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ABSTRACT

Large language models (LLMs) have opened new paradigms in optimization mod-
eling by enabling the generation of executable solver code from natural language
descriptions. Despite this promise, existing approaches typically remain solver-
driven: they rely on single-pass forward generation and apply limited post-hoc fixes
based on solver error messages, leaving undetected semantic errors that silently
produce syntactically correct but logically flawed models. To address this challenge,
we propose SAC-Opt, a backward-guided correction framework that grounds opti-
mization modeling in problem semantics rather than solver feedback. At each step,
SAC-Opt aligns the original semantic anchors with those reconstructed from the
generated code and selectively corrects only the mismatched components, driving
convergence toward a semantically faithful model. This anchor-driven correc-
tion enables fine-grained refinement of constraint and objective logic, enhancing
both fidelity and robustness without requiring additional training or supervision.
Empirical results on seven public datasets demonstrate that SAC-Opt improves
average modeling accuracy by 7.8%, with gains of up to 21.9% on the ComplexLP
dataset. These findings highlight the importance of semantic-anchored correction
in LLM-based optimization workflows to ensure faithful translation from problem
intent to solver-executable code.

1 INTRODUCTION

Optimization problems arise across domains such as logistics, healthcare, and finance, supporting
tasks like planning, allocation, and portfolio optimization (Antoniou & Lu, 2007; Singh, 2012). These
problems are typically formulated as mathematical programs and solved using external solvers such
as Gurobi (Bixby, 2007), CPLEX (Cplex, 2009), Pyomo (Hart et al., 2011), or COPT Ge et al. (2023).
However, translating real-world scenarios into solver-executable code often requires collaboration
between domain experts and engineers. This process is time-consuming, hard to scale, and largely
inaccessible to non-experts, as reflected by a survey showing that 81% of Gurobi users hold advanced
degrees, with nearly half specializing in operations research (Optimization, 2023).

To lower the entry barrier and automate the modeling process, large language models (LLMs) have
emerged as a promising solution for the optimization modeling task. This shift reduces reliance on
manual formulation while preserving essential mathematical structure, making optimization more
accessible and scalable. A recent survey categorizes progress in this area into three directions: domain-
specific LLMs, advanced inference frameworks, and benchmark datasets and evaluation (Xiao et al.,
2025). Our work builds on the inference framework line, aiming to generate solver-ready models that
are not only syntactically correct but also semantically faithful to the original problem intent.

Despite the rapid progress in LLM-driven optimization modeling (Huang et al., 2024a; Du et al.,
2025; Xiao et al., 2025), current approaches still lack the ability to verify whether generated code
faithfully reflects the problem’s intended semantics. Most existing methods either rely on single-pass
forward code generation based solely on the LLM’s internal understanding (Wei et al., 2022; Xiao
et al., 2024; AhmadiTeshnizi et al., 2024b; Deng et al., 2024), and apply limited post-hoc fixes
triggered by solver errors (Shinn et al., 2023; AhmadiTeshnizi et al., 2024a), focusing on syntax or
feasibility rather than semantic correctness. This leads to a critical gap: semantic errors often go
undetected when the code executes without raising errors. For instance, a constraint meant to enforce
an upper bound may be incorrectly implemented as a lower bound. Such mistakes result in code that
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An investor has $100 to 

invest: A returns $5 per 

dollar and B returns $3 

per dollar. To manage 

risk, no more than $50 

may be invested in B and 

the total investment must 

cannot exceed the $100 

budget. The goal is to 

split the funds between A 

and B to maximize the 

total return.

  Parameters: 

 r_A: 5; Return per dollar in A

 r_B: 3; Return per dollar in B

 B: 100; Total budget

 B_max: 50; Limit for B

  Variables:

 x: Dollars in A

 y: Dollars in B

  Constraints: 

 The total can’t exceed $100

 Money in B can’t exceed $50

  Objective: 

 Maximize the total return
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Figure 1: Overview of the SAC-Opt workflow. Semantic anchors, referring to the constraints and
objective in the structured data.

appears functional but encodes incorrect logic, producing incorrect or misleading solutions. Since
solver feedback cannot reliably signal these issues, existing pipelines are unable to detect or correct
them, allowing flawed logic to silently propagate through the modeling process.

To address the limitations above, we propose SAC-Opt, a semantic anchor-driven framework for
optimization modeling that performs fine-grained, iterative correction guided by problem semantics
rather than solver feedback. As shown in Figure 1, SAC-Opt begins by extracting structured
data from the problem description using an extract agent. This identifies core elements such as
parameters, variables, constraints, and objective (Structured Data Extraction), which serve as the
semantic foundation for later stages. We then construct an initial candidate model from the structured
data (Structured Data to Model Translation), where parameters and variables are rendered with
deterministic templates and constraints and objective are produced by a trans agent. Unlike solver-
driven approaches that equate syntactic validity with correctness, SAC-Opt establishes a backward
correction loop in which semantic anchors continuously verify and refine the model, ensuring
convergence toward fidelity with the original problem intent. In this work, convergence is achieved in
semantic alignment, which refers to that when all anchors are correctly represented and evidenced by
the progressive decrease in semantically misaligned anchors across iterations.

The core mechanism of SAC-Opt is iterative semantic alignment, a convergence-driven process that
progressively eliminates mismatches between the generated model and the original task description
(Iterative Semantic Alignment and Correction). After we identify semantic anchors from structured
data, typically constraint and objective expressions. For each anchor, we reconstruct its semantics
from the generated code (Model to Structured Data Reconstruction) and compare it with the original
anchor (Semantic Consistency Verification), using LLM-based or similarity-based checks. Alignment
is evaluated at the anchor level: each semantic anchor serves as a reference representing the problem
intent. A mismatch indicates that the code does not faithfully capture the intended semantics, in which
case SAC-Opt updates only the misaligned component. This anchor-driven refinement continues
until full anchor consistency or a predefined iteration limit, enabling fine-grained correction without
regenerating the entire model. After alignment, all components are assembled into a complete
program and passed to a solver (Model Debugging). Code debugging is then applied with solver
feedback, modifying the code only when execution errors occur. Finally, the corrected program is
executed for the solution. In experiments on seven public datasets, SAC-Opt boosts average modeling
accuracy by 7.8%, highlighting the effectiveness of semantics-anchored backward correction.
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Contributions. (1) We introduce SAC-Opt, the first optimization modeling framework that estab-
lishes a semantics-driven correction method, moving beyond solver-driven syntactic checks. (2) We
propose a backward, semantic anchor-guided correction mechanism that progressively aligns models
with problem intent, achieving convergence through fine-grained refinement rather than trial-and-error
regeneration. (3) We evaluate SAC-Opt on seven public datasets and show that it improves modeling
accuracy by 7.8% on average, with a 21.9% gain on the challenging ComplexLP dataset.

