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Abstract

Selecting an effective training signal for tasks001
in natural language processing is difficult: ex-002
pert annotations are expensive, and crowd-003
sourced annotations may not be reliable. At004
the same time, recent work in NLP has demon-005
strated that learning from a distribution over006
labels acquired from crowd annotations can be007
effective. However, the best method for acquir-008
ing these soft labels is inconsistent across tasks.009
This paper systematically analyzes this in the010
out-of-domain setting, adding to the NLP liter-011
ature which has focused on in-domain evalua-012
tion, and proposes new methods for acquiring013
soft-labels from crowd-annotations by aggre-014
gating the distributions produced by existing015
methods. In particular, we propose to aggre-016
gate multiple-views of crowd annotations via017
temperature scaling and finding their Jensen-018
Shannon centroid. We demonstrate that these019
aggregation methods lead to best or near-best020
performance across four NLP tasks on out-021
of-domain test sets, mitigating fluctuations in022
performance when using the individual distri-023
butions. Additionally, aggregation results in024
best or near-best uncertainty estimation. We025
argue that aggregating different views of crowd-026
annotations is an effective way to ensure per-027
formance which is as good or better than the028
best individual view, which is useful given the029
inconsistency in performance of the individual030
methods.031

1 Introduction032

One of the primary concerns in supervised machine033

learning is how to define, collect, and use labels as034

training data for a given task. There are a multitude035

of tradeoffs associated with this decision, including036

the cost, the number of labels to collect, the time037

to collect those labels, the accuracy of those labels038

with respect to the task under consideration, and039

how well those labels enable model generalization.040

These tradeoffs are made based on how the labels041

are collected (e.g. crowdsourcing, expert labeling,042

distant supervision) and how they are trained on in 043

practice, for example as one-hot categorical labels 044

(hard labeling) or as a distribution over possible 045

classes (soft labeling). 046

A large body of literature exists which exam- 047

ines all facets of this question (Uma et al., 2021). 048

Recent work has used soft-labeling schemes for 049

classification tasks as a method for improving both 050

model accuracy and uncertainty estimation (Peter- 051

son et al., 2019; Uma et al., 2020; Fornaciari et al., 052

2021). When using soft-labels, models are trained 053

to minimize the divergence between their predictive 054

distribution and a distribution over the labels ob- 055

tained from crowd annotations (Uma et al., 2020). 056

While this has been shown to potentially improve 057

model generalization for vision tasks (Peterson 058

et al., 2019), little work has systematically com- 059

pared how different soft-labeling schemes affect 060

out-of-distribution performance and uncertainty es- 061

timation in NLP. We seek to fill this gap in this 062

work, providing an in-depth study into soft-labeling 063

techniques and best practices for improving model 064

generalization and uncertainty estimation across 065

eight methods, 4 NLP tasks, and 7 datasets. 066

Soft-labeling methods have been compared in 067

both Fornaciari et al. (2021) and Uma et al. (2021) 068

for an in-domain testing setting. These studies are 069

primarily focused on identifying the best methods 070

for learning from these soft distributions within 071

a particular domain without going in great depth 072

about which methods for obtaining soft-labels lead 073

to best performance. As such, no clear best method 074

emerges when comparing across soft-labeling ap- 075

proaches in the in-domain setting, making it diffi- 076

cult to decide which technique to use for a given 077

task. Additionally, these studies do not exam- 078

ine the out of domain test setting, where the ben- 079

efits of soft-labeling have been indicated in the 080

computer vision literature (Peterson et al., 2019). 081

Here, we demonstrate that aggregating soft-labels 082

from different techniques into a single distribution 083
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offers more consistent performance across tasks.084

