding emb(vj) where

pos(i− j) =


0c+8, if 0 < i− j < s(n)− 1;

(0c+7, 1), if i− j = 0,

(0c+7, 2), if i− j = s(n)− 1,

(2)

Then return h0
j = emb(vj) + pos(i− j).

3. Decoder layer The transformer has only one decoder layer, and the decoder layer has only one
attention head. In the self-attention layer, we set the matrix K,Q,V ,W ∈ Rd×d and b ∈ Rd where
d = c+ 8 as follows:

• Matrix K: it has only one non-zero entry Kc+8,1 = 1;

• Matrix Q: it has only one non-zero entry Qc+8,c+8 = 1;

• Matrix V : it has four non-zero entries: Vc+5,2 = Vc+6,3 = Vc+7,4 = Vc+8,c+8 = 1.

Besides, we set the matrix W ∈ Rd×d to be the identity matrix, and b = 0c+8.
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The feed-forward network FF is designed to simulate transition function δ. Specifically, we let

FF(h) + h =


e(#,qstart), if hc+8 = 2;

eδ(0,q), if h4:c+8 = (q, 1, 0, 0, 3);

eδ(1,q), if h4:c+8 = (q, 0, 1, 0, 3);

eδ(#,q), if h4:c+8 = (q, 0, 0, 1, 3);

(3)

Here, e(σ′,q′) ∈ R|V| is the unit vector where the entry indexed by (σ′, q′) is 1 and any other entry is
0.

4. Output layer We set W out to be the identity matrix and bout the all-zeros vector. Then the output
layer outputs vi+1 := argmax(h1

i ).

In the following, we show that the transformer TF faithfully simulates the Post machine PM. Let
(σ1, q1), (σ2, q2), · · · denote the execution log of PM running on x ∈ {0, 1}n, where σi is the i-th
element added to the queue and qi is the state when adding σi. Note that (σi, qi) = (xi, qstart)
for i ≤ n, (σi, qi) = (#, qstart) for n + 1 ≤ i < s(n), and δ(σi−s(n)+1, qi) = (σi+1, qi+1)
for i ≥ s(n). Let v1, v2, . . . denote the token sequence in the context of TF when it takes v1 =
(x1, qstart), . . . , vn = (xn, qstart) as input. We show by induction that for each i ≥ 1, we have
vi = (σi, qi).

Base case: i ≤ n This case is trivial.

Inductive case: n+ 1 ≤ i < s(n) In the self-attention layer, observing that K ·h0
i = (0c+7, 1) = 1

and

Q · h0
j = pos(i− j) =

{
0c+8, if 1 ≤ j < i,

(0c+7, 1), if j = i,
(4)

we have

si =hardmax
(
⟨h0

1 ·Q,h0
i ·K⟩, · · · , ⟨h0

i ·Q,h0
i ·K⟩

)
= (0, · · · , 0, 1) ∈ Ri

and

ai =

i∑
j=1

si,j ·
(
V · h0

j

)
=

i∑
j=1

si,j ·
(
0c+4,h

0
j,2;4, h

0
j:c+8

)
= (0c+4,h

0
i,2:4, 1).

Then
h0.5
i = W · ai + b+ h0

i = ai + h0
i = (h0

i,1:c+4,h
0
i,2:4, 2).

In the feed-forward network layer, h0.5
i is mapped to FF(h0.5

i ) +h0.5
i , which is e(#,qstart) according

to Equation (3). Finally, the output layer outputs (#, qstart) as desired.

Inductive case: i ≥ s(n) In the self-attention layer, observing that K · h0
i = (0c+7, 1) = 1 and

Q · h0
j = pos(i− j) =


0, if i− s(n) + 1 < j < i;

1, if j = i,

2, if j = i− s(n) + 1,

(5)

we have

si = hardmax
(
⟨h0

i−s(n)+1 ·Q,h0
i ·K⟩, · · · , ⟨h0

i ·Q,h0
i ·K⟩

)
= (1, 0 · · · , 0) ∈ Rs(n)

and

ai =

i∑
j=i−s(n)+1

si,j ·
(
0c+4,h

0
j,2;4, h

0
j:c+8

)
= (0c+4,h

0
i−s(n)+1,2:4, 2).

Then
h0.5
i = ai + h0

i = (h0
i,1:c+4,h

0
i−s(n)+1,2:4, 3).

In the feed-forward network layer, noting that by the induction hypothesis, we have

h0.5
i,5:c+4 = h0

i,5:c+4 = qi, and h0.5
i,c+5:c+7 = h0

i−s(n)+1,2:4 = σi−s(n)+1.
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The vector h0.5
i is mapped to FF(h0.5

i ) + h0.5
i , which is eδ(σi−s(n)+1,qi) according to Equation

(3). Recall that δ(σi−s(n)+1, qi) = (σi+1, qi+1), then one can see that the output layer outputs
(σi+1, qi+1) as desired.

