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ABSTRACT

Generative retrieval (GR) reformulates information retrieval (IR) by framing it as
the generation of document identifiers (docids), thereby enabling an end-to-end
optimization and seamless integration with generative language models (LMs).
Despite notable progress under supervised training, GR still struggles to generalize
to zero-shot IR scenarios, which are prevalent in real-world applications. To tackle
this challenge, we propose ZEROGR, a zero-shot generative retrieval framework
that leverages natural language instructions to extend GR across a wide range of
IR tasks. Specifically, ZEROGR is composed of three key components: (i) an
LM-based docid generator that unifies heterogeneous documents (e.g., text, tables,
code) into semantically meaningful docids; (ii) an instruction-tuned query generator
that generates diverse types of queries from natural language task descriptions
to enhance corpus indexing; and (iii) a reverse annealing decoding strategy to
balance precision and recall during docid generation. We investigate the impact of
instruction fine-tuning scale and find that performance consistently improves as
the number of IR tasks encountered during training increases. Empirical results
on the BEIR and MAIR benchmarks demonstrate that ZEROGR achieves strong
performance across diverse retrieval tasks, for example establishing a new state of
the art among generative retrieval methods.

1 INTRODUCTION

Dense retrieval (DR) (Karpukhin et al., 2020; Izacard et al., 2021), which encodes documents and
queries as embedding vectors, is arguably the most effective and widely adopted paradigm (Thakur
et al., 2021; Muennighoff et al., 2022) in information retrieval (IR). Despite its success, DR’s
expressivity is fundamentally limited by the embedding dimensionality (Cao et al., 2020) and does
not fully leverage the capabilities of generative language models (LMs) (Tay et al., 2022). As
an alternative, generative retrieval (GR) (Metzler et al., 2021) introduces a paradigm shift that
encodes corpus information into the model parameters, enabling document retrieval by generating
(relevant) document identifiers (docids). GR has demonstrated competitive performance on various
IR tasks when large-scale supervised data is available (Tay et al., 2022; Sun et al., 2023b; Chen et al.,
2022), spanning both traditional web search (Campos et al., 2016) and knowledge-intensive retrieval
applications (Petroni et al., 2020).

Despite its promising performance on in-domain tasks, GR exhibits limited generalization to out-
of-distribution IR tasks. Existing GR models are typically trained on specific corpora and queries,
and prior studies has shown that such training leads to poor performance on unseen tasks (Zhang
et al., 2025b; Liu et al., 2023b). In contrast, real-world IR models are typically evaluated in a broader
setting, characterized by substantial diversity and heterogeneity. These often involve heterogeneous
corpora and queries (Thakur et al., 2021), task-specific relevance criteria (Su et al., 2022; Asai et al.,
2022), and predominantly zero-shot scenarios where no supervised data is available (Thakur et al.,
2021; Muennighoff et al., 2022). Consequently, GR approaches designed for supervised conditions
struggle to generalize to such heterogeneous and data-scarce retrieval scenarios.

To address the limitations of GR in zero-shot and heterogeneous IR scenarios, we draw inspiration
from recent advancements in instructed DR methods (Su et al., 2022; Asai et al., 2022) and propose
ZEROGR, a generalizable framework for ZERO-shot Generative information Retrieval. ZEROGR is
a simple yet effective way to adapt GR to diverse IR tasks in a zero-shot setting by leveraging natural
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Figure 1: An overview of ZEROGR. Given a document collection, ZEROGR converts them into uni-
fied DocID representations, generates diverse pseudo-queries, and builds a generative retrieval index.
During online retrieval, ZEROGR decodes docids with reverse-annealed temperature scheduling to
balance precision and recall.

language task instructions. Specifically, we advance GR along three dimensions: (i) for docid design,
we propose a docid generator to efficiently convert a document of any format (e.g., paragraph, table,
code) into a unified text-based docid representation; (ii) for corpus indexing, we propose an instructed
query generator to generate diverse types of queries based on different task instructions; (iii) for
docid decoding, we propose a reverse annealing strategy that more effectively trades off precision
and recall of docid decoding than prior work.

Building on ZEROGR, we investigate instruction fine-tuning scaling (Chung et al., 2022) in the
context of GR along two key axes: the size of instruction tuning data and the size of the underlying
model. We find that increasing both the diversity and quantity of training tasks yields substantial
improvements in zero-shot retrieval performance on unseen tasks. Beyond training data scaling,
we also examine model size scaling and inference-time scaling for corpus indexing, observing
consistently promising scaling trends in both cases.

Our best-performing model, based on the Llama-3B LM, outperforms previous generative retrieval
methods and narrows the gap to state-of-the-art dense retrieval systems across heterogeneous IR
benchmarks, including BEIR (Thakur et al., 2021) and MAIR (Sun et al., 2024). Notably, ZEROGR
outperforms OpenAI Embed-v3 on zero-shot MAIR tasks, highlighting its strong generalization to
unseen retrieval tasks.

In summary, our contributions are as follows: (i) We propose ZEROGR, a zero-shot GR framework
that can construct task-specific GR search indices based on natural language instructions. (ii) Within
ZEROGR, we enhance GR by introducing three key components: a unified text-based docid generator,
an instruction-conditioned pseudo-query generator, and a reverse annealing decoding strategy. And
(iii) ZEROGR achieves competitive performance on heterogeneous IR benchmarks, establishing it as
the first GR approach capable of generalizing to diverse tasks in a zero-shot setting.

2 RELATED WORK

Document Retrieval Document retrieval is a fundamental task in information retrieval, with broad
applications in search engines and retrieval-augmented generation systems (Karpukhin et al., 2020;
Lin et al., 2020; Chen et al., 2025). It typically follows a two-stage pipeline: an initial retrieval stage
that recalls candidate documents, followed by a reranking stage for fine-grained ranking. Traditional
sparse retrieval methods (Robertson and Walker, 1997; Lafferty and Zhai, 2001; Robertson and
Zaragoza, 2009) rely on lexical overlap but suffer from vocabulary mismatch (Lin et al., 2020). Dense
retrieval (DR) addresses this issue by embedding queries and documents into dense vectors and
comparing them via inner product or cosine similarity (Karpukhin et al., 2020), with subsequent
improvements from hard negative mining, late interaction, and pre-training (Xiong et al., 2020;
Khattab and Zaharia, 2020; Wang et al., 2022a; Qu et al., 2021; Izacard et al., 2021). The reranking
stage is usually performed using cross-encoders or LLM prompting (Nogueira and Cho, 2019;
Nogueira et al., 2020; Sun et al., 2023c; Chen et al., 2024; Sun et al., 2023a; Zhang et al., 2025a; Liu
et al., 2025; Ma et al., 2023). However, this two-stage pipeline is difficult to optimize end-to-end due
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to its MIPS-based retrieval component and the objective mismatch with generative language model
training (Tay et al., 2022; Bevilacqua et al., 2022).