We therefore propose four multi-view aggrega-085

tion methods to generate aggregated soft-labels,086

including three novel methods based on the Jensen-087

Shannon centroid and temperature scaling.088

In sum, we make the following contributions:089

1) A comparison of soft-labeling techniques for090

learning from crowd annotations for 4 NLP091

tasks across 7 datasets in the out-of-domain092

test setting, including text classification (rec-093

ognizing textual entailment, medical relation094

extraction, and toxicity detection) and se-095

quence tagging (part-of-speech tagging).096

2) Novel methods for aggregating different views097

of soft-labels derived from crowd-annotations.098

3) Insights and suggestions into best practices099

for different soft-labeling methods in terms of100

performance and uncertainty estimation.101

2 Related Work102

Learning from Crowd-Sourced Labels An ef-103

ficient way to collect training data for a new task104

is to ask crowd annotators on platforms such as105

Amazon Mechanical Turk to manually annotate106

training data. How to select an appropriate training107

signal from these noisy crowd labels has a rich set108

of literature (e.g. see the survey from Paun et al.109

2018). Many of these studies focus on Bayesian110

methods to learn a latent distribution over the true111

class for each sample, influenced by factors such as112

annotator behavior (Hovy et al., 2013; Dawid and113

Skene, 1979) and item difficulty (Carpenter, 2008),114

and selecting the mean of this distribution as the115

final label. However, selecting a single true label116

discards potentially useful information regarding117

uncertainty over classes inherent in many tasks,118

for example where items can be especially diffi-119

cult or ambiguous (Gordon et al., 2021). Recent120

work has looked into how to learn directly from121

crowd-annotations (Uma et al., 2021). The work of122

Peterson et al. (2019) demonstrated that learning di-123

rectly from crowd annotations treated as soft-labels124

using the softmax function leads to better out of125

distribution performance in computer vision. This126

line of work has been followed by Uma et al. (2020)127

and Fornaciari et al. (2021) in NLP, looking at the128

use of the KL divergence as an effective loss. The129

survey of Uma et al. (2021) provides an extensive130

set of experiments comparing methods for learning131

from crowd labels. What has not been done is a sys-132

tematic comparison of different soft-labeling meth-133

ods in the out of domain setting. We fill this gap 134

in this work, and propose new methods for aggre- 135

gating soft-labels which yield more consistent and 136

robust performance than previous methods without 137

requiring new annotations or learning methods. 138

Knowledge Distillation Knowledge distillation 139

seeks to build compact but robust models by train- 140

ing them on the probability distribution learned by 141

a much larger teacher network (Ba and Caruana, 142

2014; Hinton et al., 2015). The goal is to impart 143

the “dark knowledge” contained in the distribution 144

learned by the larger network, which can indicate 145

similarities between features and classes if the out- 146

put from the classifier is well calibrated (e.g. via 147

temperature scaling (Hinton et al., 2015) or en- 148

sembling (Hinton et al., 2015; Allen-Zhu and Li, 149

2020)). Allen-Zhu and Li (2020) demonstrate that 150

when distilling from an ensemble, the data used to 151

train the ensemble should constitute a multi-view 152

structure (i.e. multiple different features in the data 153

are predictive of a particular class) for best per- 154

formance. Inspired by this, we develop several 155

methods for aggregating multiple views of crowd- 156

sourced labels in order to obtain a distribution that 157

can induce robust classifiers in the out-of-domain 158

setting. “Multi-view” in this work is defined as 159

multiple distributions from crowd annotations that 160

are explained by different factors e.g. annotator 161

behavior or raw number of votes per class. 162

3 Methods 163

We build upon a rich literature around the topic 164

of learning from crowd annotations, particularly 165

on learning from soft-targets: distributions over 166

classes obtained from annotations as opposed to 167

selecting a single hard label. In this, samples 168

have their probability mass distributed over mul- 169

tiple classes, which can help regularize a down- 170

stream classifier and reflect potential “dark knowl- 171

edge” (Hinton et al., 2015) learnable from the 172

crowd annotations. Multiple soft-labeling methods 173

have been demonstrated to provide good training 174

signals on different NLP tasks, but none of these 175

methods are consistently best across tasks (Uma 176

et al., 2021). Given this, we start with several well- 177

studied methods for learning from crowd-labels, 178

described in Section 3.1 (Uma et al., 2020; For- 179

naciari et al., 2021; Hovy et al., 2013; Dawid and 180

Skene, 1979), adding to this literature by analyz- 181

ing their performance when considering general- 182

ization to out of domain data. Then, we propose 183
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several methods for aggregating these distributions184