2 RELATED WORK

2.1 LLMS FOR OPTIMIZATION

LLMs show great promise for optimization, offering innovative approaches to optimize and automate
modeling processes (Xiao et al., 2025; Huang et al., 2024a; Du et al., 2025). A recent survey Xiao
et al. (2025) categorizes this line of research into domain-specific LLMs (Tang et al., 2024; Jiang et al.,
2025; Li et al., 2025; Ethayarajh et al., 2024), advanced inference frameworks (Deng et al., 2024;
Xiao et al., 2024; Li et al., 2023; Zhang et al., 2025a; Astorga et al., 2024; AhmadiTeshnizi et al.,
2024a;b; Ju et al., 2024; Zhang et al., 2024a), and benchmark datasets and evaluation (Ramamonjison
et al., 2023; Tang et al., 2024; Huang et al., 2024b; Xing et al., 2024; Yang et al., 2024). Our work
builds on inference frameworks, which aim to generate solver-ready models from natural language
problem descriptions. However, most existing methods often ignore and cannot verify whether the
generated code reflects the intended semantics. We address this limitation by introducing an iterative
correction framework that reconstructs problem intent and ensures semantic alignment.

2.2 CORRECTION IN OPTIMIZATION

Correction in LLMs refers to the ability of a model to revise or improve its own outputs based on
internal or external feedback (Pan et al., 2024; Wang et al., 2024). This mechanism has attracted
increasing interest as a way to enhance reasoning accuracy and robustness without additional supervi-
sion (Kamoi et al., 2024; Zhang et al., 2025b; 2024b). Prior works AhmadiTeshnizi et al. (2024a);
Deng et al. (2024) have explored using LLM feedback to refine extracted elements such as parameters,
variables, and constraints, and code debugging by the solver error messages. However, these efforts
focus on extraction or post-hoc debugging and overlook semantic alignment. In contrast, our method
integrates semantic-level correction, ensuring fidelity to problem intent.

3 METHODOLOGY

3.1 PROBLEM FORMULATION

Optimization modeling is the process of transforming a problem description in natural language P
into a mathematical programM that can be executed by an optimization solver. In its most general
form,M comprises a decision vector x ∈ Rn, a scalar objective function f(x; θ) to be minimized or
maximized, and a feasible region X(θ) specified by equality and inequality constraints. For example,
an optimization problem can be written mathematically as,

min
x∈X(θ)

f(x; θ)

s.t. gi(x; θ) = 0, i = 1, . . . ,m,

hj(x; θ) ≤ 0, j = 1, . . . , p,

(1)

where θ aggregates all problem-specific parameters (such as coefficients, bounds, etc.), gi denotes the
set of equality constraints, and hj denotes the set of inequality constraints.

3.2 STRUCTURED DATA EXTRACTION

To bridge the gap between free-form descriptions and formal programs, and inspired by the works
(AhmadiTeshnizi et al., 2024b;a; Jiang et al., 2025), we first convert the natural language problem
description P into structured data,

S =
(
P, V, C, O

)
, (2)
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where each component corresponds exactly to the four elements of the mathematical formulation in
Eq. 1. Here P is the set of named parameters, V is the set of decision variables, C is the collection of
semantic constraints (both equality and inequality), and O is the objective description.

Specifically, we use an extract agent to extract the structured data from the problem description P:

S = f extract
agent (P) , (3)

where f extract
agent outputs a structured representation of parameters, variables, constraints, and objective

in JSON format. An example of the extracted structured data is provided in Appendix A.1.

This structured data representation makes all components explicit and machine-readable, reducing
ambiguity in downstream tasks. By separating parameters, variables, constraints, and objective,
it enables consistency checks and modular validation. Most importantly, it supports fine-grained
correction by isolating semantic elements such as individual constraints or objective, allowing errors
to be detected and corrected precisely without reprocessing the entire input.

3.3 STRUCTURED DATA TO MODEL TRANSLATION

In a standard optimization workflow, the final goal is to generate executable code that can be directly
run on external solvers. This code serves as the final representation of the optimization problem
and must accurately capture the semantics of the original task description. Given the structured data
S = (P,V, C,O), which encapsulates all necessary modeling elements, our goal is to convert S into
codeM that preserves logical correctness and is executable without further human intervention.

Formally, we model the overall translation process as a function that maps a structured data input S
into an executable solver codeM. To ensure modularity and reflect the semantic decomposition of S,
we explicitly separate the output into two parts:

M =Msimp +Msem , (4)

whereMsimp andMsem correspond to the code fragments generated from the simple and semanti-
cally rich components of S, respectively. Specifically, we define the code generation process:

Msimp = f trans
det (Ssimp), (5)

Msem = f trans
agent(Ssem), (6)

where Ssimp = {P,V} includes parameters and variables that are fully specified and can be deter-
ministically rendered, while Ssem = {C,O} contains constraints and objective, which represent the
key logic of the optimization task. These elements in Ssem are essential, as they directly impact the
correctness of the model and require careful modeling to preserve the intended meaning.

The deterministic function f trans
det uses pre-defined code templates. For example, a parameter named

RollWidth is rendered as: RollWidth = data["RollWidth"]. This approach guarantees
consistency and correctness for all syntactically well-defined elements. In contrast, the semantic
translation function f trans

agent employs a trans agent to generate code directly from natural-language
sentences. This process avoids intermediate representations such as LaTeX or pseudo code, thereby
reducing cumulative translation errors (Astorga et al., 2024) and simplifying downstream integration.

By combining deterministic rendering for structured elements with agent-based generation for se-
mantic components, the hybrid translation function yields code both logically faithful and executable.
This decomposition forms the basis for subsequent stages in our iterative correction framework.

3.4 MODEL TO STRUCTURED DATA RECONSTRUCTION

Existing LLM-based optimization workflows (Xiao et al., 2024; AhmadiTeshnizi et al., 2024b; Deng
et al., 2024) end once executable code is generated, and rely on solver error messages for post-hoc
checks (Shinn et al., 2023; AhmadiTeshnizi et al., 2024a). However, such forward pipelines cannot
detect semantic errors in the constraint or objective logic. Solvers validate syntax and feasibility but
cannot determine whether the encoded logic reflects the original task intent. This limitation leads to
models that may run without error yet fail to solve the intended problem.

To address this challenge, we introduce a semantic-anchored backward correction framework that
leverages the extracted semantic anchors Ssem = {C,O} to assess whether the generated code

4
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correctly reflects the original modeling intent. After producing the solver-executable codeMsem, we
apply a reconstruction step to recover the code’s logic corresponding to the semantic anchors:

Ŝsem = f recons
agent (Msem), (7)

where f recons
agent is a recons agent that generates the corresponding constraints or objective anchors

from the code and formats them into the same structured form as the original semantic anchors for
comparison and analysis. The exact prompt design is detailed in Appendix A.2.

These semantic anchors are critical because they capture the core logic that drives solver behavior
and ultimately determines modeling correctness. Aligning the original and recovered anchors allows
the framework to detect inconsistencies and apply targeted corrections, ensuring the generated code
faithfully reflects the intended problem logic with fine-grained accuracy.

