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Abstract

Generative Commonsense Reasoning (GCR)001
requires a model to reason about a situation002
using commonsense knowledge, while generat-003
ing coherent sentences. Although the quality of004
the generated sentences is crucial, the diversity005
of the generation is equally important because006
it reflects the model’s ability to use a range007
of commonsense knowledge facts. Large Lan-008
guage Models (LLMs) have shown proficiency009
in enhancing the generation quality across var-010
ious tasks through in-context learning (ICL)011
using given examples without the need for any012
fine-tuning. However, the diversity aspect in013
LLM outputs has not been systematically stud-014
ied before. To address this, we propose a simple015
method that diversifies the LLM generations,016
while preserving their quality. Experimental017
results on three benchmark GCR datasets show018
that our method achieves an ideal balance be-019
tween the quality and diversity. Moreover, the020
sentences generated by our proposed method021
can be used as training data to improve diversity022
in existing commonsense generators.023

1 Introduction024

Commonsense reasoning is the ability to make logi-025

cal deductions about concepts encountered in daily026

life, and is considered as a critical property of in-027

telligent agents (Davis and Marcus, 2015). Con-028

cepts are mental representations of classes and are029

expressed using words in a language (Liu et al.,030

2023). Given the inputs, the GCR task requires a031

model to generate a coherent sentence that is gram-032

matical and adheres to commonsense, evaluated by033

its similarity to a set of human-written reference034

sentences covering the same set of concepts (Lin035

et al., 2020).036

Often there exists multiple relationships between037

a given set of concepts, leading to alternative rea-038

soning paths that take diverse view points. For ex-039

ample, given the four concepts dog, frisbee, throw040

and catch, different sentences can be generated as041

• A dog catches a frisbee thrown to it.

• A dog catches a frisbee thrown by its owner.

• A dog jumps in the air to catch a frisbee 

thrown by its owner.

• A dog leaps to catch a thrown frisbee.

• The dog catches the frisbee when the boy 

throws it.

• A man throws away his dog's favourite 

frisbee expecting him to catch it in the air.

Dog; Catch; 

Frisbee; Throw

Figure 1: An example of diverse generated sentences
sets in CommonGen (Lin et al., 2020) dataset. The gen-
eration shown at the bottom (in green ) are considered
by human annotators to be more diverse than those at
the top (in red ).

shown in Figure 1. Although all sentences shown 042

in Figure 1 are grammatical, the bottom set ex- 043

presses diverse view points (e.g. from the dog’s 044

as well as the man’s) compared to the set at the 045

top. Apart from the generation quality, diversity is 046

also an important factor in text generation because 047

the low-diversity texts tend to be dull, repetitive or 048

biased towards a particular view point (Tevet and 049

Berant, 2021). Diversity is an important considera- 050

tion in many Natural Language Generation (NLG) 051

applications, such as story generation (Li et al., 052

2018), paraphrase generation (Gupta et al., 2018), 053

and GCR (Yu et al., 2022; Liu et al., 2023). In 054

GCR tasks, diversity requires model’s ability to 055

generate explanations for everyday scenarios from 056

various perspectives and to reflect diverse relation- 057

ships between input concepts. Moreover, GCR 058

datasets often contain input texts with limited infor- 059

mation. Diversifying GCR requires a deep under- 060

standing of relationships and commonsense knowl- 061

edge around the input concepts. Existing methods 062

promote diversity through special decoding strate- 063

gies, such as nucleus sampling (Holtzman et al., 064

2019), or encoding interventions such as random 065

noise injection (Gupta et al., 2018) or Mixture of 066

Experts (MoE) approaches (Shen et al., 2019). 067

We propose In-Context Diversification (ICD), a 068

computationally-efficient and accurate method to 069
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improve the diversity in GCR, where the sentences070

are generated from a pre-trained LLM, and strikes a071

fine-balance between the output diversity and qual-072

ity. ICD uses an ICL approach to increase the diver-073

sity of the sentences generated by an LLM, while074

maintaining the quality of the generation. ICD is075

a two-step process where it first lets an LLM to076

generate sentences that are grammatical, common-077

sense bearing and cover the tasks’ requirements. If078

the diversity is low, ICD provides feedback to the079

LLM, instructing it to generate more diverse sen-080

tences considering the already generated sentences.081

Next, ICD uses a diversity-based sampling method082

to make a trade-off between quality and diversity083

with a user-specific diversity metric.084

Given that ICD is using LLMs to generate di-085

verse sentences via ICL and without updating the086

parameters of the LLMs, an interesting and open087

question is whether an LLM can accurately judge088

the diversity of a given set of sentences, covering089

a common set of concepts. To answer this ques-090

tion, we conduct an experiment where we instruct091

GPT3.5-turbo to judge the diversity of the set of092

input sentences according to a five-scale grading093

system, and convert the predicted grades into bi-094

nary judgements (i.e. diverse vs. non-diverse). We095

compare the LLM-assigned grades against those by096

a group of human annotators, and find a moderate-097

level (Cohen’s Kappa of 0.409) agreement between098

human vs. LLM judgements, demonstrating that099

LLMs can indeed be instructed to obtain diversity100

judgements for GCR tasks.101

We evaluate ICD on three GCR tasks/datasets:102

CommonGen (Lin et al., 2020), ComVE (Wang103

et al., 2020), and DimonGen (Liu et al., 2023). We104

find that our proposed ICD balances diversity and105

quality appropriately, improving their harmonic106

mean by at least 6% over that of a default base-107

line. Moreover, the sentences generated by ICD108

can be used as training data to improve diversity109

in a Seq2Seq model (Sutskever et al., 2014; Lewis110

et al., 2020), producing results that are comparable111

to the models that are trained on knowledge graphs112

or human-written text corpora (Liu et al., 2021; Fan113

et al., 2020; Li et al., 2021). An anonymised version114

of the source code and data is submitted to ARR115

and will be made public upon paper acceptance.116

2 Related Work117

Diverse Text Generation. A variety of methods118

have been proposed to enhance the diversity of119

NLG. Sampling-based decoding is an effective 120

method to increase the generation diversity. Holtz- 121

man et al. (2019) proposed nucleus sampling to 122

generate diverse content at the generation stage. 123

Truncated sampling (Fan et al., 2018) prunes and 124

then samples the tokens based on the probability 125

distribution. Furthermore, Shen et al. (2019) pro- 126

posed an MoE approach to diversify translation 127

outputs. Moreover, incorporating external corpora 128

in the MoE further promotes diversity, such as by 129

using a knowledge graph (Yu et al., 2022; Hwang 130

et al., 2023) or by a collection of retrieved sen- 131

tences (Liu et al., 2023). Although LLMs have 132

reported superior performance in numerous NLP- 133

tasks (Touvron et al., 2023; OpenAI, 2023b,a), to 134

the best of our knowledge, diversifying their gen- 135

erations in commonsense reasoning with ICL has 136

not been explored in prior work on GCR. 137

In-Context Learning. Recent studies demon- 138

strate that LLMs can exhibit robust few-shot per- 139

formance on a variety of downstream tasks through 140

ICL (Brown et al., 2020). ICL is a technique for 141

instructing an LLM using one or more examples 142

for a particular text generation task. The generated 143

text is conditioned on both the input as well as the 144

instruction prompt. Wang et al. (2023) show that 145

in ICL, label words in the demonstration examples 146

function as anchors, which aggregate semantic in- 147

formation to their word representations in the shal- 148

low (closer to the input) layers, while providing 149

that information to the final predictions performed 150

by the deeper (closer to the output) layers. In con- 151

trast to fine-tuning-based methods, ICL is computa- 152

tionally lightweight because it does not update the 153

parameters of the LLM. Therefore, ICL is an attrac- 154

tive method when integrating task-specific knowl- 155

edge to an LLM by simply changing the prompt 156

and the few-shot examples (Dong et al., 2022). 157

3 In-context Diversification 158

We consider the problem of generating a set of 159

diverse sentences that express commonsense rea- 160

soning, either by covering a set of given concepts 161

(in CommonGen and DimonGen) or by providing 162

an explanation for a given counterfactual statement 163

(in ComVE). Formally, given a sequence (a set 164

of concepts or a statement) X = {x1, . . . , xm}, 165

the goal of GCR is to generate a set of grammati- 166

cally correct and commonsense bearing sentences 167

Y = {y1, . . . , yn}, where yi is the i-th output 168

generated by the model with probability p(yi|X ). 169
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Default