in Section 3.2, which we will demonstrate lead to185

consistent performance across tasks.186

3.1 Soft Labeling Methods187

We experiment with four widely used methods for188

obtaining soft labels: two based on normalizing189

over annotations counts and two based on Bayesian190

models. More detailed descriptions of these meth-191

ods are given in Appendix A.192

• Standard normalization: Transforms a set of193

crowd labels into a distribution by averaging194

the number of votes given to a particular label195

by the total number of annotations on that196

item (Uma et al., 2020).197

• Softmax normalization: Instead of directly av-198

eraging over the number of annotations for199

a given item, take a softmax over the votes.200

This ensures that some probability mass is201

distributed to each label for each sample (Pe-202

terson et al., 2019; Fornaciari et al., 2021).203

• Dawid & Skene: The Bayesian model204

from Dawid and Skene (1979) which learns205

a posterior distribution over the true class for206

each sample based on each annotator’s ability207

to correctly identify true instances of a given208

class.209

• MACE: Multi-Annotator Competence Estima-210

tion (Hovy et al., 2013), another Bayesian211

model which models whether or not annota-212

tors are faithfully annotating each item or fol-213

lowing a local spamming strategy which does214

not reflect the true underlying label.215

3.2 Combining Soft Labels216

Each of the above methods will produce a distri-217

bution over labels which can be used in training;218

however different methods produce better training219

signals depending on the task (Uma et al., 2021). In220

order to acquire labels which capture the multiple221

views of the annotations learned by these methods,222

we develop novel methods for aggregating their223

soft labels. This is inexpensive, requiring zero ad-224

ditional annotations, and we will demonstrate that225

it is robust across tasks.226

The goal for a single example xi is as follows:227

given a set of categorical distributions pm(yi|xi)228

with m ∈ {1...M} for M different distribu-229

tions, produce a categorical distribution p(yi|xi) =230

f(p1:M (yi|xi)) which will serve as a soft target for231

example xi. Our hypothesis is that combining sev- 232

eral different models (i.e. different views of the 233

crowd-sourced annotations) will yield labels that 234

can induce more robust classifiers as they will cap- 235

ture the uncertainty present in each of the individual 236

distributions which are based on different factors 237

(e.g. annotator behavior and raw class votes). 238

Averaging The most basic model to acquire an 239

aggregated probability distribution is to take an 240

average of the individual probabilities p1:M . More 241

formally, the averaging function fa is: 242

fa(p1:M (yi|xi)) =
1

M

∑
m

pm(yi|xi) (1) 243

This yields a distribution which is the center of 244

mass of the given distributions p1:M . 245

Jensen-Shannon Centroid The Jensen-Shannon 246

centroid (JSC) is the minimizer of the sum of the 247

Jensen-Shannon divergences (JSD) between a pro- 248

posed distribution Q and a set of probability distri- 249

butions p1:M . It is defined as: 250

fc(p1:M (yi|xi)) = argmin
Q

∑
m

JS(pm∥Q) (2) 251

where JS(P∥Q) is the JSD, a symmetric version of 252

the Kullback-Leibler divergence (KLD), defined as 253

follows for discrete probability distributions: 254

JS(P∥Q) =
1

2
KLD(P∥S) + 1

2
KLD(Q∥S) (3) 255

256

S =
1

2
(P +Q) 257

258

KLD(P∥Q) =
∑
j

P (j) log
P (j)

Q(j)
(4) 259

Our hypothesis is that the JSC, unlike simple aver- 260

aging, will be less influenced by highly disparate 261

distributions in the ensemble which could nega- 262

tively influence performance. To find the JSC, we 263

use the ConCave-Convex procedure (CCCP, Yuille 264

and Rangarajan 2001) developed in Nielsen (2020). 265

The full derivation and definition of the method can 266

be found in Nielsen (2020), Equations 94-104 and 267

Algorithm 1, and a high level overview is given 268

here in Appendix E. 269

Temperature Scaling One approach in knowl- 270

edge distillation is to scale the softmax output of 271

the larger teacher network prior to using it to pro- 272

duce soft labels to teach the smaller student net- 273

work. Here, we develop a method for optimizing a 274
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temperature parameter for each distribution in our275

ensemble based on the JSD between distributions.276

For each soft-labeling method pm, we optimize277

a temperature parameter Tm,m ∈ {1...M} which278

softens each distribution produced by that method.279

In other words, we produce softened distributions280

p̃m as:281

p̃m(yi|xi) = softmax(
lm(yi|xi)

Tm
) (5)282

where lm are the log-probabilities for a given sam-283

ple. The temperature Tm is then optimized to min-284

imize the JSD between each of the M(M−1)
2 com-285

binations of distributions in the ensemble, the idea286

being to calibrate each distribution based on the un-287

certainty captured by each other distribution in the288

ensemble. Since optimizing this loss directly will289

encourage the temperature to scale to infinity, as290

the loss will be 0 when a large enough temperature291

drives all distributions to be uniform, we also add292

a regularization loss on the temperature parameters293

in order to discourage them from being exceedingly294

large. The final loss (assuming averaging the JSD295

over a batch of samples) is given in Equation 6.296

L =
1

Z

M∑
j=1

M∑
k=j+1

JSD(p̃j∥p̃k) + λT 2
j (6)297

where λ is a regularization constant and Z =298
M(M−1)

