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ABSTRACT

Scalable Vector Graphics (SVG) is a popular format on the web and in the de-
sign industry. However, despite the great strides made in generative modeling,
SVG has remained underexplored due to the discrete and complex nature of such
data. We introduce GRIMOIRE, a text-guided SVG generative model that is com-
prised of two modules: A Visual Shape Quantizer (VSQ) learns to map raster
images onto a discrete codebook by reconstructing them as vector shapes, and
an Auto-Regressive Transformer (ART) models the joint probability distribution
over shape tokens, positions, and textual descriptions, allowing us to generate
vector graphics from natural language. Unlike existing models that require di-
rect supervision from SVG data, GRIMOIRE learns shape image patches using
only raster image supervision which opens up vector generative modeling to sig-
nificantly more data. We demonstrate the effectiveness of our method by fitting
GRIMOIRE for closed filled shapes on MNIST and for outline strokes on icon and
font data, surpassing previous image-supervised methods in generative quality and
the vector-supervised approach in flexibility.

1 INTRODUCTION

In the domain of computer graphics, Scalable Vector Graphics (SVG) has emerged as a versatile
format, enabling the representation of 2D graphics with precision and scalability. SVG is an XML-
based vector graphics format that describes a series of parametrized shape primitives rather than a
limited-resolution raster of pixel values. While modern generative models have made significant
advancements in producing high-quality raster images (Ho et al., 2020; Isola et al., 2017; Saharia
et al., 2022; Nichol et al., 2021), SVG generation remains a less explored task. Existing works
that have aimed to train a deep neural network for this goal primarily adopted language models
to address the problem (Wu et al., 2023; Tang et al., 2024). In general, existing approaches share
two key limitations: they necessitate SVG data for direct supervision which inherently limits the
available data and increases the burden of data pre-processing, and they are not easily extendable
when it comes to visual attributes such as color or stroke properties. The extensive pre-processing is
required due to the diverse nature of an SVG file that can express shapes as a series of different basic
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Figure 1: Generative results for fonts and icons from GRIMOIRE and Im2Vec. Since Im2Vec does
not accept any conditioning, we sample after training Im2Vec only on icons of stars or the letter
A, respectively. For GRIMOIRE we use the models trained on the full dataset conditioned on the
respective class.
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primitives such as circles, lines, and squares – each having different properties – that can overlap
and occlude each other.

An ideal generative model for SVG should however benefit from visual guidance for supervision,
which is not possible when merely training to reproduce tokenized SVG primitives, as there is no
differentiable mapping to the generated raster imagery. In this paper, we present GRIMOIRE (Shape
Generation with raster image supervision), a novel pipeline explicitly designed to generate SVG
files with only raster image supervision. Our approach incorporates a differentiable rasterizer, Dif-
fVG (Li et al., 2020), to bridge the vector graphics primitives and the raster image domain. We
adopt a VQ-VAE recipe (Van Den Oord et al., 2017), which pairs a codebook-based discrete auto-
encoder with an auto-regressive Transformer that models the image space implicitly by learning the
distribution of codes that resemble them. We find this approach particularly promising for vector
graphics generation, as it breaks the complexity of this task into two stages. In the first stage of our
method, we decompose images into primitive shapes represented as patches. A vector-quantized
auto-encoder learns to encode and map each patch into a discrete codebook, and decode these codes
to an SVG approximation of the input patch, which is trained under raster supervision. In the sec-
ond stage, the series of raster patches containing primitives are encoded and the prior distribution
of codes is learned by an auto-regressive Transformer model conditioned on a textual description.
At inference, a full series of codes can be generated from textual input, or other existing shape
codes. Therefore, GRIMOIRE supports text-to-SVG generation and SVG auto-completion as possi-
ble downstream tasks out-of-the-box.

The key contributions of this work are:

1. We frame the problem of image-supervised SVG generation as the prediction of a series of
individual shapes and their positions on a shared canvas.

2. We train the first text-conditioned generative model that learns to draw vector graphics with
only raster image supervision.

