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Abstract

Recent advances in unsupervised representation learning significantly improved1

the sample efficiency of training Reinforcement Learning policies in simulated2

environments. However, similar gains have not yet been seen for real-robot learning.3

In this work, we focus on enabling data-efficient real-robot learning from pixels. We4

present a Framework for Efficient Robotic Manipulation (FERM), a method that5

utilizes data augmentation and unsupervised learning to achieve sample-efficient6

training of real-robot arm policies from sparse rewards. While contrastive pre-7

training, data augmentation, and demonstrations are alone insufficient for efficient8

learning, our main contribution is showing that the combination of these disparate9

techniques results in a simple yet data-efficient method. We show that, given10

only 10 demonstrations, a single robotic arm can learn sparse-reward manipulation11

policies from pixels, such as reaching, picking, moving, pulling a large object,12

flipping a switch, and opening a drawer in just 30 minutes of mean real-world13

training time.14

1 Introduction15

Recent advances in deep reinforcement learning (RL) have given rise to unprecedented capabilities in16

autonomous decision making. Notable successes include learning to solve a diverse set of challenging17

video games Mnih et al. (2015); Berner et al. (2019); Vinyals et al. (2019); Badia et al. (2020),18

mastering complex classical games like Go, Chess, Shogi, and Hanabi Silver et al. (2016, 2017);19

Schrittwieser et al. (2019), and learning autonomous robotic control policies in both simulated20

Schulman et al. (2015, 2017); Laskin et al. (2020); Hafner et al. (2020) and real-world settings Levine21

et al. (2015); Kalashnikov et al. (2018). In particular, deep RL has been an effective method for22

learning diverse robotic manipulation policies such as grasping Pinto and Gupta (2016); Mahler23

et al. (2016); Levine et al. (2016); Gupta et al. (2018) and dexterous in-hand manipulation of24

objects Andrychowicz et al. (2018).25

However, to date, general purpose RL algorithms have been extremely sample inefficient, which has26

limited their widespread adoption in the field of robotics. State-of-the-art RL algorithms for discrete27

Hessel et al. (2017) and continuous Lillicrap et al. (2015) control often require tens of millions of28

environment interactions to learn effective policies from image input Tassa et al. (2018), while training29

the Dota5 agent Berner et al. (2019) to perform competitively to human experts required an estimated30

180 human-years of game play. Even when the underlying proprioceptive state is accessible, sparse31

reward robotic manipulation still needs millions of training samples Andrychowicz et al. (2017), an32

estimated 2 weeks of training in real time, to achieve reliable success rates on fundamental tasks such33

as reaching, picking, pushing, and placing objects.34

Another common approach to learned robotic control is through imitation learning Zhang et al. (2018);35

Ho and Ermon (2016); Duan et al. (2017); Finn et al. (2017); Young et al. (2020), where a large36

number of expert demonstrations are collected and the policy is extracted through supervised learning37

by regressing onto the expert trajectories. However, imitation learning usually needs hundreds or38
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thousands of expert demonstrations, which are laborious to collect, and the resulting policies are39

bounded by the quality of expert demonstrations. It would be more desirable to learn the optimal40

policy required to solve a particular task autonomously.41

In this work, rather than relying on transferring policies from simulation or la-42

bor intensive human input through imitation learning or environment engineering,43

Figure 1: Framework for Efficient Robotic
Manipulation (FERM)enables robotic agents to
learn skills directly from pixels in less than one
hour of training. Our setup requires a robotic arm,
two cameras, and a joystick to provide 10 demon-
strations.

