
Under review as a conference paper at ICLR 2022

TOWARDS PHYSICAL, IMPERCEPTIBLE ADVERSARIAL
ATTACKS VIA ADVERSARIAL PROGRAMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Adversarial examples were originally defined as imperceptible perturbations
which cause a deep neural network to misclassify. However, the majority of im-
perceptible perturbation attacks require to perturb a large number of pixels across
the image and are thus hard to execute in the physical world. Existing physical
attacks rely on physical objects, such as patches/stickers or 3D-printed objects.
Producing adversarial patches is arguably easier than 3D-printing but these at-
tacks incur highly visible perturbations. This raises the question: is it possible
to generate adversarial examples with imperceptible patches? In this work, we
consider adversarial multi-patch attacks, where the goal is to compute a targeted
attack consisting of up to K patches with minimal L2 distortion. Each patch is
associated with dimensions, position, and perturbation parameters. We leverage
ideas from program synthesis and numerical optimization to search in this large,
discrete space and obtain attacks that are competitive with the C&W attack but
have at least 3x and up to 10x fewer perturbed pixels. We evaluate our approach
on MNIST, Fashion-MNIST, CIFAR-10, and ImageNet and obtain success rate
of at least 92% and up to 100% with at most ten patches. For MNIST, Fashion-
MNIST, and CIFAR-10, the average L2 distortion is greater than the average L2

distortion of the C&W attack by up to 1.2.

1 INTRODUCTION

Adversarial examples were originally defined as imperceptible perturbations added to correctly clas-
sified inputs which cause a deep neural network (DNN) to misclassify (Szegedy et al., 2014; Good-
fellow et al., 2015). Since then, many works have shown how to generate imperceptible adversarial
examples (e.g., Carlini & Wagner (2017); Moosavi-Dezfooli et al. (2016); Madry et al. (2018)). A
main motivation of this line of works is to expose the level of vulnerability of DNN-based systems.
However, these attacks often cannot be executed in the physical world, for example against DNNs
used by autonomous vehicles (Lu et al., 2017). This gave rise to works that focus on physical at-
tacks, executed by adding patches or stickers to objects or cameras (Brown et al., 2017; Eykholt
et al., 2018; Li et al., 2019) or 3D-printed objects (Athalye et al., 2018; Sharif et al., 2018). While
3D-printing enables the attacker to generate imperceptible adversarial examples, it is not the case
for patch/sticker attacks. These attacks incur highly visible perturbations. However, in some settings
(e.g., traffic sign attacks), patch attacks are easier to execute than 3D-printing attacks. This raises
the question: is it possible to generate adversarial examples with imperceptible patches?

We consider a new space of targeted attacks expressed as patch sequences. The patches we consider
are of rectangular shape and uniformly perturb their associated pixels according to scale and shift
factors. Given an input, a DNN, and a target label, the attacker’s goal is to compute a patch sequence
resulting in a targeted adversarial example of minimum distance to the original input. That is, the
attacker chooses the patches’ position, dimensions, perturbation factors, and the number of patches
such that the output of the patch sequence is an imperceptible adversarial example. Because the goal
is to generate a sequence of patches, each is constrained by a structure, it is natural to view each
patch as a program instruction and the overall problem as an instance of Syntax-guided Synthesis
(SyGuS) (Alur et al., 2013), where a high-level requirement (e.g., computing an adversarial example)
has to be implemented in a given programming language (e.g., the patch sequence). A common
challenge of SyGuS instances is looking for a solution (i.e., a program) in a discrete space. Unlike
common SyGuS instances, our instructions (i.e., patches) are defined also over continuous variables

1

Under review as a conference paper at ICLR 2022

Figure 1: Examples of APSyn’s attacks for CIFAR-10 (top) and ImageNet (bottom). Each triple con-
sists of an image (left), the adversarial program (right), and the adversarial example returned by the
program (middle). Programs are depicted as images showing the patches’ position and dimensions;
the legend shows the scale and shift factors of each patch, one per color channel.

(the perturbation factors). Thus, our setting is not easily amenable to standard SyGuS approaches,
neither to standard numerical optimization approaches (because of the discrete variables).

We propose APSyn, an adversarial program synthesizer, to compute patch sequences. APSyn builds
on enumerative program synthesis which enumerates programs from the shortest to the longest until
obtaining a solution (Udupa et al., 2013). This approach guarantees to return the shortest solution
among all solutions, which is desirable when aiming at simplifying the physical execution of the
attack. While enumerative synthesis is useful, it is not sufficient by its own, as there are infinitely
many ways to instantiate a patch (up to computer representation). To search for the optimal patch pa-
rameters, we leverage the loss proposed by Carlini & Wagner (2017). To optimize this loss for patch
sequences, we propose a gradient estimate for the discrete variables using zeroth order optimization.
We further allow discrete variables to take real values to avoid skipping optimal solutions.

Our evaluation results for MNIST, Fashion-MNIST and CIFAR-10 show that the success rate of
APSyn is at least 96%, when allowed up to five patches. The L2 distortion of these attacks is on
average greater by up to 1.2 than the C&W’s L2 distortion, while the L0 distortion is smaller by
at least 3x and up to 10x compared to the C&W’s attack. We further show that APSyn produces
attacks which generalize better: at least 2.7x and up to 23x more than the C&W attack. We believe
the higher generalization rate stems from the structure imposed on our attacks. For ImageNet,
APSyn’s success rate is 92% when allowed up to ten patches. Figure 1 shows several attacks that
APSyn synthesized along with visualizations of the patch sequences.