2 . Finally, after optimizing for the tempera-299

ture parameters Tm, we aggregate the distributions300

by averaging over the temperature scaled ensemble.301

ft(p1:M ) = fa(p̃1:M ) (7)302

Hybrid Finally, we develop a hybrid approach303

where we first temperature scale the distributions in304

the ensemble via Equation 6, followed by finding305

the JSC as in Equation 2.306

fh(p1:M ) = fc(p̃1:M ) (8)307

4 Experimental Setup308

Our experiments serve to answer the following re-309

search questions:310

• RQ1: Which methods for learning from311

crowd-sourced labels are most robust in out-312

of-domain settings?313

• RQ2: Does aggregating multiple views of314

crowd annotations lead to more robust out-of-315

domain performance?316

• RQ3: Which soft-labeling methods lead to 317

better uncertainty estimation? 318

Our experiments focus on the out-of-domain set- 319

ting. We use pairs of datasets which capture the 320

same high-level tasks and where the training data 321

has both gold and crowd-annotations available 322

while the testing data only has gold annotations. 323

We use dataset pairs with one of two sources of 324

domain shift: 1) input data sourced from different 325

corpora; 2) labels acquired from different sources. 326

Additionally, two of our experiments have training 327

sets with less than 1,000 samples. This setup lets 328

us understand the impact of learning from crowd- 329

labels on model generalization, whereas in the in- 330

domain setting where train and test data use gold 331

labels obtained from the same source, performance 332

is dominated by the use of gold labels. 333

For all experiments we use RoBERTa as our base 334

network (Liu et al., 2019) with the same training 335

hyperparameters in order to provide a stable com- 336

parison across different soft-labeling techniques. 337

Additionally, this allows us to observe how the 338

same soft-labeling techniques on the same network 339

perform on different tasks. For the soft-labeling ex- 340

periments (labeled “KLD”) we only use soft labels 341

obtained using one of the crowd-labeling methods 342

described in Section 3.1 and Section 3.2 and train 343

using the KL divergence as the loss (as in previ- 344

ous work (Uma et al., 2021)). Additionally, we 345

experiment with the multi-task learning setup used 346

in Fornaciari et al. (2021) and Uma et al. (2021), 347

where the model is trained on both gold labels and 348

soft-targets (labeled “Gold + KLD”). This allows 349

us to differentiate performance between when gold 350

annotations are available vs. not, which is clearly 351

beneficial in the in-domain test setting where the 352

same method of acquiring gold labels is used for 353

test data (Fornaciari et al., 2021), but not neces- 354

sarily in the out-of-domain setting (Peterson et al., 355

2019). The tasks and datasets used in our exper- 356

iments are described in the following paragraphs 357

(full descriptions in Appendix B). 358

Recognizing Textual Entailment (RTE) The 359

first task we consider is recognizing textual entail- 360

ment (RTE). In the RTE task, a model must predict 361

whether a hypothesis is entailed (i.e. supported) by 362

a given premise. For training, we use the Pascal 363

RTE-1 dataset (Dagan et al., 2005) with crowd- 364

sourced labels from Snow et al. (2008) and for test 365

we use the Stanford Natural Langauge Inference 366

dataset (SNLI, Bowman et al. (2015)). 367
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Figure 1: F1 scores averaged across 20 random seeds. Grey are hard labels only, red are individual methods and
blue are aggregation methods. Best results within each setting are given in bold italics, second best results in bold.

Medical Relation Extraction (MRE) Medical368

relation extraction (MRE) seeks to predict what369

relations hold between biomedical entities in sen-370

tences from biomedical papers. The MRE dataset371

used for training in this work is the crowd-sourced372

dataset from (Dumitrache et al., 2018), focusing on373

the 975 sentence subset which received expert an-374

notations specifically for the “cause” relationship (375

following previous work (Uma et al., 2021)). For376

test, we use the causal claim-strength dataset cu-377

rated from (Wright and Augenstein, 2021), which378

contains 1,126 sentences from news articles and379

scientific papers related to health science labeled380

for causal claim strength and turned into a binary381

prediction task (“cause” and “not cause”).382

Part-of-Speech Tagging (POS) The POS tag-383

ging task is a sequence tagging task to predict384

the correct part-of-speech for each token in a sen-385

tence. For training data, we use the Gimpel dataset386

from Gimpel et al. (2011) with the crowd-sourced387

labels provided by Hovy et al. (2014); Plank et al.388

(2014). We use the publicly available sample of the389

Penn Treebank POS dataset (Marcus et al., 1993)390

accessed from NLTK (Bird, 2006) as our out-of-391

domain test set, which consists of 3,914 sentences 392

from Wall Street Journal articles (100,676 tokens). 393

Toxicity Detection Finally, to measure perfor- 394

mance on a highly subjective task, we use the 395

toxicity detection dataset created as a part of 396

the Google Jigsaw unintended bias in toxicity 397

classification competition.1 The dataset we use 398

comes from Goyal et al. (2022), which annotated 399

25,500 comments from the original Civil Com- 400

ments dataset. The pool of annotators is specif- 401

ically selected and split into multiple rating pools 402

based on self-indicated identity group membership 403

(African American and LGBTQ). We randomly 404

split the dataset into training and test, and for the 405

test data we use the annotations in the original 406

crowd-sourcing task; in other words, using a com- 407

pletely separate annotator pool that is not selected 408

based on identity groups. 409

5 Results and Discussion 410

We evaluate the performance of each soft-labeling 411

method across two metrics: F1 score and calibrated 412
1https://www.kaggle.com/competitions/jigsaw-

unintended-bias-in-toxicity-classification
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Figure 2: Calibrated log-likelihood (CLL, ↓ better) averaged across 20 random seeds. Grey are hard labels only, red
are individual methods and blue are aggregation methods. Best results within each setting are given in bold italics,
second best results in bold.