we investigate how pixel-based RL applied to44

real robots can be made data-efficient. Recent45

progress in unsupervised representation learn-46

ing Laskin et al. (2020); Stooke et al. (2020)47

and data augmentation Laskin et al. (2020);48

Kostrikov et al. (2020) has significantly im-49

proved the efficiency of learning with RL in50

simulated robotic Tassa et al. (2018) and video51

game Bellemare et al. (2013) environments. The52

primary strength of these methods is learning53

high quality representations from image input54

either explicitly through unsupervised learning55

or implicitly via data augmentation.56

Building on these advances, we propose57

Framework for Efficient Robotic Manipulation58

(FERM). FERM utilizes off-policy RL with59

data augmentation along with unsupervised pre-60

training to learn efficiently with a simple three-61

staged procedure. First, a small number of (10)62

demonstrations are collected and stored in a re-63

play buffer. Second, the convolutional encoder64

weights are initialized with unsupervised con-65

trastive pre-training on the demonstration data.66

Third, an off-policy RL algorithm is trained with67

augmented images on both data collected online during training and the initial demonstrations. Our68

core contribution is the novel combination of contrastive pre-training, online data augmentations, and69

utilizing a small number of demonstrations that together enable efficient real-robot learning from70

pixels. In contrast, prior leading algorithms that utilize these components individually are unable to71

learn efficiently on real robots.72

We summarize our key contributions and benefits of the FERM algorithm: (1) Data-efficiency:73

FERM enables learning optimal policies on 6 diverse manipulation tasks such as reaching, pushing,74

moving, pulling a large object, flipping a switch, drawer opening in 15-50 minutes of total training75

time for each task. (2) Real-robot deployment: FERM trains efficiently on real robotic hardware76

while prior related approaches that were successful in simulation Laskin et al. (2020,?) fail to learn77

robust real-robot policies. (3) Simplicity: FERM is a novel combination of existing ideas such as78

contrastive pre-training, data augmentation, and demonstrations that results in a simple and easy to79

reproduce algorithm. (4) General & lightweight setup: Our setup requires a robot, one GPU, two80

cameras, a handful of demonstrations, and a sparse reward function. These requirements are quite81

lightweight relative to setups that rely on Sim2Real, motion capture, multiple robots, or engineering82

dense rewards. To the best of our knowledge, this work is the first to show how recent advances in83

contrastive learning and data augmentation can enable efficient real-robot reinforcement learning84

from pixels.85

2 Background86

Soft Actor Critic: The Soft Actor Critic (SAC) Haarnoja et al. (2018) is an off-policy RL algorithm87

that jointly learns an action-conditioned state value function through Q learning and a stochastic88

policy by maximizing expected returns. SAC is a state-of-the-art model-free RL algorithm for89

continuous control from state Haarnoja et al. (2018) and, in the presence of data augmentations,90

from pixels as well Laskin et al. (2020); Kostrikov et al. (2020). In simulated benchmarks, such as91

DeepMind control Tassa et al. (2018), SAC is as data-efficient from pixels as it is from state. For this92
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reason, we utilize it as our base RL algorithm for sparse-reward manipulation in this work. As an93

actor-critic method, SAC learns an actor policy πθ and an ensemble of critics Qφ1 and Qφ2 .94
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Figure 2: The FERM architecture. (a) Demonstrations are collected, and stored in a replay buffer. (b)
The observations from the demonstrations are used to pre-train the encoder with a contrastive loss. (c)
The encoder and replay buffer are then used to train an RL agent using an off-policy data-augmented
RL algorithm.
To learn the actor policy, samples are collected stochastically from πθ such that aθ(o, ξ) ∼95

tanh (µθ(o) + σθ(o)� ξ), where ξ ∼ N (0, I) is a sample from a normalized Gaussian noise vector,96

and then trained to maximize the expected return as shown in eq. 1.97

L(θ) = Ea∼π [Qπ(o, a)− α log πθ(a|o)] (1)

Simultaneously to learning the policy, SAC also trains the critics Qφ1
and Qφ2

to minimize the98

Bellman equation in Equation 2. Here, a transition t = (o, a, o′, r, d) is sampled from the replay99

buffer B, where (o, o′) are consecutive timestep observations, a is the action, r is the reward, and d is100

the terminal flag.101

L(φi,B) = Et∼B
[
(Qφi

(o, a)− (r + γ(1− d)Qtarg))
2
]