To conclude, our main contributions are:

• A new class of adversarial attacks consisting of multi-patch sequences.
• An effective algorithm to compute multi-patch attacks combining enumerative synthesis

and numerical optimization. The latter relies on gradient estimation of the discrete factors.
• An extensive evaluation of our approach on four datasets. Results show that our attack is

competitive with the C&W attack, in terms of the success rate and L2 distortion, but has
significantly lower L0 distortion and is thus easier to physically execute.

2 ADVERSARIAL PROGRAMS

In this section, we provide the terms and notation used throughout the paper and define our problem.

We are given a classifier N : [0, 1]d1×d2 → [0, 1]C , mapping a two-dimensional image to a prob-
ability vector over C classes. We note that all our definitions extend to colored images by consid-
ering each color channel separately. We assume a white-box access to the classifier. We denote by
class(N(x)) the classification of input x by N , i.e., the index with the maximal probability. We are
also given an input x with class c, which N classifies correctly, i.e., class(N(x)) = c, and a target
adversarial label t ̸= c. The goal of the attack is to compute an input x′ which is similar to x but is
classified as t. Commonly, this is phrased as constrained optimization, where the goal is to compute

2

Under review as a conference paper at ICLR 2022

a perturbation matrix M ∈ [0, 1]d1×d2 such that the adversarial example x′ = x +M is classified
as t (class(N(x′)) = t) and the p-norm of the perturbation matrix ||M ||p is minimal.

In this work, we aim at adding structure to adversarial attacks with the goal of obtaining attacks
which are easier to physically execute, are more explainable, and generalize better. We draw in-
spiration from program synthesis where the goal is automatically generate a program over a given
programming language satisfying a set of requirements (Gulwani et al., 2017). In particular, we view
our problem as an instance of Syntax-guided Synthesis (SyGuS) (Alur et al., 2013), where the goal
is to implement a high-level specification in a given programming language, typically constrained
and small. Having a program has various advantages: it can be used on other inputs, the implemen-
tation can provide an alternative characterization of the user intent, or even provide a more efficient
implementation than the user initially had. These applications are useful within our scope: our ad-
versarial programs can be executed on other inputs in a negligible time and our programs expose the
(almost imperceptible) shapes that cause the DNN to change its decision.

Adversarial programs We introduce a programming language for adversarial multi-patch attacks.
Our language consists of sequences of patch instructions from a family of patches I. Our patch
family generalizes the perturbation matrices discussed before to scaling and shift perturbations over
rectangular masks. A rectangular mask is a tuple consisting of a starting and ending position p =
(rs, cs, re, ce) capturing a single rectangle in the input. A patch instruction (or simply, a patch)
Iα,β,p ∈ I is associated with a mask p, scale factor α, and a shift factor β, and takes the form:

Iα,β,p(y) = y → lambda v : (α · v + β) if idx(v) ∈ p

where α, β ∈ R and p ∈ ({1, . . . , d1}×{1, . . . , d2})2. Given y ∈ [0, 1]d1×d2 , Iα,β,p(y) maps every
value v in y to α · v + β, if its index is inside the mask. Values outside the mask remain as are.
For value v with idx(v) = (rv, cv) and mask p = (rs, cs, re, ce), we say v’s index is inside p if
rs ≤ rv < re and cs ≤ cv < ce.

Problem definition Given a network N , an input-output pair (x, c), a target class t, and a program
length k, our goal is to compute a program P over I with k or fewer patches such that N classifies
P (x) as t and P (x) is as close as possible to x with respect to the L2 norm:

min ||P (x)− x||2
s.t.

P (x) = Ik′(. . . (I1(x))) I1, . . . , Ik′ ∈ I, k′ ≤ k
class(N(P (x))) = t

Note that we allow patches to overlap, which may lead to perturbation compositions.

Designing a solution If we set aside the constraint that P is a program over I, a common approach
to solve the above constrained optimization is by relaxing the attack constraint. For example, Carlini
& Wagner (2017) propose to relax it to a term which is then minimized along with the norm:

L(P) = max(max
i ̸=t

N(P (x))i −N(P (x))t, 0) + λ · ||P (x)− x||2

where λ is a hyper-parameter balancing the two optimization goals. If P (x) were differentiable,
gradient descent could minimize this loss. If the size of I were relatively small, enumerative search
would have been feasible. However, neither of these hold. We thus approach this search by combin-
ing the two ideas. First, we introduce a gradient estimation approach for the discrete variables, and
then let Adam (Kingma & Ba, 2015) use it to minimize L(P). Second, to compute a shortest patch
sequence and search more efficiently, we employ enumerative synthesis and gradually synthesize
the adversarial program’s patches. We explain these steps in the next two sections.

3 GRADIENT ESTIMATION OF THE PATCHES’ DISCRETE PARAMETERS

In this section, we explain our approach to search for an optimal patch attack consisting of exactly k
patches from I. Unlike previous patch attacks, our approach jointly optimizes over all the patches’
parameters – position, dimensions, and perturbation factors. Since we allow patches to overlap,
this optimization may lead to complex patterns, despite the rectangular shape of the patches. Our

3

Under review as a conference paper at ICLR 2022

approach builds on the C&W attack, which minimizes the loss defined in the previous section. Since
our attacks involve discrete variables, to numerically optimize this loss, we define “gradients” for
these variables. The idea is to estimate the partial derivatives of the discrete variables using zeroth
order optimization. We note that we do not claim that the partial derivatives exist, but rather that
estimating them can guide the optimizer how to change a discrete variable so that our loss decreases.