log-likelihood (CLL, Ashukha et al. 2020). For-413

mal definitions of each metric can be found in Ap-414

pendix C. Additionally, we show results using only415

gold labels (Gold) and only majority vote (Silver).416

We first discuss general observations from our re-417

sults, and based on this provide answers for the418

research questions proposed in Section 4.419

5.1 Raw Performance420

Raw performance in terms of (macro) F1 score is421

shown in Figure 1.422

Overall We see that the RTE and MRE datasets423

are much more difficult to generalize from than424

the POS and Jigsaw tasks, as reflected in the wide425

confidence intervals of the results. Additionally,426

gold labels in these two settings yield worse per-427

formance than simply training on soft labels, as428

opposed to the in-domain setting reported in Uma429

et al. (2021) where gold labels are needed for high430

performance. POS tagging sees the best perfor-431

mance when using only gold labels, contrasting432

with results reported in Uma et al. (2021) which433

show that adding soft labels with gold labels im-434

proves performance in the in-domain setting. For 435

the Toxicity task, using out of domain hard labels 436

(Silver) clearly leads to worse performance than 437

using the original annotations (almost 20 F1 points 438

drop). Using soft labels performs much better than 439

this, with the aggregation methods being robust 440

to very poor distributions. Additionally, augment- 441

ing gold labels with soft-labels obtained from new 442

annotators still has benefits on this task. 443

Soft Labels Looking towards which soft-labeling 444

method provides the best performance in the ab- 445

sence of gold labels, it is inconsistent across tasks. 446

This was also seen in the survey by Uma et al. 447

(2021). However, the aggregation methods are 448

more consistent than the individual methods. In 449

particular, the aggregation method using the JSC 450

(Centroid in Figure 1) yields best or near-best per- 451

formance across tasks, while the hybrid method 452

works slightly better on POS tagging. This is de- 453

spite fluctuations in performance for the individual 454

methods across tasks. For example, the softmax 455

method works well for RTE and MRE, but worse 456

for POS tagging and much worse for Toxicity de- 457
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tection. The Bayesian methods show the opposite458

behavior, working well for POS tagging and Tox-459

icity detection (potentially due to there being far460

more annotations from which to learn), but much461

worse for RTE and MRE. Aggregation is also resis-462

tant to low-performing individual distributions, as463

can be seen in the toxicity experiment where both464

the standard and softmax distributed labels produce465

significantly worse classifiers than those trained on466

labels from either Bayesian method, while each467

aggregation method remains close to the best per-468

formers. Finally, we also see that temperature scal-469

ing does not benefit performance in this setting,470

and robust performance is achieved with the JSC471

alone.472

Gold + KLD Adding gold labels for the RTE473

and MRE tasks leads to worse performance, po-474

tentially due to the limited amount of labeled data.475

This adds further evidence to the literature that soft476

labels can provide benefits over gold labels for out-477

of-domain performance (Peterson et al., 2019). In478

terms of raw performance, gold labels are suffi-479

cient to obtain best performance for POS tagging,480

with soft labels not conferring benefits in the out-481

of-domain setting. This may be explained by the482

observation that the gold annotations for the POS483

dataset (Gimpel et al., 2011) were collected by re-484

searchers correcting labels for tweets pre-tagged485

by a tagger trained on Wall Street Journal articles486

(as in PTB), while the crowd-sourced annotations487

we use from (Hovy et al., 2014) are annotated from488

scratch with minimal context, only seeing three489

words at a time. As such, while there is a signif-490

icant difference between the source of input data491

between train and test, there may be less difference492

in terms of gold labels. For the toxicity detection493

task, all methods perform within reasonable ranges494

of each other, with the Bayesian methods and basic495

averaging conferring slightly better performance.496

5.2 Uncertainty Estimation497

Uncertainty estimation in terms of CLL for each498

method and dataset can be seen in Figure 2.499

Overall We see that uncertainty estimation as500

measured using CLL can be improved with the ad-501

dition of soft-labels in all cases except for POS502

tagging. The benefits are again more pronounced503

for the RTE and MRE tasks, where training data504

is limited. We also see inconsistency from the in-505

dividual soft labeling methods across tasks, while506

the aggregation methods (and particularly the JSC)507

Method RTE MRE POS Toxicity

Standard 0.919 0.764 0.799 0.784
Softmax 0.919 0.764 0.799 0.784
MACE 0.926 0.765 0.799 0.731
D&S 0.927 0.760 0.779 0.733

Average 0.927 0.765 0.799 0.754
Centroid 0.927 0.765 0.799 0.754
Temperature 0.930 0.766 0.799 0.757
Hybrid 0.930 0.765 0.799 0.757

Table 1: The accuracy of each annotation method with
respect to the gold annotations in each dataset.

offer much more consistent uncertainty estimation 508

which is better or approximately equal to the perfor- 509

mance of the best performing individual method. 510

Soft Labels When looking at soft-labels only, the 511

JSC aggregation method provides the most consis- 512

tent results across tasks, with either the best or 513

second best performance. The hybrid method also 514

offers good uncertainty estimation, especially in 515

the large-data regime of POS tagging and Toxicity 516

detection, though less so for MRE. 517

Gold + KLD As with the raw performance re- 518

sults, including gold labels in a multi-task setup 519

yields better uncertainty estimation when labeled 520

data is abundant; otherwise using only soft-labels 521

yields better uncertainty estimation. 522

5.3 Research Questions 523

RQ1: Best methods for OOD performance. In 524

the out-of-domain setting, we find that among indi- 525

vidual soft-labeling techniques, no consistent and 526

clear best performer arises. Aggregating the soft- 527

labels appears to mitigate these fluctuations in per- 528

formance; in particular, aggregating using the JSC 529

of the individual distributions, which leads to con- 530

sistently best or near-best performance on all tasks. 531

RQ2: Does aggregation help? We find that aggre- 532

gating multiple views of crowd-labels sometimes 533

leads to better performance in the out of distribu- 534

tion setting, but will generally be about as good as 535

the best performing individual methods regardless 536

of poor performance from some individual meth- 537

ods. This is illustrated by the observation that on 538

all tasks in both the multi-task and single-task set- 539

tings, at least one individual soft labeling method 540

leads to noticeably poorer performance than the 541

best individual method, while aggregation using 542

the JSC is consistently high performing. 543
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Figure 3: F1 scores for POS and Jigsaw using only the
Bayesian methods for aggregation. Best results within
each setting are given in bold italics, second best results
in bold.

