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ABSTRACT

Generative retrieval (GR) reformulates information retrieval (IR) by framing it as
the generation of document identifiers (docids), thereby enabling an end-to-end
optimization and seamless integration with generative language models (LMs).
Despite notable progress under supervised training, GR still struggles to generalize
to zero-shot IR scenarios, which are prevalent in real-world applications. To tackle
this challenge, we propose ZEROGR, a zero-shot generative retrieval framework
that leverages natural language instructions to extend GR across a wide range of
IR tasks. Specifically, ZEROGR is composed of three key components: (i) an
LM-based docid generator that unifies heterogeneous documents (e.g., text, tables,
code) into semantically meaningful docids; (ii) an instruction-tuned query generator
that generates diverse types of queries from natural language task descriptions
to enhance corpus indexing; and (iii) a reverse annealing decoding strategy to
balance precision and recall during docid generation. We investigate the impact of
instruction fine-tuning scale and find that performance consistently improves as
the number of IR tasks encountered during training increases. Empirical results
on the BEIR and MAIR benchmarks demonstrate that ZEROGR achieves strong
performance across diverse retrieval tasks, for example establishing a new state of
the art among generative retrieval methods.

1 INTRODUCTION

Dense retrieval (DR) (Karpukhin et al., 2020; Izacard et al., 2021), which encodes documents and
queries as embedding vectors, is arguably the most effective and widely adopted paradigm (Thakur
et al., 2021; Muennighoff et al., 2022) in information retrieval (IR). Despite its success, DR’s
expressivity is fundamentally limited by the embedding dimensionality (Cao et al., 2020) and does
not fully leverage the capabilities of generative language models (LMs) (Tay et al., 2022). As
an alternative, generative retrieval (GR) (Metzler et al., 2021) introduces a paradigm shift that
encodes corpus information into the model parameters, enabling document retrieval by generating
(relevant) document identifiers (docids). GR has demonstrated competitive performance on various
IR tasks when large-scale supervised data is available (Tay et al., 2022; Sun et al., 2023b; Chen et al.,
2022), spanning both traditional web search (Campos et al., 2016) and knowledge-intensive retrieval
applications (Petroni et al., 2020).

Despite its promising performance on in-domain tasks, GR exhibits limited generalization to out-
of-distribution IR tasks. Existing GR models are typically trained on specific corpora and queries,
and prior studies has shown that such training leads to poor performance on unseen tasks (Zhang
et al., 2025b; Liu et al., 2023b). In contrast, real-world IR models are typically evaluated in a broader
setting, characterized by substantial diversity and heterogeneity. These often involve heterogeneous
corpora and queries (Thakur et al., 2021), task-specific relevance criteria (Su et al., 2022; Asai et al.,
2022), and predominantly zero-shot scenarios where no supervised data is available (Thakur et al.,
2021; Muennighoff et al., 2022). Consequently, GR approaches designed for supervised conditions
struggle to generalize to such heterogeneous and data-scarce retrieval scenarios.

To address the limitations of GR in zero-shot and heterogeneous IR scenarios, we draw inspiration
from recent advancements in instructed DR methods (Su et al., 2022; Asai et al., 2022) and propose
ZEROGR, a generalizable framework for ZERO-shot Generative information Retrieval. ZEROGR is
a simple yet effective way to adapt GR to diverse IR tasks in a zero-shot setting by leveraging natural
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Figure 1: An overview of ZEROGR. Given a document collection, ZEROGR converts them into uni-
fied DocID representations, generates diverse pseudo-queries, and builds a generative retrieval index.
During online retrieval, ZEROGR decodes docids with reverse-annealed temperature scheduling to
balance precision and recall.

language task instructions. Specifically, we advance GR along three dimensions: (i) for docid design,
we propose a docid generator to efficiently convert a document of any format (e.g., paragraph, table,
code) into a unified text-based docid representation; (ii) for corpus indexing, we propose an instructed
query generator to generate diverse types of queries based on different task instructions; (iii) for
docid decoding, we propose a reverse annealing strategy that more effectively trades off precision
and recall of docid decoding than prior work.

Building on ZEROGR, we investigate instruction fine-tuning scaling (Chung et al., 2022) in the
context of GR along two key axes: the size of instruction tuning data and the size of the underlying
model. We find that increasing both the diversity and quantity of training tasks yields substantial
improvements in zero-shot retrieval performance on unseen tasks. Beyond training data scaling,
we also examine model size scaling and inference-time scaling for corpus indexing, observing
consistently promising scaling trends in both cases.

Our best-performing model, based on the Llama-3B LM, outperforms previous generative retrieval
methods and narrows the gap to state-of-the-art dense retrieval systems across heterogeneous IR
benchmarks, including BEIR (Thakur et al., 2021) and MAIR (Sun et al., 2024). Notably, ZEROGR
outperforms OpenAl Embed-v3 on zero-shot MAIR tasks, highlighting its strong generalization to
unseen retrieval tasks.

In summary, our contributions are as follows: (i) We propose ZEROGR, a zero-shot GR framework
that can construct task-specific GR search indices based on natural language instructions. (ii) Within
ZEROGR, we enhance GR by introducing three key components: a unified text-based docid generator,
an instruction-conditioned pseudo-query generator, and a reverse annealing decoding strategy. And
(iii) ZEROGR achieves competitive performance on heterogeneous IR benchmarks, establishing it as
the first GR approach capable of generalizing to diverse tasks in a zero-shot setting.

2 RELATED WORK

Document Retrieval Document retrieval is a fundamental task in information retrieval, with broad
applications in search engines and retrieval-augmented generation systems (Karpukhin et al., 2020;
Lin et al., 2020; Chen et al., 2025). It typically follows a two-stage pipeline: an initial retrieval stage
that recalls candidate documents, followed by a reranking stage for fine-grained ranking. Traditional
sparse retrieval methods (Robertson and Walker, 1997; Lafferty and Zhai, 2001; Robertson and
Zaragoza, 2009) rely on lexical overlap but suffer from vocabulary mismatch (Lin et al., 2020). Dense
retrieval (DR) addresses this issue by embedding queries and documents into dense vectors and
comparing them via inner product or cosine similarity (Karpukhin et al., 2020), with subsequent
improvements from hard negative mining, late interaction, and pre-training (Xiong et al., 2020;
Khattab and Zaharia, 2020; Wang et al., 2022a; Qu et al., 2021; [zacard et al., 2021). The reranking
stage is usually performed using cross-encoders or LLM prompting (Nogueira and Cho, 2019;
Nogueira et al., 2020; Sun et al., 2023c; Chen et al., 2024; Sun et al., 2023a; Zhang et al., 2025a; Liu
et al., 2025; Ma et al., 2023). However, this two-stage pipeline is difficult to optimize end-to-end due
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to its MIPS-based retrieval component and the objective mismatch with generative language model
training (Tay et al., 2022; Bevilacqua et al., 2022).