Generative Retrieval Unlike traditional dense retrieval methods (Karpukhin et al., 2020; Xiong
et al., 2020), GR formulates information retrieval as a docid generation task, enabling end-to-end
optimization of the inference-time search index (Tay et al., 2022; Metzler et al., 2021). Previous
research on GR has largely focused on three key aspects: (i) Docid design: Early approaches employed
rule-based formats such as titles (Cao et al., 2020; Chen et al., 2022), URLs (Zhou et al., 2022), or
text spans/summaries (Bevilacqua et al., 2022; Li et al., 2023a). More recent work has shifted toward
learning-based docid designs that capture corpus semantics more effectively, including embedding
clustering (Tay et al., 2022) and RQ-VAE–based approaches (Wang et al., 2024; Zeng et al., 2023;
Wang et al., 2023b). (ii) Corpus indexing: Several strategies have been explored to enrich corpus
representations, such as document chunking (Tay et al., 2022), pseudo-query generation (Zhuang
et al., 2022), rehearsal-based augmentation (Tang et al., 2023), multi-granular indexing (Wen et al.,
2025), and continual training for dynamic corpora (Mehta et al., 2022; Chen et al., 2023; Zhang et al.,
2025b). (iii) Docid decoding: The dominant approach has been constrained beam search (Cao et al.,
2020; Tay et al., 2022). More advanced strategies include multi-stage decoding (Ren et al., 2023),
multi-docid decoding (Li et al., 2023b), and simultaneous decoding (Zeng et al., 2024). Despite
steady progress, existing work primarily remains confined to supervised fine-tuning, relying heavily
on training data and failing to generalize to zero-shot retrieval tasks.

Instruction Fine-tuning in IR Inspired by the studies in LLM instruction tuning (Chung et al.,
2022; Wang et al., 2022b), instruction fine-tuning for retrieval has gained increased attention to
improve zero-shot IR performance (Su et al., 2022; Asai et al., 2022). Instruction-tuned models are
able to adapt to various tasks based on natural language instructions that specify the relevance criteria.
Recent studies in this direction include multi-task fine-tuning (Lee et al., 2024a), LLM-generated in-
struction data (Wang et al., 2023a; Lee et al., 2024b; Oh et al., 2024), and instruction-negatives (Weller
et al., 2024). These efforts have primarily focused on dense retrieval or cross-encoder rerankers (Sun
et al., 2024). To the best of our knowledge, we are the first to investigate instruction fine-tuning
for GR and to conduct a systematic study of the factors that influence instruction fine-tuning in IR
models.

3 PRELIMINARIES

Zero-shot document retrieval. We formulate the task of zero-shot document retrieval as follows.
Given a corpus D = (d1, . . . , dn) containing n documents, a corpus indexing function I takes D as
input and constructs a search index m = I(D). Then, a retrieval function F takes the index m and a
query q as input, and returns a list of relevant documents: (di, . . .) = F(m, q). Note that in a typical
zero-shot document retrieval setting, no training data is available. However, a natural language task
instruction instrt specifying the retrieval task is generally assumed to be available, as it is usually
easier to obtain (Muennighoff et al., 2022).

Generative retrieval. GR aims to retrieve the document di by generating the corresponding document
identifier (docid) given the query q. To this end, GR assigns an identifier (docid) to each document
in the corpus, e.g. (z1, . . . , zn), where each zi is a sequence of tokens zi = {z(1)i , . . . , z

(T )
i } with a

maximum length of T . Based on this, the indexing function I(D) of GR is to train a language model
(LM)M on the corpus D, encoding the corpus information and also document-docid mapping. The
retrieval function F is instantiated by the sameM, and it generates the relevant document identifiers
(docids) (z1, . . . , zn) given the query q: (zi, . . .) =M(q).

4 ZEROGR

We propose ZEROGR, a zero-shot GR framework that can adapt LMs into task-specific generative
search indexes based on task instructions. As shown in Figure 1, the proposed ZEROGR framework
consists of three key components: (i) a docid generator Gψ, which takes a document di as input
and outputs its docid zi; (ii) an instructed query generator, which takes a task instruction instr and
a document di as input and outputs multiple pseudo-queries; (iii) a generative retrieverM, which
takes the instruction and a query as input and generates a list of docids.
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The ZEROGR pipeline proceeds as follows: (i) given a new corpusD and its associated task instruction
instr, the docid generator assigns each document di a docid zi; (ii) the instructed query generator Gθ

samples B queries {qi,1, . . . , qi,B} for each document di ∈ D, thereby creating ⟨qi,j , zi⟩ pairs; and
(iii) the generative retriever is trained to predict the corresponding docid zi given the concatenation
of instr and a sampled query qi,j . After training, the generative retrieverM(z | q, instr) serves as
the search index m. For a given query q, a newly proposed reverse annealing decoding strategy is
employed to generate a ranked list of docids as retrieval results.

4.1 UNIFIED DOCID REPRESENTATION

Documents in downstream IR tasks can be heterogeneous, e.g., financial tables (Zhu et al., 2022), code
files (Liu et al., 2023a), meeting transcripts (Golany et al., 2024), or legal cases (Bhattacharya et al.,
2019). Existing simple docid strategies, such as using document titles, URLs, or spans (Cao et al.,
2020; Bevilacqua et al., 2022), often fail to generalize to user-customized data. ZEROGR therefore
introduces a model-based docid generator Gψ that maps any document to a short, keyword-rich
sentence (typically 6–8 words) ranked by coverage. Formally, for a document di we define

zi = Gψ(di) = argmax
t∈V≤L

Gψ

(
t | di

)
, (1)

where t is a token sequence of length ≤ L (with L = 8) drawn from the vocabulary V . To instantiate
Gψ, we first prompt a powerful LM (e.g., GPT-4o) to create a training set of ⟨di, zi

〉
pairs (see

Appendix A for the detailed prompt used). A smaller model (Llama-3.2-1B) is then fine-tuned on
this data, enabling fast, scalable generation of unified docids across diverse IR tasks. See Section 5.1
for details of training data.

4.2 INSTRUCTED CORPUS INDEXING

Corpus indexing in GR encodes each document di ∈ D into the model’s parameters so that, at
inference time, the model can recover di by generating its document identifier zi. DSI-QG (Zhuang
et al., 2022) accomplishes this by pairing every document with a set of pseudo-queries, but its
effectiveness diminishes when the pseudo-query distribution diverges from real user queries (Pradeep
et al., 2023; Dai et al., 2022). This gap is especially large in heterogeneous IR scenarios, such as
conversational, code, or multimodal search.