RQ3: Uncertainty estimation from soft-labeling.544

We find that in the absence of hard-labels, different545

individual soft-labeling methods are inconsistent in546

their uncertainty estimation across tasks. Again,547

aggregating these different views of the crowd-548

sourced labels mitigates these fluctuations. As with549

raw performance, we find that the JSC is a sensible550

and consistent choice across tasks in the out-of-551

distribution setting.552

5.4 Analysis553

We briefly analyze out results in terms of the rela-554

tionships between the individual distributions and555

aggregated distributions. First, we highlight a fea-556

ture of the JSC, being that its distribution is close557

to individual distributions which are also close to558

each other. We do this by correlating two val-559

ues: the JSD between the JSC aggregated dis-560

tribution (Q) and an individual distribution (pm,561

i.e. JSD(Q∥pm)), and the average JSD of that562

distribution to all other individual distributions563

( 1
M−1

∑
k!=m JSD(pm∥pk)). Doing so yields a sta-564

tistically significant Pearson correlation of 0.935565

(p ≪ 0.05). This suggests that aggregating using566

the JSC will lead to distributions closer to the hubs567

of an ensemble, where many of the individual distri-568

butions are similar. This may be desirable if those569

different views are representative of the problem570

one is modeling; the downside is the potential to571

ignore disparate views of the data which could be 572

informative. We leave further exploration of this 573

tradeoff to future work. 574

Next, we look at differences in the accuracy of 575

the aggregation methods with respect to gold la- 576

bels in Table 1. We make two notable observations. 577

First, the aggregation methods match or slightly 578

improve the accuracy over the best individual meth- 579

ods, with the exception of the toxicity dataset. Sec- 580

ond, for the toxicity dataset, better accuracy with 581

respect to gold labels results in worse performance 582

on the task. This could be explained by the dif- 583

ference in annotators for the labels of the training 584

and test data coupled with the fact that the task is 585

highly subjective. 586

Finally, we look at performance on the Toxic- 587

ity and Jigsaw tasks when only using the better 588

performing Bayesian models. These results are 589

given in Figure 3. We find that restricting the distri- 590

butions to the Bayesian models produces the best 591

performance for POS and closer to the top perform- 592

ing method for Toxicity, suggesting that there is 593

some benefit to selecting good starting distributions 594

for aggregation. While this is difficult to do before- 595

hand without some reliable validation data, it helps 596

to show that aggregation can capture useful training 597

signal from multiple methods while being robust 598

to low-performing individual methods. 599

6 Conclusion 600

In this work we present a systematic comparison of 601

soft-labeling techniques from crowd-sourced labels 602

and demonstrate their utility on out-of-domain per- 603

formance for several text-classification tasks. The 604

out-of-domain setting allows us to observe how 605

learning from crowd-sourced soft-labels enables 606

generalization to unseen domains of data, poten- 607

tially reflecting the “dark knowledge” imparted by 608

these labels. Given than no consistent best perform- 609

ing model appears, we propose four novel methods 610

for aggregating multiple views of crowd-sourced 611

labels into a combined distribution, demonstrat- 612

ing that doing so leads to consistent performance 613

across tasks despite fluctuations in performance 614

shown by the constituent views. Concretely, we 615

show that using the JSC between the constituent 616

distributions yields high raw performance and good 617

uncertainty estimation. This constitutes a low- 618

cost solution to acquiring reliable soft-labels from 619

crowd-annotations which oftentimes outperform 620

gold labels on out-of-domain data. 621
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Limitations622

We propose several methods for learning from623

multiple-views of crowd annotations; however, ac-624

quiring these multiple views requires additional625

computation for each method which one is aggre-626

gating over. While this results in the most consis-627

tent performance across tasks and is resilient to low628

performing individual distributions, better perfor-629

mance is achieved by selecting the best perform-630

ing individual distributions. However, we do not631

directly address how to select the best individual632

distributions. In the same vein, our methods treat633

all distributions equally, while it may be beneficial634

to weight each distribution differently. Finally, we635

look only at NLP tasks and mainly text classifi-636

cation tasks, so we can’t say if our results would637

generalize to other modalities e.g. images.638
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Standard Normalization The standard normal- 817

ization scheme presented in (Uma et al., 2020) ob- 818

tains soft-labels for a given sample by transforming 819

a set of crowd-sourced labels into a probability dis- 820

tribution. This is done by normalizing the number 821

of votes given to each label by the total number 822

of annotations for a given sample, as described in 823

Equation 9. 824

pstand(i, y) =
ci,y∑
ŷ ci,ŷ

(9) 825

where ci,y is the number of votes label y received 826

for item i. 827

Softmax Normalization The standard normal- 828

ization scheme does not distribute probability mass 829

to any label which receives no votes from any an- 830

notator. The works of Peterson et al. (2019); For- 831

naciari et al. (2021) propose to use the softmax 832

function directly from label vote counts as a way 833

to obtain soft labels for a given sample, as in Equa- 834

tion 10. 835

psoft(i, y) =
eci,y∑
ŷ e

ci,ŷ
(10) 836
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This can potentially help to further regularize a837