Generative Retrieval Unlike traditional dense retrieval methods (Karpukhin et al., 2020; Xiong
et al., 2020), GR formulates information retrieval as a docid generation task, enabling end-to-end
optimization of the inference-time search index (Tay et al., 2022; Metzler et al., 2021). Previous
research on GR has largely focused on three key aspects: (i) Docid design: Early approaches employed
rule-based formats such as titles (Cao et al., 2020; Chen et al., 2022), URLs (Zhou et al., 2022), or
text spans/summaries (Bevilacqua et al., 2022; Li et al., 2023a). More recent work has shifted toward
learning-based docid designs that capture corpus semantics more effectively, including embedding
clustering (Tay et al., 2022) and RQ-VAE-based approaches (Wang et al., 2024; Zeng et al., 2023;
Wang et al., 2023b). (ii) Corpus indexing: Several strategies have been explored to enrich corpus
representations, such as document chunking (Tay et al., 2022), pseudo-query generation (Zhuang
et al., 2022), rehearsal-based augmentation (Tang et al., 2023), multi-granular indexing (Wen et al.,
2025), and continual training for dynamic corpora (Mehta et al., 2022; Chen et al., 2023; Zhang et al.,
2025b). (iii) Docid decoding: The dominant approach has been constrained beam search (Cao et al.,
2020; Tay et al., 2022). More advanced strategies include multi-stage decoding (Ren et al., 2023),
multi-docid decoding (Li et al., 2023b), and simultaneous decoding (Zeng et al., 2024). Despite
steady progress, existing work primarily remains confined to supervised fine-tuning, relying heavily
on training data and failing to generalize to zero-shot retrieval tasks.

Instruction Fine-tuning in IR Inspired by the studies in LLM instruction tuning (Chung et al.,
2022; Wang et al., 2022b), instruction fine-tuning for retrieval has gained increased attention to
improve zero-shot IR performance (Su et al., 2022; Asai et al., 2022). Instruction-tuned models are
able to adapt to various tasks based on natural language instructions that specify the relevance criteria.
Recent studies in this direction include multi-task fine-tuning (Lee et al., 2024a), LLM-generated in-
struction data (Wang et al., 2023a; Lee et al., 2024b; Oh et al., 2024), and instruction-negatives (Weller
et al., 2024). These efforts have primarily focused on dense retrieval or cross-encoder rerankers (Sun
et al., 2024). To the best of our knowledge, we are the first to investigate instruction fine-tuning
for GR and to conduct a systematic study of the factors that influence instruction fine-tuning in IR
models.

3 PRELIMINARIES

Zero-shot document retrieval. We formulate the task of zero-shot document retrieval as follows.
Given a corpus D = (dy, ..., d,) containing n documents, a corpus indexing function Z takes D as
input and constructs a search index m = Z(D). Then, a retrieval function F takes the index m and a
query ¢ as input, and returns a list of relevant documents: (d;, ...) = F(m, q). Note that in a typical
zero-shot document retrieval setting, no training data is available. However, a natural language task
instruction instr; specifying the retrieval task is generally assumed to be available, as it is usually
easier to obtain (Muennighoff et al., 2022).

Generative retrieval. GR aims to retrieve the document d; by generating the corresponding document
identifier (docid) given the query ¢. To this end, GR assigns an identifier (docid) to each document
in the corpus, e.g. (21, ..., 2n), Where each z; is a sequence of tokens z; = {zgl), cey zZ-(T)} with a
maximum length of 7. Based on this, the indexing function Z(D) of GR is to train a language model
(LM) M on the corpus D, encoding the corpus information and also document-docid mapping. The
retrieval function F' is instantiated by the same M, and it generates the relevant document identifiers
(docids) (21, - - ., 2, ) given the query ¢: (z;,...) = M(q).

4 ZEROGR

We propose ZEROGR, a zero-shot GR framework that can adapt LMs into task-specific generative
search indexes based on task instructions. As shown in Figure 1, the proposed ZEROGR framework
consists of three key components: (i) a docid generator G, which takes a document d; as input
and outputs its docid z;; (ii) an instructed query generator, which takes a task instruction instr and
a document d; as input and outputs multiple pseudo-queries; (iii) a generative retriever M, which
takes the instruction and a query as input and generates a list of docids.
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The ZEROGR pipeline proceeds as follows: (i) given a new corpus D and its associated task instruction
instr, the docid generator assigns each document d; a docid z;; (ii) the instructed query generator Gy
samples B queries {g; 1, ...,¢; p} for each document d; € D, thereby creating (g; ;, z;) pairs; and
(iii) the generative retriever is trained to predict the corresponding docid z; given the concatenation
of instr and a sampled query ¢; ;. After training, the generative retriever M(z | g, instr) serves as
the search index m. For a given query ¢, a newly proposed reverse annealing decoding strategy is
employed to generate a ranked list of docids as retrieval results.

4.1 UNIFIED DOCID REPRESENTATION

Documents in downstream IR tasks can be heterogeneous, e.g., financial tables (Zhu et al., 2022), code
files (Liu et al., 2023a), meeting transcripts (Golany et al., 2024), or legal cases (Bhattacharya et al.,
2019). Existing simple docid strategies, such as using document titles, URLSs, or spans (Cao et al.,
2020; Bevilacqua et al., 2022), often fail to generalize to user-customized data. ZEROGR therefore
introduces a model-based docid generator G, that maps any document to a short, keyword-rich
sentence (typically 6-8 words) ranked by coverage. Formally, for a document d; we define

zi = Gy(d;) = argmaXGw(t | di), )
teys~rL

where ¢ is a token sequence of length < L (with L = 8) drawn from the vocabulary V. To instantiate
G, we first prompt a powerful LM (e.g., GPT-40) to create a training set of (d;, zz> pairs (see
Appendix A for the detailed prompt used). A smaller model (Llama-3.2-1B) is then fine-tuned on
this data, enabling fast, scalable generation of unified docids across diverse IR tasks. See Section 5.1
for details of training data.