We mitigate the distribution gap with an instructed query generator Gθ, obtained by instruction-
tuning a 1B-parameter Llama model on diverse IR datasets verbalized through task-specific instruc-
tions. Given a document di and a task instruction instr, the generator produces a pseudo-query qi,j
from the conditional distribution

qi,j ∼ Gθ

(
· | d, instr

)
. (2)

For each document we draw B queries with temperature of 1:

Qi = { qi,1, . . . , qi,B }. (3)

These ⟨di, zi
〉

pairs are used to train the generative retriever LLM by minimizing the cross-entropy
loss

L(ϕ) = −
∑
di∈D

∑
qi,j∈Qi

logM
(
zi | qi,j , instr

)
, (4)

thereby embedding the corpus into the model’s parameters. Appendix D summarizes the instruction-
tuning datasets.

4.3 REVERSE-ANNEALED DOCID GENERATION

During inference, a GR model must decode each docid zi as a sequence of tokens. Standard beam
search often collapses to a few high-probability sequences, hurting recall. We therefore propose
reverse-annealed sampling: each zi is generated token-by-token, while the sampling temperature is
gradually increased to encourage diversity. Let f(·) denote the trained decoder after corpus indexing,
and let T be a prefix tree whose leaves correspond to valid docids. For the i-th docid we decode
a token sequence xi = (xi,1, . . . , xi,Li) using temperature ti = g(i). At position j we sample
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xi,j ∼ Softmax
(

ℓi,j
ti

)∣∣∣
Ti,j

, where ℓi,j are the logits conditioned on the current prefix (xi,1:j−1),

and the subscript Ti,j masks probabilities to tokens that keep the prefix inside the tree. After the
complete sequence xi is produced, its leaf is removed from T so no subsequent iteration can repeat
the same docid. The per-iteration temperature ti follows a normalized sigmoid:

ti = g(i) = Tmax ·
σ
(
k( i

K
−m)

)
− σ(−km)

σ
(
k(1−m)

)
− σ(−km)

, σ(z) =
1

1 + e−z
, (5)

where K is the total number of docids to generate, k > 0 controls the slope, and m ∈ (0, 1) sets the
midpoint. Starting from a low temperature yields high-precision early selections; increasing ti over
iterations boosts exploration, thereby balancing precision and recall across the final ranked list. See
Alg. 1 and Figure 10 for algorithm detail.

5 EVALUATION SETUP

5.1 TRAINING DATASETS

Domain #Tasks #Samples

Medical 5 421, 430
Financial 8 31, 315
Academic 18 744, 160
Coding 13 1, 969, 586
Legal 7 23, 086, 948
Web-based 18 15, 319, 445

Table 1: Statistics of ZeroGR-Train

To support the development of ZEROGR, we col-
lect training data covering a diverse range of IR
tasks. Specifically, we use MAIR (Sun et al.,
2024), a multi-task IR evaluation benchmark com-
prising 126 tasks, and extract the training splits of
these tasks when available. As shown in Table 1
(and Figure 7 in Appendix D for data example),
ZeroGR-Train is a dataset spanning 69 IR tasks
across 6 domains, containing 41 million query-
document pairs. ZeroGR-Train is the largest open-
source IR training corpus to date. It offers greater
domain and task diversity, includes detailed instructional annotations, and provides reliable relevance
labels. See Table 7 for details.

5.2 EVALUATION DATASETS

To evaluate zero-shot GR on diverse downstream tasks, we use the BEIR and MAIR benchmarks:
(i) BEIR (Thakur et al., 2021). We evaluate models on all 12 tasks from BEIR collections.
(ii) MAIR (Sun et al., 2024). As we collect training data from a subset of MAIR tasks, we di-
vide MAIR into seen and unseen subsets, where the unseen subset contains tasks not present in
the ZeroGR-Training data, to validate the zero-shot generalization of models. In constructing this
benchmark, we curated a diverse set of long-tail tasks across 6 domains, and intentionally omitted
redundant tasks (e.g., different years of the same competition) and structurally complex ones (e.g.,
IFEval) that would introduce evaluation overhead. Given the large size of the MAIR dataset, we also
develop a Dev subset of MAIR for model ablation. Note that our current evaluation focus on tasks
with moderately sized corpus.

5.3 EVALUATION METRIC

We evaluate models using the following metrics: (i) Top-1 accuracy, which measures retrieval
precision by checking whether the top-ranked document is relevant to the query; (ii) nDCG@10, a
popular metric that evaluates the quality of the top-10 ranked results by considering both the relevance
and position of retrieved documents; and (iii) Recall@100, which assesses recall by calculating the
percentage of relevant documents retrieved within the top-100 ranked list.

5.4 IMPLEMENTATION DETAILS

We implement the three components of ZEROGR, i.e., query generator, docid generator, and final
generative retriever, all with Llama-based LMs. For the docid generator, a Llama-1B-Instruct model
is trained on our curated document-docid pairs for 5 epochs with a constant learning rate of 5e-5.
Similarly, for the query generator, a Llama-1B-Instruct model is trained on the ZeroGR-Training set
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MAIR (38 Tasks) BEIR (11 Tasks)

Model Avg Web. Aca. Legal Med. Fin. Cod. Avg Web. Aca. Med. Fin.

BM25 36.1 34.3 39.2 34.5 42.4 40.0 17.3 42.4 45.4 38.8 32.7 41.6

Contriever 33.6 39.8 33.4 26.8 30.8 37.3 17.7 47.6 51.5 43.0 33.9 47.6
GTR-T5-base 32.5 36.0 33.6 25.3 31.9 37.4 18.7 45.3 50.7 35.3 32.7 45.3
GTR-T5-large 35.4 39.8 39.6 27.8 31.8 38.5 24.0 48.0 53.3 37.4 33.4 50.0

E5-Base 37.2 36.2 48.6 28.5 35.3 44.9 26.7 48.9 51.8 46.1 35.0 50.2
E5-Large 38.2 38.6 51.0 25.0 35.6 46.6 25.7 49.2 51.7 47.9 37.4 48.8
BGE-Base 37.0 38.6 40.2 25.8 37.6 42.2 29.0 50.5 52.5 47.1 36.0 55.2
BGE-Large 39.4 39.4 46.2 36.0 37.2 45.1 29.0 51.8 53.8 47.9 38.1 56.5

OpenAI-Embed 40.6 40.6 48.2 31.0 39.7 49.4 28.7 54.2 56.3 47.2 37.6 63.4
E5-mistral-7B 46.8 45.4 55.4 42.3 43.1 55.3 40.0 55.7 56.4 48.6 39.6 68.8
GritLM-7B 47.0 44.1 58.2 43.3 42.6 57.6 40.0 45.0 47.7 48.2 36.9 37.8

ZeroGR-3B 41.1 42.7 47.4 40.0 38.3 39.2 36.3 48.1 49.2 45.8 34.7 53.8

Table 2: Combined Domain-wise Results on MAIR (Acc@1) and BEIR (nDCG@10). Perfor-
mance of different retrieval models across various domains. See Tab 4 and Tab 5 for details.

for 5 epochs with a constant learning rate of 5e-5. For the generative retriever, the model is trained
for each evaluated task on data generated by the query generator and docid generator, based on our
“Document Indexing” workflow described in Fig 1.