3.5 ITERATIVE SEMANTIC ALIGNMENT AND CORRECTION

Algorithm 1: SAC-Opt: Iterative Cor-
rection with Semantic Anchors
Input: Problem description P , max

iterations Tmax, similarity
threshold τ

Output: Corrected modelM
1 Structured data extraction;
2 S = (P,V, C,O)← f extract

agent (P);
3 Ssimp ← {P,V}, Ssem ← {C,O};
4 Initial code generation (t = 0);
5 Msimp ← f trans

det (Ssimp);
6 foreach si ∈ Ssem do
7 M(0)

sem[si]← f trans
agent(si);

8 end
9 Iterative correction loop;

10 for t = 1 to Tmax do
11 Ŝ

(t)
sem ← f recons

agent (M(t−1)
sem );

12 E(t) ← { si ∈ Ssem |
δ(si, ŝ

(t)
i ) = 0 };

13 if E(t) = ∅ then
14 break
15 end
16 foreach si ∈ E(t) do
17 M(t)

sem[si]← f trans
agent(si);

18 end
19 end
20 M←Msimp +M(t)

sem;
21 returnM;

Based on the reconstructed semantic anchors
Ŝsem = {ŝi | ŝi ∈ Ĉ ∪ Ô} derived from the gener-
ated codeMsem, we introduce an iterative backward
correction process to align the model with the orig-
inal semantic anchors. This step constitutes the core
of our iterative correction framework.

Specifically, the goal is to ensure that each recon-
structed semantic component ŝi is consistent with
its original counterpart si ∈ Ssem = C ∪ O. To for-
malize the semantic consistency checking, we define
a binary consistency verification function:

δ(si, ŝi) =

{
1 if si ≡ ŝi,

0 otherwise,
(8)

where ≡ denotes semantic equivalence. In this work,
we provide two alternative strategies to implement
this equivalence function:

LLM-based Verification: (Gu et al., 2024; Li et al.,
2024; Schroeder & Wood-Doughty, 2024)

δLLM(si, ŝi) = 1
[
fverif
agent(si, ŝi) = True

]
, (9)

where fverif
agent is a binary classifier implemented via

a verif agent that determines whether si and ŝi are
semantically equivalent. The exact prompt design is
detailed in Appendix A.3.

Similarity-based Verification: (Chowdhury, 2010)
δsim(si, ŝi) = 1 [cos (ϕ(si), ϕ(ŝi)) ≥ τ ] , (10)

where ϕ(·) is a pretrained sentence encoder and τ ∈
[0, 1] is a similarity threshold, and cos is the cosine
similarity function.

To verify the semantic fidelity of the generated model, we apply the consistency verification function
δ(si, ŝ

(t)
i ) to each semantic anchor si ∈ Ssem, comparing it with its reconstructed counterpart ŝ(t)i .

This identifies elements where the generated code fails to capture the original modeling intent. At
each iteration t, we define the error set as:

E(t) = { si ∈ Ssem | δ(si, ŝ(t)i ) = 0 }. (11)

This error set drives the core correction loop. If E(t) = ∅, all semantic anchors are consistent, and we
return the final modelM =Msimp +M(t)

sem. Otherwise, we enter the correction phase, where each
inconsistent anchor si ∈ E(t) is used to regenerate the corresponding code segment:

M(t+1)
sem [si]← f trans

agent(si). (12)
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After regeneration, we apply the reconstruction function again to obtain the updated semantic anchors
Ŝ
(t+1)
sem , and repeat the consistency check. This loop continues until the error set is empty or the

maximum number of iterations Tmax is reached. A more detailed discussion of the convergence is
provided in the Appendix A.4. Upon termination, we return the final executable modelM, which
combines the deterministic components with the latest semantically aligned code. The complete
procedure of SAC-Opt is summarized in Algorithm 1.

3.6 MODEL DEBUGGING

After semantic correction, we assemble the final model by integrating the corrected components with
standard initialization and solver statements, following prior work (AhmadiTeshnizi et al., 2024a;b).
The complete code is then executed. If the solver runs successfully, the optimal solution is returned.
Otherwise, we use solver error messages to identify and fix inconsistencies with the original problem
description, as in previous studies (Shinn et al., 2023; AhmadiTeshnizi et al., 2024a; Xiao et al.,
2024). This process repeats until the model runs correctly or a predefined iteration limit is reached.

4 EXPERIMENTS

4.1 DATASET

To assess performance across diverse scenarios, we evaluate all methods on a suite of publicly
available optimization modeling datasets, including NL4OPT Ramamonjison et al. (2023), Indus-
tryOR Tang et al. (2024), EasyLP and ComplexLP Huang et al. (2024b), NLP4LP AhmadiTeshnizi
et al. (2024a), ReSocratic Yang et al. (2024), and ComplexOR Xiao et al. (2024). While widely used,
these datasets contain substantial annotation noise, as shown in a recent survey Xiao et al. (2025),
raising concerns about reliability. To ensure consistency, we adopt the cleaned and standardized
versions provided by the survey Xiao et al. (2025) for all methods. These datasets span a diverse
range of optimization tasks, including simple and complex problems, concrete and abstract modeling,
and long-form natural language descriptions. Detailed dataset statistics are provided in Appendix A.5.

4.2 BASELINES

We evaluate our method against a set of representative baselines covering both standard prompting
and recent state-of-the-art approaches. Standard refers to direct single-step prompting without
intermediate reasoning. Chain-of-Thought (CoT) Wei et al. (2022) elicits step-by-step reasoning in
natural language. Chain-of-Experts (CoE) Xiao et al. (2024) is a multi-agent framework where each
agent specializes in a role with domain-specific knowledge. CAFA Deng et al. (2024) translates prob-
lem descriptions into solver-executable code via a single-step formalization process. Reflexion Shinn
et al. (2023) introduces feedback-based refinement after initial code generation. OptiMUS-0.2 Ahma-
diTeshnizi et al. (2024b) uses a modular architecture to handle long and complex problems without
prompt length limitations. OptiMUS-0.3 AhmadiTeshnizi et al. (2024a) augments extraction with
correction mechanisms during parameter, variables, constraints, and objective identification.

4.3 EXPERIMENTAL SETUP

To ensure a rigorous and fair comparison across all fully open-source optimization modeling baselines,
we adopt a unified evaluation protocol. In all our experiments, the program uses Python as the
programming language and Gurobi as the solver. Following prior work Xiao et al. (2025), we
use GPT-4o (Achiam et al., 2023) as the backbone model for all methods, and we directly report
the results for Standard, CoT, CoE, and CAFA from Xiao et al. (2025) to ensure consistency and
comparability. For Reflexion, OptiMUS-0.2, and OptiMUS-0.3, we run the official open-source
implementations using default hyperparameters. To control for variations in data preprocessing,
all methods operate on structured data produced by a shared pipeline, more discussion about the
extraction is provided in Appendix A.6. Additionally, to ensure fairness, the number of debugging
attempts is uniformly set to 3 where applicable. For our method, the maximum number of correction
iterations Tmax is set as 5. The semantic similarity function ϕ(·) is implemented using a pretrained
SentenceTransformer model (all-MiniLM-L6-v2), with a similarity threshold τ set to 0.75. The
source code is available at https://anonymous.4open.science/r/SAC-Opt.
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Table 1: Accuracy comparisons of different methods. Methods marked with * are results directly
referenced from Xiao et al. (2025), conducted under the same experimental setting. For each dataset,
the best result is shown in bold, and the second-best is underlined. The Impr. represents the
percentage improvement relative to the second-best method.