4.2 INSTRUCTED CORPUS INDEXING

Corpus indexing in GR encodes each document d; € D into the model’s parameters so that, at
inference time, the model can recover d; by generating its document identifier z;. DSI-QG (Zhuang
et al., 2022) accomplishes this by pairing every document with a set of pseudo-queries, but its
effectiveness diminishes when the pseudo-query distribution diverges from real user queries (Pradeep
et al., 2023; Dai et al., 2022). This gap is especially large in heterogeneous IR scenarios, such as
conversational, code, or multimodal search.

We mitigate the distribution gap with an instructed query generator GGy, obtained by instruction-
tuning a 1B-parameter Llama model on diverse IR datasets verbalized through task-specific instruc-
tions. Given a document d; and a task instruction instr, the generator produces a pseudo-query g;_;
from the conditional distribution

gi,; ~ Go ( | d, instr). 2)

For each document we draw B queries with temperature of 1:

Qi ={4g1,.-.,¢B} 3)
These (d;, zz> pairs are used to train the generative retriever £LLM by minimizing the cross-entropy
loss
L(¢) = —Z Z log M(z; | gi,j, instr), 4)
di€D q;,;€Q;

thereby embedding the corpus into the model’s parameters. Appendix D summarizes the instruction-
tuning datasets.

4.3 REVERSE-ANNEALED DOCID GENERATION

During inference, a GR model must decode each docid z; as a sequence of tokens. Standard beam
search often collapses to a few high-probability sequences, hurting recall. We therefore propose
reverse-annealed sampling: each z; is generated token-by-token, while the sampling temperature is
gradually increased to encourage diversity. Let f(-) denote the trained decoder after corpus indexing,
and let 7" be a prefix tree whose leaves correspond to valid docids. For the i-th docid we decode
a token sequence x; = (x;1,...,%; 1,) using temperature t; = g(i). At position j we sample
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Tij o~ Softmax( -+ )
i Jlr

i

, Where £; ; are the logits conditioned on the current prefix (z;1.;-1),

and the subscript 7T; ; masks probabilities to tokens that keep the prefix inside the tree. After the
complete sequence x; is produced, its leaf is removed from 7" so no subsequent iteration can repeat
the same docid. The per-iteration temperature ¢; follows a normalized sigmoid:

o(k(£ —m)) — o(—km) 1

ti= 90 = T o(k(1 —m)) — o(—km)’ ST

(%)
where K is the total number of docids to generate, & > 0 controls the slope, and m € (0, 1) sets the
midpoint. Starting from a low temperature yields high-precision early selections; increasing t; over

iterations boosts exploration, thereby balancing precision and recall across the final ranked list. See
Alg. 1 and Figure 10 for algorithm detail.

5 EVALUATION SETUP

5.1 TRAINING DATASETS

To support the development of ZEROGR, we col-

lect training data covering a diverse range of IR Domain #Tasks #Samples
tasks. Speciﬁcally, we use .MAIR (Sun et al., Medical 5 421, 430
2024), a multi-task IR evaluation benchmark com- Financial 3 31,315
prising 126 tasks, and extract the training splits of Academic 18 744, 160
these tasks when available. As shown in Table 1 Coding 13 1, 969, 586
(and Figure 7 in Appendix D for data example), Legal 7 23, 086, 948
ZeroGR-Train is a dataset spanning 69 IR tasks Web-based 18 15, 319, 445
across 6 domains, containing 41 million query-

document pairs. ZeroGR-Train is the largest open- Table 1: Statistics of ZeroGR-Train

source IR training corpus to date. It offers greater
domain and task diversity, includes detailed instructional annotations, and provides reliable relevance
labels. See Table 7 for details.

5.2 EVALUATION DATASETS

To evaluate zero-shot GR on diverse downstream tasks, we use the BEIR and MAIR benchmarks:
(i) BEIR (Thakur et al., 2021). We evaluate models on all 12 tasks from BEIR collections.
(ii) MAIR (Sun et al., 2024). As we collect training data from a subset of MAIR tasks, we di-
vide MAIR into seen and unseen subsets, where the unseen subset contains tasks not present in
the ZeroGR-Training data, to validate the zero-shot generalization of models. In constructing this
benchmark, we curated a diverse set of long-tail tasks across 6 domains, and intentionally omitted
redundant tasks (e.g., different years of the same competition) and structurally complex ones (e.g.,
IFEval) that would introduce evaluation overhead. Given the large size of the MAIR dataset, we also
develop a Dev subset of MAIR for model ablation. Note that our current evaluation focus on tasks
with moderately sized corpus.

5.3 EVALUATION METRIC

We evaluate models using the following metrics: (i) Top-1 accuracy, which measures retrieval
precision by checking whether the top-ranked document is relevant to the query; (ii) hkDCG@ 10, a
popular metric that evaluates the quality of the top-10 ranked results by considering both the relevance
and position of retrieved documents; and (iii) Recall@ [00, which assesses recall by calculating the
percentage of relevant documents retrieved within the top-100 ranked list.

5.4 IMPLEMENTATION DETAILS

We implement the three components of ZEROGR, i.e., query generator, docid generator, and final
generative retriever, all with Llama-based LMs. For the docid generator, a Llama-1B-Instruct model
is trained on our curated document-docid pairs for 5 epochs with a constant learning rate of 5e-5.
Similarly, for the query generator, a Llama-1B-Instruct model is trained on the ZeroGR-Training set
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MAIR (38 Tasks) BEIR (11 Tasks)
Model Avg Web. Aca. Legal Med. Fin. Cod. Avg Web. Aca. Med. Fin.
BM25 36.1 343 392 345 424 400 17.3 424 454 38.8 327 41.6
Contriever 336 398 334 268 308 373 177 476 515 43.0 339 476

GTR-T5-base 325 36.0 336 253 319 374 187 453 50.7 353 327 453
GTR-T5-large 354 398 396 278 31.8 385 24.0 48.0 533 374 334 500

E5-Base 372 362 48.6 285 353 449 267 489 51.8 46.1 350 502
E5-Large 382 386 510 250 356 46.6 257 492 517 479 374 488
BGE-Base 370 386 402 258 376 422 29.0 505 525 471 36.0 552

BGE-Large 394 394 462 360 372 451 29.0 518 538 479 381 565

OpenAl-Embed 40.6 40.6 482 31.0 397 494 287 542 563 472 37.6 634
ES5-mistral-7B 46.8 454 554 423 431 553 400 557 564 486 39.6 68.8
GritLM-7B 47.0 44.1 582 433 426 57.6 400 450 477 482 369 378

ZeroGR-3B 41.1 427 474 400 383 392 363 481 492 458 347 538

Table 2: Combined Domain-wise Results on MAIR (Acc@1) and BEIR (nDCG @10). Perfor-
mance of different retrieval models across various domains. See Tab 4 and Tab 5 for details.

for 5 epochs with a constant learning rate of 5e-5. For the generative retriever, the model is trained
for each evaluated task on data generated by the query generator and docid generator, based on our
“Document Indexing” workflow described in Fig 1.