Examples:
Given several key words: [SRC], 

generate one coherent sentences using 

background commonsense knowledge: 

[TGT] 

Test instruction:
Given several key words: [INPUT], 

generate one coherent sentence using 

background commonsense knowledge: 

[OUTPUT]

Diversified

Examples:
Given several key words: [SRC],

generate one coherent sentence using 

background commonsense knowledge: 

[TGT] 

Test instruction:
Step1: Given several key words: [INPUT], 

generate [N] different and coherent 

sentences using background commonsense 

knowledge: [PRV]

(If the diversity of [PRV] is low)

Step2: You have generated the following 

sentences: [PRV], try to provide other 

reasonable sentences: [OUTPUT]

(a) (b)

Figure 2: An example of default and diversi-
fied prompts is shown for an instance selected from the
CommonGen dataset. Here, the default prompt shown
in Figure 2a is taken from Li et al. (2023). Few-shot
examples are included in each prompt where [SRC]
denotes the set of input concepts and [TGT] the cor-
responding sentences in CommonGen. For a given set
of [INPUT] concepts, the LLM is then required to gen-
erate sentences at the slot [OUTPUT]. As shown in
Figure 2b, ICD uses the diversified prompt, which oper-
ates in two steps. Step 1 generates a set of [N] sentences,
[PRV]. We check for the diversity among the sentences
in [PRV], and if it is low, we use the prompt in Step 2
to generate the final set of sentences.

Moreover, we require that the generated sentences170

{y1, . . . , yn} to be lexically as well as semantically171

diverse.172

3.1 Sentence Generation173

To explain our proposed ICD, let us consider GCR174

on CommonGen, where we must generate a set of175

sentences Y , such that each sentence contains all of176

the input concepts X as shown in Figure 2a. Given177

an LLM, we can design a prompt that contains a178

task-specific instruction and one or more examples179

containing the input concepts (denoted by [SRC] in180

Figure 2) and the corresponding human-written sen-181

tences containing all given input concepts (denoted182

by [TGT]) to instruct the LLM to generate output183

sentences Y (denoted by [OUTPUT]) for a given184

set of input concepts X (denoted by [INPUT]). We185

refer to a prompt of this nature as a default prompt,186

and the corresponding set of generated sentences187

by Sdef .188

Note that the default prompt does not necessar-189

ily guarantee that the generated set of sentences190

will be diverse and an LLM could return sentences191

that are highly similar to each other. To address this192

issue, we propose a diversified prompt as shown193

in Figure 2b. Specifically, the diversified prompt194

operates in two steps. In Step 1, we require that the195

LLM generate N sentences that are different, in ad-196

Algorithm 1 In-Context Diversification (ICD)
Input: Generated sets of sentences Sdef and Sdiv, respec-

tively from default and diversified prompts, the number of
desired output sentences N , and a diversity metric f .

Output: Output set of sentences S∗

S∗ ← ∅
α ← 0

for S ∈ (Sdef ∪ Sdiv) do
if (|S| == N) ∧ (f(S) ≥ α) then

α← f(S)
S∗ ← S

end if
end for
return S∗

dition to being coherent and commonsense bearing. 197

Next, we use a suitable diversity metric to evaluate 198

the level of diversity among the generated set of 199

sentences. If the diversity of the generated sen- 200

tences is low, in Step 2, we show those sentences to 201

the LLM and instruct it to generate sentences that 202

are different to those. As the criteria for triggering 203

Step 2, we check whether the exact same sentence 204

has been generated multiple times by the LLM dur- 205

ing Step 1. The final set of generated sentences is 206

denoted by Sdiv. 207

3.2 Diversity-based Sampling 208

Because of the limited availability of human- 209

written reference sentences for evaluating GCR 210

models, there exists a trade-off between quality 211

vs. diversity for GCR tasks.1 Simply maximising 212

for diversity often leads to generations that do not 213

cover the input concepts in a natural way. For ex- 214

ample, a randomly selected set of sentences would 215

be highly diverse, yet unlikely to capture the input 216

concept sets. On the other hand, if we force an 217

LLM to generate sentences that contain all of the 218

input concepts, it might find difficult to generate 219

semantically diverse sentences and resort to trivial 220

lexical or syntactic diversity tricks such as morpho- 221

logical inflections or word-order permutations. 222

To address this issue, we propose a diversity- 223

based sampling method shown in Algorithm 1. 224

Consider that the default prompt provides a set 225

Sdef of sentences that have not been optimised for 226

diversity (likely to have a higher quality), while on 227

the other hand the diversified prompt provides a 228

set Sdiv of sentences that are further refined for di- 229

versity (likely to have a higher diversity). We wish 230

to find a set of sentences that simultaneously satis- 231

fies the following criteria: (a) must contain exactly 232

N sentences, as specified by the user, and (b) must 233

1This trade-off is further empirically verified in § 5.1.
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have a high diversity score, measured using a user-234