5.5 BASELINES

We evaluate ZEROGR against several representative IR baselines, spanning different retrieval
paradigms to provide a comprehensive comparison. (i) For sparse retrieval, we adopt the clas-
sical term-based model BM25, implemented using the BM25S package (Lù, 2024), which remains
a strong baseline in many IR tasks due to its simplicity and effectiveness. (ii) For traditional dense
retrieval models trained on a single task, we include Contriever-MARCO, GTR-base, and GTR-
Large, all of which are pretrained or fine-tuned on the MS MARCO dataset (Ni et al., 2021; Izacard
et al., 2021), representing a common practice in dense retrieval pipelines. (iii) For multi-task-trained
dense retrievers, we incorporate E5-Base and E5-Large (Wang et al., 2022a), BGE-base and BGE-
Large (Xiao et al., 2023), as well as OpenAI-Embedding-v3-Small, all of which use supervision
from multiple tasks to enhance generalization across diverse domains. (iv) For instruction-tuned
dense retrieval models, which aim to align the retriever with human instructions, we include E5-
Mistral-7B-instruct (Wang et al., 2023a), and GritLM-7B (Muennighoff et al., 2024), which are
trained on large-scale, diverse instruction datasets to follow task-specific intents effectively.

6 EXPERIMENTS

Our experiments address the following research questions:

1. How does ZEROGR compare with dense retrieval methods?
We evaluate ZEROGR against leading models on the MAIR benchmark (Section 6.1) and conduct
additional analysis on the BEIR datasets (Section 6.2).

2. How do model design and training strategies influence the performance of ZEROGR?
To answer this, we conduct a systematic study on the development set, investigating key factors in
generative retrieval. Specifically, we analyze how instruction tuning task diversity (Section 6.3),
docid design (Section 6.4), corpus indexing strategy, model size (Section 6.5), and decoding
strategy (Section 6.6) affect performance.

6.1 EVALUATION RESULTS ON MAIR

As shown in Table 2 (MAIR), our proposed ZEROGR framework demonstrates strong performance
across a wide range of retrieval tasks. It achieves an average score of 41.1 (Acc@1), substantially
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Method Training Data Avg Argu. SciF. NFC. FiQA SciD. Covid

GENRE (Cao et al., 2020) GPL 23.0 42.5 42.3 20.0 11.6 6.8 14.7
GENRET (Sun et al., 2023b) GPL 41.1 34.3 63.9 31.6 30.2 14.9 71.8
GLEN (Lee et al., 2023) NQ320k – 17.6 – 15.9 – – –
TIGER (Rajput et al., 2023) ZeroGR-Train 31.0 14.0 37.0 39.5 16.0 14.0 65.7
ZeroGR (Ours) ZeroGR-Train 44.9 35.4 72.8 34.7 34.1 18.7 73.5

Table 3: Performance of different generative retrieval models across various datasets on BEIR.
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Figure 2: Model performance on unseen-dev tasks as a function of the number of training
tasks. We increase the number of training tasks, starting from MS MARCO, and incrementally add
open-domain QA datasets (e.g., NQ), BEIR-Train sets (e.g., NFC), MTEB-Train data (e.g., NLI),
and finally the ZeroGR-Train collection, which includes 60 tasks across 6 domains. Left: More
instruction-tuning tasks lead to more diverse queries. Middle: More instruction-tuning tasks reduce
docid conflicts. Right: More instruction-tuning tasks improve the Acc@1 score.

outperforming traditional sparse retrieval methods like BM25 and widely adopted dense retrieval
models such as Contriever, GTR, E5, BGE, and even the strong instruction-tuned OpenAI-Embedding-
v3-Small. These results highlight the effectiveness of our instruction-based generative retrieval
approach in capturing deeper semantic relevance.

The performance gains of ZEROGR are not limited to familiar tasks but also generalize well to unseen
domains. Notably, the model performs better than all baselines on several previously unseen datasets,
including Apple, MB, PM.A, DD, and NCL (see Table 4). This demonstrates the robustness and
transferability of the approach, as it adapts effectively to new retrieval settings without requiring
additional task-specific supervised data. See Figure 6 for a comparison on the MAIR unseen subset,
where ZEROGR achieves competitive performance against recent dense retrieval methods.

Using a 3B LLM, ZEROGR can achieve strong performance across different tasks compared to
baselines, though it still underperforms large embedding models such as GritLM-7B and E5-Mistral-
7B. This indicates that our design is highly parameter-efficient, achieving strong performance across
diverse tasks without relying on massive model scaling. See Appendix C for per-task performance.

6.2 EVALUATION RESULTS ON BEIR

As shown in Table 2 (BEIR), ZEROGR outperforms several baselines such as BM25, Contriever, GTR,
and GritLM-7B, but still underperforms other dense retrieval methods. Table 5 compares ZEROGR
with previous generative retrieval baselines on BEIR, which we can see our method achieves best
performance among most datasets.

6.3 SCALING INSTRUCTION FINE-TUNING

A key factor in enhancing the performance of LM-based tasks is scaling, i.e., increasing model size
or data volume. The effectiveness of ZEROGR stems from instruction fine-tuning on multi-task
IR datasets, which improves the instruction-following abilities of both the query generator and the
title generator models. To investigate the impact of multi-task training, we curate training data with
varying numbers of tasks: (a) MS MARCO, which contains a single task (i.e., MS MARCO (Campos
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Figure 3: Left: Comparison of different docid designs. Middle: Acc@1 vs. generated queries per
document. Right: Acc@1 vs. model size. Gray curves are per-task score.

et al., 2016)) and is commonly used in previous GR work; (b) + OpenQA, which adds popular
open-domain question answering datasets, including NQ (Kwiatkowski et al., 2019) and HotpotQA;
(c) + BEIR-Train, which incorporates the training splits of BEIR (Thakur et al., 2021), such as
NFCorpus and Quora; (d) + MTEB-Train, which includes additional tasks from MTEB (Muennighoff
et al., 2022) that are not covered in BEIR, such as NLI (we use the public BGE training split to collect
these data); and (e) + ZeroGR-Train, which includes the data we collected from the training split of
the MAIR (Sun et al., 2024) task collection, comprising 69 tasks from 6 domains (Figure 2).