5.5 BASELINES

We evaluate ZEROGR against several representative IR baselines, spanning different retrieval
paradigms to provide a comprehensive comparison. (i) For sparse retrieval, we adopt the clas-
sical term-based model BM2S5, implemented using the BM25S package (Lu, 2024), which remains
a strong baseline in many IR tasks due to its simplicity and effectiveness. (ii) For traditional dense
retrieval models trained on a single task, we include Contriever-MARCO, GTR-base, and GTR-
Large, all of which are pretrained or fine-tuned on the MS MARCO dataset (Ni et al., 2021; Izacard
et al., 2021), representing a common practice in dense retrieval pipelines. (iii) For multi-task-trained
dense retrievers, we incorporate E5-Base and ES-Large (Wang et al., 2022a), BGE-base and BGE-
Large (Xiao et al., 2023), as well as OpenAI-Embedding-v3-Small, all of which use supervision
from multiple tasks to enhance generalization across diverse domains. (iv) For instruction-tuned
dense retrieval models, which aim to align the retriever with human instructions, we include ES-
Mistral-7B-instruct (Wang et al., 2023a), and GritLM-7B (Muennighoff et al., 2024), which are
trained on large-scale, diverse instruction datasets to follow task-specific intents effectively.

6 EXPERIMENTS

Our experiments address the following research questions:

1. How does ZEROGR compare with dense retrieval methods?
We evaluate ZEROGR against leading models on the MAIR benchmark (Section 6.1) and conduct
additional analysis on the BEIR datasets (Section 6.2).

2. How do model design and training strategies influence the performance of ZEROGR?
To answer this, we conduct a systematic study on the development set, investigating key factors in
generative retrieval. Specifically, we analyze how instruction tuning task diversity (Section 6.3),
docid design (Section 6.4), corpus indexing strategy, model size (Section 6.5), and decoding
strategy (Section 6.6) affect performance.

6.1 EVALUATION RESULTS ON MAIR

As shown in Table 2 (MAIR), our proposed ZEROGR framework demonstrates strong performance
across a wide range of retrieval tasks. It achieves an average score of 41.1 (Acc@1), substantially
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Method | Training Data | Avg Argu. SciF. NFC. FiQA SciD. Covid
GENRE (Cao et al., 2020) GPL 23.0 425 423 200 11.6 6.8 14.7
GENRET (Sun et al., 2023b) GPL 41.1 343 639 316 30.2 14.9 71.8
GLEN (Lee et al., 2023) NQ320k - 17.6 - 159 - - -
TIGER (Rajput et al., 2023) | ZeroGR-Train | 31.0 140 37.0 39.5 16.0 14.0 65.7
ZeroGR (Ours) ZeroGR-Train | 44.9 354 728 34.7 34.1 18.7 73.5

Table 3: Performance of different generative retrieval models across various datasets on BEIR.
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Figure 2: Model performance on unseen-dev tasks as a function of the number of training
tasks. We increase the number of training tasks, starting from MS MARCO, and incrementally add
open-domain QA datasets (e.g., NQ), BEIR-Train sets (e.g., NFC), MTEB-Train data (e.g., NLI),
and finally the ZeroGR-Train collection, which includes 60 tasks across 6 domains. Left: More
instruction-tuning tasks lead to more diverse queries. Middle: More instruction-tuning tasks reduce
docid conflicts. Right: More instruction-tuning tasks improve the Acc@1 score.

outperforming traditional sparse retrieval methods like BM25 and widely adopted dense retrieval
models such as Contriever, GTR, ES, BGE, and even the strong instruction-tuned OpenAI-Embedding-
v3-Small. These results highlight the effectiveness of our instruction-based generative retrieval
approach in capturing deeper semantic relevance.

The performance gains of ZEROGR are not limited to familiar tasks but also generalize well to unseen
domains. Notably, the model performs better than all baselines on several previously unseen datasets,
including Apple, MB, PM.A, DD, and NCL (see Table 4). This demonstrates the robustness and
transferability of the approach, as it adapts effectively to new retrieval settings without requiring
additional task-specific supervised data. See Figure 6 for a comparison on the MAIR unseen subset,
where ZEROGR achieves competitive performance against recent dense retrieval methods.

Using a 3B LLM, ZEROGR can achieve strong performance across different tasks compared to
baselines, though it still underperforms large embedding models such as GritLM-7B and ES-Mistral-
7B. This indicates that our design is highly parameter-efficient, achieving strong performance across
diverse tasks without relying on massive model scaling. See Appendix C for per-task performance.

6.2 EVALUATION RESULTS ON BEIR

As shown in Table 2 (BEIR), ZEROGR outperforms several baselines such as BM25, Contriever, GTR,
and GritLM-7B, but still underperforms other dense retrieval methods. Table 5 compares ZEROGR
with previous generative retrieval baselines on BEIR, which we can see our method achieves best
performance among most datasets.

6.3 SCALING INSTRUCTION FINE-TUNING

A key factor in enhancing the performance of LM-based tasks is scaling, i.e., increasing model size
or data volume. The effectiveness of ZEROGR stems from instruction fine-tuning on multi-task
IR datasets, which improves the instruction-following abilities of both the query generator and the
title generator models. To investigate the impact of multi-task training, we curate training data with
varying numbers of tasks: (a) MS MARCO, which contains a single task (i.e., MS MARCO (Campos
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Figure 3: Left: Comparison of different docid designs. Middle: Acc@]1 vs. generated queries per
document. Right: Acc@1 vs. model size. Gray curves are per-task score.

et al., 2016)) and is commonly used in previous GR work; (b) + OpenQA, which adds popular
open-domain question answering datasets, including NQ (Kwiatkowski et al., 2019) and HotpotQA;
(¢) + BEIR-Train, which incorporates the training splits of BEIR (Thakur et al., 2021), such as
NFCorpus and Quora; (d) + MTEB-Train, which includes additional tasks from MTEB (Muennighoff
et al., 2022) that are not covered in BEIR, such as NLI (we use the public BGE training split to collect
these data); and (e) + ZeroGR-Train, which includes the data we collected from the training split of
the MAIR (Sun et al., 2024) task collection, comprising 69 tasks from 6 domains (Figure 2).