(2)

The function Qtarg is the target value that the critics are trained to match, defined in Equation 3.102

The target is the entropy regularized exponential moving average (EMA) of the critic ensemble103

parameters, which we denote as Q̄φ.104

Qtarg =

(
min
i=1,2

Q̄φi
(o′, a′)− α log πθ(a

′|o′)
)

(3)

where (a′, o′) are the consecutive timestep action and observation, and α is a positive action-entropy105

coefficient. A non-zero action-entropy term improves exploration – the higher the value of α to more106

entropy maximization is prioritized over optimizing the value function.107

Unsupervised Contrastive Pretraining: Contrastive learning Hadsell et al. (2006); LeCun et al.108

(2006); van den Oord et al. (2018); Wu et al. (2018); He et al. (2019); Chen et al. (2020); He109

et al. (2020); Hénaff et al. (2019) aims to maximize agreement between positive examples in110

data while minimizing agreement between negative examples. Contrastive methods require the111

specification of query-key pairs, also known as anchors and positives, which are similar data pairs112

whose agreement needs to be maximized. Given a query q and a key k , we seek to maximize the113

score fscore(q, k) between them while minimizing them between the query q and negative examples in114

the dataset k−. The score function is most often represented as an inner product, such as a dot product115

fscore(q, k) = qT k Wu et al. (2018); He et al. (2019) or a bilinear product fscore(q, k) = qTWk116

van den Oord et al. (2018); Hénaff et al. (2019), while other Euclidean metrics are also available117

Schroff et al. (2015); Wang and Gupta (2015). Modern contrastive approaches Chen et al. (2020); He118

et al. (2020); Hénaff et al. (2019); Laskin et al. (2020) employ the InfoNCE loss van den Oord et al.119
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(2018), which is described in Equation 4 and can also be interpreted as a multi-class cross entropy120

classification loss with K classes.121

Lq = log
exp(qTWk)

exp
(∑K

i=0 exp(qTWki)
) (4)

In the computer vision setting, a simple and natural choice of query-key specification is to define122

queries and keys as two data augmentations of the same image. This approach, called instance123

discrimination, is used in most of the state-of-the-art representation learning methods for static124

images Chen et al. (2020); He et al. (2020) as well as RL from pixels Laskin et al. (2020). In the125

minibatch setting, which we also employ in this work, the InfoNCE loss is computed by sampling126

K = {x1, . . . , xK} images from the dataset, generating queries Q = {q1, . . . , qK} and keys127

K = {k1, . . . , kK} with stochastic data augmentations qi, ki = aug(xi), and using each augmented128

datapoint xi as positives while the rest of the images are negatives.129

(a) Reach (b) Pickup (c) Move (d) Pull (e) Light Switch (f) Drawer Open

Figure 3: The set of real world tasks used in this work, along with their pixel observations. Each
column shows initial, intermediate, and completion states of a rollout during evaluation of our optimal
policy. The right two images comprise the processed camera image input, which are concatenated
and used as the observational input for the RL agent. The sparse reward is only given when the robot
completes the task. FERM is able to solve all 6 tasks within an hour, using only 10 demonstrations.

3 Method130

(a) FetchReach (b) FetchPickAndPlace (c) FetchPush

Figure 4: Simulated environments from OpenAI gym Brockman et al.
(2016) used in addition to our real robot experiments. We use the Fetch
Gym Suite to investigate the core components of FERM .