Figure 2 shows the evaluation results of models (both query generator and docid generator) trained
with different levels of task diversity, evaluated on the unseen task subset (i.e., tasks not included in
any training set) of MAIR. The left plot in Figure 2 shows the distribution of average query length
across tasks. We observe that models trained on more IR tasks generate queries with greater length
diversity, indicating task-aware query generation strategies. In contrast, the baseline model trained
only on MS MARCO produces short queries, averaging 8 words. The middle plot shows the docid
conflict rate, i.e., the percentage of documents in the corpus assigned the same docid by the docid
generator. Models trained on diverse tasks exhibit lower conflict rates, suggesting a stronger ability to
process heterogeneous corpora. The MS MARCO baseline shows higher conflict on several diverse
tasks. Finally, the right plot reports retrieval performance (top-1 accuracy) for different models. We
observe consistent performance improvements on unseen tasks as training data diversity increases.

6.4 COMPARISONS OF DIFFERENT DOCID DESIGNS

Figure 3 compares our proposed unified docid with previous GR docid designs, while keeping
all other factors (e.g., query generator, model choice, optimization strategy) constant to ensure
an apple-to-apple comparison of docid effectiveness. The compared docid designs include: (i)
Random (Tay et al., 2022), a baseline that assigns each document a random string as its docid; (ii)
Sentence (Bevilacqua et al., 2022), which uses all sentences of each document as its docid; (iii)
Paragraph (Tay et al., 2022), which takes the first paragraph of each document as its docid; (iv)
Query (Tang et al., 2023), which uses a query generator to produce a single query per document as
its docid; (v) Summary, as introduced in (Li et al., 2024), which uses the output of a summarization
model as the docid; (vi) RQ-VAE (Zeng et al., 2023), which trains a RQ-VAE model on document
embeddings produced by the BGE-Large model, enabling quantization of document embeddings
into a sequence of tokens. This is a widely adopted docid representation in competitive GR systems.

From the results, we observe that among the various docid designs, our proposed docid generator
consistently achieves the best performance on unseen development tasks. In particular, it significantly
outperforms other text-based approaches such as Summary and Query, highlighting its superior ability
to encode meaningful and discriminative document representations. This suggests that our design
not only captures richer document semantics but is also better aligned with the generative retrieval
objective, enabling more accurate and robust document retrieval. We further find that the performance
of the RQ-VAE method is relatively unstable across different tasks, often requiring longer training to
converge effectively. In contrast, our text-based docid benefits from the pretrained LM’s inherent
understanding of natural language, which facilitates more efficient learning and faster convergence.
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Figure 4: Ablation study of decoding algorithms across different metrics. Our proposed reverse
annealing decoding achieves a good balance between precision and recall. Note that the y-axis is
rescaled based on the model gap.

This synergy between instruction-driven docid generation and LM capabilities underpins the strong
performance and generalization ability observed in our experiments.

6.5 SCALING QUERIES NUMBER AND MODEL SIZE

The middle section of Figure 3 illustrates the impact of the number of queries generated per document
on the average top-1 accuracy of ZEROGR. We observe a clear upward trend: as the number of
queries increases, the retrieval performance improves steadily. This highlights the importance of
diverse query views for better semantic coverage during indexing. Notably, when using eight queries
per document, ZEROGR already reaches performance on par with the strong sparse baseline BM25.
Further increasing the query count to sixteen enables ZEROGR to surpass BM25, suggesting that
high query diversity provides richer signals for matching user queries to relevant documents.

The right section of Figure 3 examines how the size of the backbone language model affects retrieval
performance. For this analysis, we adopt a series of Qwen2.5 (Qwen et al., 2025) models with varying
parameter scales. The results demonstrate a consistent gain in top-1 accuracy on unseen IR tasks as
the model size grows, implying that larger models benefit from enhanced generalization and better
understanding of the instruction-based retrieval formulation. This finding underscores the value of
scaling up model capacity in generative retrieval frameworks, particularly in zero-shot settings.

6.6 ANALYSIS OF DECODING STRATEGIES

In Figure 4, we compare our reverse annealing decoding with other popular decoding algorithms,
including greedy decoding (i.e., greedily sampling from the GR model without replacement), nucleus
sampling with a top-p of 0.9, and beam search. All methods decode the top-100 docids for evaluation.
From the results, we observe that greedy decoding achieves the best performance in terms of Acc@1,
but lacks diversity and yields low recall. Nucleus sampling performs poorly on Acc@1 but achieves
high recall. In contrast, reverse annealing strikes a good balance between precision and recall,
achieving competitive results across all metrics.

7 CONCLUSION

This work presents ZEROGR, an instruction-driven framework that extends generative retrieval
to zero-shot scenarios. By unifying three key components, viz. a model-based docid generator,
an instruction-conditioned query generator, and a reverse-annealed decoding algorithm, ZEROGR
transforms a corpus and a natural-language task description into a task-specific generative index
without requiring supervision. Systematic scaling studies along task diversity, query volume, and
model size reveal consistent performance improvements. Empirical evaluations on MAIR tasks
and BEIR datasets demonstrate the effectiveness of ZEROGR. The limitations of this work include
the lack of evaluation on large-scale corpora (e.g., those with over 1M documents) and the use of
relatively small LLMs (our largest model is only 3B). We believe further work is required to scale
both the corpus size and the model size.
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Figure 5: Performance (nDCG@10) of different generative
retrieval models across various datasets on BEIR.
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Figure 6: Performance (Acc@1) on un-
seen subset of MAIR.

A PROMPTS

1. **Length**: Strictly 6-8 words (terms/words)
2. **Term Inclusion**: Must include 3-5 core terms directly from
the document
3. **Term Positioning**: Rank by relevance and importance (highest
→ lowest, general → specific)
4. **Formatting**:

- Use lowercase letters, numbers, and spaces only
- Preserve special terms/symbols (e.g., PD3.1)
- **No articles** (a, the), **linking verbs**, or auxiliary

verbs
- **No verbs** (use nouns/adjectives only)

5. **Requirements**:
- Terms must be derivable from the document
- Ensure uniqueness and precise core content representation

B DECODING

Algorithm 1 DocID Generation with Reverse Annealing

Require: T (total number of docids), model, query, max_temperature
Ensure: List of generated docids

1: for t = 1, 2, . . . , T do
2: # Compute normalized decoding temperature (Eq. 5)
3: temperaturet ← reverse-annealing(t, T,max_temperature)
4: # Generate next tokens with temperature control
5: docidt ← model(query, temperaturet)
6: end for
7: return List of generated docids

C EXPERIMENTAL RESULTS ON MAIR AND BEIR

Our experimental results on MAIR and BEIR are shown in Table 4 and Table 5.

