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Abstract

In recent years, the ability of artificial intelligence (AI) systems to quantity their un-
certainty has become paramount in building trustworthy AI. In standard uncertainty
quantification (UQ), AI uncertainty is calibrated such that the confidence of its
predictions matches the statistics of the underlying data distribution. However, this
method of calibration does not take into consideration the direct influence of UQ on
the subsequent actions taken by downstream decision-makers. Here we demonstrate
an alternate, decision-driven method of UQ calibration that explicitly minimizes
the incurred costs of downstream decisions. After formulating decision-driven
calibration as an optimization problem with respect to a known decision-maker, we
show in a simulated search-and-rescue scenario how decision-driven temperature
scaling can lead to lower incurred decision costs.

1 Introduction

Artificial intelligence (AI) has become an integral component in decision-making pipelines in many
settings across society, ranging from medicine to scientific discovery. Rather than providing only
a single predicted output in these systems, it has become common for AI to also supplement
their predicted outputs with quantified notions of uncertainty describing the level of confidence in
predictions, i.e., to perform uncertainty quantification (UQ). For a decision-maker taking actions in
downstream tasks, only considering the AI’s predicted output in isolation runs the risk of discounting
critical information about possible sources of ambiguity in the AI’s output. In contrast, taking the full
UQ distribution into consideration can better enable informed decision-making that trades off the
potential costs and benefits of various actions [1]. For instance, a doctor aided by an AI diagnosis
system can better weigh the risks of various patient treatment options if the AI provides a confidence
level for its diagnosis, only moving ahead with risky treatments if the AI is confident enough.

Rather than serving only as a passive aid, in general we expect the specific UQ outputs generated
by the AI to have a significant impact on the actions actually taken by downstream decision-makers
consuming these outputs. Continuing with the above example, if the doctor only proceeds with a
treatment if the AI’s confidence exceeds a particular threshold (e.g., 90%), then the difference of only
a few confidence percentage points may have a drastic effect on the patient’s outcome. This implies
that the selection and tuning of the UQ algorithm (e.g., temperature scaling [2], conformal prediction
[3]) can potentially result in different behaviors by the downstream decision-maker [4].
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Based on these observations, we note that common UQ calibration techniques minimizing distribu-
tional metrics such as Expected Calibration Error (ECE) do not necessarily improve decision-making
performance in the downstream application of interest, as measured by incurred decision costs.
Recognizing the critical role of UQ in the overall decision-making pipeline, in this work we introduce
Decision-Driven Calibration (DDC) as a means of optimizing UQ parameters to explicitly minimize
expected downstream decision costs. Although aspects of decision-aware calibration have been
explored in prior work, to our knowledge this work is the first to optimize UQ for minimization of
incurred costs with respect to a given decision-cost function and a (potentially non-ideal) decision-
maker profile. We demonstrate in a simulated search-and-rescue task how DDC can reduce decision
costs in comparison to standard temperature scaling-based calibration.

Related work UQ comprises a vast body of work, providing a multitude of methods for learning
uncertainty estimates from data [5, 6]; here we specifically focus on prior work leveraging knowledge
of the downstream decision process to inform UQ selection and calibration. [7] focuses calibration in
output probability regions that have the most impact on diagnostic decision making, but considers
only the scenario of an unknown decision cost function in narrow settings. Another line of work
introduces the notion of Decision Calibration Error (DCE), measuring the discrepancy between the
estimated decision costs incurred by an output probability distribution in comparison to the true
costs incurred under the true data distribution [8, 9, 10]. While optimizing UQ to minimize DCE
does ensure that decision costs computed under the UQ distribution are reliable estimates of the true
expected cost, this is distinct from our goal of optimizing UQ to minimize the incurred decision
costs themselves. [11] does optimize UQ to minimize downstream decision costs while taking into
account a given decision-maker model, but is limited to the case of binary decisions. [12] uses a fixed
decision-maker model to optimize conformal prediction for minimizing decision-maker classification
error; however, this approach is limited to classification actions. [13] explicitly optimizes UQ to
minimize incurred decision-making costs, but the decision space is limited to the decision-maker
either accepting the AI’s recommendation or solving the task themselves.