Our proposed framework, shown131

in Figure 2, combines demonstra-132

tions, unsupervised pre-training,133

and off-policy model-free RL134

with data augmentation into one135

holistic Framework. FERM has136

three distinct steps – (i) minimal137

collection of demonstrations (ii)138

encoder initialization with unsu-139

pervised pre-training and (iii) on-140

line policy learning through RL141

with augmented data – which we142

describe in detail below.143

Minimal Collection of Demonstrations: We initialize the replay buffer with a small number of144

expert demonstrations (we found 10 to be sufficient) for each task. Demonstrations are collected with145

a joystick controller, shown in Figure 1. Our goal is to minimize the total time required to acquire a146

skill for an RL agent, including both policy training as well as time required to collect demonstrations.147

While collecting a larger number of demonstrations certainly improves training speed, we find 10148

demonstrations is already sufficient to learn skills quickly (see Fig. 7). For real world experiments,149

collecting 10 expert demonstrations can be done within 10 minutes which includes the time needed150

to reset the environment after every demonstration.151
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Unsupervised Encoder Pre-training: After initializing the replay buffer with 10 demonstrations,152

we pre-train the convolutional encoder with instance-based contrastive learning, using stochastic153

random crop Laskin et al. (2020) to generate query-key pairs. The key encoder is an exponentially154

moving average of the query encoder He et al. (2020), and the similarity measure between query-key155

pairs is the bi-linear inner product van den Oord et al. (2018) shown in Equation 4. Note that the156

bi-linear inner product is only used to pre-train the encoder. After pre-training, the weight matrix in157

the bi-linear measure is discarded.158

Reinforcement Learning with Augmented Data: After pre-training the convolutional encoder on159

offline demonstration data, we train a SAC Haarnoja et al. (2018) agent with data augmentation160

Laskin et al. (2020) as the robot interacts with the environment. Since the replay buffer was initialized161

with demonstrations and SAC is an off-policy RL algorithm, during each minibatch update the162

agent receives a mix of demonstration observations and observations collected during training when163

performing gradient updates. The image augmentation used during training is random crop – the164

same augmentation used during contrastive pre-training.165

Figure 5: Baseline Comparisons. Shown are normalized rewards of the agent at the end of training
for the simulated as well as the real robot results, as well as standard error. While FERM is able to
learn all the tasks, the baseline RL agent (RAD) is unable to learn one sparse reward task without
demonstrations. Conversely, with access to only 10 demonstrations, behavior cloning is unable
to learn in the more difficult environments, and only succeeds on the simpler tasks (FetchReach,
Light Switch). FERM and RAD are trained for 200k environment steps in simulated tasks, and until
convergence for real world tasks (30 episodes for Switch and Pickup, 60 episodes for Move). BC is
trained over the dataset for 200 epochs for both simulated and real world tasks. Simulated tasks are
evaluated over 100 episodes, while real world tasks are evaluated over 30 episodes.

4 Experimental Evaluation166

4.1 Experimental Setup167

Real robot: We use the xArm xar robot for all real-world experiments. The end effector, a parallel168

two-jaw gripper, is position controlled with three degrees of freedom. At each step, the robot takes in169

an action containing the end effector and gripper aperture displacement.170

Operation space: The range of motion of the gripper is confined to a 25 cm-high imaginary box171

above the manipulation surface. For majority of the tasks, objects are contained in a plastic tray172

approximately 40× 34 cm in size measured at its bottom. Sponge padding was placed below the tray173

to absorb minor collisions between the gripper and the objects.174

Input: We use two RGB cameras, one positioned over the shoulder for maximal view of the arm,175

and the other located within the gripper to provide a local object-level view. The over-the-shoulder176

camera is an Intel Realsense D415, with native resolution of 1280× 720. Specifically, we only utilize177

the RGB frames during both training as testing. Inside the gripper, we use an Arducam 8MP camera178

module configured to 640 × 480 in resolution. Image frames from both cameras are cropped and179

down-sampled to 100× 100 pixels for use in our training algorithm.180

Demonstrations: Using a Xbox controller xbo, we teleoperate the robot by supplying the end effector181

and gripper aperture displacement. Collecting demonstrations for each task requires less than 10182

minutes, including resetting the environment.183
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4.2 Environments and Baselines184