D THE ZEROGR-TRAIN DATASET

We show the statistics of ZeroGR-Train Dataset in the Table 7 and Figure 7.
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Dataset Seen Subset Unseen Subset

Model Avg FiQA NFC.s SciD. SciF. ToQA. TAT CoF. LeetC. LitSe. BiSum CodeSe. Math ConvF. Conala StMath Apple FinBen AILAC AILAS

BM25 36.1 24.0 45.5 16.0 53.0 11.0 67.1 47.9 12.0 66.0 69.0 33.0 41.0 47.9 7.0 20.0 52.1 9.0 14.0 10.0

Contriever 33.6 33.0 43.5 17.0 62.0 11.0 54.3 42.7 7.0 39.0 54.0 37.0 36.0 42.7 9.0 13.0 50.7 6.0 12.0 6.0
GTR-T5-base 32.5 33.0 43.0 12.0 50.0 16.0 58.6 37.5 6.0 41.0 47.0 41.0 49.0 37.5 9.0 16.0 47.9 10.0 4.0 10.0
GTR-T5-large 35.4 45.0 43.5 14.0 55.0 12.0 40.0 42.7 10.0 43.0 59.0 51.0 63.0 42.7 11.0 23.0 50.7 14.0 6.0 6.0
E5-Base 37.2 41.0 40.0 17.0 63.0 16.0 61.4 52.1 11.0 49.0 61.0 59.0 78.0 52.1 10.0 36.0 52.1 18.0 6.0 12.0
E5-Large 38.2 45.0 45.5 20.0 67.0 13.0 70.0 57.3 9.0 49.0 52.0 57.0 75.0 57.3 11.0 44.0 47.9 13.0 12.0 6.0
BGE-Base 37.0 43.0 43.5 20.0 62.0 13.0 58.6 41.7 10.0 44.0 67.0 64.0 50.0 41.7 13.0 25.0 47.9 20.0 8.0 8.0
BGE-Large 39.4 51.0 46.5 22.0 65.0 13.0 60.0 44.8 13.0 56.0 68.0 66.0 66.0 44.8 8.0 22.0 46.6 23.0 8.0 8.0

OpenAI-Embed 40.6 51.0 51.0 22.0 60.0 19.0 62.9 51.0 6.0 53.0 59.0 67.0 73.0 51.0 13.0 33.0 52.1 30.0 10.0 10.0
GTE-Qwen2-1.5B 44.4 54.0 50.0 24.0 69.0 25.0 65.7 65.6 41.0 63.0 79.0 70.0 84.0 65.6 20.0 40.0 47.9 33.0 12.0 10.0
E5-mistral-7B 46.8 60.0 50.5 17.0 67.0 14.0 67.1 64.6 36.0 68.0 74.0 54.0 78.0 64.6 30.0 47.0 43.8 41.0 12.0 38.0
GritLM-7B 47.0 63.0 49.5 29.0 69.0 17.0 85.7 62.5 46.0 60.0 74.0 53.0 87.0 62.5 21.0 46.0 43.8 33.0 12.0 42.0

ZeroGR-3B 41.1 37.0 36.5 24.0 51.0 13.0 38.6 57.3 36.0 41.0 81.0 61.0 81.0 57.3 12.0 40.0 52.1 11.0 12.0 22.0

Unseen Subset

ACOR. CPCD CORE MB. PM. PM.A CliDS CliT23 DD Table QuanT PoRec Monant NCL. NCL.T Legal Geno. Touche CliT21 News21

BM25 32.8 1.0 37.5 83.8 53.9 6.5 28.3 51.4 15.6 10.0 86.9 24.5 67.4 50.7 22.2 45.0 52.8 59.2 33.3 10.9

Contriever 40.4 1.0 52.5 89.2 32.9 0.0 6.7 37.8 21.3 8.3 76.8 46.7 65.0 60.0 34.2 35.0 27.8 52.0 32.7 23.8
GTR-T5-base 31.3 1.0 47.5 89.2 36.8 1.6 13.3 36.5 13.6 12.5 77.8 37.7 70.0 48.0 22.2 40.0 25.0 55.1 29.3 15.6
GTR-T5-large 34.8 3.0 60.0 91.9 31.6 1.6 8.3 39.2 16.2 10.0 78.8 48.7 68.0 53.3 23.9 40.0 25.0 65.3 37.3 19.1
E5-Base 40.4 3.0 42.5 81.1 43.4 6.5 11.7 39.2 13.2 5.8 78.8 54.2 72.0 55.3 27.4 35.0 33.3 37.8 36.0 14.5
E5-Large 38.4 3.0 45.0 86.5 36.8 4.8 15.0 40.5 12.3 7.5 80.8 52.5 71.0 55.3 47.9 30.0 38.9 41.8 32.0 17.2
BGE-Base 39.4 0.0 45.0 91.9 48.7 0.0 30.0 31.1 16.4 8.3 81.8 44.4 70.0 57.3 42.7 20.0 36.1 41.8 41.3 19.9
BGE-Large 36.9 0.0 52.5 94.6 42.1 3.2 23.3 28.4 17.8 5.0 81.8 50.4 74.0 54.0 40.2 60.0 38.9 51.0 41.3 15.2

OpenAI-Embed 32.8 1.0 55.0 86.5 46.1 3.2 25.0 44.6 13.5 12.5 86.9 47.3 76.0 57.3 49.6 45.0 33.3 52.0 38.0 13.7
GTE-Qwen2-1.5B 37.9 5.1 70.0 81.1 14.5 8.1 20.0 17.6 14.8 14.2 85.9 58.6 74.2 61.3 51.3 40.0 61.1 65.3 31.3 23.0
E5-mistral-7B 41.9 5.0 60.0 83.8 43.4 1.6 46.7 48.6 19.4 11.7 83.8 66.1 71.0 62.7 58.1 45.0 36.1 58.2 46.7 25.4
GritLM-7B 35.4 7.0 65.0 70.3 59.2 0.0 28.3 45.9 14.8 10.8 86.9 72.2 77.0 63.3 50.4 45.0 33.3 57.1 47.3 22.7

ZeroGR-3B 26.7 4.0 55.0 89.2 23.9 12.9 25.0 37.9 44.4 12.0 79.8 60.9 69.7 65.3 36.2 45.0 58.3 46.9 42.0 21.5

Table 4: Model performance (top-1 retrieval accuracy) on seen and unseen subset of MAIR.
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Instruction: Retrieve solution for 
LeetCode question. The solution should 
in javascript, solutions in other 
languages are irrelevant.
Query: Title: Longest Mountain in 
Array Content: You may recall that an 
array `arr` is a **mountain array** if 
and only if:\n\n*   `arr.length >= 3 …
Doc: ```javascript\nfunction
longestMountain(arr) 
{\n    let n = arr.length, res

Instruction: You are a 
protein engineer capable of 
predicting EC numbers from 
a combination of textual 
information and reactions 
corresponding to specific 
proteins…
Query: Reaction text: 3-
phosphonopyruvate + H2O 
= pyruvate + phosphate
Reaction: O.O=C(O) …
Doc: EC number:3.11.1.3
Sequence:MTKNQALRAA
LDSGRLFTAMAAHNPLV
AKLAEQAGFGGIWGSGF
ELSASYAVPDANILS
MSTHLEMMRAIAS
TVSIPLIADI…