Gradient estimation Given a program P , an input x, and the target label t, the partial derivatives
of the real-valued variables (the scale and shift parameters α, β) are computed as usual. The partial
derivative of a discrete variable w is estimated by adapting the standard definition of the derivative.
As a first step, we estimate the derivative in each direction:

L(P)+w ≜
∂L(P)+

∂w
= limh→0+

L(P [w → w + h])− L(P)

h
∼= L(P [w → w + 1])− L(P).

The last step is obtained by replacing h with the closest discrete value to 0. The notation P [w →
w + h] denotes the program identical to P except that w is increased by h. Similarly, L(P)−w

∼=
L(P) − L(P [w → w − 1]). These “derivatives” simulate the role of the gradient in optimization.
If L(P)+w and L(P)−w are negative, then increasing w will decrease the loss and thus we define the
gradient as L(P)+w . If L(P)+w and L(P)−w are positive, then decreasing w will decrease the loss, and
thus we define the gradient as L(P)−w . If L(P)+w is negative and L(P)−w is positive, we define the
gradient based on their magnitude; if L(P)+w is positive and L(P)−w is negative, the gradient is zero.

Optimization Using this estimation, we can minimize our loss using Adam (Kingma & Ba, 2015)
and Hill Climbing. Each optimization step begins with an optimization of the discrete variables
followed by a standard, joint, Adam step for the continuous variables. For the discrete variables,
we perform Hill Climbing and Adam. That is, for each discrete variable, we separately estimate
its gradient and update the variable according to Adam’s update steps. If the discrete variable is
assigned an out-of-bounds value, its previous value is restored. We note that the optimizer has two
optimization steps: ηc for the continuous variables and ηd for the discrete variables. In practice, it is
best that ηd ≈ 100 ·ηc. To reduce execution times, the optimization terminates if within T iterations,
the loss has decreased by less than p%, where T and p are hyper-parameters. At the end, our adapted
Adam optimizer returns a program with the optimized continuous and discrete parameters.

Real-value relaxation Although patches’ position and dimensions are discrete variables, we ob-
serve that it is better to allow them to take real values during optimization. This relaxation enables
the optimizer to use small step sizes, and thereby reach solutions which may have been missed if the
variables would only take discrete values. With this relaxation, the discrete variables are rounded
whenever P is invoked on an input (as part of the optimization or when executing the attack).

4 APSYN: ADVERSARIAL PROGRAM SYNTHESIZER

In this section, we present APSyn, our system for synthesizing adversarial programs. APSyn aims
at obtaining a minimal-sized patch sequence in order to compute the simplest attack. To this end, we
employ a simple yet effective program synthesis approach called enumerative program synthesis,
shown successful for many syntax-guided synthesis instances. An enumerative synthesizer consid-
ers programs of increasing size and checks whether they satisfy the specification. At each step, the
synthesizer considers all programs of size k′. In our context, it is not feasible to consider every
patch sequence of size k′. Instead, we search for useful programs of size k′ using the optimization
described in the previous section. Since the optimization can return a local optimum, we invoke
the optimizer multiple times with different initialization, and continue with the best solution. Algo-
rithm 1 shows the operation of APSyn. APSyn synthesizes the adversarial program patch-by-patch.
At iteration i, it constructs the program Pi, by considering m patch candidates to extend the previous
program Pi−1. For each candidate patch instruction Ij , APSyn jointly optimizes over the variables
in the extended program Pi−1::Ij , as described in Section 3. The program Pi is defined as the opti-
mized program that has the best loss out of the m candidates and Pi−1

1. We note that it is possible
to synthesize a full program from the beginning (instead of the enumerative search), but it requires
many more iterations to converge to a successful adversarial program (see Section 5).

1This is a simplification, APSyn prefers a program that generates an adversarial example over one with
lower loss which does not generate an adversarial example.

4

Under review as a conference paper at ICLR 2022

Algorithm 1: APSyn (N , x, t)
Input: A classifier N , an input x, a target label t.
Output: An adversarial program over I.
Pbest = P0 = [] ; Lbest = ∞
for i = 1; i ≤ k; i++ do // Synthesize programs of increasing sizes

for j = 1; j ≤ m; j ++ do // Consider m candidates
Ij = init()
P = Adam(Pi−1 :: Ij ,N , x, t)
if L(P) < Lbest then

Lbest = L(P); Pbest = P

Pi = Pbest

return Pbest

Initialization A patch is initialized by sampling the dimensions (length and width) from a uniform
distribution and sampling values for α and β from Gaussian distributions. To initialize the starting
position, we build on feature ablation. That is, APSyn considers every possible feasible starting
position (i.e., one that together with the given dimensions fit within the image boundaries). For each
possibility (rs, cs), it computes the potential decrease of the loss, if we use that position in the new
patch without any optimization. Overall, it initializes the starting position to the position minimizing
L(Pi−1 :: Irs,cs,re,ce,α,β(x))−L(Pi−1(x)), where the ending position is inferred from the starting
position and the patch’s dimensions. To reduce the execution overhead of checking every possible
starting position, we examine starting positions based on a stride hyper-parameter.