Now, we have shown that vi = (σi, qi) for any i ≥ 1 and thus finished the proof.

Remark 4. As we can see from the proof, to simulate the given TM on longer inputs, what we need
to do is just change the relative positional encoding according to Equation (2), without changing all
other model parameters.
Remark 5. We briefly compare our construction with existing Turing-completeness proofs and
highlight why our construction achieves constant bit-size. In [Pérez et al., 2021] and related follow-
ups, the query may attend to many earlier tokens; when multiple positions tie for the maximum score,
the hardmax outputs fractions such as 1/t, which requires the precision to grow with t. The proof of
Li et al. [2024] encodes the simulated circuit directly into the absolute positional encoding, rather
than into the parameters. Consequently, as the circuit expands, the positional encoding must also
grow in dimension, so the embedding size is no longer constant.

In contrast, our construction leverages the automaton-like behavior of Post machines, which is
simpler and more regular than the head movements of Turing machines or the wiring patterns of
circuits. As a result, at each CoT step the query attends to exactly one token, specifically the token
located s(n) positions earlier. This fixed-offset attention can be implemented purely through a relative
positional encoding, without any additional arithmetic operations.

In particular, the input to hardmax is always one-hot, so is the resulted attention distribution. As
an alternative of hardmax, one could replace hardmax with the right-most hardmax function [Yang
et al., 2024].

Combining Theorems 3 and 4, we immediately conclude our main theorem.
Theorem 1. For any non-decreasing function s(n) ≥ n, we have WINDOW[s(n)] = SPACE[s(n)].
In particular, WINDOW[poly(n)] = PSPACE.

4 Conclusions and Discussions

In this work, we have shown that a constant bit-size transformer, with a sufficiently long context
window, can simulate any Turing machine on arbitrarily long inputs. We further proved that the
complexity class SPACE[s(n)] precisely characterizes the expressive power of constant bit-size
transformers with a context window of length s(n), suggesting that the context window length needs
to scale only with the space complexity rather than the time complexity as suggested by previous
results. Our proof leverages the behavioral similarity between transformers and Post machine, which
offers new insights into the mechanism underlying the reasoning abilities of transformers. We list
some future directions:

• Simulation efficiency: Our construction requires O(t(n) · s(n)) CoT steps, which is potentially
prohibitive for practical applications. It would be interesting and important to investigate whether
this slowdown can be avoided without compromising optimality in other aspects.

• Positional encodings: Our construction employs an nonstandard relative positional encoding. It is
open whether it can be replaced with fixed absolute positional encodings or other standard relative
positional encodings. Moreover, our positional encoding explicitly depends on the assumed space
upper bound, and it is unclear how this bound could be inferred automatically.

• Learnability and empirical validation: Our contribution is purely about expressiveness. Whether
standard training procedures can learn such behavior is an important open problem. How well
our construction behaves in practice also remains to be investigated.
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A Modifications on Transformers in Turing Completeness Proofs

Existing proofs of Turing-completeness for Transformers typically departure from the vanilla archi-
tecture and make specific modifications. Pérez et al. [2021] consider a Transformer with an absolute
positional encoding given by the triplet (i, 1/i, 1/i2) at position i. In their construction, the attention
score is defined as the negative absolute value of the dot product, and the attention mechanism uses
average-hard attention. Moreover, the feed-forward layers employ sigmoid activations in place of
ReLUs. Merrill and Sabharwal [2024] dispense with positional encodings altogether and instead
adopt Strict Causal Masking, where attention at position i can access all tokens up to position i− 1
but not the current token i. Their construction also uses average-hard attention and introduces a
Projected Pre-Norm: an arbitrary linear projection is allowed before layer normalization. In the proof
of Li et al. [2024], the simulated circuit is directly encoded into the absolute positional encoding,
rather than into the parameters. Qiu et al. [2024] consider Transformers with nonstandard absolute
positional encodings. In their construction, the query, key, and value maps in the attention sublayer are
implemented as ReLU networks rather than linear transformations. This work employ nonstandard
relative positional encodings.

B Proof of Theorem 2

Let TM = (Σ, Q, δ) be a single-tape Turing machine that runs in time t(n) and space s(n). We
construct an equivalent Post machine PM = (Σ′, Q′, δ′) that simulates TM within O(t(n) · s(n))
time and uses a queue of size at most s(n).

Queue alphabet We define the queue alphabet Σ′ := {σ, σ̂, σ̃ | σ ∈ Σ}. Here, ·̂ and ·̃ are temporary
markers used for simulating a left move of TM’s head. Specifically, ·̂ temporarily marks the current
head cell, while ·̃ temporarily marks its left neighbor.