2 Methods

Let X denote a data domain (e.g., X = Rd) with individual examples denoted by x. Here we consider
the scenario of multi-class classification where each x is associated with a label y ∈ 1 . . . C, but
the concepts demonstrated here could be applied to other settings (e.g., regression). Consider an AI
model given by the function fθ : X → RC mapping from examples to “logit” vectors z = fθ(x).
In standard classification, the AI model’s prediction would be taken as ŷ = argmaxy′ f

(y′)
θ (x),

where f (i) denotes the ith entry of f . More generally, logit z can be used to generate a UQ output
such as a probability distribution (via the softmax function) or a conformal set. Adopting notation
from [4], for generality let gϕ : RC → U denote a generic UQ function parameterized by ϕ and
mapping to an uncertainty representation space U . For instance, for softmax class probabilities we
have g : RC → ∆C−1 given by g(z) = σ(z) where σ is the softmax function.

We suppose that a decision-maker observes gϕ(fθ(x)) and chooses an action a from some set of
K actions A, noting that it need not be the case that A = 1 . . . C or even for K = C. Without
loss of generality we model the decision-maker as a known conditional probability distribution
δ : U → ∆K−1 and assume that the action a for data point x is sampled from δ(gϕ(fθ(x))). We
assume that taking action a on example x with ground-truth label y incurs a cost of c(y, a), where
c(·, ·) is a known cost function. For data x, y distributed according to DX,Y , we define the expected
decision cost as C(ϕ) = Ex,y∼DX,Y

Ea∼δ(gϕ(fθ(x)))[c(y, a)]. For optimal decision-making (in an
average sense), the expected incurred cost C should be as low as possible.

Decision-agnostic calibration In typical calibration, the parameters of gϕ are adjusted such that
the UQ output matches the underlying statistics of the data distribution. In practice this is typically
achieved by optimizing a scoring rule ℓ over a calibration set Scal sampled from DXY :

ϕ∗ = argmin
ϕ

1

|Scal|
∑

x,y∈Scal

ℓ(gϕ(fθ(x)), y). (1)

In this work we focus on standard Temperature Scaling (TS) applied to a label distribution [2]
optimized with Negative Log-likelihood (NLL) as the UQ method and associated calibration criteria.
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TS adjusts the model’s output probabilities by dividing the logits by a scalar “temperature” parameter
T which smooths the probability distribution without altering the ranking of predicted classes. In
our notation, this corresponds to a UQ function gT (z) = σ(z/T), where the only UQ parameter ϕ to
be optimized is the temperature T . Letting g(i) denote the ith entry of g, the NLL loss is given by
ℓNLL(gT (z), y) = − log g

(y)
T (z) which can be optimized in (1) over the calibration set.

Decision-driven calibration While performing standard calibration as in (1) will encourage the
UQ outputs g to match the underlying statistics of the data distribution, this method of calibration
does not necessarily ensure a reduced downstream decision cost C. Instead, as a loss function in (1)
we utilize a decision-driven calibration loss, computed as the expected decision cost incurred with
respect to a fixed decision-maker δ (denoting the ith entry of δ by δ(i)):

ℓDDC(g(z), y) =
∑
a∈A

δ(a)(g(z)) c(y, a). (2)

We refer to the optimization of (1) with ℓDDC as decision-driven calibration (DDC). Although DDC
assumes that both δ and c are fixed and known, it is possible to learn δ from observed decision-maker
behavior ([11, 12]), and in many settings numeric costs can be assigned to various action outcomes.