specified diversity metric f(∈ R≥0). We formalise235

this as a subset search problem, where we compute236

the union Sdef ∪ Sdiv and search for the subset S∗237

that jointly satisfies those criteria following the pro-238

cedure detailed in Algorithm 1. Although the total239

number of subsets of size N is
(|Sdef∪Sdiv|

N

)
, it is240

sufficiently small for the values of N(≤ 6) in our241

GCR tasks, which makes this subset search fast in242

practice.243

4 Experimental Settings244

4.1 Tasks and Datasets245

We evaluate ICD on three GCR tasks as follows.246

Constrained Commonsense Reasoning: In Com-247

monGen (Lin et al., 2020) benchmark, a model is248

required to generate a sentence covering a given set249

of concepts such that background commonsense250

knowledge associated with the input concepts is251

reflected. This dataset contains 35K distinct con-252

cept sets (train = 32651, dev = 993, and test =253

1497) with corresponding human written sentences254

(train = 67389, dev = 4018, and test = 6042). Each255

instance contains on average 3-5 input concepts.256

Commonsense Explanation Reasoning:257

ComVE (Wang et al., 2020) is part of the SemEval258

2020 commonsense validation task, where for a259

given counterfactual statement, a model is required260

to generate an explanation providing a reason261

describing why the statement is nonsensical. This262

dataset contains 10K (train = 8532, dev = 476, and263

test = 992) examples, where each example contains264

three reference outputs.265

Diversified GCR: DimonGen (Liu et al., 2023)266

involves generating diverse sentences that describe267

the relationships between two given concepts. It is268

a challenging task because it requires generating269

reasonable scenarios for a given pair of concepts270

without any context. This dataset contains 17109271

instances (train = 15263, dev = 665, test = 1181),272

where each instance has 3-5 references.273

4.2 Evaluation Metrics274

We measure both the quality and diversity of the275

sentences generated by models using the metrics276

described next.277

4.2.1 Quality Metrics278

We compare a generated sentence by a model279

against a set of human-written references to eval-280

uate the quality of the generation using several281

metrics: BLEU (Papineni et al., 2002) measures 282

n-gram precision against human reference texts, 283

SPICE (Anderson et al., 2016) measures the seman- 284

tic propositional overlap between two sentences, 285

and BERTScore (Zhang et al., 2020) uses contextu- 286

alised word embeddings to measure the semantic 287

similarity between tokens in two sentences. In 288

alignment with prior works (Yu et al., 2022; Liu 289

et al., 2023; Hwang et al., 2023), when multiple 290

candidate sentences are generated for a test case, 291

we select the highest-scoring candidate for evaluat- 292

ing quality. 293

4.2.2 Diversity Metrics 294

Pairwise Diversity: We use self-BLEU (Zhu 295

et al., 2018) to measure n-gram overlap among sen- 296

tences within each generated set. The metric com- 297

putes the average sentence-level similarity between 298

all pairwise combinations of the generations in the 299

generation set. Note that unlike BLEU, self-BLEU 300

does not require human generated references for 301

measuring diversity. We use self-BLEU3/4 (corre- 302

sponding to n = 3 and 4) in our experiment. Lower 303

self-BLEU scores indicate higher lexical diversity. 304

Corpus Diversity: To measure the variety within 305

our generated text corpus, we employ Distinct- 306

k (Li et al., 2016), which calculates the ratio of 307

unique k-grams to the total number of k-grams. 308

This metric is particularly useful for adjusting the 309

bias of LLMs toward generating longer sequences, 310

ensuring that diversity is not artificially inflated by 311

the sentence length. Additionally, we use Entropy- 312

k to evaluate the distributional uniformity of k- 313

gram occurrences, considering word frequencies 314

for a more nuanced view of diversity. Higher 315

Distinct-k and Entropy-k scores indicate higher 316

diversity. 317

Semantic Diversity: All previously described 318

diversity metrics are limited to evaluating lexi- 319

cal diversity. To measure diversity at a semantic 320

level, we propose self-cosSim, which is the aver- 321

age pairwise cosine similarity between generated 322

sentences, computed using sentence embeddings 323

obtained from SimCSE (Gao et al., 2021). Like- 324

wise, we define the self-BERTScore as a diver- 325

sity metric that averages the BERTScores for all 326

generated sentence pairs. Lower self-cosSim and 327

self-BERTScore values indicate higher semantic 328

diversity. 329
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4.2.3 Combined Metrics330

We would prefer GCR models that have both high331

quality and high diversity. To incoporate both as-332

pects into a single metric, we compute the Har-333

monic Mean between (a) the self-BLEU-4 as the334

diversity metric, and (b) BERTScore as the quality335

metric. As discussed in § 3.2, there exists a trade-336

off between quality and diversity in GCR. There-337

fore, the harmonic mean is suitable when averaging338

quality and diversity scores.2339

Alihosseini et al. (2019) proposed Fréchet BERT340

Distance (FBD) as a joint metric for simultaneously341

measuring both the quality and diversity of NLG.342

FBD is inspired by the Fréchet Inception Distance343

(FID), proposed by Heusel et al. (2017), for mea-344

suring the quality of image generation. Specifically,345

FBD computes the pooler output3 of a sentence as346

its embedding (Devlin et al., 2019) and represents347

a set of sentences using the mean vector and the348

covariance matrix computed from their sentence349

embeddings. Next, Wasserstein-2 distance is com-350

puted between the set of reference sentences and351

the set of generated sentences, which captures both352

the distance between the means as well as variance353

in the distributions. Lower FBD scores indicate354

high combined performance.355

4.3 Implementation Details356

We use GPT3.5-turbo and Vicuna-13b-v1.54 as357

LLMs with temperature set to 1.0 in our experi-358

ments. By using two LLMs with significantly dif-359

fering number of parameters and by including, Vi-360

cuna, an open source LLM, we plan to improve the361

reliability and reproducibility of our results. Max362

response length is set to 25 tokens. The inference363

times for CommonGen, ComVE and DimonGen364

datasets are respectively 5-6, 2-3 and 1-2 hours.365

The cost of running ICD with GPT3.5-turbo are366

ca. $6, $4 and $4 respectively for CommonGen,367

ComVE and DimonGen datasets. On the other368

hand, the costs of fine-tuning on GPT3.5-turbo369

are much higher at $58.8 for CommonGen, $24.7370

for ComVE and $32.0 for DimonGen. Moreover,371

fine-tuning with LoRA (Hu et al., 2022) with rank372

of 8 and alpha of 16 on Vicuna takes ca. 34 hours.373

2We use self-BLEU-4 for diversity and BERTScore for
quality in Harmonic Mean due to their reliability shown in
preliminary evaluations. Other metric pairs are in Appendix D.

3The last layer’s hidden-state of the first token of the se-
quence is further processed by a Linear layer and a Tanh
activation function.

4https://huggingface.co/lmsys/vicuna-13b-v1.5

We use BART-large5 for MoE-based models. We 374

use the GPT3.5-turbo to generate sentences for 375

the CommonGen train/dev/test sets using the de- 376

fault, diversified and for ICD. For model train- 377

ing, we use the Adam optimiser (Kingma and Ba, 378

2015) with a batch size of 64, a learning rate of 379

3e-5 and a beam size of 5. All of the MoE-based 380

models are trained for 20 epochs and required to 381

generate k = 3 sentences. All experiments, except 382

with GPT3.5-turbo, are conducted on a single RTX 383

A6000 GPU. 384

5 Results and Discussion 385

5.1 Commonsense Generation 386

We compare the commonsense generations made 387

by ICD against those using the default and di- 388

versified prompts. For this purpose, we use 389

GPT3.5-turbo as the LLM and use the same 10 390

few-shot examples in all prompts for ICL. Further 391

templates of the default and diversified prompts 392

used for each task are given in Appendix E. To 393

assess the impact of ICL, we compare against fine- 394

tune method, wherein GPT3.5-turbo is fine-tuned 395

on the entire training set in each dataset. Specif- 396

ically, we use multiple human-written sentences, 397

available in the training data for the three datasets 398

to separately fine-tune the models for each task. It 399

is noteworthy that the fine-tune method uses a sub- 400

stantially larger dataset for training (e.g., 67,389 401

sentences from CommonGen) compared to the 10 402

examples used by the ICL-based approaches. We 403

use self-BLEU-3 as the diversity metric f in Algo- 404

rithm 1 for ICD in this evaluation. The outcomes, 405

presented in Table 1, highlight the diversity and 406

quality metrics of these methods across the Com- 407

monGen, ConVE, and DimonGen datasets. Addi- 408

tionally, a human baseline is introduced to evaluate 409

the diversity of sentences written by humans, where 410

we pair-wise compare the human-written sentences 411

for each input in the instances in the benchmark 412

datasets using diversity metrics. Note that however, 413

the human baseline must not be considered as an 414

upper-bound for diversity because there are only 415

a smaller number of human-written sentences per 416

instance in the benchmark datasets. 417

From Table 1, we see that fine-tune generates 418

sentences that have high semantic and corpus diver- 419

sity, and outperforms the human baseline. How- 420

ever, recall that fine-tune requires a much larger 421

training set and is computationally costly compared 422

5https://huggingface.co/facebook/bart-large
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Semantic Diversity ⇓ Corpus Diversity ⇑ Pairwise Diversity ⇓ Quality ⇑ Combined

self-cosSim self-BERTScore Entropy-4 Distinct-4 self-BLEU-3 self-BLEU-4 BLEU-3 BLEU-4 SPICE BERTScore Harmonic ⇑ FBD ⇓