3. We compare our model with alternative frameworks showing superior performance in gen-
erative capabilities on diverse datasets.

4. We release the code of this work to the research community1.
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Figure 2: Overview of GRIMOIRE. On the left, the training process of our VSQ module is depicted,
where raster input patches are encoded into discrete codes and reconstructed as SVG shapes using
visual supervision. In the top right, each image is encoded into a series of discrete codes using the
trained VSQ encoder and its textual description. The bottom right illustrates how the ART module
learns the joint distribution of these codes and the corresponding text.

1https://github.com/under-review-papercode/9973

2

https://github.com/under-review-papercode/9973


108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RELATED WORK

2.1 SVG GENERATIVE MODELS

The field of vector graphics generation has witnessed increasing interest. Following the extraordi-
nary success of Large Language Models (LLM), the most recent approaches (Lopes et al., 2019;
Aoki & Aizawa, 2022; Wu et al., 2023; Tang et al., 2024) have recast the problem as an NLP task,
learning a distribution over tokenized SVG commands. Iconshop (Wu et al., 2023) introduced a
method of tokenizing SVG paths that makes them suitable input for causal language modeling. To
add conditioning, they employed a pre-trained language model to tokenize and embed textual de-
scriptions, which are concatenated with the SVG tokens to form sequences that the auto-regressive
Transformer can learn a joint probability on. StrokeNUWA (Tang et al., 2024) introduced Vector
Quantized Strokes to compress SVG strokes into a codebook with SVG supervision and fine-tune
a pre-trained Encoder–Decoder LLM to predict these tokens given textual input. However, both of
these approaches suffer from a number of limitations. First, they require a corpus of SVG data for
training, which hinges upon large pre-processing pipelines to remove redundancies, convert non-
representable primitives, and standardize the representations. Secondly, there is no supervision of
the visual rendering, which makes the models prone to data quality errors, e.g., excessive occlusion
of shapes. Finally, these models lack any straightforward extensibility towards the inclusion of new
visual features such as colours, stroke widths, or fillings and alpha values.

Hence, another line of work has sought to incorporate visual supervision. These approaches gen-
erally rely on recent advances in differentiable rasterization, which enables backpropagation of
raster-based losses through different types of vectorial primitives such as Bézier curves, circles,
and squares. The most important development in this area is DiffVG (Li et al., 2020), which re-
moved the need for approximations and introduced techniques to handle antialiasing. They further
pioneered image-supervised SVG generative models by training a Variational Autoencoder (VAE)
and a Generative Adversarial Network (GAN) (Goodfellow et al., 2014) on MNIST (LeCun et al.,
1998) and QuickDraw (Ha & Eck, 2017). These generative capabilities have subsequently been
extended in Im2Vec (Reddy et al., 2021), which adopts a VAE including a recurrent neural network
to generate vector graphics as sets of deformed and filled circular paths, which are differentiably
composited and rasterized, allowing for back-propagation of a multi-resolution MSE-based pyramid
loss. However, all of these models lack versatile conditioning (such as text) and focus on either im-
age vectorization, i.e., the task of creating the closest vector representation of a raster prior, or vector
graphics interpolation. We show in Section 5 that these approaches fail to capture the diversity and
complexity of datasets such as FIGR-8, and generate repetitive samples.

A different type of SVG generation enabled by DiffVG is painterly rendering (Ganin et al., 2018;
Nakano, 2019), where an algorithm iteratively fits a given set of vector primitives to match an image,
guided by a deep perceptual loss function. To achieve this goal, CLIPDraw (Frans et al., 2022) ras-
terized a set of randomly initialized SVG paths and encoded these with a pre-trained CLIP (Radford
et al., 2021) image encoder, iteratively minimizing the cosine distance between such embeddings
and the text description. A similar approach was adopted by CLIPasso (Vinker et al., 2022) to
translate images into strokes. Vector Fusion (Jain et al., 2023) leveraged Score Distillation Sam-
pling (SDS) (Poole et al., 2022) to induce abstract semantic knowledge from an off-the-shelf Stable
Diffusion model (Rombach et al., 2022).