Instruction: Given a question and a specified file name, retrieve 
relevant passages that contain the answer to the question …
Query:  File: PNC/2012/page_110.pdf Question:\nin millions , what is 
the total of home equity lines of credit?
Doc:  Table row-7\nHeader: ['in millions', 'interestonlyproduct', 
'principalandinterestproduct']\n['total ( a )', '$ 15553', '$ 7376']

Instruction: Retrieve ACL and ICLR research 
papers to address the user’s question.
Query: What paper first used the technique of 
prompt engineering to generate adversarial 
prompts that can fool LLMs into making wrong 
predictions in prompt-based learning?
Doc: AN LLM CAN FOOL ITSELF: A 
PROMPT-BASED ADVERSARIAL AT
TACK Abstract: The wide-ranging 
applications of large language models …

Instruction: Given a 
legal question, retrieve the 
relevant statutory articles 
from Belgian law.
Query: Je suis marié(e). 
Nous sommes mariés. 
Dois-je reconnatre mon 
enfant ?
Doc: Law type: federal
Code: Code Civil
Chapter: De l'etablissem
ent de la filiation paterne
lle. Section: De 
la presumption
de paternite…

Instruction: Given a claim, find documents that refute 
the claim. 
Query: It would send out a consistent message  
Most countries have animal welfare laws to prevent 
animal cruelty but have laws like the UK's Animals 
(Scientific Procedures) Act 1986 …
Doc: There is a moral difference between harm for 
the sake of harming an animal and harm 
in order to save lives. Lifesaving drugs
is a very different purpose to betting 
or enjoyment that animal welfare ..

Tasks: 69 Samples: 41M

Figure 7: Overview of ZeroGR-Train.
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Category Method Avg. ArguAna SciFact NFCorpus FiQA SciDocs

Sparse BM25 42.3 32.7 65.1 32.7 24.8 12.4

DR Contriever 47.6 32.1 70.3 33.9 35.5 15.7
DR GTR-T5-base 45.3 32.7 58.6 32.7 34.5 12.1
DR GTR-T5-large 48.0 34.3 61.9 33.4 43.3 12.8
DR E5-Base 48.9 31.1 73.9 35.0 39.6 18.3
DR E5-Large 49.2 31.7 76.3 37.4 42.3 19.6
DR BGE-Base 50.5 41.8 74.3 36.0 43.4 19.8
DR BGE-Large 51.8 41.6 75.2 38.1 48.5 20.6
DR E5-mistral-7B 55.7 44.1 76.6 39.6 59.7 20.7
DR GritLM-7B 45.0 40.7 76.8 36.9 44.1 19.6
DR OpenAI Embed 54.2 37.1 73.1 37.6 48.5 21.2

GR GENRE – 42.5 42.3 20.0 11.6 6.8
GR GENRET – 34.3 63.9 31.6 30.2 14.9
GR GLEN – 17.6 – 15.9 – –
GR TIGER (Llama-3B) – 14.0 37.0 39.5 16.0 14.0
GR ZeroGR-3B 48.1 35.4 72.8 34.7 34.1 18.7

Category Method Touche TREC-News Fever Quora Covid CQADupStack

Sparse BM25 59.0 20.7 58.3 73.8 58.3 28.0

DR Contriever 42.5 27.3 90.6 86.6 59.6 29.9
DR GTR-T5-base 48.1 22.5 83.2 88.7 56.1 28.9
DR GTR-T5-large 53.1 26.6 86.8 89.1 56.7 29.8
DR E5-Base 41.1 22.9 91.1 86.4 60.7 38.3
DR E5-Large 34.8 25.3 93.1 86.9 55.2 38.5
DR BGE-Base 41.4 21.2 85.6 89.8 67.1 35.1
DR BGE-Large 45.5 21.4 86.6 89.3 64.5 38.3
DR E5-mistral-7B 46.8 29.4 91.8 84.8 77.8 41.4
DR GritLM-7B 21.5 34.9 68.9 84.9 31.5 35.0
DR OpenAI Embed 47.5 26.2 92.8 89.9 78.2 44.1

GR GENRE – – – – 14.7 –
GR GENRET – – – – 71.8 –
GR GLEN – – – – – –
GR TIGER (Llama-3B) 58.1 16.4 – 59.6 65.7 –
GR ZeroGR-3B 37.5 23.5 86.7 76.7 73.5 35.2

Table 5: nDCG@10 on BEIR benchmark datasets.

Domain MAIR-Full ZeroGR-Train MAIR-Test BEIR

Academic 16 18 5 2
Code 18 13 3 0
Finance 8 8 5 1
Legal 11 7 4 0
Medical 19 5 8 2
Web 54 18 13 6

All 126 69 38 11

Table 6: Dataset domain statistics of MAIR-Full, ZeroGR-Train, MAIR-Test, and BEIR.
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Dataset Samples Dataset Samples
Academic

S2ORC-title-citation 100,000 TAD 208,255
S2ORC-abstract-citation 100,000 TAS2 107,700
S2ORC-title-abstract 100,000 StackMathQA 47,142
ProofWiki-Proof 15,520 ProofWiki-Reference 2,098
ProofWiki-Proof 15,520 ProofWiki-Reference 2,098
Stacks-Proof 10,928 Stacks-Reference 9,022
Stacks-Reference 9,022 Competition-Math 7,500
Competition-Math 7,500 SciDocs 900
SciFact 809 LitSearch 146

Code
CodeSearchNet 1,880,853 CodeEditSearch 21,395
SWE-Bench 18,817 RepoBench 16,655
HF-API 8,191 TLDR 6,414
TensorAPI 6,190 APPS 5,000
LeetCode 2,260 Conala 1,794
PyTorchAPI 837 HumanEval-X 720
MBPP 374

Finance
USnews 9,999 FinQA 6,251
FiQA 5,500 HC3Finance 3,104
ConvFinQA 3,037 TheGoldman 1,512
TAT-DQA 1,012 Trade-the-event 900

Legal
LePaRD 22,734,882 CLERC 327,414
BillSum 18,949 REGIR-UK2EU 2,100
REGIR-EU2UK 2,000 BSARD 886
CUAD 717

Medical
PubMedQA-Context 196,696 PubMedQA-Answer 196,696
Huatuo 25,371 NFCorpus 2,590
CARE 77

Web
Reddit 12,704,958 AGNews 1,157,745
CC-News 708,241 Xsum 204,045
zsRE 147,909 ToT 109,454
Fever 109,810 WoW 63,734
TopiOCQA 45,450 AY2 18,395
CQADupStack 13,045 InstructIR 9,806
Quora 9,900 WnCw 5,499
TREx 4,900 ExcluIR 3,352
NevIR 1,896 ArguAna 1,306

Table 7: Dataset statistics grouped by domain and sorted by sample count.
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Figure 8: Docid conflict rate wrt docid length.