Method NL4OPT IndustryOR EasyLP ComplexLP NLP4LP ReSocratic ComplexOR
Standard* 61.2% 38.1% 70.3% 57.7% 73.6% 48.4% 42.9%
CoT* 62.2% 40.5% 49.5% 42.3% 74.7% 43.6% 39.2%
CoE* 66.7% 31.2% 94.4% 50.6% 87.4% 71.2% 57.1%
CAFA* 68.1% 41.1% 71.2% 44.5% 50.0% 40.1% 46.4%
Reflexion 68.2% 49.2% 85.8% 43.2% 82.4% 76.1% 42.6%
OptiMUS-0.2 69.2% 44.0% 89.2% 45.8% 86.5% 75.8% 48.9%
OptiMUS-0.3 79.8% 54.0% 92.4% 52.1% 89.8% 81.0% 52.2%

SAC-Opt 86.8% 63.7% 96.5% 79.6% 94.0% 88.7% 58.9%
Impr. 7.0% ↑ 9.7% ↑ 2.1% ↑ 21.9% ↑ 4.2% ↑ 7.7% ↑ 1.8% ↑

Table 2: Ablation study of SAC-Opt. For each dataset, the best result is shown in bold.

Method NL4OPT IndustryOR EasyLP ComplexLP NLP4LP ReSocratic ComplexOR
SAC-Opt 86.8% 63.7% 96.5% 79.6% 94.0% 88.7% 58.9%
w/o correction 82.9% 50.3% 86.6% 63.8% 90.1% 80.2% 54.3%
w/o debugging 84.6% 60.7% 92.4% 72.3% 92.8% 84.5% 56.8%

We evaluate performance based on the accuracy metric, consistent with the evaluation settings used
in Xiao et al. (2024; 2025); AhmadiTeshnizi et al. (2024a;b). A solution to one problem is considered
correct if the generated code executes successfully, produces the correct optimal objective value, and
returns the correct optimal solution. The ground-truth values are provided by the dataset. All results
are averaged over five independent runs to ensure statistical reliability and reduce evaluation variance.

4.4 OVERALL PERFORMANCE

Table 1 summarizes the comparative performance of various methods evaluated under a unified
protocol. Unless otherwise specified, we report the results based on LLM-based verification to
measure the semantic consistency checking δ(si, ŝi). A detailed comparison between LLM-based
and similarity-based verification will be provided in Sec. 4.7.

Several key observations can be drawn from the Table 1. First, SAC-Opt consistently achieves the
best performance across all datasets, with especially large gains on hard datasets such as IndustryOR,
ComplexLP, and ReSocratic, including a 21.9% improvement on ComplexLP. Second, compared to
Reflexion and OptiMUS-0.3, SAC-Opt’s iterative correction introduces targeted semantic anchors
alignment, outperforming syntax-level strategies and demonstrating the value of semantic-anchored
optimization feedback. Third, while CoE and OptiMUS-0.2 perform well on simpler datasets,
their performance degrades sharply on more complex ones, indicating that limited reasoning depth
and weak feedback mechanisms fail to generalize. Finally, CoT does not consistently improve
performance over standard prompting and occasionally leads to a noticeable drop in EasyLP, while
CAFA yields similar results, suggesting we should design the prompt carefully.

4.5 ABLATION STUDY

To better understand the contributions of individual components in SAC-Opt, we conduct an ablation
study summarized in Table 2. Specifically, w/o correction removes the semantic anchor-guided
iterative correction mechanism (Sec. 3.5), while w/o debugging disables the final code-level correction
based on solver feedback (Sec. 3.6). The results show that removing semantic correction leads to a
substantial drop in modeling accuracy across all datasets, underscoring the effectiveness of explicitly
incorporating semantic anchor correction into the modeling process. This confirms their key role
in aligning generated models with the intended problem semantics. Although disabling code-level
debugging also reduces performance, the impact is notably smaller, indicating that while post-
generation fixes can help, semantic-anchored correction is the primary driver of modeling quality.
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Table 3: Performance comparison with and without SAC-Opt correction across different LLM models.

Model Method NL4OPT IndustryOR EasyLP ComplexLP NLP4LP ReSocratic ComplexOR

GPT-4o w/o correction 82.9% 50.3% 86.6% 63.8% 90.1% 80.2% 54.3%
correction 86.8% 63.7% 96.5% 79.6% 94.0% 88.7% 58.9%

Qwen2.5-72B-Instruct w/o correction 80.2% 39.5% 77.4% 57.5% 89.7% 76.7% 40.0%
correction 85.1% 45.7% 84.4% 62.9% 93.0% 85.9% 43.3%

Table 4: Comparison of different verification strategies. For each dataset, we report results from
LLM-based (LLM) and similarity-based (Sim) methods across accuracy, run time (in seconds), and
the number of corrections and debugging attempts (mean ± standard deviation).

Dataset Accuracy (%) Run Time (s) # Corrections # Debugging Attempts
LLM Sim LLM Sim LLM Sim LLM Sim

NL4OPT 86.8 83.1 78.43 156.83 1.13 ± 1.70 4.63 ± 1.23 0.04 ± 0.26 0.05 ± 0.30
IndustryOR 63.7 52.9 79.00 209.68 1.55 ± 2.15 3.72 ± 2.11 0.31 ± 0.66 0.16 ± 0.37
EasyLP 96.5 89.8 92.88 172.87 2.09 ± 1.97 2.18 ± 1.95 0.03 ± 0.21 0.03 ± 0.21
ComplexLP 79.6 65.3 40.96 173.76 1.05 ± 1.66 3.58 ± 2.13 0.12 ± 0.41 0.04 ± 0.26
NLP4LP 94.0 89.6 73.97 208.67 1.17 ± 1.70 4.49 ± 1.50 0.03 ± 0.24 0.05 ± 0.30
ReSocratic 88.7 82.2 79.85 152.98 1.18 ± 1.81 4.22 ± 1.80 0.05 ± 0.27 0.09 ± 0.40
ComplexOR 58.9 56.8 42.02 66.58 0.73 ± 1.68 2.36 ± 2.29 0.27 ± 0.47 0.18 ± 0.40

Additional analysis in Appendix A.7 further supports this conclusion by showing that improvements
are more sensitive to semantic correction than to the number of code-level fixes.

4.6 GENERALIZATION EVALUATION

Although the performance naturally depends on the reasoning ability of the underlying LLM, we
emphasize that SAC-Opt is model-agnostic by design. Its modular pipeline, consisting of semantic
anchor extraction, semantic verification, and correction, can be instantiated with any sufficiently
capable model. To assess generalization of the proposed correction method, we further evaluated
SAC-Opt on the open-source Qwen2.5-72B-Instruct model while keeping the extraction step fixed
for fairness. As shown in Table 3, although Qwen2.5-72B-Instruct achieves lower base accuracy than
GPT-4o, SAC-Opt consistently delivered clear gains across all datasets. This shows that even with a
less powerful model, our correction mechanism still provides substantial benefits. These findings
confirm that the effectiveness of SAC-Opt stems from its semantic correction mechanism rather than
reliance on any specific model, demonstrating robust generalization across different LLMs.