model.838

Dawid & Skene A common method for aggregat-839

ing crowd-sourced labels into a single ground-truth840

label is to treat the true label as a latent variable841

to be learned from annotations. Several models842

have been proposed in the literature to accomplish843

this (Dawid and Skene, 1979; Hovy et al., 2013;844

Carpenter, 2008), often accounting for other as-845

pects of the annotation problem such as annotator846

competence and item difficulty. One such method847

is the Dawid and Skene model (Dawid and Skene,848

1979), a highly popular method across fields for849

aggregating labels from crowd-annotations, which850

focuses in particular on modeling the true class851

based on each annotator’s ability to correctly iden-852

tify true instances of a given class. In other words,853

the model is designed to explain away inconsisten-854

cies of individual annotators, which may be desir-855

able for use as a training signal when gold labels856

are unavailable. To obtain a soft label for a given857

sample i from this model, we use the posterior dis-858

tribution of the latent variable ci which models the859

true class for a given instance.2860

MACE Multi-Annotator Competence Estimation861

(MACE, Hovy et al. 2013)3 is another Bayesian862

method popular in NLP which focuses specifically863

on explaining away poor performing annotators.864

It does this by learning to differentiate between865

annotators which likely follow the global labeling866

strategy of selecting the true underlying label from867

those which follow a labeling strategy which de-868

viates from this e.g. spamming a single label for869

every example. To do this, it learns a distribution870

over the true label for each sample, as well as the871

likelihood that each annotator is faithfully label-872

ing each sample. For extensive details on both the873

Dawid and Skene and MACE models, as well as874

several other Bayesian annotation models, see the875

survey by Paun et al. (2018).876

B Full Dataset Descriptions877

Recognizing Textual Entailment (RTE) The878

first task we consider is recognizing textual en-879

tailment (RTE). In the RTE task, a model must880

predict whether a hypothesis is entailed (i.e. sup-881

ported) by a given premise. For training, we use882

2Implementation: https://github.com/
sukrutrao/Fast-Dawid-Skene

3Implementation: https://github.com/
dirkhovy/MACE

the Pascal RTE-1 dataset (Dagan et al., 2005) with 883

crowd-sourced labels from Snow et al. (2008). The 884

dataset consists of 800 premise-hypothesis pairs 885

annotated by 164 different annotators with 10 an- 886

notations per pair. The inter-annotator agreement 887

(IAA) is 0.629 (Fleiss κ). As an out-of-domain test 888

set, we use the Stanford Natural Langauge Infer- 889

ence dataset (SNLI) (Bowman et al., 2015), where 890

we transform the task into binary classification by 891

collapsing the “neutral” and “contradiction” classes 892

into a single class. 893

Medical Relation Extraction (MRE) Medical 894

relation extraction (MRE) seeks to predict what 895

relations hold between different biomedical enti- 896

ties in sentences extracted from biomedical papers. 897

The MRE dataset used for training in this work is 898

the crowd-sourced dataset from (Dumitrache et al., 899

2018), which collected crowd annotations from 900

3,984 sentences from PubMed abstracts (Wang and 901

Fan, 2014) annotated by at least 15 annotators for 902

14 different UMLS (Bodenreider, 2004) relations. 903

Here we focus on the 975 sentence subset which 904

also received expert annotations, specifically for 905

the “cause” relationship. As such, we follow pre- 906

vious work (Uma et al., 2021) and frame the task 907

as a binary classification problem, where a posi- 908

tive label indicates the “cause” relation exists. The 909

IAA for this dataset is 0.857, while the accuracy 910

with respect to the expert gold labels is 76.1%. For 911

testing, we use the causal claim-strength dataset cu- 912

rated from (Wright and Augenstein, 2021), which 913

contains 1,126 sentences from news articles and sci- 914

entific papers related to health science labeled for 915

causal claim strength (statement of no relation, cor- 916

relational, conditional causal, and causal). We con- 917

vert the dataset to a binary classification problem 918

by combining the “conditional causal” and “causal” 919

classes into the positive class and the “correlational” 920

and “no relation” classes into the negative class. 921

Part-of-Speech Tagging (POS) The POS tag- 922

ging task is a sequence tagging task, where the 923

goal is to predict the correct part-of-speech for 924

each token in a sentence. For training data, we 925

use the Gimpel dataset from Gimpel et al. (2011) 926

with the crowd-sourced labels provided by Hovy 927

et al. (2014) mapped to the universal POS tag set 928

in Plank et al. (2014). The dataset consists of 1000 929

tweets (17,503 tokens) labeled with Universal POS 930

tags and annotated by 177 annotators. Each to- 931

ken received at least 5 annotations. The IAA is 932
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0.725 and the average annotator accuracy with re-933