5 EVALUATION

In this section, we evaluate APSyn. We implemented APSyn in Python using PyTorch. Our imple-
mentation supports GPU parallelization. It will be made available, for reproducibility, along with
the experiments. Experiments ran on an Ubuntu 18.04.5 OS on a dual AMD EPYC 7742 server
with 1TB RAM and eight NVIDIA GeForce RTX 2080 Ti GPUs. Experiments ran for MNIST,
Fashion-MNIST, CIFAR-10, and ImageNet. Experiments were parallelized: between 4-7 APSyn’s
invocations on each GPU, depending on the dataset. For MNIST and Fashion-MNIST, we trained
MnistNet models (186K parameters). For CIFAR-10, we trained a ResNet-18 model (11.5M pa-
rameters). For ImageNet, we imported a ResNeXt-50-32x4d model (25M parameters). We next
provide the hyper-parameters. The scale and shift parameters were initialized by sampling from
Gaussian distributions with mean 1 and 0 (respectively) and variance 0.3. Patch dimensions were
sampled from a uniform distribution with range [5,15] (for ImageNet, [15,30]), and the starting po-
sition stride was 3 (for ImageNet, 10). The balancing factor λ was 1 (for ImageNet, 0.05), the step
sizes were ηc = 0.01 (for ImageNet, 0.05) and ηd = 1 (for ImageNet, 2.5). The maximal number of
iterations per optimization was 300 (for ImageNet, 400) and the stopping condition checked whether
during the last 25 iterations (for ImageNet, 200) the loss has decreased by less than 0.5%.

Benchmarks and metrics For each dataset, our benchmark consists of three images for each class
(for ImageNet, we focus on ten classes). In each experiment, we run APSyn for every image and
every possible target class (for ImageNet, we focus on three target classes). In total, our benchmarks
consist of 270 attack specifications for each dataset (90 for ImageNet). We measure the success rate
(fraction of programs that returned adversarial examples), L2 distortion (L2 distance between the
adversarial example and the input), and L0 distortion (L0 distance). We report execution time in
minutes. We run every APSyn attack on all inputs in the test set whose label is c (the input’s true
label). We measure generalization rate (fraction of inputs for which the program returned adversarial
examples) and generalization L2 distortion (average L2 distortion on the test set). Execution times
and all distortion metrics are reported only for successful attacks. As a baseline, we compare to the
C&W attack (on which we build our loss function), which is run in batches of 32 attacks.

Candidates We begin with studying the effect of the number of candidates (m) on the success
rate, L2 distortion and generalization rate. In this experiment, we focus on three datasets, and set the

5

Under review as a conference paper at ICLR 2022

Figure 2: Effect of number of candidates on the success rate, L2 distortion, and generalization rate.

Figure 3: Effect of number of patch instructions on APSyn’s success rate, L2 distortion, L0 distor-
tion, execution time, generalization rate, and generalization L2 distortion on different datasets.

maximal number of instructions to k = 5. Figure 2 shows the results as a function of the number of
candidates m ∈ {1, 3, 5, 7, 10}. As expected, as the number of candidates increases, the success rate
increase and the L2 distortion decreases. However, the gain in adding more candidates is reduced as
the number of candidates increases. From here on, we continue with m = 7 candidates.

Program length We next study the effect of the maximal number of patches (k) on the success
rate, L2 distortion and the execution time of APSyn. Figure 3 shows the results as a function of
the maximal number of patches k ∈ {1, 3, 5, 7, 10}. As a baseline, the figure also shows the results
of the C&W attack. As expected, as the number of patch instructions increases, the success rate
increases, but with three patches APSyn usually obtains an almost perfect success rate (similarly to
C&W). The reason to include more than three patches is mainly to reduce the L2 distortion, as shown
by the figure. Naturally, more patches mean longer execution times. We observe that the best balance
is obtained for five patches. A unique feature of multi-patch attacks is that in addition to minimizing
the L2 distortion, they also attempt to reduce the L0 distortion, both by favoring fewer patches in the
attack and also by allowing overlapping patches. The figure shows how significant is the difference
between the L0 distortion of APSyn and C&W. The lower L0 distortion may also indicate about the
simplicity of physically executing our attacks compared to attacks with high L0 distortion. In terms
of generalization, we see that the shorter the program the higher the generalization rate. This may
be attributed to Occam’s Razor: the simpler the attack the better its generalization rate. This also
aligns with the very low generalization rate of the C&W attack, which can be viewed as a (very long)
multi-patch attack. This encourages us that our multi-patch attacks, which impose a rigid structure
on the attack can help design universal attacks. We leave this investigation to future work.

ImageNet ImageNet attacks are naturally harder for APSyn and require more patches, candidates,
and optimization iterations compared to the other datasets we consider. Naturally, this affects the ex-
ecution time. Figure 4 shows the success rate, L2 and L0 distortion and execution time for different
combinations of number of candidates and patches. Results show that the success rate significantly
increases with the increase in the number of patches and candidates. Interestingly, the L2 distortion
is similar in all the combinations, while the L0 distortion decreases for more patches. This is because
attacks with ten patches often have more overlaps between patches than attacks with five patches.

6

Under review as a conference paper at ICLR 2022

Figure 4: APSyn’s success rate, L2 and L0 distortion, and execution time for ImageNet.

Figure 5: Comparison of enumerative synthesis vs. full-program optimization.

Enumerative synthesis We next show the advantage of using enumerative synthesis over the more
common approach in continuous optimization, which optimizes over all variables from the begin-
ning. Figure 5 shows, for different numbers of patches and candidates (k,m), the success rate, L2

distortion, and execution time of both approaches. Results show that both approaches obtain simi-
lar success rate and L2 distortion, however enumerative synthesis drastically reduces the execution
time: up to 3x. This is significant because APSyn’s execution time is not negligible.