2.2 VECTOR QUANTIZATION

VQ-VAE (Van Den Oord et al., 2017) is a well-known improved architecture for training Variational
Autoencoders (Kingma & Welling, 2013; Rezende et al., 2014). Instead of focusing on represen-
tations with continuous features as in most prior work (Vincent et al., 2010; Denton et al., 2016;
Hinton & Salakhutdinov, 2006; Chen et al., 2016), the encoder in a VQ-VAE emits discrete rather
than continuous codes. Each code maps to the closest embedding in a codebook of limited size. The
decoder learns to reconstruct the original input image from the chosen codebook embedding. Both
the encoder–decoder architecture and the codebook are trained jointly. After training, the autoregres-
sive distribution over the latent codes is learnt by a second model, which then allows for generating
new images via ancestral sampling. Latent discrete representations were already pioneered in pre-
vious work (Mnih & Gregor, 2014; Courville et al., 2011), but none of the above methods close
the performance gap of VAEs with continuous latent variables, where one can use the Gaussian
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Figure 3: Overview of the data generation process for GRIMOIRE. For the MNIST digits, we simply
create patches from a 6 ˆ 6 Grid. For FIGR-8, we extract the outlines of each icon and create small
centered raster segments. We save the original anchor position of each segment for the second stage
of our training pipeline. More information about the outline extraction is provided in Section A.4.
Fonts comes in vector format and can be easily manipulated to extract strokes, similarly to FIGR-8.

reparametrization trick, which benefits from much lower variance in the gradients. Mentzer et al.
(2023) simplified the design of the vector quantization in VQ-VAE with a scheme called finite scalar
quantization (FSQ), where the encoded representation of an image is projected to the nearest posi-
tion on a low-dimensional hypercube. In this case, no additional codebook must be learned, but
rather it is given implicitly, which simplifies the loss formulation. Our work builds in part on the
VQ-VAE framework and includes the FSQ mechanism.

3 METHOD

3.1 STAGE 1 – VISUAL SHAPE QUANTIZER

The first stage of our model employs a Visual Shape Quantizer (VSQ), a vector-quantized auto-
encoder, whose encoder EVSQ maps an input image I onto a discrete codebook V through vector-
quantization and decodes that quantized vector into shape parameters of cubic Bézier curves through
the decoder DVSQ. Instead of learning the codebook (Van Den Oord et al., 2017), we adopt the more
efficient approach of defining our codebook V as a set of equidistant points in a hypercube with q
dimensions. Each dimension has l unique values: L “ rl1, l2, . . . , lqs. The size of the codebook |V|

is hence defined by the product of values of all q dimensions. We define q “ 5 and L “ r7, 5, 5, 5, 5s

for a target codebook size of 4,375 unique codes, following the recommendations of the original
authors (Mentzer et al., 2023).

Before being fed to the encoder EVSQ, each image I P RCˆHˆW is divided into patches S “

ps1, s2, . . . , snq, with si P RCˆ128ˆ128, where C “ 3 is the number of channels. A set of discrete
anchor coordinates Θ “ pθ1, θ2, . . . , θnq with θi P N2 being the center coordinate of si in the
original image I is also saved. The original image I can then be reconstructed using S and Θ.

We experiment on three datasets (see Section 4). For MNIST, the patches are obtained by tiling each
image into a 6ˆ6 grid. For Fonts and FIGR-8, each patch depicts part of the target outline as shown
in Figure 3.

The VSQ encoder EVSQ maps each patch si P RCˆ128ˆ128 to ξ codes on the hypercube EVSQ :
RCˆ128ˆ128 ÞÑ V as follows. Each centered raster patch si is encoded with a ResNet-18 (He et al.,
2016) into a latent variable zi P Z Ă Rdˆξ with d “ 512. Successively, each of the ξ codes is
projected to q dimensions through a linear mapping layer and finally quantized, resulting in ẑi P Nq .
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The final code value vi P V is then computed as the weighted sum of all q dimensions of ẑi:

vi “

q
ÿ

j“1

ẑij ¨ bj , (1)

where the basis bj is derived as bj “
śj´1

k“1 lk, with b1 “ 1. This transformation ensures that each
unique combination of quantized values ẑi is mapped to a unique code vi in the codebook V.