Decision-maker models We consider two possible decision-maker models for optimization in (2)
that accept as input a label distribution and generate a decision:

Smooth Bayes’ Optimal: It is well-known that the average-case optimal action is the Bayes’ optimal
action minimizing the expected incurred cost, i.e., a∗ = argmina

∑
y′ p(y

′) c(y′, a), where p(y) is
the true conditional probability of an example having label y. Since the decision-maker only has
access to g(z) and not p, they can instead take a Bayes’ optimal action with respect to g(z) as â =

argmina
∑

y′ g(y
′)(z) c(y′, a), or in vector notation as δ = 1a=â, i.e., the one-hot vector at â. To

make this decision-maker differentiable, we apply the softmax approximation 1i=argmaxi z
(i) ≈ σ(z)

and express the argmin in â as a negated argmax. This leads to δ = σ(−LT g(z)) where L is the
C ×K matrix whose L[i, j] entry is given by c(i, j).

Proportional: We model the decision-maker as first selecting a label y′ with probability g(y
′)(z), and

then taking the optimal action for that class. This corresponds to a probability of action a given by∑
y′ A[y′, a] g(y

′)(z) where A is the C ×K matrix given by A[i, j] = 1 for j = argmina c(i, a)

and A[i, j] = 0 otherwise. We can represent this decision-maker in vector form as δ = AT g(z).

3 Simulated decision-making

We aim to demonstrate in a realistic decision-making setting how DDC can result in reduced
test-time decision costs when applied to TS, in comparison to standard calibration. To do so,
we simulate an AI-assisted search-and-rescue scenario where a drone is tasked with patrolling a
section of beach and assisting swimmers in distress. We assume the drone will encounter objects
belonging to three classes: boat, swimmer without a life jacket, and swimmer with a
life jacket. In this example we assume that all swimmers without a life jacket are in distress,
while all swimmers with a life jacket are not in distress. Upon encountering a new object, the
drone can take one of three actions: continue its route without intervention (Do Nothing), “mark”
the object to return to later (Mark Object), or drop a flotation device and call for help (Rescue).

Table 1: Search-and-rescue decision cost matrix (c(y, a)).

Ground-truth class (y) Action (a)
Do Nothing Mark Object Rescue

boat 0 15 50
swimmer w/o life jacket 100 75 0
swimmer w/ life jacket 10 5 30

For each class-action pair we
assign a nominal numerical
“cost” characterizing the qual-
ity of each decision, presented
in Table 1 and justified as fol-
lows: the most severe error is
ignoring a swimmer without
a life jacket (i.e., in distress).
“Marking” these swimmers as
objects of interest is also a significant error, since it delays rescue efforts. “Rescuing” or “marking” a
boat or a swimmer with a life jacket incurs a moderate cost, to reflect wasted effort.
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Figure 1: test-time expected decision cost.

Dataset and model training We simulate this decision-making process on the multi-object tracking
(MOT) subset of SeaDronesSee [14], a large-scale dataset of overhead aerial drone footage (see
example images in Figure 3). This dataset consists of 22 video clips, encompassing a total of
∼50k frames and ∼400k annotations and contains objects in the classes described above.2 We split
SeaDronesSee-MOT as follows: for our “test” set we use the original “valiation” split. To construct a
“calibration” set, within each video we partition the original MOT “training” set by allocating the first
75% for model training and the final 25% for calibration. To focus only on the task of classification,
we crop each image to the ground-truth bounding boxes of objects in the scene. This results in ∼120k
training instances, ∼40k calibration instances, and ∼50k testing instances.

For the AI predictive model fθ mapping from cropped images to logits z, we train a single linear
layer as the classification head on a ViT-B/16 backbone [15]. The ViT backbone was pretrained on
the SWAG dataset and fine-tuned end-to-end on ImageNet-1k [16]. After freezing the backbone,
we fine-tune the classification head on our custom SeaDronesSee-MOT training split (excluding
the calibration set). We used a learning rate of 0.003, Cross-Entropy loss with a class re-weighting
scheme from [17], and optimized with AdamW [18]. As a UQ output, we then apply TS to the model
Softmax outputs σ(z), optimizing over the calibration split using either NLL or DDC calibration loss.
Further training details can be found in Appendix A.