CommonGen

Human 67.3 60.6 10.9 91.0 25.4 17.6 - - - - - -
Fine-tune 64.7 55.9 11.4 91.1 26.9 17.9 41.2 32.1 30.3 64.2 72.1 51.9

default 93.3 88.7 10.2 53.7 77.2 72.4 50.8 40.9 30.1 70.4 39.6 60.2
diversified 85.2 69.8 11.0 83.7 44.4 34.9 44.3 34.6 28.5 65.0 65.4 53.9
ICD 83.5 66.2 11.0 88.5 31.0 21.0 47.4 37.7 29.1 67.4 72.7 51.8

ComVE

Human 62.7 47.0 9.6 96.1 12.4 8.1 - - - - - -
Fine-tune 59.8 42.6 9.8 95.2 13.4 10.3 27.4 19.4 33.1 53.7 67.2 47.6

default 83.9 73.5 9.6 74.3 50.8 45.2 27.5 19.7 36.2 55.1 54.9 50.9
diversified 76.0 56.5 9.7 88.0 23.3 16.6 30.6 22.0 35.8 56.5 67.4 47.9
ICD 72.5 51.1 9.8 90.1 13.7 8.7 29.0 20.8 36.1 55.5 69.0 48.7

DimonGen

Human 56.8 47.0 10.1 85.6 14.7 8.7 - - - - - -
Fine-tune 43.4 33 10.4 98.7 6.8 3.4 17.7 10.7 15.5 42 58.5 51.6

default 75.7 71.3 10 83.2 43.4 37.3 15.9 9.5 16.4 44.5 52.1 68.2
diversified 57.1 46.9 10.5 95.9 11.2 6.5 11.4 6.4 15.2 39.9 55.9 69.0
ICD 56.7 45.7 10.4 96.3 6.5 3.5 13.2 7.6 15.4 41.7 58.2 68.0

Table 1: Diversity and quality scores on CommonGen, ComVE and DimonGen with GPT3.5-turbo LLM. Best
results on each task for each metric are shown in italics, while the best performing ICL results are shown in bold.

to all ICL-based methods. Moreover, we see that423

ICD can strike a good balance between quality424

and diversity in the sentences generated. Among425

the ICL-based methods, ICD achieves the best di-426

versity scores on all diversity metrics in all three427

datasets. It also exhibits higher diversity compared428

against the human-written references. Moreover,429

ICD outperforms default and diversified accord-430

ing to the Combined metrics. ICD also achieves a431

Harmonic Mean comparable to that of the fine-tune432

baseline. Although default reports the best qual-433

ity scores, it has low diversity, and is consistently434

outperformed by diversified and ICD on diversity435

metrics. On the other hand, diversified generally436

scores lower on the quality metrics. Compared437

to default and diversified, ICD enhances genera-438

tion diversity while maintaining a satisfactory level439

of quality. ICD is also more stable to the sam-440

pling method such as temperature than fine-tune,441

as shown in Appendix B. Note that fine-tune is442

not an ICL setting (the focus of this paper) and443

is included only as a baseline to demonstrate the444

level of performance that can be achieved by fine-445

tuning on a much larger dataset. Despite this, ICD446

outperforms fine-tune on the Pairwise Diversity447

in all three datasets, and Combined metrics in the448

CommonGen dataset.449

As an open source alternative LLM to450

GPT3.5-turbo, we repeat this evaluation with451

Vicuna-13b (Zheng et al., 2023) in Table 2.452

The same 10 few-shot examples as used with453

GPT3.5-turbo are used in this experiment for the454

ICL-based methods. Full table on three datasets are455

Method SCS ⇓ SBS ⇓ E-4⇑ D-4⇑ SB-3⇓ BLEU-3⇑ SPICE⇑ HM ⇑ FBD ⇓

Fine-tune 59.6 49.9 11.4 93.3 22.8 35.8 27.6 69.9 52.4

Default 82.2 73.8 10.9 74.9 52.9 44.6 29.1 60.2 56.2
Diversified 59.1 53.3 11.3 91.3 23.6 32.6 24.3 68.6 53.2
ICD 59.3 49.8 11.3 93.7 11.3 34.2 25.5 73.4 51.0

Table 2: GCR on CommonGen using Vicuna-13b. ICD
uses self-BLEU-3. Here, SCS: self-CosSim, SBS: self-
BERTScore, E-4: Entropy-4, D-4: Distinct-4, SB-3:
self-BLEU3, HM: Harmonic Mean. Best results for
each metric are shown in italics, while the best perform-
ing ICL results are shown in bold.

Method SCS ⇓ SBS ⇓ E-4⇑ D-4⇑ SB-3⇓ BLEU-3⇑ SPICE⇑ HM ⇑ FBD ⇓

self-BLEU-3 83.5 66.2 11.0 88.5 31.0 47.4 29.1 72.7 51.8
self-CosSim 81.0 70.1 10.9 82.5 44.5 47.6 29.3 65.7 51.8
self-BERTScore 83.1 62.8 11.0 87.0 36.3 46.5 28.9 69.6 51.8

Table 3: Comparing the effect of using different di-
versity metrics, f , in Algorithm 1 for ICD. We use
GPT3.5-turbo as the LLM and the best results on Com-
monGen dataset are in bold. Here, SCS: self-CosSim,
SBS: self-BERTScore, E-4: Entropy-4, D-4: Distinct-4,
SB-3: self-BLEU3, HM: Harmonic Mean.

shown in Appendix C. Table 2 reconfirms ICD’s 456

ability to balance both quality and diversity accord- 457

ing to the Combined metrics (i.e. Harmonic Mean 458

and FBD) on this dataset. Interestingly, we see that 459

methods that use Vicuna-13b to be more diverse 460

compared to those that use GPT3.5-turbo, while 461

the latter showing better generation quality. 462

In Table 3, we use different diversity metrics as f 463

in Algorithm 1 to study the effect on text generation 464

of ICD. We see that self-BLUE-3 and self-CosSim 465

perform similarly across the quality metrics. Self- 466

BERTScore shows a slightly lower quality (BLEU- 467

3 and SPICE). According to the combined metrics, 468
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Figure 3: Human vs. GPT3.5 diversity ratings for ran-
domly sampled sets of sentences generated by ICD. Co-
hen’s κ = 0.409 indicates a moderate level of agree-
ment.