Examples of adversarial programs Lastly, Figure 6 illustrates some of the attacks that APSyn
generates. For each image, the figure shows the adversarial examples of C&W and APSyn, and the
differences between the adversarial examples and the input image. The pixels in the difference image
range over [0, 1] in order to show whether the perturbation brightened or darkened the pixel (i.e., 0.5
corresponds to an unperturbed pixel, 0 for maximal darkening, and 1 for maximal brightening). The
examples illustrate that APSyn’s attacks are imperceptible, even though the L2 distortion is higher
than C&W’s. The examples also demonstrate that because our attacks are restricted to patches,
they provide an explanation to the exploitable regions. For example, in the bag example, APSyn
creates a patch which darkens the purse handle; in the digit six example, APSyn brightens the upper
part using a horizonal patch and darkens the lower part of the digit towards making it look like
the digit five; a similar pattern is observed in the digit nine example. We believe this opens a new
direction of explaining network robustness using programs. We leave this to future work. Another
interesting property is that patches tend to concentrate in and around the main object. This may
suggest that our attacks can be directly executed on physical objects. Lastly, the examples show that
APSyn sometimes returns programs that are shorter than the maximal number of patches k. This
demonstrates the advantage of using enumerative synthesis which favors shorter solutions.

6 RELATED WORK

Our work is mainly related to Carlini & Wagner (2017) and Brown et al. (2017). Carlini & Wagner
(2017) consider imperceptible attacks and propose several losses. While successful, it is hard to
physically execute this attack because it perturbs a very large number of pixels. On the other hand,
Brown et al. (2017) consider an attack executed by a visible patch. Their attack looks for the optimal
perturbation, given the patch position and dimensions. This work also aims at generating patches
universal to scenes and robust to transformations. In this work, we show that it is possible to enjoy
both worlds by allowing multiple patches, each incurring a small L2 distortion. Unlike Carlini &
Wagner (2017), our attacks are defined over discrete variables. We show that by estimating the
gradients of the discrete variables and by relaxing them to keep real values during optimization,

7

Under review as a conference paper at ICLR 2022

Figure 6: Examples of the attacks APSyn generated compared to the C&W attack.

the C&W loss is highly effective for producing adversarial examples even if the perturbation region
is constrained. Unlike Brown et al. (2017), our work shows how to efficiently search for optimal
position and dimensions of patches, which is crucial for minimizing distortion without reducing the
success rate. We further build on program synthesis to search for attacks which minimize the number
of patches. This allows APSyn to identify short and simple attacks and reduce execution times. Our
attacks can be further optimized for universality by leveraging the ideas of Brown et al. (2017). We
leave this for future work. Differently from both these works, our attacks have a rigid structure and
restricted kind of perturbations. This forces APSyn to look for the most exploitable regions, which
makes our attacks more explainable.

Digital Attacks Since the introduction of adversarial examples (Szegedy et al., 2014; Goodfellow
et al., 2015), many works have proposed adversarial attacks for various domains, perturbation kinds,
and distortion metrics. A large body of works focuses on digital attacks for images, which induce
artificially crafted additive noise to a digital image before using it as an input to a DNN. Some no-
table works include Carlini & Wagner (2017); Moosavi-Dezfooli et al. (2016); Modas et al. (2019);
Papernot et al. (2016); Moosavi-Dezfooli et al. (2017); Madry et al. (2018). These works focus
on minimizing L1/ L2/ L∞ distortion, which are differentiable functions, and are thus amenable to
gradient-based optimization. Fewer works focus on minimizing L0 distortion, which is a discrete

8

Under review as a conference paper at ICLR 2022

metric, and thus requires different kind of optimization. For example, Su et al. (2019) employ a
differential evolution strategy. While successful for few pixels, our attempts to use it for multi-patch
attacks suggest that this technique struggles to succeed when the number of perturbed pixels is large.
Laidlaw & Feizi (2019) compute functional attacks, a concept which is similar in spirit to our patch
programs. However, their attacks may perturb a large portion of the image pixels.

Physical Attacks Digital attacks are generally harder to execute in a realistic setting where an
attacker has to manipulate physical objects. This has led to studying physical-world attacks. Ku-
rakin et al. (2017) use a cell-phone camera to photograph printed images of adversarial attacks and
showed that they remain adversarial and are robust to the transformations and the noise resulting
from the phone and camera processing. In contrast, Lu et al. (2017) use traffic sign images to show
that adversarial examples are less successful when viewed from different angles and distances. Sev-
eral works propose to use stickers and 3D-printed objects to execute adversarial attacks in a realistic
environment. Sharif et al. (2018) propose a generative approach to generate 3D adversarial glasses
to fool face recognition classifiers. Athalye et al. (2018) generate adversarial attacks using printed
2D images and 3D objects which are robust under synthetic image transformations. Eykholt et al.
(2018) rely on specially-crafted stickers on physical traffic signs to generate adversarial attacks that
are robust for different distances and angles. This attack computes multiple stickers, whose position
and dimensions are determined by first running their optimization on the entire region, but favoring
sparse perturbations. Based on the resulted attack, stickers are positioned in the most vulnerable
regions, and then the optimization runs again. In contrast, APSyn relies on enumerative synthesis to
guarantee it computes a minimal patch sequence. Li et al. (2019) generate robust adversarial attacks
by placing stickers on camera lens. Jere et al. (2019) introduce scratch attacks for image captioning.
Another approach to physical attacks assumes the adversary can change the network’s behavior to
respond to malicious objects (e.g., trojan attacks Liu et al. (2018); Ji et al. (2018) and poisoning
attacks (Gu et al., 2017)). Brown et al. (2017) introduce robust and universal attacks via adversarial
patches. Karmon et al. (2018) propose smaller and less visible adversarial patches, but these are not
universal. (Liu et al., 2019a; Bai et al., 2021) rely on GANs to generate inconspicuous patches. (Liu
et al., 2019b; Lee & Kolter, 2019; Thys et al., 2019; Lang et al., 2021; Wu et al., 2020; Xu et al.,
2020) use different variations of adversarial patches to fool object detection models causing them to
miss the target object. Tu et al. (2020) generate printed 3D objects that fool LIDAR detectors. Liu
et al. (2020) generate realistic patches on grocery items using a bias-based approach. Lovisotto et al.
(2021) generate short-lived localized adversarial attacks by utilizing an RGB projector and model-
ing the three-way relationship between a surface, a projection and the camera-perceived image. In
contrast, our attacks rely on optimization of patch sequences, which enable APSyn to reduce the L2