4.7 SEMANTIC VERIFICATION COMPARISON

To evaluate the impact of different semantic alignment strategies in SAC-Opt, we compare two
variants introduced in Sec 3.5: LLM-based verification (LLM) and similarity-based verification
(Sim) to compute δ(si, ŝi). As shown in Table 4, we report results across four dimensions: accuracy,
average run time, and correction and debugging attempts. The LLM-based variant consistently
outperforms the similarity-based counterpart across all metrics except debugging. It achieves higher
accuracy, shorter run time, and fewer correction iterations, highlighting superior efficiency in aligning
outputs with task semantics. Debugging numbers remain comparable, suggesting both methods reach
a similar threshold for code-level convergence once semantic correction stabilizes.

Our similarity-based verification relies on a widely adopted pretrained SentenceTransformer model,
selected for its low computational overhead and ease of deployment. This encoder is efficient
enough to run without GPU support, allowing our method to operate on machines with limited
resources. Interestingly, despite its relative simplicity, the similarity-based variant still outperforms
most baselines in Table 1 on several challenging datasets, including ComplexLP and ReSocratic. This
highlights the robustness of our iterative correction architecture, even when paired with lower-fidelity
semantic signals. At the same time, the increased run time and correction iterations suggest that
coarse similarity signals may introduce noise or misalignment, motivating future work on more
accurate alignment strategies that maintain computational efficiency.
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4.8 CASE STUDY

To demonstrate how SAC-Opt performs iterative semantic correction in practice, we present a
representative example from the cutting stock problem in the ComplexOR dataset. We focus on a
constraint anchor: “Each pattern j should generate rolls with widths that fit within the RollWidth”.
As shown in Figure 4.8, SAC-Opt begins by generating an initial code snippet for this anchor, with
the error flag initialized to “”. It then produces a new natural language description of the code’s
semantics as the reconstructed anchor and compares it against the original anchor. In this example,
the generated description correctly summarizes the faulty code implementation logic but fails to
capture the original intent of the anchor, prompting the error flag to update to Yes. SAC-Opt then
enters its anchor-guided correction loop, where new code is generated, reconstructed, and re-verified
until the semantic mismatch is resolved. Once alignment is achieved, the error flag switches to No,
signaling successful correction.

A Case Study of Iterative Correction

Iteration 0. Initialize the code of the constraint:

1 {
2 "description": "Each pattern j should generate rolls with widths

↪→ to fit within the RollWidth",
3 "code": "for j in range(NumPatterns):\n model.addConstr(sum(

↪→ NumRollsWidth[i][j] * Widths[i] for i in range(NumWidths)
↪→ ) <= RollWidth * NumRollsCut[j])",

4 "error": ""
5 },

Iteration 1. Generate a new description of the constraint and verify alignment:

1 {
2 "description_new": "For each pattern j, the sum of rolls

↪→ produced must be arranged so that their total width does
↪→ not exceed the width of the raw roll times the number of
↪→ rolls cut using that pattern."

3 "error": "YES",
4 },

Iteration 2. Update the code and repeat the verification process:

1 {
2 "code": "for j in range(NumPatterns):\n model.addConstr(sum(

↪→ NumRollsWidth[j][i] * Widths[i] for i in range(NumWidths)
↪→ ) <= RollWidth)",

3 "description_new": "Each pattern j must operate within the
↪→ confines of RollWidth, dictating that the summarized
↪→ width obtained from the rolls in that pattern remains
↪→ within the roll’s total width constraint."

4 "error": "NO",
5 },

5 CONCLUSION

We presented SAC-Opt, a backward semantic-anchored correction framework for optimization
modeling that explicitly addresses semantic inconsistencies in LLM-based models. By aligning
reconstructed anchors from generated models with the original task description, SAC-Opt iteratively
corrects only the mismatched components, driving convergence toward semantically faithful solutions.
This backward, anchor-guided refinement moves beyond solver-driven syntactic checks, enabling fine-
grained correction of constraints and objective without additional training or supervision. Experiments
on seven public datasets demonstrate an average accuracy gain of 7.8%. These findings underscore the
reliability of our semantic-anchored correction framework for LLM-based optimization workflows.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

The authors affirm that this work adheres to the ICLR Code of Ethics. It involves no human subjects,
sensitive or private data, or applications posing potential ethical risks. All resources utilized are
publicly available and appropriately licensed. The research was conducted in accordance with ethical
and legal standards.

REPRODUCIBILITY STATEMENT

This paper includes detailed descriptions of the experimental setups, implementation details, hyperpa-
rameter selections, and evaluation procedures to facilitate full verification of the reported results. To
further support reproducibility, the complete source code and experimental scripts are available at the
following anonymous repository: https://anonymous.4open.science/r/SAC-Opt.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo
Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Ali AhmadiTeshnizi, Wenzhi Gao, Herman Brunborg, Shayan Talaei, and Madeleine Udell. Optimus-0.3: Using
large language models to model and solve optimization problems at scale. arXiv preprint arXiv:2407.19633,
2024a.

Ali AhmadiTeshnizi, Wenzhi Gao, and Madeleine Udell. Optimus: Scalable optimization modeling with (MI)LP
solvers and large language models. In ICML, 2024b.

Andreas Antoniou and Wu-Sheng Lu. Practical Optimization: Algorithms and Engineering Applications.
Springer, 2007.

Nicolás Astorga, Tennison Liu, Yuanzhang Xiao, and Mihaela van der Schaar. Autoformulation of mathematical
optimization models using llms. arXiv preprint arXiv:2411.01679, 2024.

Bob Bixby. The gurobi optimizer. Transfp. Re-search Part B, 41(2):159–178, 2007.

Gobinda G Chowdhury. Introduction to modern information retrieval. Facet publishing, 2010.

IBM ILOG Cplex. V12. 1: User’s manual for cplex. International Business Machines Corporation, 46(53):157,
2009.

Haoxuan Deng, Bohao Zheng, Yirui Jiang, and Trung Hieu Tran. Cafa: Coding as auto-formulation can boost
large language models in solving linear programming problem. In Workshop on MATH-AI at NeurIPS, 2024.

Shangheng Du, Jiabao Zhao, Jinxin Shi, Zhentao Xie, Xin Jiang, Yanhong Bai, and Liang He. A survey on the
optimization of large language model-based agents. arXiv preprint arXiv:2503.12434, 2025.

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. Kto: Model alignment as
prospect theoretic optimization. arXiv preprint arXiv:2402.01306, 2024.

Dongdong Ge, Qi Huangfu, Zizhuo Wang, Jian Wu, and Yinyu Ye. Cardinal Optimizer (COPT) user guide.
https://guide.coap.online/copt/en-doc, 2023.

Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan, Xuehao Zhai, Chengjin Xu, Wei Li, Yinghan Shen, Shengjie
Ma, Honghao Liu, et al. A survey on llm-as-a-judge. arXiv preprint arXiv:2411.15594, 2024.

William E Hart, Jean-Paul Watson, and David L Woodruff. Pyomo: modeling and solving mathematical
programs in python. Mathematical Programming Computation, 3:219–260, 2011.

Sen Huang, Kaixiang Yang, Sheng Qi, and Rui Wang. When large language model meets optimization. Swarm
and Evolutionary Computation, 90:101663, 2024a.

Xuhan Huang, Qingning Shen, Yan Hu, Anningzhe Gao, and Benyou Wang. Mamo: a mathematical modeling
benchmark with solvers. arXiv preprint arXiv:2405.13144, 2024b.

Caigao Jiang, Xiang Shu, Hong Qian, Xingyu Lu, Jun Zhou, Aimin Zhou, and Yang Yu. Llmopt: Learning to
define and solve general optimization problems from scratch. In ICLR, 2025.

10

https://anonymous.4open.science/r/SAC-Opt


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Da Ju, Song Jiang, Andrew Cohen, Aaron Foss, Sasha Mitts, Arman Zharmagambetov, Brandon Amos, Xian Li,
Justine T Kao, Maryam Fazel-Zarandi, et al. To the globe (ttg): Towards language-driven guaranteed travel
planning. In EMNLP, 2024.

Ryo Kamoi, Yusen Zhang, Nan Zhang, Jiawei Han, and Rui Zhang. When can llms actually correct their own
mistakes? a critical survey of self-correction of llms. TACL, 12:1417–1440, 2024.

Beibin Li, Konstantina Mellou, Bo Zhang, Jeevan Pathuri, and Ishai Menache. Large language models for supply
chain optimization. arXiv preprint arXiv:2307.03875, 2023.

Haitao Li, Qian Dong, Junjie Chen, Huixue Su, Yujia Zhou, Qingyao Ai, Ziyi Ye, and Yiqun Liu. Llms-as-judges:
a comprehensive survey on llm-based evaluation methods. arXiv preprint arXiv:2412.05579, 2024.

Sirui Li, Janardhan Kulkarni, Ishai Menache, Cathy Wu, and Beibin Li. Towards foundation models for mixed
integer linear programming. In ICLR, 2025.

Gurobi Optimization. State of mathematical optimization report 2023. https://www.gurobi.com/lp/
or/state-of-mathematical-optimization-report-2023/, 2023.

Liangming Pan, Michael Saxon, Wenda Xu, Deepak Nathani, Xinyi Wang, and William Yang Wang. Automati-
cally correcting large language models: Surveying the landscape of diverse automated correction strategies.
TACL, 12:484–506, 2024.

Rindranirina Ramamonjison, Timothy Yu, Raymond Li, Haley Li, Giuseppe Carenini, Bissan Ghaddar, Shiqi
He, Mahdi Mostajabdaveh, Amin Banitalebi-Dehkordi, Zirui Zhou, and Yong Zhang. Nl4opt competition:
Formulating optimization problems based on their natural language descriptions. In NeurIPS Competition
Track, pp. 189–203, 2023.

Kayla Schroeder and Zach Wood-Doughty. Can you trust llm judgments? reliability of llm-as-a-judge. arXiv
preprint arXiv:2412.12509, 2024.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion: Language
agents with verbal reinforcement learning. In NeurIPS, 2023.

Ajay Singh. An overview of the optimization modelling applications. Journal of Hydrology, 466:167–182, 2012.

Zhengyang Tang, Chenyu Huang, Xin Zheng, Shixi Hu, Zizhuo Wang, Dongdong Ge, and Benyou Wang. Orlm:
Training large language models for optimization modeling. arXiv preprint arXiv:2405.17743, 2024.

Yifei Wang, Yuyang Wu, Zeming Wei, Stefanie Jegelka, and Yisen Wang. A theoretical understanding of
self-correction through in-context alignment. In NeurIPS, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al.
Chain-of-thought prompting elicits reasoning in large language models. In NeurIPS, 2022.

Ziyang Xiao, Dongxiang Zhang, Yangjun Wu, Lilin Xu, Yuan Jessica Wang, Xiongwei Han, Xiaojin Fu, Tao
Zhong, Jia Zeng, Mingli Song, and Gang Chen. Chain-of-experts: When llms meet complex operations
research problems. In ICLR, 2024.

Ziyang Xiao, Jingrong Xie, Lilin Xu, Shisi Guan, Jingyan Zhu, Xiongwei Han, WingYin Yu, Han Wu, Wei Shi,
Qingcan Kang, Jiahui Duan, Mingxuan Yuan, Jia Zeng, Yuan Wang, Gang Chen, and Dongxiang Zhang. A
survey of optimization modeling meets LLMs: Progress and future directions. In IJCAI, 2025.

Linzi Xing, Xinglu Wang, Yuxi Feng, Zhenan Fan, Jing Xiong, Zhijiang Guo, Xiaojin Fu, Rindra Ramamonjison,
Mahdi Mostajabdaveh, Xiongwei Han, et al. Towards human-aligned evaluation for linear programming word
problems. In LREC-COLING, 2024.

Zhicheng Yang, Yiwei Wang, Yinya Huang, Zhijiang Guo, Wei Shi, Xiongwei Han, Liang Feng, Linqi Song,
Xiaodan Liang, and Jing Tang. Optibench meets resocratic: Measure and improve llms for optimization
modeling. In ICML, 2024.

Jihai Zhang, Wei Wang, Siyan Guo, Li Wang, Fangquan Lin, Cheng Yang, and Wotao Yin. Solving general
natural-language-description optimization problems with large language models. In ACL, 2024a.

Qingjie Zhang, Han Qiu, Di Wang, Haoting Qian, Yiming Li, Tianwei Zhang, and Minlie Huang. Understanding
the dark side of llms’ intrinsic self-correction. arXiv preprint arXiv:2412.14959, 2024b.

Yansen Zhang, Qingcan Kang, Wing Yin Yu, Hailei Gong, Xiaojin Fu, Xiongwei Han, Tao Zhong, and Chen Ma.
Decision information meets large language models: The future of explainable operations research. In ICLR,
2025a.

Ziyan Zhang, Yang Hou, Chen Gong, and Zhenghua Li. Self-correction makes llms better parsers. arXiv preprint
arXiv:2504.14165, 2025b.

11

https://www.gurobi.com/lp/or/state-of-mathematical-optimization-report-2023/
https://www.gurobi.com/lp/or/state-of-mathematical-optimization-report-2023/


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 EXAMPLE OF STRUCTURED DATA

An Example of Extracted Structured Data

The problem description: This is a cutting stock problem. Given a roll of width ‘RollWidth‘ and
a set of widths ‘Width‘ to be cut. Each width ‘i‘ has a certain number of Orders ‘Orders_{i}‘.
There are ‘NumPatterns‘ patterns and each pattern ‘j‘ has a certain number of rolls of each width
‘i‘ ‘NumRollsWidth_{i, j}‘. The problem aims to minimize the total number of raw rolls cut. It is
constrained that for each width ‘i‘, the total number of rolls cut meets the total Orders. How to decide
the number of rolls cut using each pattern ‘j‘?