any of those diversity metrics can be used with ICD469

to obtain comparable performance.470

5.2 Downstream Evaluation471

The experiments presented in § 5.1 show the abil-472

ity of our proposed ICD to generate diverse and473

commonsense bearing sentences. Therefore, an474

important question with practical implications is475

whether we can use the sentences generated by ICD476

as additional training data to improve both diversity477

and quality of previously proposed models on the478

GCR task, which could be seen as a downstream479

(extrinsic) evaluation.480

For this purpose we select the MoE (Shen et al.,481

2019), which diversifies the generation by select-482

ing outputs from a mixture of experts. Each expert483

is assigned a randomly generated sequence of to-484

kens, which is used as a prefix for all inputs sent485

to that expert. For each input, an expert is selected486

according to the value of a latent variable, which487

is trained using the hard-EM algorithm. We fol-488

low Liu et al. (2023) and train three experts that489

retrieve sentences from the collection of sentences490

generated by ICD for concept sets in the Common-491

Gen train split (210846 sentences in total). We use492

BART-large (Lewis et al., 2020) as the base model,493

which has shown to produce high quality common-494

sense generations (Zhang et al., 2023) as the gen-495

erator for all experts (see Appendix A for further496

details). We denote this method by ICD+MoE.497

As baselines for comparisons, we repeat the498

above process using the sentences generated by de-499

fault and diversified, which we denote respectively500

as default+MoE and diversified+MoE in Table 4.501

Moreover, we compare the performance against502

two previously proposed MoE models: MoE (Shen 503

et al., 2019) and MoKGE (Yu et al., 2022). MoE 504

relies solely on the base model, whereas MoKGE 505

requires each expert to use different sets of con- 506

cepts from the ConceptNet (Speer et al., 2017) 507

knowledge graph (KG). Because Yu et al. (2022) 508

do not evaluate their MoKGE method on Com- 509

monGen, we ran their original implementation6 on 510

CommonGen and report results in Table 4. 511

All previously proposed GCR methods are exclu- 512

sively trained using human-created data (e.g. sen- 513

tences written by human and/or manually compiled 514

KGs such as ConceptNet), whereas the methods 515

described thus far in this section are trained on 516

sentences generated by an LLM (GPT3.5-turbo). 517

Therefore, to evaluate the feasibility of using LLM- 518

generated sentences for training GCR models, we 519

include the following previously proposed GCR 520

models that are trained using a combination of cor- 521

pora and KGs: KG-BART (Liu et al., 2021),EKI- 522

BART (Fan et al., 2020) and KFCNet (Li et al., 523

2021). For KFCNet, we present its two results – 524

KFCNet w/o FC (without Filtering and Contrastive 525

modules), which relies only on sentences includ- 526

ing the input concepts, without further processing, 527

and KFCNet, which additionally ranks candidates 528

and adds contrastive modules for the encoder and 529

the decoder (Li et al., 2021). However, note that 530

those methods do not consider diversification, and 531

do not report performance using diversity metrics. 532

Therefore, we report only their published results 533

for generation quality in Table 4. 534

From Table 4 we see that diversified+MoE al- 535

ways outperforms the original MoE in all diver- 536

sity metrics, which shows that sentences gener- 537

ated from LLMs can be used to diversify MoE- 538

based GCR. ICD+MoE closely matches the per- 539

formance of diversified+MoE on diversity met- 540

rics, while outperforming both diversified+MoE 541

and default+MoE on quality metrics. In partic- 542

ular, the quality metrics reported by ICD+MoE 543

(underlined in Table 4) are competitive against 544

those obtained by the models that are trained on 545

human-compiled resources (in the top block), ex- 546

cept against KFCNet. This finding hints at potential 547

improvement gains for GCR by using hybrid train- 548

ing resources that combine both human-compiled 549

and LLM-generated data, which we highlight as an 550

interesting future research direction. 551

6https://github.com/DM2-ND/MoKGE
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Semantic Diversity ⇓ Corpus Diversity ⇑ Pairwise Diversity ⇓ Quality ⇑ Combined

self-cosSim self-BERTScore Entropy-4 Distinct-4 self-BLEU-3 self-BLEU-4 BLEU-3 BLEU-4 SPICE BERTScore Harmonic Mean ⇑ FBD ⇓

KG-BART - - - - - - 42.1 30.9 32.7 - - -
EKI-BART - - - - - - 46.0 36.1 33.4 - - -
KFCNet-w/o FC - - - - - - 50.2 42.0 35.9 - - -
KFCNet - - - - - - 57.3 51.5 39.1 - - -

MoE 89.3 81.9 9.7 61.6 63.1 56.6 49.0 38.5 33.5 70.6 53.8 61.7
MoKGE 88.7 80.6 9.9 65.2 60.4 53.6 48.8 38.4 33.1 70.3 55.9 60.8

default+MoE 91.2 84.6 9.7 60.3 66.5 60.0 51.2 40.6 34.8 72.9 51.6 62.3
diversified+MoE 86.7 80.4 9.8 63.3 59.2 53.5 50.7 40.6 34.0 71.3 56.3 55.0
ICD+MoE 91.1 82.6 9.8 64.8 59.0 51.1 52.4 42.2 34.5 73.5 58.7 62.3

Table 4: Downstream evaluation of the LLM-generated sentences. Top block methods use human-generated
resources for training, while the ones in the bottom block are trained on LLM-generated sentences. MoE approaches
are shown in the middle block and bottom block. BART-large is used as the generator for MoE-based methods.
Best results for each metric are shown in bold, while the best performing MoE for quality is shown in underline.

Human:

• The group will use the tool to make a piece of art out of metal.

• I use a tool to cut a piece of metal out of the car.

• The man used a piece of metal and the tools.

Default:

• A piece of metal is being used as a tool.

• A metal tool is being used to shape a piece.

• A metal tool is being used to work on a piece.

ICD:

• A tool is being utilized to manipulate a piece of metal.

• Metal is being shaped using a specific tool.

• The use of a tool is necessary to work with a piece of metal.

CommonGen: Input: (piece, use, tool, metal)

Human:
• A pizza parlor wouldn't have workout equipment, and sells fattening food.

• A pizza parlor is not a good place to exercise.

• Pizza parlors do not have exercise equipment.

Default:

• Pizza parlors are not typically associated with exercise or physical activity.

• Pizza parlors are not typically associated with exercise or physical activity.

• Pizza parlors are not places for exercise, they are places to eat pizza.

ICD:

• People usually go to a gym, park or fitness center to exercise, not a pizza 

parlor.

• Pizza parlors are not typically associated with exercise.

• Exercise is not typically done at a pizza parlor.

ComVE: Input: If a person wants to exercise, they go to a pizza parlor.

Figure 4: Sentences generated by default prompt and ICD against those by humans on CommonGen and ComVE
test instances. ICD generates more diverse and high quality sentences than default.