distortion to an imperceptible level. A key factor in the success of APSyn is the optimization of the
patches’ dimensions and position. While we have not physically executed our attack, we believe it
can be combined with the above attacks to reduce their distortion.

Patch Attacks In addition to the above patch attacks which have been designed for a physical
setting, several other works showed successful patch attacks. Andriushchenko et al. (2020) rely on
random search to generate attacks consisting of squares. Unlike our work, their attacks consist of a
very large number of patches and their L0 distortion is very high. Yang et al. (2020) rely on rein-
forcement learning to generate a visible texture-based patch picked from a predetermined dictionary.
Rao et al. (2020) generate visible patch attacks, and rely on a similar idea to ours to optimize the
patch position. In contrast, our approach is to first to create minimal multi-patch attacks, where
patches can overlap, and their position, dimensions, and perturbation factors are jointly optimized.

7 CONCLUSION

We presented APSyn, a synthesizer of multi-patch attacks. APSyn searches for a minimal sequence
of patches that produces an adversarial example with a minimal L2 distortion. Unlike previous
patch/sticker attacks, APSyn optimizes over the patches’ position and dimensions. To this end, we
introduce a gradient estimate for the discrete variables and relax them to keep real values during
the optimization. To further minimize the number of patches and improve execution times, APSyn
employs enumerative synthesis. We evaluate APSyn on four datasets and show that it generates
imperceptible attacks with few patches.

9

Under review as a conference paper at ICLR 2022

ETHICS STATEMENT

Our work introduces a new kind of adversarial attacks and thus has a potential negative impact.
However, since our approach can pinpoint more exploitable regions and generate attacks in the form
of a short program, we believe it can help network designers understand vulnerability aspects of their
networks. This can help them in improving the robustness of their network, e.g., using defenses.

REFERENCES

Rajeev Alur, Rastislav Bodı́k, Garvit Juniwal, Milo M. K. Martin, Mukund Raghothaman, Sanjit A.
Seshia, Rishabh Singh, Armando Solar-Lezama, Emina Torlak, and Abhishek Udupa. Syntax-
guided synthesis. In Formal Methods in Computer-Aided Design, FMCAD 2013, Portland, OR,
USA, October 20-23, 2013, pp. 1–8. IEEE, 2013.

Maksym Andriushchenko, Francesco Croce, Nicolas Flammarion, and Matthias Hein. Square at-
tack: a query-efficient black-box adversarial attack via random search. In ECCV, 2020.

Anish Athalye, Logan Engstrom, Andrew Ilyas, and Kevin Kwok. Synthesizing robust adversarial
examples. In Jennifer G. Dy and Andreas Krause (eds.), Proceedings of the 35th International
Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-
15, 2018, volume 80 of Proceedings of Machine Learning Research, pp. 284–293. PMLR, 2018.
URL http://proceedings.mlr.press/v80/athalye18b.html.

Tao Bai, Jinqi Luo, and Jun Zhao. Inconspicuous adversarial patches for fooling image recognition
systems on mobile devices. arXiv preprint arXiv:2106.15202, 2021.

Tom B. Brown, Dandelion Mané, Aurko Roy, Martı́n Abadi, and Justin Gilmer. Adversarial patch.
CoRR, abs/1712.09665, 2017. URL http://arxiv.org/abs/1712.09665.

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In 2017
ieee symposium on security and privacy (sp), pp. 39–57. IEEE, 2017.

Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati, Chaowei Xiao,
Atul Prakash, Tadayoshi Kohno, and Dawn Song. Robust physical-world attacks on deep
learning visual classification. In 2018 IEEE Conference on Computer Vision and Pat-
tern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018, pp. 1625–
1634. Computer Vision Foundation / IEEE Computer Society, 2018. doi: 10.1109/CVPR.
2018.00175. URL http://openaccess.thecvf.com/content_cvpr_2018/html/
Eykholt_Robust_Physical-World_Attacks_CVPR_2018_paper.html.

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. In Yoshua Bengio and Yann LeCun (eds.), 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceed-
ings, 2015.

Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Identifying vulnerabilities in the
machine learning model supply chain. arXiv preprint arXiv:1708.06733, 2017.

Sumit Gulwani, Oleksandr Polozov, and Rishabh Singh. Program synthesis. Found. Trends Program.
Lang., 4(1-2):1–119, 2017. doi: 10.1561/2500000010. URL https://doi.org/10.1561/
2500000010.