Numerical results Our main objective is to compare the average decision cost at test-time incurred
by decision-driven calibration TS in comparison to decision-agostic (i.e., standard) TS. For decision-
driven calibration, we refer to the calibration method according to the decision-maker assumed during
calibration (e.g., Smooth Bayes TS, Proportional TS). For a given temperature T (as optimized
by one of the calibration methods above), we measure the incurred cost over a test set Stest as
C(T ) = 1

|Stest|
∑

x,y∈Stest
ℓDDC(gT (fθ(x)), y), where ℓDDC is computed with respect to a test-time

decision-maker δtest not necessarily equal to the one used during decision-driven calibration (when
applicable). In particular, we evaluate all TS methods (Decision-agnostic TS, Smooth Bayes TS,
and Proportional TS) against both the Smooth Bayes and Proportional decision-makers (Figure 1).
When computing C(T ) for temperatures obtained from Smooth-Bayes DDC, we observe a smaller
incurred decision cost than Decision-agnostic TS. However, we find that calibrating according to a
mismatched Proportional decision-maker incurs a worse cost than decision-agnostic TS. Similarly,
when evaluating against a Proportional decision-maker at test-time, Proportional TS incurs a smaller
cost than Decision-agnostic TS, which itself incurs a lower cost than Smooth Bayes TS. These results
indicate that performing decision-driven calibration with temperature scaling does lead to reduced
costs at test time, but a mismatch in decision-maker between calibration and test-time can actually
increase decision costs.

2To simplify our decision-making scenario we discard objects of the empty life jacket class.
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Figure 2: Class-conditional average decision cost at test-time (Smooth Bayes decision maker).

The difference in incurred cost between the various calibration methods becomes even more apparent
when decomposing average cost by ground-truth class. In the case of a Smooth Bayes decision-maker,
calibrating with respect to the same decision model results in a much lower average cost incurred
on the Swimmer class compared to Decision-agnostic and Proportional calibration (Figure 2). This
is a desirable outcome in our search-and-rescue scenario, as swimmers without life jackets are the
most critical class to protect. Interestingly, a tradeoff is made by slightly increasing average cost
when conditioned on the other ground-truth classes. This could be attributed to the structure of the
cost matrix (Table 1), where taking incorrect actions on a swimmer without a life jacket results in
significantly larger penalties than incorrect actions on other classes. Similar observations can be
made when examining classwise costs when evaluated with a Proportional decision-maker (Figure 4).

When examining the optimized temperature values for each calibration method, we observe that
decision-agnostic temperature scaling and Smooth Bayes temperature scaling actually adjust the
temperature in opposite directions (i.e., less or greater than 1.0), resulting in opposite effects on
model confidence (Figure 5): decision-agnostic temperature scaling increases the confidence of
model predictions (decreased temperature), while Smooth Bayes temperature scaling decreases
the confidence of model predictions (increased temperature). Future research will be crucial in
understanding how the magnitude of specific action costs and the balance of costs between classes
affects decision-driven calibration performance. Additional results comparing the calibration perfor-
mance of decision-agnostic and decision-driven calibration can be found in Appendix B, including a
comparison of test-time ECE and NLL (Figure 6) and reliability diagrams (Figure 7).

4 Conclusion

Overall, this work introduces decision-driven calibration as a means of directly optimizing UQ to
minimize incurred costs for a known decision-maker, and to our knowledge is the first work to
perform this type of calibration on a general decision cost function. We demonstrate the promise
of DDC in comparison to standard temperature scaling for reducing incurred costs in a simulated
scenario on a large-scale search-and-rescue dataset. Our results also demonstrate the importance
of calibrating according to a decision-maker matched to the one taking actions at test-time, and
motivates the approach in [11, 12] of accurately estimating a decision-maker before calibration
occurs. Important future avenues of work include a theoretical study of the robustness of DDC to
decision-maker mismatch or shifts in decision-making behavior, and the utilization of active learning
[19] to efficiently estimate a decision-maker model from a minimal number of queries.
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A Implementation details

A.1 Dataset construction

(a) (b)

Figure 3: Example images from the SeaDronesSee dataset [14]. We generate the data for our
experiments by cropping the bounding boxes for the classes boat, swimmer without a life
jacket, swimmer with a life jacket.