5.3 Diversity-Awareness of LLMs552

Given that we use LLMs to produce diverse genera-553

tions via ICL, it remains an open question whether554

an LLM would agree with humans on the diversity555

of a given set of sentences. To answer this question,556

we use randomly selected 210 sentences (35 sets,557

each containing 6 sentences) generated by ICD (us-558

ing self-BLEU-3 as the diversity metric) for the559

input concept sets in the CommonGen dataset. We560

use GPT3.5-turbo to rate the diversity of a set of561

sentences according to five levels from 1 (highly562

similar) to 5 (highly diverse).7 We provide the563

same instruction as the annotation guidelines for564

eight human-annotators, who are graduate students565

in Natural Language Processing (NLP). To reduce566

the subjective variability in human judgements, we567

average and then normalise the ratings following568

the Likert scale.569

In Figure 3, we plot the GPT-assigned ratings570

against those by humans. We further split the rat-571

ings into high vs. low diversity ratings depending572

on whether the rating is greater or lesser than 3. The573

majority of the data points are distributed along the574

7Detailed prompt templates are shown in Appendix E.

diagonal quadrants and a Cohen’s Kappa of 0.409 575

indicating a moderate level of agreement between 576

GPT and human ratings for diversity. 577

The generated sentences using the de- 578

fault prompt, ICD and the human references in 579

CommonGen and ComVE datasets for a single test 580

instance are shown in Figure 4. From Figure 4 581

we see that the sentences generated using the 582

default prompt often results in significant token 583

overlap, thereby lowering the diversity. On the 584

other hand, ICD generates both lexically and 585

semantically diverse sentences, covering the 586

diverse viewpoints in the human references. 587

6 Conclusion 588

We proposed, ICD, an ICL-based method for 589

achieving the optimal balance between diversity 590

and quality in text generation via LLMs. Our ex- 591

periments, conducted on three GCR tasks, demon- 592

strate that ICD significantly improves the diver- 593

sity without substantially compromising the quality. 594

Furthermore, we found that by training on the sen- 595

tences generated by ICD, we can improve diversity 596

in previously proposed GCR methods. 597
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7 Limitations598

This study primarily focuses on the generation of599

English sentences using pre-trained LLMs, a limi-600

tation shaped by the datasets we employed. Specif-601

ically, we used the ComVE (Wang et al., 2020),602

CommonGen (Lin et al., 2020) and DimonGen (Liu603

et al., 2023) datasets, which are well-regarded for604

evaluating diversified commonsense reasoning in605

English. Therefore, our evaluation of the gener-606

ation quality was limited to English, which is a607

morphologically limited language. Future research608

could expand this scope to include multilingual pre-609

trained models, thereby encompassing a broader610

linguistic spectrum.611

Our approach is primarily geared towards opti-612

mizing the trade-off between diversity and quality613

in text generation. Consequently, we maintained614

consistent default instructions across all experi-615

ments, adopting the standard commonsense genera-616

tion prompts used in Li et al. (2023) as our default617

instructions.618

We conducted our experiments using both a619

closed model (i.e. GPT3.5-turbo-0613) as well620

as an open-source one (i.e. Vicuna-13b-v1.5) to621

promote the reproducibility of our results, which622

are reported using multiple public available bench-623

marks. However, there exist many other LLMs624

with varying numbers of parameters and trained on625

different corpora. Therefore, we consider that it626

is important to evaluate our proposed method on627

a broad range of LLMs to verify the generalisabil-628

ity of our proposed method. However, conducting629

such a broad analysis can be computationally costly630

and expensive. For example, although GPT-4 is631

known to have superior text generation capabilities,632

it incurs substantially greater costs (being 30 times633

more expensive than GPT3.5-turbo at the current634

pricing). Nevertheless, ICD is adaptable and could635

be extended to other LLMs.636

8 Ethical Considerations637

The experiments conducted in this paper are based638

on the publicly available datasets, CommonGen,639

ComVE, and DimonGen. To the best of our knowl-640

edge, no ethical issues have been reported for those641

datasets. Therefore, we do not foresee any data-642

related ethical issues arising from our work.643

However, LLMs are known to generate re-644

sponses that may reflect societal biases and po-645

tentially harmful content. We have not veri-646

fied whether the GPT3.5-turbo and Vicuna-13b647

LLMs that we use in our experiments have similar 648

problems. Therefore, it is important to test on exist- 649

ing benchmarks for social biases and harmful gen- 650

erations before the proposed method is deployed 651

to diversify existing GCR methods used by human 652

users. 653

To elicit human judgements of diversity for the 654

sentences generated by ICD, we use annotators 655

who are familiar with working with LLMs. It is 656

possible that their subjective (and possibly biased) 657

viewpoints might have influenced the ratings pro- 658

vided. Therefore, it will be important to conduct 659

the evaluation involving a group of annotators with 660

different backgrounds to validate the findings re- 661

ported in this analysis. 662
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Supplementary Appendix 883

A Mixture of Experts 884

Given an input x, its corresponding LLM-generated 885

sentences are divided into three random subsets. 886

For each subset Gi = {gi1, ..., gik}, alongside the 887

input x, we concatenate their token sequences with 888

a separate latent variable zi, resulting in the final 889

input xfi . The zi is a randomly initialised sequence 890

of tokens. 891

xfi = zi[CLS]x[SEP ]gi1[SEP ]...gik (1) 892

We train the model using the hard Expectation- 893

Maximization (EM) approach, where during the 894

E-step, for each xfi and its corresponding target 895

ytargeti , we identify the input that yields the highest 896

probability as the best training example, with θ 897

representing the generator model parameters: 898

The model is trained using hard-EM by assign- 899

ing full responsibility to the expert with the largest 900

joint probability. In the E-step, for each input xfini 901

and target ytgti , choose the best input with the high- 902

est probability, to construct the training examples, 903

where θ is the model’s parameters. 904

ytgti = argmax
yj

p(yj |xfi ; θ) (2) 905

Subsequently, in the M-step, we use these selected 906

training examples to fine-tune the generator models. 907

During inference, we input all diversified, context- 908

aware inputs into the generator model to yield a 909

range of diverse outputs. 910

B Impact of sampling temperature on the 911

diversity and quality 912

In this section, we investigate the impact of tem- 913

perature on various methods on the CommonGen 914

11



Semantic Diversity ⇓ Corpus Diversity ⇑ Pairwise Diversity ⇓ Quality ⇑ Combined

self-cosSim self-BERTScore Entropy-4 Distinct-4 self-BLEU-3 self-BLEU-4 BLEU-3 BLEU-4 SPICE BERTScore Harmonic ⇑ FBD ⇓

T = 0

Fine-tune 100.0 100.0 9.15 14.1 100.0 100.0 45.6 34.9 34.4 71.3 0.0 69.7
Default 100.0 100.0 9.12 15 100.0 100.0 40.8 30.4 28.5 67.6 0.0 69.7

Diversified 86.7 74 10.8 77.8 52.2 43.4 46.2 36.4 28.6 66.6 61.2 54.9
ICD 86 72.2 10.9 80 46.5 37.6 48.1 38.3 29.1 67.7 65 53.5

T = 0.5

Fine-tune 83.6 81.6 10.6 65.4 63.8 55.7 56.3 46.8 36.1 73.8 55.4 58.3
Default 96.1 94.9 9.75 36.9 88.9 86.8 47.6 37.3 29.5 69.6 22.4 63.7

Diversified 86.4 73 10.9 79.8 49.9 40.8 46 36.5 28.6 66.5 62.6 55.4
ICD 85.1 70 10.9 84.2 39.4 29.5 48.6 39.1 29.2 68.1 69.3 53.4

T = 1

Fine-tune 64.7 55.9 11.4 91.1 26.9 17.9 41.2 32.1 30.3 64.2 72.1 51.9
default 93.3 88.7 10.2 53.7 77.2 72.4 50.8 40.9 30.1 70.4 39.6 60.2

diversified 85.2 69.8 11.0 83.7 44.4 34.9 44.3 34.6 28.5 65.0 65.4 53.9
ICD 83.5 66.2 11.0 88.5 31.0 21.0 47.4 37.7 29.1 67.4 72.7 51.8