Environments: We evaluate FERM on six real-robotic manipulation tasks - reaching an object,185

picking up a block, moving a block to a target destination, pulling a large deformable object, flipping186

a switch, and opening a drawer. The block manipulation tasks (reach, pickup, move) are real-187

world adaptations of tasks from the OpenAI Gym Fetch suite Brockman et al. (2016). We utilize188

these three OpenAI gym environments for simulated environment experiments. Since our method189

uses demonstrations, we include pull, which has been used in prior work on imitation learning190

Rahmatizadeh et al. (2017); Florence et al. (2020). Flipping a switch is included as it demands191

precision, while drawer opening is a common task in existing simulated robotic benchmarks Yu et al.192

(2019). Details of task setup are provided in the supplementary material.193

Baselines: We compare FERM to RAD Laskin et al. (2020), a leading supervised RL algorithm194

in simulated environments, and behavior cloning for our main results in Fig. 5. In the ablations195

section, we investigate each individual component of FERM . We investigate the contribution of196

each component of the FERM algorithm by removing one component - demonstrations, contrastive197

pre-training, or data augmentation - while keeping others fixed.198

Figure 6: The speed at which our agents learn to complete the tasks. Plotted above are the times at
which the policy first achieves a success, as well as when an optimal policy is learnt. Our method
starts to complete the tasks in around 30 minutes of training, and as little as 3 minutes for simple
tasks such as Reach.

Table 1: The success rates when evaluating the final policy learned by FERM over 30 episodes. Our
method is able to achieve perfect success rate on the simpler tasks (Reach, Pickup, Light Switch,
Drawer Open), and high success rates on the harder tasks (Move, Pull).

TASKS REACH PICKUP MOVE PULL
LIGHT

SWITCH
DRAWER

OPEN

# SUCCESSES (/30) 30 30 26 28 30 30
SUCCESS RATE (%) 100 100 86 93 100 100

4.3 Results199

The main results of our investigation, including the time required to train an optimal policy as well the200

first successful task completion, are shown in Figure 5 and Table 1. We summarize the key findings201

below:202

(i) On average, FERM enables a single robotic arm to learn optimal policies across all 6 tasks tested203

within 30 minutes of training time with a range of 15-50 minutes, which corresponds to to 20-80204

episodes of training. (see Fig. 6 and Table 1).205

(ii) When evaluated on 3 simulated and 3 real-robot tasks, FERM substantially outperforms RAD and206

behavior cloning baselines (see Fig. 5).207

(iii) The time to first successful task completion is on average 11 minutes with a range of 3-33208

minutes. The final policies achieve an average success rate of 96% with a range of 86-100% across209

the tasks tested, suggesting that they have converged to near-optimal solutions to the tasks.210
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(iv) Collecting demonstrations and contrastive pre-training does not introduce significant overhead in211

terms of time. Collecting 10 expert demonstrations with a joystick requires 10 minutes of human212

operation. Contrastive pre-training completes within one minute on a single NVIDIA 2080Ti GPU.213

214

(v) FERM solves all 6 tasks using the same hyperparameters and without altering the camera setup,215

which demonstrates the ease of use and generality of the framework.216

Altogether, an RL agent trained with FERM is able to learn optimal policies for the 6 tasks ex-217

tremely efficiently. While prior work was able to solve dexterous manipulation tasks using RL with218

demonstrations in 2-3 hours of training Zhu et al. (2019), it also utilized dense rewards and more219

demonstrations. To the best of our knowledge, FERM is the first reinforcement learning method to220

solve a diverse set of sparse-reward robotic manipulation tasks directly from pixels in less than one221

hour.222

4.4 Ablations223

Figure 7: Left: We ablate the number of demonstrations required by FERM , and find that although
the agent fails to learn with zero demonstrations, it can learn the PickAndPlace task efficiently using
only 10 demonstrations. Center: We compare the performance of the move task with and without the
use of pre-training on the real xArm robot. The plotted episode returns at convergence show that the
contrastive pre-training substantially boosts performance. Right: Policy performance is measured by
evaluation success rate. Using data augmentation, the agent achieves successful performance. Using
non-augmented observations, the agent fails to learn the task.