The original SeaDronesSee-MOT dataset was created by dividing each video clip into three segments:
the first 4/7 of each clip serves as the MOT training set, the next 1/7 as the MOT validation set, and
the final 2/7 as the MOT test set [14]. We exclude the MOT test set from our analysis because it lacks
ground-truth object labels. For our task we focus only on classifying objects in SeaDronesSee rather
than needing to detect each object in addition; therefore, we preprocess each scene image by first
cropping each object according to its ground-truth bounding box, and treating each cropped bounding
box as its own data point x with class label y.

We sort each video in the MOT training set by image ID, arranging the frames in sequential order,
and allocate the final 25% of frames in each training-set video to the calibration set. We take the
original MOT “validation” set as our test set without any modifications. Since the MOT validation
set comes after the MOT training set in the sequence of frames, this splitting approach ensures that
there is no overlap between the training, calibration, and validation set. Furthermore, by selecting the
final 25% of frames in the MOT training set videos for calibration, we also introduce a gap in the
sequence between the training set and validation set, which helps create more distinct test examples.
We summarize the resulting instance counts for each split in Table 2.

Table 2: Dataset class instances
Class Training Validation Calibration Total
Boat 51,334 20,715 16,763 88,812
Swimmer without Life Jacket 22,877 10,107 7,305 40,289
Swimmer with Life Jacket 45,330 16,856 15,845 78,031
Total 119,541 47,678 39,913 207,132

A.2 Training details

The classifier model has a total of 2,307 trainable parameters, resulting from the classification layer’s
reduction of the 768-dimensional embedding vector to 3 dimensions, corresponding to the number
of classes. After each training epoch, we evaluate the model on the calibration set and chose the
best performing model for our experiments. The best performing model came from epoch 56 with
98.259% accuracy. Full training data augmentation details and model hyperparameters are presented
in Table 3 and Table 4, respectively.
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Table 3: Data augmentation hyperparameters
Hyperparameter Value
Mixup α 0.2
Cutmix α 1.0
Random Augmentation Magnitude 9
AugMix Severity 3
Interpolation Bilinear
Random Augmentation Sampling True
Random Augmentation Repetitions 3

Table 4: Model training hyperparameter configuration
Hyperparameter Value
Backbone vit_b_16
Pretrained Weights ViT_B_16_Weights.IMAGENET1K_SWAG_E2E_V1
Input Size 384x384
Optimizer AdamW
Batch Size 1024
Training Epochs 70
α (Learning Rate) 0.003
β (Momentum) 0.9
λ (Weight Decay) 0.3
Learning Rate Scheduler Cosine Annealing
Learning Rate Warmup Epochs 20
Learning Rate Warmup Method Linear
Learning Rate Warmup Decay 0.033
Learning Rate Step Size 30
γ (Learning Rate Decay Factor) 0.1
Automatic Mixed Precision True
Gradient Clipping Threshold 1.0
Loss Cross Entropy
Class Reweighting in Loss Function True

A.3 Temperature scaling hyperparameters

As in [20] we use LBFGS to optimize the temperature parameter during both decision-agnostic and
decision-driven calibration, using the choice of hyperparameters listed therein. We add a small value
ϵ (1e-6) to the temperature parameter during optimization to prevent numerical instabilities. We
summarize these calibration hyperparameters in Table 5.

Table 5: Self-Assessment Hyperparameters - Temperature Scaling
Hyperparameter Value
Optimizer LBFGS
Maximum Number of Optimizer Steps 3000
α (Learning Rate) 0.1
ϵ 1e-6
Optimizer Line Search Function Strong Wolfe
Loss Cross Entropy Loss
Initial Temperature Value 1
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B Additional figures

Figure 4: Class-conditional average decision cost at test-time (Proportional decision maker).

Figure 5: Temperatures selected by each TS method.
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(a) (b)

Figure 6: Temperature scaling calibration performance at test time: (a) expected calibration error
(ECE); (b) negative-log likelihood (NLL)

(a) (b) (c)

Figure 7: Reliability diagrams at test time for each calibration method: (a) decision-agnostic; (b)
Smooth Bayes; (c) Proportional.
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