Figure 2 shows the evaluation results of models (both query generator and docid generator) trained
with different levels of task diversity, evaluated on the unseen task subset (i.e., tasks not included in
any training set) of MAIR. The left plot in Figure 2 shows the distribution of average query length
across tasks. We observe that models trained on more IR tasks generate queries with greater length
diversity, indicating task-aware query generation strategies. In contrast, the baseline model trained
only on MS MARCO produces short queries, averaging 8 words. The middle plot shows the docid
conflict rate, i.e., the percentage of documents in the corpus assigned the same docid by the docid
generator. Models trained on diverse tasks exhibit lower conflict rates, suggesting a stronger ability to
process heterogeneous corpora. The MS MARCO baseline shows higher conflict on several diverse
tasks. Finally, the right plot reports retrieval performance (top-1 accuracy) for different models. We
observe consistent performance improvements on unseen tasks as training data diversity increases.

6.4 COMPARISONS OF DIFFERENT DOCID DESIGNS

Figure 3 compares our proposed unified docid with previous GR docid designs, while keeping
all other factors (e.g., query generator, model choice, optimization strategy) constant to ensure
an apple-to-apple comparison of docid effectiveness. The compared docid designs include: (i)
Random (Tay et al., 2022), a baseline that assigns each document a random string as its docid; (ii)
Sentence (Bevilacqua et al., 2022), which uses all sentences of each document as its docid; (iii)
Paragraph (Tay et al., 2022), which takes the first paragraph of each document as its docid; (iv)
Query (Tang et al., 2023), which uses a query generator to produce a single query per document as
its docid; (v) Summary, as introduced in (Li et al., 2024), which uses the output of a summarization
model as the docid; (vi) RQ-VAE (Zeng et al., 2023), which trains a RQ-VAE model on document
embeddings produced by the BGE-Large model, enabling quantization of document embeddings
into a sequence of tokens. This is a widely adopted docid representation in competitive GR systems.

From the results, we observe that among the various docid designs, our proposed docid generator
consistently achieves the best performance on unseen development tasks. In particular, it significantly
outperforms other text-based approaches such as Summary and Query, highlighting its superior ability
to encode meaningful and discriminative document representations. This suggests that our design
not only captures richer document semantics but is also better aligned with the generative retrieval
objective, enabling more accurate and robust document retrieval. We further find that the performance
of the RQ-VAE method is relatively unstable across different tasks, often requiring longer training to
converge effectively. In contrast, our text-based docid benefits from the pretrained LM’s inherent
understanding of natural language, which facilitates more efficient learning and faster convergence.
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Figure 4: Ablation study of decoding algorithms across different metrics. Our proposed reverse
annealing decoding achieves a good balance between precision and recall. Note that the y-axis is
rescaled based on the model gap.

This synergy between instruction-driven docid generation and LM capabilities underpins the strong
performance and generalization ability observed in our experiments.

6.5 SCALING QUERIES NUMBER AND MODEL SIZE

The middle section of Figure 3 illustrates the impact of the number of queries generated per document
on the average top-1 accuracy of ZEROGR. We observe a clear upward trend: as the number of
queries increases, the retrieval performance improves steadily. This highlights the importance of
diverse query views for better semantic coverage during indexing. Notably, when using eight queries
per document, ZEROGR already reaches performance on par with the strong sparse baseline BM25.
Further increasing the query count to sixteen enables ZEROGR to surpass BM25, suggesting that
high query diversity provides richer signals for matching user queries to relevant documents.

The right section of Figure 3 examines how the size of the backbone language model affects retrieval
performance. For this analysis, we adopt a series of Qwen2.5 (Qwen et al., 2025) models with varying
parameter scales. The results demonstrate a consistent gain in top-1 accuracy on unseen IR tasks as
the model size grows, implying that larger models benefit from enhanced generalization and better
understanding of the instruction-based retrieval formulation. This finding underscores the value of
scaling up model capacity in generative retrieval frameworks, particularly in zero-shot settings.

6.6 ANALYSIS OF DECODING STRATEGIES

In Figure 4, we compare our reverse annealing decoding with other popular decoding algorithms,
including greedy decoding (i.e., greedily sampling from the GR model without replacement), nucleus
sampling with a top-p of 0.9, and beam search. All methods decode the top-100 docids for evaluation.
From the results, we observe that greedy decoding achieves the best performance in terms of Acc@1,
but lacks diversity and yields low recall. Nucleus sampling performs poorly on Acc@1 but achieves
high recall. In contrast, reverse annealing strikes a good balance between precision and recall,
achieving competitive results across all metrics.

7 CONCLUSION

This work presents ZEROGR, an instruction-driven framework that extends generative retrieval
to zero-shot scenarios. By unifying three key components, viz. a model-based docid generator,
an instruction-conditioned query generator, and a reverse-annealed decoding algorithm, ZEROGR
transforms a corpus and a natural-language task description into a task-specific generative index
without requiring supervision. Systematic scaling studies along task diversity, query volume, and
model size reveal consistent performance improvements. Empirical evaluations on MAIR tasks
and BEIR datasets demonstrate the effectiveness of ZEROGR. The limitations of this work include
the lack of evaluation on large-scale corpora (e.g., those with over 1M documents) and the use of
relatively small LLMs (our largest model is only 3B). We believe further work is required to scale
both the corpus size and the model size.
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Figure 5: Performance (nDCG@ 10) of different generative Figure 6: Performance (Acc@1) on un-
retrieval models across various datasets on BEIR. seen subset of MAIR.