T = 1.5

Fine-tune 25.7 0.0 11.9 100.0 2.5 1.8 8.1 4.3 11 16 27.5 67.8
Default 90.4 81.5 10.5 68.4 63.5 56.1 51.4 41.9 29.9 70.1 54 56.5

Diversified 67.7 59.3 11.2 89.5 30.6 22.3 39.3 29.7 26.9 61.9 68.9 54
ICD 78.3 59.8 11.2 92.8 20.9 12.4 44.1 34.7 27.9 65.4 74.9 51.6

Table 5: Diversity and quality scores on four temperature settings (T = 0/0.5/1/1.5) on the CommonGen dataset.
The results show that our proposed method ICD performs well across different temperatures. Best results for each
metric at each temperature setting are shown in italics, while the best performing ICL results are shown in bold.

dataset. Although GPT-3.5 also provides the nu-915

cleus sampling beyond sampling temperature, we916

specifically focus on the general performance of917

ICD under different temperature settings and set918

nucleus sampling hyper-parameter to 1. Our experi-919

ments are conducted on the GPT-3.5-turbo-0613.920

Table 5 demonstrates that ICD consistently out-921

performs both default and diversified on the Com-922

bined metrics across all temperature settings, which923

aligns with our findings in § 5.1. Moreover, ICD924

exhibits less sensitivity to temperature variations925

compared to the other baselines and performs better926

on Combined metrics with the increase of temper-927

ature, which can be considered as an additional928

advantage of our proposed method.929

Furthermore, we observe that the fine-tune930

method is also significantly influenced by temper-931

ature sampling on the GCR task. At T = 1.5,932

the default baseline, which applies ICL on the933

same base model GPT-3.5-turbo, outperforms the934

fine-tune method. The fine-tuned model gener-935

ates responses that are of very low quality, con-936

sisting mostly of nonsensical word combinations.937

For example, given the input “sidewalk leash dog938

walk”, the fine-tune method would generate the939

random sequence: A owners with 2 kangaroos try-940

ing to walk their yappy circus bear disguised as a941

gers?”’texturesumm while ICD generates sentence942

than covers the task requirement: A dog walks on a943

sidewalk, attached to a leash. Therefore, we con-944

clude that increasing temperature of the decoder is945

not a suitable strategy for improving diversity in946

GCR.947

C Full results on Vicuna-13b model 948

Table 6 shows the full result on the open source 949

Vicuna-13b model across three datasets. It recon- 950

firms ICD’s ability to balance both quality and di- 951

versity according to the combined metrics. Further- 952

more, we find that methods using the Vicuna model 953

show lower quality than those using GPT-3.5-turbo 954

while generating more diverse sentences. 955

D Candidate metrics for calculating 956

Harmonic Means 957

In the main body of the paper, we computed the har- 958

monic mean between self-BLEU-4 and BERTScore 959

to calculate as one of the combined metrics that 960

considers both quality and diversity of common- 961

sense generation. Specifically, self-BLEU (Zhu 962

et al., 2018) evaluates the n-gram overlap between 963

pairs of sentences in the generated set, providing 964

a measure of lexical diversity. On the other hand, 965

BERTScore (Zhang et al., 2020) assesses the se- 966

mantic similarity between the generated sentences 967

and the human-written sentences in each dataset, 968

capturing the quality aspects from a semantic per- 969

spective. Note that other combinations of quality 970

and diversity metrics can also be used for comput- 971

ing different harmonic means as shown in Table 7. 972

From Table 7, we see that according to each com- 973

bined metric, ICD reports the best performance 974

among all ICL-based approaches. Moreover, ICD 975

also has comparable performance against the fine- 976

tune method. 977
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Semantic Diversity ⇓ Corpus Diversity ⇑ Pairwise Diversity ⇓ Quality ⇑ Combined

self-cosSim self-BERTScore Entropy-4 Distinct-4 self-BLEU-3 self-BLEU-4 BLEU-3 BLEU-4 SPICE BERTScore Harmonic ⇑ FBD ⇓

CommonGen

Fine-tune 59.6 49.9 11.4 93.3 22.8 14.5 35.8 26.8 27.6 59.1 69.9 52.4

default 82.2 73.8 10.9 74.9 52.9 45.4 44.6 34.9 29.1 67.1 60.2 56.2
diversified 59.1 53.3 11.3 91.3 23.6 16.4 32.6 23.7 24.3 58.2 68.6 53.2
ICD 59.3 49.8 11.3 93.7 11.3 5.8 34.2 24.9 25.5 60.1 73.4 51.0

ComVE

Fine-tune 60.4 45.8 9.6 93.8 17.1 14.1 27.9 19 31.1 52.3 65.0 47.3

default 75.7 57.1 9.8 78.0 36.7 31.1 23.8 16.9 33 49.2 57.4 60.8
diversified 64.7 42.3 10.0 89.3 13.4 8.8 23.2 16.0 32.6 49.8 64.4 56.9
ICD 61.5 37.3 10.0 90.1 5.8 3.0 22.7 15.7 32.5 48.8 65.1 58.2

DimonGen

Fine-tune 41 29.5 10.4 99 5 2.2 15.4 8.9 14.6 39.4 56.2 52.8

default 64.0 48.6 10.3 95.0 17.9 13.1 13.6 7.9 14.4 41.3 56 61.1
diversified 55.2 45.4 10.3 97 11.9 7.3 12.1 6.7 13.4 39.8 55.7 62
ICD 53.1 37.0 10.4 98 2.4 0.9 12.7 7.3 13.6 39 56.6 61.1

Table 6: Performance on CommonGen, ComVE and DimonGen with Vicuna-13b. Best results on each task for
each metric are shown in italics, while the best performing ICL results are shown in bold.

Dataset & Metrics Fine-tune Default Diversified ICD

CommonGen
self-BLEU4 + BERTScore 72.1 39.6 65.4 72.7
self-cosSim + SPICE 32.6 11.0 19.5 21.1
self-BERTScore + BLEU3 42.6 18.5 35.9 39.5

ComVE
self-BLEU4 + BERTScore 67.2 54.9 67.4 69.0
self-cosSim + SPICE 36.3 22.3 28.7 31.2
self-BERTScore + BLEU3 37.1 27.0 35.9 36.4

Dimongen
self-BLEU4 + BERTScore 58.5 52.1 55.9 58.2
self-cosSim + SPICE 24.3 19.6 22.4 22.7
self-BERTScore + BLEU3 28.0 20.5 18.8 21.2

Table 7: Different combined metrics that are calculated
as the harmonic means between quality and diversity
metric pairs. The metric with ‘self’ in each line is a
diversity metric and the other is a quality metric. Best
results on each task for each metric are shown in italics,
while the best performing ICL results are shown in bold.