Malhar Jere, Briland Hitaj, Gabriela F. Cretu-Ciocarlie, and Farinaz Koushanfar. Scratch that! an
evolution-based adversarial attack against neural networks. ArXiv, abs/1912.02316, 2019.

Yujie Ji, Xinyang Zhang, Shouling Ji, Xiapu Luo, and Ting Wang. Model-reuse attacks on deep
learning systems. In Proceedings of the 2018 ACM SIGSAC conference on computer and commu-
nications security, pp. 349–363, 2018.

Danny Karmon, Daniel Zoran, and Yoav Goldberg. Lavan: Localized and visible adversarial noise.
In International Conference on Machine Learning, pp. 2507–2515. PMLR, 2018.

10

http://proceedings.mlr.press/v80/athalye18b.html
http://arxiv.org/abs/1712.09665
http://openaccess.thecvf.com/content_cvpr_2018/html/Eykholt_Robust_Physical-World_Attacks_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Eykholt_Robust_Physical-World_Attacks_CVPR_2018_paper.html
https://doi.org/10.1561/2500000010
https://doi.org/10.1561/2500000010

Under review as a conference paper at ICLR 2022

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua Bengio
and Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. Adversarial examples in the physical
world. In 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Workshop Track Proceedings. OpenReview.net, 2017. URL https:
//openreview.net/forum?id=HJGU3Rodl.

Cassidy Laidlaw and Soheil Feizi. Functional adversarial attacks. In NeurIPS, 2019.

Dapeng Lang, Deyun Chen, Ran Shi, and Yongjun He. Attention-guided digital adversarial patches
on visual detection. Security and Communication Networks, 2021, 2021.

Mark Lee and Zico Kolter. On physical adversarial patches for object detection. arXiv preprint
arXiv:1906.11897, 2019.

Juncheng Li, Frank R. Schmidt, and J. Zico Kolter. Adversarial camera stickers: A physical camera-
based attack on deep learning systems. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.),
Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9-15 June
2019, Long Beach, California, USA, volume 97 of Proceedings of Machine Learning Research,
pp. 3896–3904. PMLR, 2019. URL http://proceedings.mlr.press/v97/li19j.
html.

Aishan Liu, Xianglong Liu, Jiaxin Fan, Yuqing Ma, Anlan Zhang, Huiyuan Xie, and Dacheng Tao.
Perceptual-sensitive gan for generating adversarial patches. In Proceedings of the AAAI confer-
ence on artificial intelligence, volume 33, pp. 1028–1035, 2019a.

Aishan Liu, Jiakai Wang, Xianglong Liu, Bowen Cao, Chongzhi Zhang, and Hang Yu. Bias-based
universal adversarial patch attack for automatic check-out. In Computer Vision–ECCV 2020:
16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XIII 16, pp.
395–410. Springer, 2020.

Xin Liu, Huanrui Yang, Ziwei Liu, Linghao Song, Yiran Chen, and Hai Li. DPATCH: an adversarial
patch attack on object detectors. In Huáscar Espinoza, Seán Ó hÉigeartaigh, Xiaowei Huang,
José Hernández-Orallo, and Mauricio Castillo-Effen (eds.), Workshop on Artificial Intelligence
Safety 2019 co-located with the Thirty-Third AAAI Conference on Artificial Intelligence 2019
(AAAI-19), Honolulu, Hawaii, January 27, 2019, volume 2301 of CEUR Workshop Proceedings.
CEUR-WS.org, 2019b. URL http://ceur-ws.org/Vol-2301/paper_5.pdf.

Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai, Weihang Wang, and Xiangyu
Zhang. Trojaning attack on neural networks. In 25th Annual Network and Distributed System
Security Symposium, NDSS 2018, San Diego, California, USA, February 18-21, 2018. The In-
ternet Society, 2018. URL http://wp.internetsociety.org/ndss/wp-content/
uploads/sites/25/2018/02/ndss2018_03A-5_Liu_paper.pdf.

Giulio Lovisotto, Henry Turner, Ivo Sluganovic, Martin Strohmeier, and Ivan Martinovic. {SLAP}:
Improving physical adversarial examples with short-lived adversarial perturbations. In 30th
{USENIX} Security Symposium ({USENIX} Security 21), 2021.

Jiajun Lu, Hussein Sibai, Evan Fabry, and David Forsyth. No need to worry about adversarial
examples in object detection in autonomous vehicles. arXiv preprint arXiv:1707.03501, 2017.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In 6th International Conference
on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018,
Conference Track Proceedings. OpenReview.net, 2018. URL https://openreview.net/
forum?id=rJzIBfZAb.

MnistNet. https://www.kaggle.com/alesgb/state-of-the-art-cnn-in-pytorch-on-gpu.

11

https://openreview.net/forum?id=HJGU3Rodl
https://openreview.net/forum?id=HJGU3Rodl
http://proceedings.mlr.press/v97/li19j.html
http://proceedings.mlr.press/v97/li19j.html
http://ceur-ws.org/Vol-2301/paper_5.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_03A-5_Liu_paper.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_03A-5_Liu_paper.pdf
https://openreview.net/forum?id=rJzIBfZAb
https://openreview.net/forum?id=rJzIBfZAb
https://www.kaggle.com/alesgb/state-of-the-art-cnn-in-pytorch-on-gpu

Under review as a conference paper at ICLR 2022

Apostolos Modas, Seyed-Mohsen Moosavi-Dezfooli, and Pascal Frossard. Sparsefool: A
few pixels make a big difference. In IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019, pp. 9087–9096. Com-
puter Vision Foundation / IEEE, 2019. doi: 10.1109/CVPR.2019.00930. URL http:
//openaccess.thecvf.com/content_CVPR_2019/html/Modas_SparseFool_
A_Few_Pixels_Make_a_Big_Difference_CVPR_2019_paper.html.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: A simple and
accurate method to fool deep neural networks. In 2016 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pp. 2574–2582.
IEEE Computer Society, 2016. doi: 10.1109/CVPR.2016.282. URL https://doi.org/10.
1109/CVPR.2016.282.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal Frossard. Universal
adversarial perturbations. In 2017 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, pp. 86–94. IEEE Computer Society, 2017. doi:
10.1109/CVPR.2017.17. URL https://doi.org/10.1109/CVPR.2017.17.

Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik, and Ananthram
Swami. The limitations of deep learning in adversarial settings. In 2016 IEEE European sympo-
sium on security and privacy (EuroS&P), pp. 372–387. IEEE, 2016.

Sukrut Rao, David Stutz, and Bernt Schiele. Adversarial training against location-optimized adver-
sarial patches. In ECCV Workshops, 2020.

Mahmood Sharif, Sruti Bhagavatula, Lujo Bauer, and Michael K. Reiter. Adversarial generative
nets: Neural network attacks on state-of-the-art face recognition. CoRR, abs/1801.00349, 2018.
URL http://arxiv.org/abs/1801.00349.

Jiawei Su, Danilo Vasconcellos Vargas, and Kouichi Sakurai. One pixel attack for fooling deep
neural networks. IEEE Transactions on Evolutionary Computation, 23(5):828–841, 2019.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J. Good-
fellow, and Rob Fergus. Intriguing properties of neural networks. In Yoshua Bengio and Yann
LeCun (eds.), 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB,
Canada, April 14-16, 2014, Conference Track Proceedings, 2014.

Simen Thys, Wiebe Van Ranst, and Toon Goedemé. Fooling automated surveillance cameras: ad-
versarial patches to attack person detection. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops, pp. 0–0, 2019.

James Tu, Mengye Ren, Sivabalan Manivasagam, Ming Liang, Bin Yang, Richard Du, Frank Cheng,
and Raquel Urtasun. Physically realizable adversarial examples for lidar object detection. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13716–
13725, 2020.

Abhishek Udupa, Arun Raghavan, Jyotirmoy V. Deshmukh, Sela Mador-Haim, Milo M. K. Martin,
and Rajeev Alur. TRANSIT: specifying protocols with concolic snippets. In Hans-Juergen Boehm
and Cormac Flanagan (eds.), ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’13, Seattle, WA, USA, June 16-19, 2013, pp. 287–296. ACM, 2013.

Zuxuan Wu, Ser-Nam Lim, Larry S. Davis, and Tom Goldstein. Making an invisibility cloak: Real
world adversarial attacks on object detectors. In ECCV, 2020.

Kaidi Xu, Gaoyuan Zhang, Sijia Liu, Quanfu Fan, Mengshu Sun, Hongge Chen, Pin-Yu Chen,
Yanzhi Wang, and Xue Lin. Adversarial t-shirt! evading person detectors in a physical world. In
ECCV, 2020.

Chenglin Yang, Adam Kortylewski, Cihang Xie, Yinzhi Cao, and Alan Loddon Yuille. Patchattack:
A black-box texture-based attack with reinforcement learning. ArXiv, abs/2004.05682, 2020.

12

http://openaccess.thecvf.com/content_CVPR_2019/html/Modas_SparseFool_A_Few_Pixels_Make_a_Big_Difference_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Modas_SparseFool_A_Few_Pixels_Make_a_Big_Difference_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Modas_SparseFool_A_Few_Pixels_Make_a_Big_Difference_CVPR_2019_paper.html
https://doi.org/10.1109/CVPR.2016.282
https://doi.org/10.1109/CVPR.2016.282
https://doi.org/10.1109/CVPR.2017.17
http://arxiv.org/abs/1801.00349

Under review as a conference paper at ICLR 2022

Figure 7: Comparison of APSyn with a baseline that does not perform optimization and a baseline
that does not perform adaptive optimization.

A APPENDIX

In this section, we study the effectiveness of our discrete optimization (via gradient estimation and
adaptive optimization). To this end, we compare APSyn to two baselines. The first baseline is
identical to APSyn but does not optimize the discrete variables. That is, patches are added one-
by-one, their parameters are initialized as described in Section 4 (including our feature ablation
approach for initializing patch position), and the continuous variables are optimized for the C&W
loss with gradient descent. The second baseline is the same as APSyn, but without our adaptive
optimization of the discrete variables (employing Hill Climbing and Adam steps). That is, the
second baseline jointly optimizes all variables (discrete and continuous), and the step size of all
discrete variables is the same. In this experiment, we set the maximal number of patches to k = 5,
and the number of candidates to m = 7. Figure 7 shows the success rate, L2 distortion, and L0

distortion of all approaches. Results show that our discrete optimization enables APSyn to obtain
a higher success rate and significantly lower L2 and L0 distortion. That is, it improves both the
success rate and the imperceptibility of the generated attacks. Results also show that our adaptive
discrete optimization enables APSyn to obtain a significantly lower L0 distortion, and also improve
success rate and L2 distortion.

13

	Introduction
	Adversarial programs
	Gradient estimation of the patches' discrete parameters
	APSyn: adversarial program synthesizer
	Evaluation
	Related work
	Conclusion
	Appendix