Figure 9: Average number of decodable tokens at each position, for RQ-VAE docid and our title
docid.

Model Size Training Data Link
BM25 N/A N/A https://github.com/cvangysel/BM25S
Contriever-MARCO 110M MS MARCO https://github.com/facebookresearch/contriever
GTR-base 110M MS MARCO https://huggingface.co/google/gtr-base
GTR-large 335M MS MARCO https://huggingface.co/google/gtr-large
E5-base 110M unknown https://huggingface.co/intfloat/e5-base-v2
E5-large 335M unknown https://huggingface.co/intfloat/e5-large-v2
BGE-base 110M MTEB-Train https://huggingface.co/BAAI/bge-base-en-v1.5
BGE-large 335M MTEB-Train https://huggingface.co/BAAI/bge-large-en-v1.5
OpenAI-Embed-Small unknown unknown https://platform.openai.com/docs/guides/embeddings
E5-Mistral-7B-instruct 7B E5 (LLM generated) https://huggingface.co/intfloat/e5-mistral-7b-instruct
GritLM-7B 7B E5 (LLM generated) https://huggingface.co/GritLM/GritLM-7B

Table 8: Dense retrieval model information.
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Method Training Data Model Size DocID Type Decoding

GENRE (Cao et al., 2020) GPL T5-220M Title Beam Search
GENRET (Sun et al., 2023b) GPL T5-220M RQ-VAE Beam Search
GLEN (Lee et al., 2023) NQ320k T5-220M Keywords Beam Search
TIGER (Rajput et al., 2023) ZeroGR-Train Llama-3B RQ-VAE Reverse-Annealing
ZeroGR (Ours) ZeroGR-Train Llama-3B Title Reverse-Annealing

Table 9: Generative retrieval model information.

Name Model Task List (with query count)

Figure 2,
Figure 3
(left)

Llama-1B {ToolBench (100), AILA2019-Case (50), NFCorpus (100), SciFact (100),
ArguAna (100), LitSearch (100), ClinicalTrials_2023 (37), FinanceBench
(100), SciDocs (100), News21 (100), TopiOCQA (100), Touche (49), FiQA
(100)}

Figure 3
(middle,
right)

Llama-
1B, or
Qwen2.5

{LeetCode (100), Competition-Math (100), TMDB (100), Stein_Proof (64),
PytorchAPI (100)}

Figure 4 Llama-1B {Leetcode (100), Competition-Math (100), BillSum (100), SciFact (100), TAT-
DQA (70), ConvFinQA (96)}

Table 10: Development set for ablation study.

Task doc2query our query generator Diff

AILA2019-Case 2.00 2.00 +0.00
Apple 13.70 5.48 -8.22
ArguAna 12.00 11.00 -1.00
BillSum 36.00 66.00 +30.00
ClinicalTrials_2021 4.67 6.67 +2.00
ClinicalTrials_2023 1.35 2.70 +1.35
CodeEditSearch 13.00 22.00 +9.00
CodeSearchNet 33.00 56.00 +23.00
Competition-Math 40.00 61.00 +21.00
Conala 3.00 9.00 +6.00
ConvFinQA 22.92 37.50 +14.58
FiQA 7.00 13.00 +6.00
FinQA 14.44 41.11 +26.67
LeetCode 6.00 30.00 +24.00
LegalQuAD 10.00 4.00 -6.00
LitSearch 12.00 31.00 +19.00
NFCorpus 41.00 6.50 -34.50
News21 13.67 21.88 +8.20
SciDocs 16.00 14.00 -2.00
SciFact 34.00 42.00 +8.00
StackMathQA 13.00 26.00 +13.00
TAT-DQA 7.14 27.14 +20.00
ToT_2023 3.00 0.00 -3.00
TopiOCQA 18.00 8.00 -10.00
Touche 46.94 39.80 -7.14

Average 16.95 23.35 +6.40

Table 11: Performance comparison between doc2query and our method for the RQ-VAE docID
baseline (TIGER (Rajput et al., 2023)).
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def normalized_sigmoid(t, k=10, m=0.5):
sigmoid = lambda z: 1 / (1 + np.exp(-z))
a = sigmoid(k * (0 - m))
b = sigmoid(k * (1 - m))
return (sigmoid(k * (t - m)) - a) / (b - a)

Figure 10: Normalized sigmoid function. t is the step number.

Type Example
Random asd8xc2c9ma90xj2398

Sentence LIMASSOL, Cyprus, April 28, 2021 /PRNewswire/ – One of the top
financial investment firms of the FX industry, Windsor Brokers ....

Paragraph LIMASSOL, Cyprus, April 28, 2021 /PRNewswire/ – One of the top
financial investment firms of the FX industry, Windsor Brokers ....

Query Induction of myelodysplasia by myeloid-derived suppressor cells.

Summary 1. Game of Thrones season 7 2. Plot and storyline 3. New cast members
4. Filming locations 5. Critical reception and ratings

RQ-VAE <|g16289|> <|g13509|> <|g10485|> <|g11274|>
<|g369|> <|g3661|> <|g13026|> <|g8187|>

IDF brokerswindsor mt4 brokerswere kontos windsorbrokers

Ours rna folding computational methods thermodynamic optimization model

Table 12: Examples of different types of docids.

Category Query Types Doc Types
Train ∩ Eval Question, Dialog, Claim, Document, Answer, Function,

Function Header, NL Command, Command Doc, Solution, Article,
Code Problem, Math question, Articles, Medical Document,
Paper Title, Summary Paragraph, Pages, Statute,

Passage, Passages, Table & Paragraph
(9 types) (14 types)

Only in Eval Health Record, Topic, Situation, Clinical Trials, Prior Case,
Request, Patient Data, Communications, Dataset, Music,
Medical Case, Patient Description, Tweet, News, POI, Table
Medical Claim, Numerical Claim
(9 types) (8 types)

Only in Train Math Statement, Entity & Relation, Entity Page, Citation, Proof,
Paper Abstract, Entity Mention, Reference, Duplicate Question,
CNL Command, GitHub Issue, Related File, Code Diff,
Commit, Code Context, Next Function, HuggingFace API,
Math Question, Title, EU Directive, Tensor API, PyTorch API,
UK Legislation, Instruction, UK Legislation, EU Directive,
Reaction, Description Highlight, Proteins Documents,

Wikipedia Page
(14 types) (16 types)

Table 13: Comparison of Query and Doc Types between Dataset A (38 datasets) and Dataset B (51
datasets)
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