A PROMPTS

1. *xLengthx*: Strictly 6-8 words (terms/words)
2. *+Term Inclusionxx: Must include 3-5 core terms directly from
the document
3. *xTerm Positioning**: Rank by relevance and importance (highest
+ lowest, general - specific)
4. «xFormattingxx:

— Use lowercase letters, numbers, and spaces only

- Preserve special terms/symbols (e.g., PD3.1)

- *«xNo articlesx* (a, the), xxlinking verbsx+*, or auxiliary
verbs

- *xxNo verbsx* (use nouns/adjectives only)
5. *xRequirementsx*x*:

— Terms must be derivable from the document

- Ensure uniqueness and precise core content representation

B DECODING

Algorithm 1 DocID Generation with Reverse Annealing

Require: 7 (total number of docids), model, query, max_temperature
Ensure: List of generated docids
1: fort=1,2,...,T do
2:  # Compute normalized decoding temperature (Eq. 5)
3:  temperature, <— reverse-annealing(¢, 7', max_temperature)
4:  # Generate next tokens with temperature control
5:  docid; < model(query, temperature, )
6: end for
7: return List of generated docids

C EXPERIMENTAL RESULTS ON MAIR AND BEIR

Our experimental results on MAIR and BEIR are shown in Table 4 and Table 5.

D THE ZEROGR-TRAIN DATASET

We show the statistics of ZeroGR-Train Dataset in the Table 7 and Figure 7.
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Dataset Seen Subset Unseen Subset

Model Avg FiQA NFC.s SciD. SciF. ToQA. TAT CoF. LeetC. LitSe. BiSum CodeSe.  Math ConvE. Conala StMath Apple FinBen AILAC AILAS
BM25 36.1 240 455 16053.0 11.0 67.1 479 120 660 690 330 410 479 7.0 200 521 9.0 140 10.0
Contriever 33.6 330 435 170620 11.0 543 427 70 390 540 370 360 427 90 130 507 6.0 12.0 6.0
GTR-T5-base 325 330 43.0 12050.0 160 586 375 6.0 410 470 41.0 490 375 9.0 160 479 10.0 40 100
GTR-T5-large 354 450 435 140550 120 400 427 100 430 590 51.0 630 427 11.0 230 50.7 140 6.0 6.0
E5-Base 372 410 40.0 17.0 63.0 160 614 521 110 490 61.0 590 780 521 100 36.0 521 18.0 6.0 120
E5-Large 382 450 455 20067.0 13.0 700 573 9.0 490 520 57.0 750 573 11.0 440 479 130 120 6.0
BGE-Base 37.0 43.0 435 200620 13.0 586 417 100 440 67.0 640 500 41.7 130 250 479 200 8.0 8.0
BGE-Large 394 51.0 465 220650 13.0 60.0 448 130 560 68.0 660 660 448 8.0 220 466 23.0 8.0 8.0

OpenAI-Embed 406 51.0 51.0 22.060.0 19.0 629 510 60 530 590 670 73.0 510 13.0 33.0 521 300 100 100
GTE-Qwen2-1.5B 444 540 50.0 24.0 69.0 250 657 656 41.0 630 79.0 70.0 840 656 200 400 479 330 120 100

ES5-mistral-7B 46.8 60.0 50.5 17.0 67.0 14.0 67.1 64.6 36.0 68.0 740 540 78.0 646 300 470 438 41.0 120 380
GritLM-7B 47.0 63.0 49.5 29.0 69.0 17.0 857 625 46.0 60.0 740 530 87.0 625 21.0 460 438 33.0 120 420
ZeroGR-3B 41.1 37.0 36.5 24.051.0 13.0 38.6 573 36.0 41.0 810 610 81.0 573 120 400 52.1 11.0 120 22.0

Unseen Subset

ACOR.CPCDCORE MB. PM. PM.ACIiDSCliT23 DD Table QuanT PoRecMonant NCL.NCL.T Legal Geno. Touche CliT21 News21

BM25 328 10 375 838539 65 283 514 156 100 869 245 674 507 222 450 528 592 333 109
Contriever 404 1.0 525 892329 00 67 378 213 83 768 467 650 600 342 350 278 520 327 238
GTR-T5-base 313 1.0 475 892368 1.6 133 365 136 125 778 377 700 480 222 400 250 551 293 156
GTR-T5-large 348 30 60.0 919316 1.6 83 392 162 100 788 487 680 533 239 400 250 653 373 19.1
ES-Base 404 3.0 425 811434 65 117 392 132 58 788 542 720 553 274 350 333 378 360 145
ES5-Large 384 30 450 865368 48 150 405 123 75 808 525 710 553 479 300 389 418 320 172
BGE-Base 394 00 450 919487 00 300 31.1 164 83 81.8 444 700 573 427 200 361 418 413 199
BGE-Large 369 00 525 946421 32 233 284 178 50 81.8 504 740 540 402 600 389 510 413 152

OpenAl-Embed 328 1.0 550 86.546.1 32 250 446 135 125 869 473 760 573 496 450 333 520 380 137
GTE-Qwen2-1.5B 379 5.1 70.0 81.1 145 81 20.0 17.6 148 142 859 586 742 613 513 400 61.1 653 313 230

ES-mistral-7B 419 50 600 838434 1.6 467 486 194 11.7 838 66.1 71.0 627 581 450 36.1 582 467 254
GritLM-7B 354 70 650 703592 00 283 459 148 108 869 722 770 633 504 450 333 571 473 227
ZeroGR-3B 267 40 550 892239 129 250 379 444 120 798 609 69.7 653 362 450 583 469 420 215

Table 4: Model performance (top-1 retrieval accuracy) on seen and unseen subset of MAIR.

Instruction: Retrieve ACL and ICLR research
papers to address the user’s question.

Query: What paper first used the technique of
prompt engineering to generate adversarial
prompts that can fool LLMs into making wrong

Instruction: Retrieve solution for

LeetCode question. The solution should
in javaseript, solutions in other
languages are irrelevant.

Query: Title: Longest Mountain in

predictions in prompt-based learning?
Doc: AN LLM CAN FOOL ITSELF: A

PROMPT-BASED ADVERSARIAL AT
TACK Abstract: The wide-ranging =
-

applications of large language models ...

Aray Content: You may recall that an
array ‘arr’ is a **mountain amray** if
finin* arrlength >=3

+ *javascriptinfunction
longestMountain(arr) S
{n letn=arr.length, res

Instruction: You are a HUa[-uO
protein engineer capable of
predicting EC numbers from

a combination of textual CARE

Instruction: Given a
legal question, retrieve the
relevant statutory articles
from Belgian law.

Query: Je suis marié(e)
Nous sommes mariés.
Dois-je reconnatre mon
enfant ?

Doc: Law type: federal
Code: Code Civil
Chapter: De l'etablissem
ent de la filiation paterne
lle. Section: De

la presumption
de paternite...

information and reactions .
corresponding to specific

ot pubMed rain
Query: Reaction text: 3-

phosphonopyruvate + H20 Co(\t@x‘
= pyruvate + phosphate

Reaction: 0.0-C(0) ..
Doe: EC number:3.11.1.3
Sequence:MTKNQALRAA
LDSGRLFTAMAAHNPLV

AKLAEQAGFGGIWGSGF
FELSASYAVPDANILS
MSTHLEMMRAIAS

TVSIPLIADL... o Instruction: Given a claim, find documents that refute
the claim.