spect to the gold labels is 67.81%. We use the934

publicly available sample of the Penn Treebank935

POS dataset (Marcus et al., 1993) accessed from936

NLTK (Bird, 2006) as our out-of-domain test set,937

which consists of 3,914 sentences from Wall Street938

Journal articles (100,676 tokens).939

Toxicity Detection Finally, to measure perfor-940

mance on a highly subjective task, we use the941

toxicity detection dataset created as a part of942

the Google Jigsaw unintended bias in toxicity943

classification competition.4 The dataset we use944

comes from Goyal et al. (2022), which annotated945

25,500 comments from the original Civil Com-946

ments dataset. The pool of annotators is specifically947

selected and split into multiple rating pools based948

on self-indicated identity group membership. As949

this is a highly subjective task, the IAA in terms of950

Krippendorff’s alpha is 0.196. We randomly split951

the dataset into training and test, and for the test952

data we use the annotations in the original crowd-953

sourcing task; in other words, using a completely954

separate annotator pool that isn’t selected based on955

identity groups.956

C Evaluation Metrics957

F1 We used the sklearn implementation of958

precision_recall_fscore_support959

for F1 score, which can be found here:960

https://scikit-learn.org/stable/modules/961

generated/sklearn.metrics.precision_962

recall_fscore_support.html. Briefly:963

p =
tp

tp+ fp
964

965

r =
tp

tp+ fn
966

967

F1 =
2 ∗ p ∗ r
p+ r

968

where tp are true positives, fp are false positives,969

and fn are false negatives.970

Calibrated Log-Likelihood The calibrated log-971

likelihood is defined in Ashukha et al. (2020) as972

a method to fairly compare uncertainty estimation973

between models on the same test set. The key974

observation is that in order to obtain a fair compar-975

ison, one must first perform temperature scaling at976

4https://www.kaggle.com/competitions/jigsaw-
unintended-bias-in-toxicity-classification

the optimal temperature on the classifier output for 977

each model under comparison. Additionally, this 978

temperature must be optimized on an in-domain 979

validation set. The procedure to calculate the cali- 980

brated log-likelihood is: 981

1. Split the test set in half, one half for validation 982

and one half for test. 983

2. Optimize a temperature parameter T to min- 984

imize the average negative log-likelihood 985

− 1
n

∑
i log p̃(yi = y∗i |xi), where p̃i = 986

softmax( liT ) and li is the logits of the classifier, 987

on the validation half of the test set. 988

3. Measure the temperature scaled log-likelihood 989

on the test half of the test set. 990

Following the suggestion from Ashukha et al. 991

(2020), we run this procedure 5 times on different 992

splits of the test set and take the average test-half 993

log-likelihood as the result. 994

D Visualization 995

Here we plot the JSD between individual methods 996

and the averaging and JSC methods for each dataset 997

in Figure 4. 998

E CCCP Algorithm for Jensen-Shannon 999

Centroid 1000

Finding the JSC can be done efficiently using meth- 1001

ods from convex optimization. In particular, we 1002

use the ConCave-Convex procedure (CCCP, Yuille 1003

and Rangarajan 2001) developed in Nielsen (2020). 1004

The full derivation and definition of the method can 1005

be found in Nielsen (2020) Equations 94-104 and 1006

Algorithm 1, but at a high level, we can define a 1007

categorical distribution p with K classes using the 1008

natural parameter θ consisting of K − 1 compo- 1009

nents as: 1010

p = {θ1:(K−1), 1−
K−1∑
k=1

θk} 1011

The negative entropy of this distribution is then 1012

calculated in terms of θ as follows: 1013
1014

F (θ) = −H(θ) =

K−1∑
k=1

θk log θk 1015

+ (1−
K−1∑
k=1

θk) log(1−
K−1∑
k=1

θk) (11) 1016
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which has partial derivatives and inverse gradient:1017

∂

∂θk
= log

θk

1−
∑K−1

k=1 θk
(12)1018

1019

θk = (∇F−1(η))k =
eηk

1 +
∑K−1

k=1 eηk
(13)1020

The JSD between two categorical distributions p11021

and p2 under this view can then be calculated in1022

terms of the negative entropy F defined in Equa-1023

tion 11:1024

JS(θ1∥θ2) =
F (θ1) + F (θ2)

2
− F (

θ1 + θ2
2

)1025

Finally, the hyperparameterless update rule used to1026

find the locally optimum JSC of a set of probability1027

distributions p1:M using their natural parameters1028

θ1:M is defined in terms of Equation 12 and Equa-1029

tion 13:1030

θ(t+1) = (∇F )−1(
1

M

∑
m

F (
θm + θ(t)

2
)) (14)1031

where θ(0) = [fa(p1:M )]1:K−1.1032

F Reproducibility1033

All experiments were run using the RoBERTa1034

base model released in the HuggingFace hub1035

(roberta-base5) which has 125M parameters.1036

We ran our experiments on a single NVIDIA TI-1037

TAN RTX with 24GB of RAM. We used a learning1038

rate of 2e-5 with triangular learning rate schedule1039

using 200 warmup steps. POS, RTE, and Toxicity1040

tasks are trained for 5 epochs and MRE is trained1041

for 4 epochs, using the best validation F1 for the1042

final model. The average runtimes are: 50m00s1043

(Toxicity), 1m53s (MRE), 2m28s (POS), 2m39s1044

(RTE).1045

5https://huggingface.co/roberta-base
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Figure 4: Heatmaps of the average Jensen-Shannon divergence between individual soft labeling methods and
average and JS centroid aggregation for (a) RTE, (b) MRE, (c) POS, and (d) Toxicity datasets.
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