Delayed append trick PM maintains a logical queue L which represents the non-blank segment of
TM’s tape in a cyclic manner. Formally, we realize L as L = R ◦Qphys where

• R is a register in the finite control storing the leftmost symbol of L, and
• Qphys is the actual queue content. Thus |Qphys| = |L| − 1.

With this representation, the appended symbol is no longer restricted to depend only on the leftmost
symbol of L; it can now be determined by the two leftmost symbols.

Initialization Initially, TM’s tape contains the start symbol ▷, followed by the input x, and then
blanks. Accordingly, the logical queue L is initialized to (▷, x): the first symbol ▷ is placed in the
register R, and the remaining symbols x are stored into Qphys. During the simulation, we will keep
the following invariant:

• Right before each simulated step, the leftmost cell of L correponds to TM’s head cell; its symbol
is either unmarked or carries the ·̃ mark, while all other cells of L are unmarked.

Simulation of one step Suppose TM is in state q and its head reads σ from cell i. Let δ(q, σ) =
(q′, σ′, z) with z ∈ {Left,Right}. This means that TM overwrites cell i with σ′, change state from q
to q′, and moves its head one cell in direction z.

• Move Right. PM deletes the leftmost logical symbol and appends σ′ to L, thereby overwriting
tape cell i. If the resulting leftmost logical symbol is ▷, indicating that TM has extended its
non-blank segment by one blank cell to the right, then PM additionally appends a blank symbol
⊥.

• Move Left. PM deletes the leftmost logical symbol and appends σ̂′ to L, thereby overwriting tape
cell i. It then cyclically rotates L until the second leftmost logical symbol carries the ·̂ mark. At
this point, the first and second of L correspond to tape cells i− 1 and i, respectively. PM then
adds a mark ·̃ to the first symbol and removes the ·̂ mark from the second, after one additionally
cyclic sweep of L; concretely,

1. delete the leftmost element and append the same symbol with the mark ·̃; then

12



2. delete the leftmost element and append the same symbol with no mark; then
3. cyclically rotate L until the leftmost logical symbol carries the ·̃ mark.

Analysis By induction on the number of simulated steps, one can check that the invariant is
maintained throughout the simulation, and hence PM faithfully simulate TM. For a right move,
PM performs O(1) queue operations. For a left move, it performs two full sweeps of L, costing
O(|L|) = O(s(n)) operations. Therefore, the overall running time is O(t(n) · s(n)), completing the
proof.

C Multi-head Transformers

A multi-head Transformer employs the following multi-head self-attention layer in place of the
single-head self-attention layer, while all other components remain the same as in the single-head
transformer.

Multi-head self-attention layer: For each head k = 1, 2, · · · , H , compute the attention score

sℓk,i = hardmax
(
⟨hℓ

1 ·Q
ℓ
k,h

ℓ
i ·K

ℓ
k⟩, · · · , ⟨h

ℓ
i ·Q

ℓ
k,h

ℓ
i ·K

ℓ
k⟩
)
,

and then

aℓ
i,k =

i∑
j=1

sℓk,i,j · vℓk(h
ℓ
i), where vℓk(h) := h · V ℓ

k

Here, Qℓ
k,K

ℓ
k,V

ℓ
k ∈ Rd×d/H are parametrized matrices. By concatenating the H heads, we obtain

aℓ
i =

(
(aℓ

i,1)
T , · · · , (aℓ

i,H)T
)T ∈ Rd. Then, this sublayer returns

hℓ+0.5
i := W ℓ · aℓ

i + bℓ + hℓ
i ,

where W ℓ ∈ Rd×d and bℓ ∈ Rd are parametrized.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes] .
Justification: In Section 3, we prove the theoretical claim.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes] .
Justification: Section 4 discusses the limitations.
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Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes] .

Justification: We provide the setting and preliminaries in Section 2, and the complete proof
in Section 3.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA] .

Justification: The paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA] .

Justification: This paper does not include experiments requiring code

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA] .

Justification: This paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA] .

Justification: This paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA] .

Justification: This paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes] .
Justification: The research conducted in this paper conforms with the NeurIPS Code of
Ethics in every respect.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA] .
Justification: This paper is a foundational research and not tied to particular applications.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA] .
Justification: This paper poses no such risks.
Guidelines:
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA] .

Justification: This paper does not use existing assets

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA] .

Justification: This paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA] .
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Justification: This paper does not involve crowdsourcing experiments nor research with
human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA] .
Justification: This paper does not involve crowdsourcing experiments nor research with
human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA] .
Justification: In this paper, the LLM is used only for writing and editing, and the core
method development in this research does not involve LLMs as any important, original, or
non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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