—_ > é Q Query: It would send out a consistent message

2 2 2. 7 Most countries have animal welfare laws to prevent
Instruction: Given a question and a specified file name, retrieve 'é “é Q @é animal cruelty but have laws like the UK's Animals
relevant passages that contain the answer to the question .. . b [@) P (Scientific Procedures) Act 1986 ...
Query: File: PNC/2012/page_110.pdf Question:\nin millions , what is = ‘g o Doc: There is a moral dﬂT_erence between harm for

= v the sake of harming an animal and harm

the total of home equity lines of credit?
Doe: Table row-7nHeader: ['in millions’, 'interestonlyproduct’,
‘principalandinterestproduct J\n['total (a ), 'S 15553', 'S 7376']

. e . AN
in order to save lives. Lifesaving drugs
is a very different purpose to betting =

or enjoyment that animal welfare .

Figure 7: Overview of ZeroGR-Train.
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Category Method Avg. ArguAna SciFact NFCorpus FiQA SciDocs
Sparse  BM25 423 32.7 65.1 32.7 24.8 12.4
DR Contriever 47.6 32.1 70.3 339 355 15.7
DR GTR-T5-base 45.3 32.7 58.6 32.7 34.5 12.1
DR GTR-T5-large 48.0 34.3 61.9 334 433 12.8
DR ES5-Base 48.9 31.1 73.9 35.0 39.6 18.3
DR ES-Large 49.2 31.7 76.3 37.4 423 19.6
DR BGE-Base 50.5 41.8 74.3 36.0 434 19.8
DR BGE-Large 51.8 41.6 75.2 38.1 48.5 20.6
DR ES5-mistral-7B 55.7 44.1 76.6 39.6 59.7 20.7
DR GritLM-7B 45.0 40.7 76.8 36.9 44.1 19.6
DR OpenAl Embed 54.2 37.1 73.1 37.6 48.5 21.2
GR GENRE - 42.5 423 20.0 11.6 6.8
GR GENRET - 34.3 63.9 31.6 30.2 14.9
GR GLEN - 17.6 - 15.9 - -
GR TIGER (Llama-3B) - 14.0 37.0 39.5 16.0 14.0
GR ZeroGR-3B 48.1 354 72.8 34.7 34.1 18.7
Category Method Touche TREC-News Fever Quora Covid CQADupStack
Sparse  BM25 59.0 20.7 58.3 73.8 58.3 28.0
DR Contriever 42.5 27.3 90.6 86.6 59.6 29.9
DR GTR-T5-base 48.1 22.5 83.2 88.7 56.1 28.9
DR GTR-T5-large 53.1 26.6 86.8 89.1 56.7 29.8
DR ES5-Base 41.1 22.9 91.1 86.4 60.7 383
DR ES5-Large 34.8 253 93.1 86.9 55.2 38.5
DR BGE-Base 414 21.2 85.6 89.8 67.1 35.1
DR BGE-Large 45.5 21.4 86.6 89.3 64.5 38.3
DR ES5-mistral-7B 46.8 29.4 91.8 84.8 77.8 41.4
DR GritLM-7B 21.5 34.9 68.9 84.9 31.5 35.0
DR OpenAl Embed 47.5 26.2 92.8 89.9 78.2 441
GR GENRE - - - - 14.7 -
GR GENRET - - - - 71.8 -
GR GLEN - - - - - -
GR TIGER (Llama-3B) 58.1 16.4 - 59.6 65.7 -
GR ZeroGR-3B 37.5 23.5 86.7 76.7 73.5 35.2

Table 5: nDCG @10 on BEIR benchmark datasets.

Domain MAIR-Full ZeroGR-Train MAIR-Test BEIR

Academic 16 18 5 2
Code 18 13 3 0
Finance 8 8 5 1
Legal 11 7 4 0
Medical 19 5 8 2
Web 54 18 13 6
All 126 69 38 11

Table 6: Dataset domain statistics of MAIR-Full, ZeroGR-Train, MAIR-Test, and BEIR.
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Dataset Samples Dataset Samples
Academic
S20RC-title-citation 100,000 TAD 208,255
S20RC-abstract-citation 100,000 TAS2 107,700
S20RC-title-abstract 100,000 StackMathQA 47,142
ProofWiki-Proof 15,520 ProofWiki-Reference 2,098
ProofWiki-Proof 15,520 ProofWiki-Reference 2,098
Stacks-Proof 10,928  Stacks-Reference 9,022
Stacks-Reference 9,022 Competition-Math 7,500
Competition-Math 7,500 SciDocs 900
SciFact 809 LitSearch 146
Code
CodeSearchNet 1,880,853 CodeEditSearch 21,395
SWE-Bench 18,817 RepoBench 16,655
HF-API 8,191 TLDR 6,414
TensorAPI 6,190 APPS 5,000
LeetCode 2,260 Conala 1,794
PyTorchAPI 837 HumanEval-X 720
MBPP 374
Finance
USnews 9,999 FinQA 6,251
FiQA 5,500 HC3Finance 3,104
ConvFinQA 3,037 TheGoldman 1,512
TAT-DQA 1,012  Trade-the-event 900
Legal
LePaRD 22,734,882 CLERC 327,414
BillSum 18,949 REGIR-UK2EU 2,100
REGIR-EU2UK 2,000 BSARD 886
CUAD 717
Medical
PubMedQA-Context 196,696 PubMedQA-Answer 196,696
Huatuo 25,371 NFCorpus 2,590
CARE 77
Web
Reddit 12,704,958 AGNews 1,157,745
CC-News 708,241 Xsum 204,045
zsRE 147,909 ToT 109,454
Fever 109,810 WoW 63,734
TopiOCQA 45,450 AY2 18,395
CQADupStack 13,045 InstructIR 9,806
Quora 9,900 WnCw 5,499
TREx 4,900 ExclulR 3,352
NevIR 1,896 ArguAna 1,306