E LLM Prompt Templates978

Figure 5 shows the templates that are used for the979

two GCR tasks: CommonGen and ConVE. The980

default prompt is adapted from Li et al. (2023)981

and are task-specific. On the other hand, the di-982

versified prompt modifies the default prompt by983

appending a task-independent instruction that first984

checks whether the diversity of the sentences gener-985

ated in Step 1 is low, and if presents the generated986

sentences to the LLM and re-prompts it to generate987

more diverse set of sentences.988

We use GPT3.5-turbo to predict the diversity of989

a given set of sentences using the prompt shown in990

Figure 6. This prompt uses five diversity categories991

(i.e. very similar, somewhat similar, neutral, some-992

what diverse, and highly diverse) with increasing993

diversity with their definitions. Next, the set of 994

sentences to be evaluated for their diversity is pre- 995

sented. Finally, the expected output format of the 996

predictions is described at the end of the prompt. 997

As recommended by Chen et al. (2023), we do 998

not require the LLM to provide reasons for its pre- 999

dictions because it sometimes forces the model to 1000

focus on the reason generation than the prediction. 1001

After the LLM’s evaluation, the predictions are 1002

mapped to values from 1 to 5 where 1 being highly 1003

similar to 5 being highly diverse. For each sen- 1004

tences set, we take the average of LLM predictions 1005

over three independent runs. 1006

F Human Evaluation 1007

As human-annotators, we recruited eight graduate 1008

students from the department of computer science 1009

who specialise in NLP and are fluent speakers in 1010

English. We provided the human annotators with 1011

the same set of instructions as we provided to the 1012

LLMs. Apart from the instruction in Figure 6, we 1013

also instruct the human annotators to focus on the 1014

diversity, and not so much on their commonsense 1015

quality, which we evaluate separately using semi- 1016

automatic metrics by comparing against human- 1017

written reference sentences in the evaluation bench- 1018

marks. Moreover, we informed the annotators that 1019

their evaluations would be used in a comparative 1020

analysis with the scores generated by an LLM. 1021

G Additional Generation Examples 1022

We show additional sentences generated by our 1023

proposed methods for the CommonGen, ComVE 1024

and DimonGen datasets in Table 8. 1025
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CommonGen

Keyword dog throw frisbee catch

Sentences The dog eagerly waits for the frisbee to be thrown and then leaps to catch it in mid-air.
The owner tosses the frisbee and the dog quickly reacts, catching it effortlessly.
The dog excitedly chases after the thrown frisbee and skillfully catches it in its mouth.
After the frisbee is thrown, the dog jumps up high and grabs it, showcasing its impressive catching skills.
The dog enthusiastically catches the frisbee, bringing it back to the owner for another throw.
A dog catches a frisbee that was thrown.

Keyword roast stick marshmallow fire

Sentences A marshmallow is being roasted on a stick over a fire.
People roast marshmallows on a stick over a fire.
During a campfire, people often stick marshmallows on a stick and roast them over the fire.
The act of roasting marshmallows involves sticking them on a stick and holding them over a fire.
People gather around a fire, roasting marshmallows on sticks.
Sticking a marshmallow on a stick and roasting it over a fire is a common activity.

ComVE

Statement She parachuted into the grocery store from a plane.

Explanation Parachuting is not a common method of entering a grocery store.
Grocery stores do not have landing areas for parachutes.
Parachuting into a grocery store from a plane is highly unlikely and not a normal activity.

Statement You can drive after drinking.

Explanation Drinking alcohol impairs your ability to drive, so it is not recommended.
It is illegal and unsafe to drive after drinking.
Driving after drinking is dangerous and against the law.

DimonGen

Keyword cloud mountain

Sentences As we climbed the mountain, the clouds grew thicker, obscuring our view.
The mountain stood tall and majestic, with clouds swirling around its peaks.
The mountain peak pierced through the clouds, reaching towards the sky.

Keyword race victory

Sentences The underdog pulled off an unexpected victory in the race, leaving the favorite trailing behind.
With a burst of speed and determination, the runner sprinted towards the finish line, securing a triumphant victory.
After a fierce race, the champion celebrated their victory with a crowd cheering and fireworks lighting up the sky.

Table 8: More examples produced by our proposed ICD method on the CommonGen, ComVE and DimonGen
datasets.
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CommonGen/DimonGen

Examples:
Given several key words: [SRC],

generate one coherent sentence using 

background commonsense knowledge: [TGT] 

Test instruction:
Given several key words: [INPUT],

generate one coherent sentence using 

background commonsense knowledge: 

[OUTPUT]

(a) (b)

ComVE

Examples:
Given a counterfactual statement: [SRC],

generate one commonsense-making 

explanation for the statement:  [TGT] 

Test instruction:
Given several key words: [INPUT],

generate one commonsense-making 

explanation for the statement : [OUTPUT]

(a) Default instructions

CommonGen/DimonGen

Examples:
Given several key words: [SRC],

generate one coherent sentence using 

background commonsense knowledge: [TGT] 

Test instruction:
Step1: Given several key words: [INPUT],

generate [N] different and coherent sentences 

using background commonsense knowledge: 

[PRV]

(If the diversity of [PRV] is low)

Step2: You have generated the following 

sentences: [PRV], try to provide other 

reasonable sentences: [OUTPUT]

(a) (b)

ComVE

Examples:
Given a counterfactual statement: [SRC],

generate one commonsense-making 

explanation for the statement:  [TGT] 

Test instruction:
Step1: Given several key words: [INPUT],

generate [N] commonsense-making 

explanations for the statement: [PRV]

(If the diversity of [PRV] is low)

Step2: You have generated the following 

sentences: [PRV], try to provide other 

reasonable sentences: [OUTPUT]

(b) Diversified instructions

Figure 5: The templates used by the default and the diversified prompt instructions for the CommonGen/DimonGen
(shown on the left, (a)) and ComVE (shown on the right, (b)) tasks. Few-shot examples are included in each prompt
where [SRC] denotes the set of input concepts and [TGT] the corresponding sentences in CommonGen. For a given
set of [INPUT] concepts, the LLM is then required to generate sentences at the slot [OUTPUT].
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Evaluate the sentence set’s diversity

Task: Classify the diversity of each sentence in the provided list by assigning it to one of five categories. These categories 

reflect how diverse each sentence is in comparison to others in the set:

    Categories:

    - "Very Similar": The sentence is very similar to or identical to other sentences in the list.

    - "Somewhat Similar": The sentence shows a moderate level of similarity to other sentences in the list.

    - "Neutral": The sentence neither shows significant similarity nor difference compared to others in the list.

    - "Somewhat Diverse": The sentence is somewhat different from other sentences in the list, either semantically or 

lexically.

    - "Highly Diverse": The sentence is highly different from other sentences in the list, both semantically and lexically.

    Sentence list:

    [LIST]

    

    Instructions for Classification:

    - Create a list of classifications in JSON format.

    - Each entry should include the sentence and its corresponding diversity category.

    - Format for each entry: {{"sentence": "<sentence>", "category": "<category>"}}

    - No number before each entry.

    Example of Classification List Format:

    

    [

        {{"sentence": "Example 1", "category": "Somewhat Diverse"}},

        {{"sentence": "Example 2", "category": "Very Similar"}},

        ...

    ]

    Please focus on assigning each sentence to the appropriate category based on its diversity.

Figure 6: The instructions provided to GPT3.5-turbo for predicting the diversity of a given set of sentences.
Diversity is predicted according to five categories: very similar, somewhat similar, neutral, somewhat diverse, and
highly diverse. Definitions of the categories are included within the instructions. Next, the set of sentences to be
evaluated for their diversity is presented. Finally, the expected output format of the predictions is described at the
end of the prompt. As recommended by Chen et al. (2023), we do not require the LLM to provide reasons for its
predictions because it sometimes forces the model to focus on the reason generation than the prediction.
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