The Structured data:

1 {
2 "parameters": [
3 {
4 "definition": "The width of the raw roll to be cut",
5 "symbol": "RollWidth",
6 "value": "",
7 "shape": [],
8 "code": "RollWidth = data[\"RollWidth\"] # scalar

↪→ parameter"
9 },

10 {
11 "definition": "The set of widths to be cut",
12 "symbol": "Widths",
13 "value": "",
14 "shape": [
15 "NumWidths"
16 ],
17 "code": "Widths = np.array(data[\"Widths\"]) # [’

↪→ NumWidths’]"
18 },
19 {
20 "definition": "The number of orders for each width",
21 "symbol": "Orders",
22 "value": "",
23 "shape": [
24 "NumWidths"
25 ],
26 "code": "Orders = np.array(data[\"Orders\"]) # [’

↪→ NumWidths’]"
27 },
28 {
29 "definition": "The number of cutting patterns",
30 "symbol": "NumPatterns",
31 "value": "",
32 "shape": [],
33 "code": "NumPatterns = data[\"NumPatterns\"] # scalar

↪→ parameter"
34 },
35 {
36 "definition": "The number of rolls of each width used in

↪→ each pattern",
37 "symbol": "NumRollsWidth",
38 "value": "",
39 "shape": [
40 "NumPatterns",
41 "NumWidths"
42 ],

12
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43 "code": "NumRollsWidth = np.array(data[\"NumRollsWidth
↪→ \"]) # [’NumPatterns’, ’NumWidths’]"

44 },
45 {
46 "definition": "The number of different widths available

↪→ to be cut",
47 "symbol": "NumWidths",
48 "value": "",
49 "shape": [],
50 "code": "NumWidths = data[\"NumWidths\"] # scalar

↪→ parameter"
51 }
52 ],
53 "constraints": [
54 {
55 "description": "For each width i, the total number of

↪→ rolls cut using all patterns must meet or exceed
↪→ the total number of Orders for that width",

56 "code": null,
57 "error": ""
58 },
59 {
60 "description": "Each pattern j should generate rolls with

↪→ widths to fit within the RollWidth",
61 "code": null,
62 "error": ""
63 },
64 {
65 "description": "Number of raw rolls cut using each

↪→ pattern j (NumRollsCut) must be non-negative",
66 "code": null,
67 "error": ""
68 }
69 ],
70 "variables": {
71 "NumRollsCut": {
72 "shape": [
73 "NumPatterns"
74 ],
75 "type": "integer",
76 "definition": "The number of raw rolls cut using each

↪→ pattern"
77 }
78 },
79 "objective": {
80 "description": "\"The goal is to minimize the total number

↪→ of raw rolls cut\"",
81 "code": null,
82 "error": ""
83 },
84 }

The data.json file associated with the parameters:

1 {
2 "RollWidth": 10,
3 "Widths": [
4 2,
5 3,
6 5
7 ],

13
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8 "Orders": [
9 4,

10 2,
11 2
12 ],
13 "NumPatterns": 2,
14 "NumRollsWidth": [
15 [
16 1,
17 2,
18 0
19 ],
20 [
21 0,
22 0,
23 1
24 ]
25 ],
26 "NumWidths": 3
27 }

A.2 THE PROMPT OF CONSTRAINT RECONSTRUCTION

1 prompt_constraints_language = """
2 You are an expert in optimization modeling. Here is the natural language

↪→ description of an optimization problem:
3

4 {description}
5

6 You are given a constraint implemented in {solver} code and an example
↪→ natural language description that serves only as a reference for
↪→ sentence structure and length. Your task is to generate a **new**
↪→ natural language description that:

7

8

9 1. **Is derived strictly from the given code** - do not assume
↪→ information not present in the code.

10 2. **Maintains the structure, length, and complexity of the example
↪→ description**, but is reworded.

11 3. **Does not directly copy the example text** - use a natural
↪→ rephrasing while preserving accuracy.

12

13 The example description for the constraint is (For Structure & Length
↪→ Reference Only, NOT for Content Copying):

14

15 -----
16 {constraint}
17 -----
18

19 Here is the code for the constraint:
20

21 -----
22 {constraint_code}
23 -----
24

25 Here is a list of parameters that are related to the constraint:
26

27 -----
28 {params}
29 -----
30

14
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31 Here is a list of variables related to the constraint:
32

33 -----
34 {vars}
35 -----
36

37 The new description should be written in the following format:
38

39 CONSTRAINT:
40 =====
41 new natural language description for translating the constraint. (The

↪→ description should be fully based on the code and should match the
↪→ structure and length of the example description.)

42 =====
43

44 - Do not generate anything after the last =====.
45 - Do not include any additional information or explanations.
46

47 First reason about how the natural language description should be
↪→ written, and then generate the output.

48

49 Please take a deep breath and think step by step. You will be awarded a
↪→ million dollars if you get this right.

50

51 """

A.3 THE PROMPT OF LLM-BASED VERIFICATION

1 prompt_constraints_language_coverage = """
2 You are an expert in optimization modeling.
3

4 You task is to judge the consistency of the new generated description
↪→ and the original description of the same constraint.

5

6 The original description is:
7 -----
8 {constraint}
9 -----

10

11 The new description is:
12 -----
13 {constraint_new}
14 -----
15

16 Please respond with "YES" if the two descriptions are consistent, and "
↪→ NO" if they are not.

17

18 The asnwer should be in the following format:
19

20 ANSWER:
21 =====
22 YES or NO (ONLY one word and the answer should be in capital letters)
23 =====
24

25 - Do not generate anything after the last =====.
26 - Do not include any additional information or explanations.
27

28 Please take a deep breath and think step by step. You will be awarded a
↪→ million dollars if you get this right.

29

30 """
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Figure 2: Comparison of cardinality of the error set and iteration count in SAC-Opt. Here the
cardinality of the error set refers to the number of misaligned semantic anchors in the error set.

Table 5: Comparison of accuracy and average run time (in seconds) between SAC-Opt and the best
baseline. The Impr. row shows relative accuracy gains, and the Diff. row reports runtime differences
with respect to the baseline, where ↑ indicates an increase and ↓ a decrease.