In this section, we investigate how the three core components of FERM – demonstrations, contrastive224

pre-training, and data augmentation – contribute to the overall efficiency of the framework.225

How many demonstrations are needed?226

While sparse rewards are simpler to define, they pose an exploration challenge since the robot is227

unlikely to randomly stumble on a reward state. We address this issue by providing demonstrations to228

the RL agent. We ablate the number of demonstrations required to learn efficiently on the simulated229

pick and place task in Figure 7. We find that while the agent fails entirely with zero demonstrations,230

it is able to start learning the task with just one demonstration. While more demonstrations improve231

learning efficiency and reduce the variance of the policy, ten demonstrations suffice to learn quickly.232

We then evaluate the effectiveness of the 10 demonstrations by comparing our method to training233

behavior cloning. As shown in Figure 5, the 10 demonstrations are not enough to learn an effective234

policy. Refer to the supplementary material for further details.235

How important is unsupervised contrastive pre-training? We next study the role of contrastive236

pre-training in FERM . We ablate our method with and without contrastive pre-training on the real237

world pickup and move task, shown in Figure 7, where we compare with (0), and without (1600)238

iterations of pre-training to initialize the encoder. With 1600 contrastive iterations, the agent is able239

to learn a successful policy while the other runs fail to learn. In the case of no pre-training at all, the240

agent is only able to succeed once during the entire hour of training.241

Is online data augmentation necessary? To justify the use of data augmentation during online RL242

training, we compare the performance of SAC with and without data augmentation for a simple,243

dense reward reaching task. In the FetchReach environment, we use the dense reward r = −d where244

d is the Euclidean distance between the gripper and the goal. As shown in Figure 7, without data245
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augmentation, the RL agent is unable to learn the simple task, and asymptotically collapses. This246

motivates us to use data augmentation for our sparse reward tasks, which encounter even less learning247

signal.248

5 Related Work249

Imitation Learning: Imitation learning is a framework for learning autonomous skills from demon-250

strations. One of the simplest and perhaps most widely used forms of imitation learning is behavior251

cloning (BC) where an agent learns a skill by regressing onto demonstration data. BC has been252

successfully applied across diverse modalities including video games Ross et al. (2011), autonomous253

navigation Pomerleau (1988); Bojarski et al. (2016), autonomous aviation Giusti et al. (2016), lo-254

comotion Nakanishi et al. (2004); Kalakrishnan et al. (2009), and manipulation Duan et al. (2017);255

Zhang et al. (2018); Young et al. (2020); Rahmatizadeh et al. (2017). Other imitation learning256

approaches include Dataset Aggregation Ross et al. (2010), Inverse Reinforcement Learning Ng and257

Russell (2000); Abbeel and Ng (2004), and Generative Adversarial Imitation Learning Ho and Ermon258

(2016). A general limitation of imitation learning approaches is the requirement for a large number259

of demonstrations for each task Sharma et al. (2018). Although recent advancements have shown that260

imitation learning can learn with a much more modest amount of demonstrations Zhang et al. (2018);261

Rahmatizadeh et al. (2017); Florence et al. (2020), FERM can learn in the same number of episodes,262

of which the majority are spent with reinforcement learning.263

Reinforcement Learning: Reinforcement Learning (RL) has been a promising approach for robotic264

manipulation due to its ability to learn skills autonomously, but has not achieved widespread adoption265

in real-world robotics. Recently, deep RL methods excelled at playing video games from pixels Mnih266

et al. (2015); Berner et al. (2019) as well as learning robotic manipulation policies from visual input267

Levine et al. (2015); Finn and Levine (2017); Haarnoja et al. (2018); Nair et al. (2018a). However,268

widespread adoption of RL in real-world robotics has been bottle-necked due to the data-inefficiency269

of the method, among other factors such as safety. Though there exist prior frameworks for efficient270

position controlled robotic manipulation Zhu et al. (2019), they still require hours of training per task271

and provide additional information such as a dense reward function. FERM is most closely related to272

other methods that use RL with demonstrations. Prior methods Nair et al. (2018b); Rajeswaran et al.273