This approach avoids auxiliary losses on the codebook while maintaining competitive expressive-
ness.

The decoder DVSQ consists of a projection layer, which transforms all the ξ predicted codes back
into the latent space Z , and a lightweight neural network Φpoints, which predicts the control points
of ν cubic Bézier curves that form a single connected path.

Finally, the predicted path of ν Bézier curves from Φpoints passes through the differentiable rasterizer
to obtain a raster output ŝi “ DiffVGpDVSQpEVSQpsiqqq. In order to learn to reconstruct strokes
and shapes, we train the VSQ module using the mean squared error:

Lrecons “ ps ´ ŝq2. (2)

DVSQ can be extended to predict continuous values for any visual attribute supported by the dif-
ferentiable rasterizer. Hence, we also propose series of other fully-connected prediction heads that
can optionally be enabled: Φwidth : Z ÞÑ R predicts the stroke width of the overall shape, and
Φcolor : Z ÞÑ RC outputs the stroke color or the filling color for the output of Φpoints. All the
modules are followed by a sigmoid activation function.

While Lrecons would suffice for training the VSQ, operating only on the visual domain could lead to
degenerate strokes and undesirable local minima. To mitigate this, we propose a novel geometric
constraint Lgeom, which punishes control point placement of irregular distances measured between
all combinations of points predicted by Φpoints.

Let P “ pp1, p2, ..., pν`1q be the set of all start and end points of a stroke with pi “ ppxi , p
y
i q and

pxi , p
y
i P r0, 1s. Then ρi,j is defined as the Euclidean distance between two points pi and pj , ρj is

defined as the mean scaled inner distance for point pj to all other points in P , and δj as the average
squared deviation from that mean for point pj :

ρj “
1

ν

ν`1
ÿ

i“1
i‰j

ρi,j
|i ´ j|

δj “
1

ν

ν`1
ÿ

i“1
i‰j

ˆ

ρi,j
|i ´ j|

´ ρj

˙2

(3)

Lgeom is finally defined as the average of the deviations for all start and end points in P . Lgeom is
then weighted with α and added to the reconstruction loss.

Lgeom “
1

ν ` 1

ν`1
ÿ

j“1

δj LVSQ “ Lrecons ` α ˆ Lgeom (4)

With α being an hyper-parameter. The overall scheme of GRIMOIRE including the first stage of
training is depicted in Figure 2.

3.2 STAGE 2 – AUTO-REGRESSIVE TRANSFORMER

After the VSQ is trained, each patch si can be mapped onto an index code vi of the codebook V
using the encoder EVSQ and the quantization method. However, the predicted patch ŝi captured by
the VSQ does not describe a complete SVG, as the centering leads to a loss of information about
their global position θi on the original canvas. Also, the sequence of tokens is still missing the text
conditioning. This is addressed in the second stage of GRIMOIRE. The second stage consists of an
Auto-Regressive Transformer (ART) that learns for each image I the joint distribution over the text,
positions, and stroke tokens. A textual description T of I is tokenized into T “ pτ1, τ2, . . . , τtq
using a pre-trained BERT encoder (Devlin et al., 2018) and embedded. I is visually encoded by
transforming its patches si onto vi P V via the encoder EVSQ, whereas each original patch position
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θi P Θ is mapped into the closest position in a 256 ˆ 256 grid resulting in 2562 possible position
tokens. Special tokens <SOS>, <BOS>, and <EOS> indicate the start of a full sequence, beginning
of the patch token sequence, and end of sequence, respectively. Each patch token is alternated with
its position token. The final input sequence for a given image to the ART module becomes:

x “ p<SOS>, τ1, . . . , τt,<BOS>, θ1, v1, . . . θn, vn,<EOS>q

The total amount of representable token values then has a dimensionality of |V |`2562`3 “ 69, 914
for |V | “ 4,375. A learnable weight matrix W P Rdˆ69,914 embeds the position and visual tokens
into a vector of size d. The BERT text embeddings are projected into the same d-dimensional
space using a trainable linear mapping layer. The ART module consists of 12 and 16 standard
Transformer decoder blocks with causal multi-head attention with 8 attention heads for fonts and
icons, respectively. The final loss for the ART module is defined as:

LCausal “ ´

N
ÿ

i“1

log ppxi | xăi; θq (5)

During inference, the input to the ART module is represented as x “ p<SOS>, τ1, . . . , τt,<BOS>q,
where new tokens are predicted auto-regressively until the <EOS> token is generated. Additionally,
visual strokes can be incorporated into the input sequence to condition the generation process.

4 DATA AND EXPERIMENTAL SETTING

MNIST. We conduct our initial experiments on the MNIST dataset (LeCun et al., 1998). We upscale
each digit to 128ˆ128 pixels and generate the texual description using the prompt “x in black color”,
where x is the class of each digit. We adopt the original train and test split.

Fonts. For our experiments on fonts, we use a subset of the SVG-Fonts dataset (Lopes et al., 2019).
We remove fonts where capital and lowercase glyphs are identical, and consider only 0–9, a–z, and
A–Z glyphs, which leads to 32,961 unique fonts for a corpus of „2M samples. The font features
– such as type of character or style – are extracted from the .TTF file metadata. The final textual
description for a sample glyph g in font style s is built using the prompt: “[capital] g in s font”,
where “capital ” is included only for the glyphs A-Z. We use 80%, 10%, and 10% for training,
testing, and validation respectively.

FIGR-8. We validate our method on more complex data and further use a subset of FIGR-8
(Clouâtre & Demers, 2019), where we select the 75 majority classes (excluding “arrow”) and any
class that contains those, e.g., the selection of “house” further entails the inclusion of “dog house”.
This procedure yields 427K samples, of which we select 90% for training, 5% for validation, and
5% for testing. We use the class names as textual descriptions without further processing besides
minor spelling correction. Since the black strokes of FIGR-8 mark the background rather than the
actual icon, we invert the full dataset before applying our additional pre-processing described in
Section A.4.

Experimental Setup. When training on FIGR-8, we utilize a contour-finding algorithm (Lorensen
& Cline, 1987) to extract outlines from raster images, which are then divided into several shorter
segments. Additional details regarding this extraction process can be found in Section A.4. In
contrast, the Fonts dataset is natively available in vector format, making it easier to manipulate,
similar to icons, before undergoing rasterization.

We propose two variants of Φpoints described in Section 3.1, a fully-connected neural network Φstroke
points :

Z ÞÑ Rp2ˆpνˆ3`1qq, which predicts connected strokes, and a 1-D CNN Φshape
points : Z ÞÑ Rp2ˆpνˆ3qq,

which outputs a closed shape.

We use Lgeom only for the experiments with Φstroke
points and set α “ 0.4. We opt to train the ResNet

encoder from scratch during this stage, since the target images belong to a very specific domain.
The amount of trainable parameters is 15.36M for the encoder and 0.8M for the decoder. We
stress the importance of the skewed balance between the two parameter counts, as the encoding of
images is only required for training the model and encoding the training data for the auto-regressive
Transformer in the next step. The final inference pipeline discards the encoder and only requires the
trained decoder DVSQ, hence resulting in more lightweight inference.
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5 RESULTS

This section presents our findings in two primary categories. First, we examine the quality of
the reconstructions and generations produced by GRIMOIRE in comparison to existing methods.
Second, we highlight the flexibility of our approach, demonstrating how GRIMOIRE can be easily
extended to incorporate additional SVG features.

5.1 RECONSTRUCTIONS

Closed Paths. We begin by presenting the reconstruction results of our VSQ module on the MNIST
dataset. In our experiments, we model each patch shape using a total of 15 segments. Increasing the
number of segments beyond this point did not yield any significant improvement in reconstruction
quality. Given the simplicity of the target shapes, we adopted a single code per shape.