Metric Method NL4OPT IndustryOR EasyLP ComplexLP NLP4LP ReSocratic ComplexOR

Accuracy
Best-baseline 79.8% 54.0% 92.4% 52.1% 89.8% 81.0% 52.2%

SAC-Opt 86.8% 63.7% 96.5% 79.6% 94.0% 88.7% 58.9%
Impr. 7.0 ↑ 9.7 ↑ 2.1 ↑ 21.9 ↑ 4.2 ↑ 7.7 ↑ 1.8 ↑

Run Time (s)
Best-baseline 64.67 113.08 88.79 8.22 71.86 74.23 68.68

SAC-Opt 78.43 79.00 92.88 40.96 73.97 79.85 42.02
Diff. 13.76 ↑ 34.08 ↓ 4.09 ↑ 32.74 ↑ 2.11 ↑ 5.62 ↑ 26.66 ↓

A.4 DISCUSSION OF CONVERGENCE

Case Study on Convergence. To illustrate the convergence behavior of SAC-Opt, we present a representa-
tive example from the flowshop scheduling problem in the ComplexOR dataset. Following Sec. 3.5, we treat each
misaligned constraints as an element of the error set. At the initial iteration, the total 8 constraints are treated
as 8 initial errors. As shown in Figure 2, the cardinality of the error set decreases steadily with each iteration,
eventually reaching 0. This demonstrates that SAC-Opt progressively eliminates inconsistencies between the
generated code and the problem semantics, ultimately achieving convergence.

Efficiency Analysis. Beyond convergence in individual cases, we also assess the efficiency and generality
of SAC-Opt across both easy and hard datasets. Detailed timing comparisons can be found in Appendix A.8.
Table 5 merges results from Tables 1 and 7, comparing accuracy and average run time between SAC-Opt and the
best baseline. Problem difficulty naturally affects convergence speed since easier tasks settle faster while harder
ones require longer refinement, so we report averaged run time for fairness. The results show that SAC-Opt
consistently improves modeling accuracy across all datasets, with particularly large gains on the more complex
tasks (e.g., IndustryOR and ComplexLP). In terms of efficiency, the overhead remains modest, and in some
datasets SAC-Opt even reduces total run time compared with the baseline. These findings confirm that SAC-Opt
is both effective and efficient, delivering robust convergence and substantial improvements even on challenging
real-world optimization problems.

A.5 THE STATISTICS OF THE DATASETS

The dataset statistics are summarized in Table 6.

A.6 DISCUSSION OF STRUCTURED DATA EXTRACTION

SAC-Opt depends on the accuracy of the structured data extraction, which serves as the foundation for all
downstream semantic reasoning. We acknowledge that semantic anchor extraction is an important and non-trivial
task, yet it is not the central focus of this paper. Our contribution is to address the gap left by prior solver-
driven approaches by proposing SAC-Opt, a backward-guided correction framework that grounds optimization
modeling in problem semantics. In other words, SAC-Opt is not designed to solve the extraction task itself, but
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Table 6: The statistics of the datasets. The unit for description length is characters, and we report
both the mean and standard deviation.

Dataset Description Length # Instances Multi-dimensional Parameters Type
NL4OPT 532.4 ± 103.0 214 ✗ Easy
IndustryOR 554.7 ± 395.2 42 ✓ Hard
EasyLP 1041.4 ± 257.7 545 ✗ Easy
ComplexLP 504.7 ± 276.3 111 ✓ Hard
NLP4LP 532.9 ± 108.1 178 ✓ Easy
ReSocratic 554.2 ± 217.6 403 ✓ Hard
ComplexOR 660.8 ± 197.2 18 ✓ Hard
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Figure 3: Comparison of average correction and debugging numbers in SAC-Opt.

rather to preserve semantic fidelity even when extraction is imperfect, thereby ensuring that the resulting models
remain aligned with the original problem intent.

To guarantee input quality and fairness in evaluation, we adopt the state-of-the-art extraction strategy from
OptiMUS-0.3 AhmadiTeshnizi et al. (2024a), which employs reflective prompting and confidence-based feedback
to enhance the reliability and quality of the structured data. Importantly, the same extraction pipeline is used
for all methods evaluated in this study, ensuring a consistent setting that isolates the correction capability of
SAC-Opt. Experimental results further show that extraction noise is not the main limiting factor: on relatively
simple datasets such as NL4OPT, EasyLP, NLP4LP, and ReSocratic, the average accuracy reaches 91.5%,
confirming that structured data extraction is already highly reliable in practice.

To better assess the potential impact of extraction errors, we manually reviewed three challenging datasets and
observed high accuracy in the structured data extraction stage, averaging above 94%: IndustryOR (4 errors out
of 42), ComplexLP (3 out of 111), and ComplexOR (1 out of 18). Most issues involved minor misidentification
of parameters or variables, while constraints and objective, the critical semantic anchors, were almost always
extracted correctly. These findings provide strong evidence that SAC-Opt remains robust in practice and that its
backward semantic correction delivers significant value beyond the extraction stage.

A.7 ANALYSIS OF CORRECTION AND DEBUGGING NUMBERS

To gain deeper insight into the behavioral differences between SAC-Opt’s semantic correction and code-level
debugging modules, we compare their average numbers across all datasets. As shown in Figure 3, the average
number of semantic correction per instance is approximately 1.27, while debugging is invoked far less frequently,
with an average of only 0.12. This significant gap emphasizes the dominant role of semantic correction in
aligning model behavior with the intended task semantics. Unlike debugging, which passively reacts to execution
failures, correction actively enforces semantic fidelity during the modeling process.
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Table 7: Average run time (in seconds) comparisons of different methods.

Method NL4OPT IndustryOR EasyLP ComplexLP NLP4LP ReSocratic ComplexOR
Standard 5.30 8.64 5.62 8.22 6.00 6.30 6.77
CoT 7.55 9.00 7.69 10.16 8.00 8.65 9.25
CoE 69.68 78.31 88.79 70.97 60.26 80.45 68.68
CAFA 7.52 9.94 7.56 9.48 8.66 8.11 9.22
Reflexion 8.32 14.26 9.34 14.28 9.28 9.28 11.64
OptiMUS-0.2 59.41 55.20 59.41 48.63 62.87 51.05 84.63
OptiMUS-0.3 64.67 113.08 82.60 89.61 71.86 74.23 52.96

SAC-Opt-LLM 78.43 79.00 92.88 40.96 73.97 79.85 42.02
SAC-Opt-Sim 198.82 209.68 183.89 173.76 208.67 174.99 66.58

A.8 RUN TIME COMPARISON

Table 7 reports the average run time of each method across seven datasets. We have the following observations.
First, simple inference methods such as Standard, CoT, and CAFA are highly efficient, with average run time
around 6 to 7 seconds per instance. Their low computational overhead makes them suitable for fast but shallow
modeling scenarios. Second, complex frameworks such as CoE, OptiMUS, and SAC-Opt require significantly
more time due to iterative reasoning and correction. SAC-Opt consistently achieves the highest modeling
accuracy, but its run time is less favorable on simpler datasets like EasyLP and NLP4LP, where semantic
verification may be unnecessary when the initial generation is already correct. Third, LLM-based verification
outperforms similarity-based verification in both accuracy and overall run time, but incurs a higher cost per call.
In contrast, similarity-based methods are cheaper per problem but slower in total due to repeated correction
operations. Future work may explore strategies to better balance verification quality with computational efficiency
under different deployment constraints.

A.9 LLM USAGE

LLMs were used solely to assist in polishing the writing of this paper, primarily to aid with grammar, spelling,
and sentence-level clarity and word choice. The models played no role in the research ideation, experimentation,
or analysis. The authors bear full responsibility for all content and claims presented herein.
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