(2017); Vecerík et al. (2017) solve robotic manipulation tasks from coordinate state input, rather than274

image input, by initializing the replay buffer of an RL algorithm with demonstrations to overcome275

the exploration problem in the sparse reward setting.276

Data Augmentation: Image augmentation refers to stochastically altering images through transfor-277

mations such as cropping, rotating, or color-jittering. It is widely used in computer vision architectures278

including seminal works such as LeNet Lecun et al. (1998) and AlexNet Krizhevsky et al. (2017).279

Data augmentation has played a crucial role in unsupervised representation learning in computer280

vision Hénaff et al. (2019); He et al. (2020); Chen et al. (2020), while other works investigated281

automatic generation of data augmentation strategies Cubuk et al. (2019). Data augmentation has282

also been utilized in prior real robot RL methods Kalashnikov et al. (2018); however, the extent of its283

significance for efficient training was not fully understood until recent works Laskin et al. (2020,?);284

Kostrikov et al. (2020), which showed that carefully implemented data augmentation makes RL285

policies from pixels as efficient as those from coordinate state. Finally, data augmentation has also286

been shown to improve performance in imitation learning Young et al. (2020). In this work, data287

augmentation comprises one of three components of a general framework for efficient learning.288

Unsupervised Representation Learning: The goal of unsupervised representation learning is to289

extract representations of high-dimensional unlabeled data that can then be used to learn downstream290

tasks efficiently. Most relevant to our work is contrastive learning, which is a framework for learning291

effective representations that satisfy similarity constraints between a pair of points in dataset. In292

contrastive learning, latent embeddings are learned by minimizing the latent distance between similar293

data points and maximizing them between dissimilar ones. Recently, a number of contrastive learning294

methods Hénaff et al. (2019); He et al. (2019); Chen et al. (2020) have achieved state-of-the-art label-295

efficient training in computer vision. A number of recent investigations in robotics have leveraged296

contrastive losses to learn viewpoint invariant representations from videos Sermanet et al. (2018),297

manipulate deformable objects Yan et al. (2020), and learn object representations Pirk et al. (2019).298

In this work, we focus on instance-based contrastive learning Wu et al. (2018) similar to how it is299
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used in vision He et al. (2020); Chen et al. (2020) and RL on simulated benchmarks Laskin et al.300

(2020); Stooke et al. (2020).301

6 Limitations302

Although FERM enables data-efficient deployment of RL onto real robots, the method also has a303

number of limitations. First, like most RL algorithms, FERM may require assistance for resets, and304

FERM policies can only solve the tasks that they were trained on and while they may display some305

degree of generalization to small changes such as object shape or perturbations, we do not expect306

FERM policies to generalize to qualitatively different tasks that were unseen during training. Second,307

while the tasks considered in this paper are standard robotics evaluation tasks, they all have relatively308

short horizons. Since FERM relies on a sparse reward signal to learn, we do not expect this framework309

to succeed in long-horizon sparse reward tasks, where random interaction with the reward is unlikely.310

Finally, we expect the performance of FERM to degrade if the visual conditions of the scene change311

substantially, which is likely in non-lab settings with frequent background distractors and lighting312

changes. Rather than addressing generalization to new tasks and visual settings or long-horizon313

settings, this paper focuses on the data-efficiency problem of training RL policies on real robots.314

We believe that data-efficient generalization and long-horizon problem solving are important open315

problem in robot learning that we leave for future work.316

7 Conclusion and Future Work317

We present FERM , a framework that combines demonstrations, unsupervised learning, and RL, to318

efficiently learn complex tasks in the real world. Using image input, our method is able to successfully319

solve a diverse set of tasks, all using the same hyperparameters, and from sparse reward. Due to the320

limited amount of supervision required, our work presents exciting avenues for applying RL to real321

robots in a quick and efficient manner.322
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