Table 7: Dataset statistics grouped by domain and sorted by sample count.
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Figure 8: Docid conflict rate wrt docid length.
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Figure 9: Average number of decodable tokens at each position, for RQ-VAE docid and our title

docid.
Model Size Training Data Link
BM25 N/A N/A https://github.com/cvangysel/BM25S
Contriever-MARCO 110M MS MARCO https://github.com/facebookresearch/contriever
GTR-base 110M MS MARCO https://huggingface.co/google/gtr-base
GTR-large 335M MS MARCO https://huggingface.co/google/gtr-large
ES5-base 110M unknown https://huggingface.co/intfloat/e5-base-v2
E5-large 335M unknown https://huggingface.co/intfloat/e5-large-v2
BGE-base 110M MTEB-Train https://huggingface.co/BAAl/bge-base-en-v1.5
BGE-large 335M MTEB-Train https://huggingface.co/BAAl/bge-large-en-v1.5
OpenAl-Embed-Small ~ unknown unknown https://platform.openai.com/docs/guides/embeddings
ES5-Mistral-7B-instruct 7B E5 (LLM generated)  https://huggingface.co/intfloat/e5-mistral-7b-instruct
GritLM-7B 7B E5 (LLM generated) https://huggingface.co/GritLM/GritLM-7B

Table 8: Dense retrieval model information.
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Method Training Data Model Size  DocID Type Decoding
GENRE (Cao et al., 2020) GPL T5-220M Title Beam Search
GENRET (Sun et al., 2023b) GPL T5-220M RQ-VAE Beam Search
GLEN (Lee et al., 2023) NQ320k T5-220M Keywords Beam Search
TIGER (Rajput et al., 2023)  ZeroGR-Train  Llama-3B RQ-VAE Reverse-Annealing
ZeroGR (Ours) ZeroGR-Train  Llama-3B Title Reverse-Annealing

Table 9: Generative retrieval model information.

Name Model Task List (with query count)

Figure 2, Llama-1B {ToolBench (100), AILA2019-Case (50), NFCorpus (100), SciFact (100),

Figure 3 ArguAna (100), LitSearch (100), ClinicalTrials_2023 (37), FinanceBench

(left) (100), SciDocs (100), News21 (100), TopiOCQA (100), Touche (49), FiQA
(100)}

Figure 3 Llama- {LeetCode (100), Competition-Math (100), TMDB (100), Stein_Proof (64),

(middle, 1B, or PytorchAPI (100)}

right) Qwen2.5

Figure 4 Llama-1B {Leetcode (100), Competition-Math (100), BillSum (100), SciFact (100), TAT-
DQA (70), ConvFinQA (96)}

Table 10: Development set for ablation study.

Task doc2query our query generator Diff

AILA2019-Case 2.00 2.00 +0.00
Apple 13.70 5.48 -8.22

ArguAna 12.00 11.00 -1.00

BillSum 36.00 66.00 +30.00
ClinicalTrials_2021 4.67 6.67 +2.00
ClinicalTrials_2023 1.35 2.70 +1.35

CodeEditSearch 13.00 22.00 +9.00
CodeSearchNet 33.00 56.00 +23.00
Competition-Math 40.00 61.00 +21.00
Conala 3.00 9.00 +6.00
ConvFinQA 22.92 37.50 +14.58
FiQA 7.00 13.00 +6.00
FinQA 14.44 41.11 +26.67
LeetCode 6.00 30.00 +24.00
LegalQuAD 10.00 4.00 -6.00

LitSearch 12.00 31.00 +19.00
NFCorpus 41.00 6.50 -34.50
News21 13.67 21.88 +8.20
SciDocs 16.00 14.00 -2.00

SciFact 34.00 42.00 +8.00
StackMathQA 13.00 26.00 +13.00
TAT-DQA 7.14 27.14 +20.00
ToT_2023 3.00 0.00 -3.00

TopiOCQA 18.00 8.00 -10.00
Touche 46.94 39.80 -7.14

Average 16.95 23.35 +6.40

Table 11: Performance comparison between doc2query and our method for the RQ-VAE docID
baseline (TIGER (Rajput et al., 2023)).
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def normalized_sigmoid(t, k=10, m=0.5):
sigmoid = lambda z: 1 / (1 + np.exp(-z))
a = sigmoid(k * (0 - m))
b = sigmoid(k » (1 - m))

return (sigmoid(k = (¢t - m)) - a) / (b - a)
Figure 10: Normalized sigmoid function. ¢ is the step number.
Type | Example
Random | asd8xc2c9ma90xj2398
Sentence | LIMASSOL, Cyprus, April 28, 2021 /PRNewswire/ — One of the top
financial investment firms of the FX industry, Windsor Brokers ....
Paragraph | LIMASSOL, Cyprus, April 28, 2021 /PRNewswire/ — One of the top
financial investment firms of the FX industry, Windsor Brokers ....
Query | Induction of myelodysplasia by myeloid-derived suppressor cells.
Summary | 1. Game of Thrones season 7 2. Plot and storyline 3. New cast members
4. Filming locations 5. Critical reception and ratings
RQ-VAE <1gl16289|> <|gl3509|> <|gl0485|> <|gll274|>
<|g369|> <|g3661|> <|gl3026]|> <|g8187]|>
IDF \ brokerswindsor mt4 brokerswere kontos windsorbrokers
Ours | rna folding computational methods thermodynamic optimization model
Table 12: Examples of different types of docids.
Category Query Types Doc Types
Train N Eval Question, Dialog, Claim, Document, Answer, Function,
Function Header, NL Command, Command Doc, Solution, Article,
Code Problem, Math question, Articles, Medical Document,
Paper Title, Summary Paragraph, Pages, Statute,
Passage, Passages, Table & Paragraph
(9 types) (14 types)
Only in Eval Health Record, Topic, Situation, Clinical Trials, Prior Case,

Request, Patient Data,
Medical Case, Patient Description,
Medical Claim, Numerical Claim

(9 types)

Communications, Dataset, Music,
Tweet, News, POI, Table

(8 types)

Only in Train

Math Statement, Entity & Relation,
Paper Abstract, Entity Mention,
CNL Command, GitHub Issue,
Commit, Code Context,

Math Question, Title, EU Directive,
UK Legislation, Instruction,
Reaction, Description

(14 types)

Entity Page, Citation, Proof,
Reference, Duplicate Question,
Related File, Code Diff,

Next Function, HuggingFace API,
Tensor API, PyTorch API,

UK Legislation, EU Directive,
Highlight, Proteins Documents,
Wikipedia Page

(16 types)

Table 13: Comparison of Query and Doc Types between Dataset A (38 datasets) and Dataset B (51

datasets)
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