We also conducted a comparative analysis of the reconstruction capabilities of our VSQ module
against Im2Vec. To assess the generative quality of our samples, we employed the Fréchet Incep-
tion Distance (FID) (Heusel et al., 2017) and CLIPScore (Radford et al., 2021), both of which are
computed using the image features of a pre-trained CLIP encoder. Additionally, to validate our VSQ
module, we considered the reconstruction loss Lrecons, as it directly reflects the maximum achievable
performance of the network and provides a more reliable metric.

As shown in Table 1, our VSQ module consistently achieves a lower reconstruction error compared
to Im2Vec across all MNIST digits. In Table 2, we also report the reconstruction error for a subset of
the dataset, selecting the digit zero due to its particularly challenging topology. Again, our method
exhibits superior performance with lower reconstruction errors. For MNIST, we fill the predicted
shapes from Im2Vec, since the raster ground truth images are only in a filled format. However, we
present both filled and unfilled versions for all other scenarios.

The CLIPScore of our reconstructions is higher in both cases. Notably, FID is the only metric where
Im2Vec occasionally shows superior results. We attribute this to the lower resolution of the ground
truth images, which introduces instability in the FID metric. The CLIPScore, however, mitigates
this issue by comparing the similarity with the textual description.

Strokes. For Fonts and FIGR-8, we conduct a deeper investigation to validate the reconstruction
errors of VSQ under different configurations, varying the amount of segments and codes per shape,
and the maximum length of the input strokes. Our findings show that for Fonts, more than one
segment per shape consistently degrades the reconstruction quality, possibly because the complexity
of the strokes in our datasets does not require many Beziér curves to reconstruct an input patch.
We also find that shorter thresholds on the stroke length help the reconstruction quality, as the MSE
decreases when moving from 11% to 7% and eventually to 4% of the maximum stroke length with
respect to the image size. Intuitively, shorter strokes are easier to model, but could also lead to very
scattered predictions for overly short settings.

The best reconstructions are achieved by using multiple codes per centered stroke. The two-codes
configuration has an average decrease in MSE of 18.28%, 41.46%, and 26.09% for the respective
stroke lengths. However, the best-performing configuration with two codes per shape is just 11.36%
better than the best single code representative, which we believe does not justify twice the number of
required visual tokens for the second stage training. Throughout our experiments, the configurations

MNIST Fonts FIGR-8

Model MSE Ó FID Ó CLIP Ò MSE Ó FID Ó CLIP Ò MSE Ó FID Ó CLIP Ò

Im2Vec (filled) 0.140 1.33 25.02 0.140 2.04 26.82 0.330 16.10 26.17
Im2Vec n/a n/a n/a 0.050 5.64 26.72 0.050 13.90 26.17

VSQ 0.090 7.09 25.24 0.014 4.45 28.61 0.004 1.42 31.09
VSQ + PI n/a n/a n/a 0.011 0.29 28.96 0.002 0.05 32.03

Table 1: Results for reconstructions of GRIMOIRE and Im2Vec on the test-set including all classes.
The last row includes post-processing.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

with multiple segments do consistently benefit from our geometric constraint. Ultimately, for our
final experiments we choose pν “ 2, ξ “ 1q for Fonts, and pν “ 4, ξ “ 2q for FIGR-8.

Regarding the comparison with Im2Vec, Table 2 shows that the text-conditioned GRIMOIRE on a
single glyph or icon has superior reconstruction performance even if Im2Vec is specifically trained
on that subset of data. In Table 1, we also report the values after training on the full datasets. In this
case, GRIMOIRE substantially outperforms Im2Vec, which is unable to cope with the complexity of
the data.

Finally, as GRIMOIRE quickly learns to map basic strokes or shapes onto its finite codebook and
due to the similarities between those primitive traits among various samples in the dataset, we find
GRIMOIRE to converge even before completing a full epoch on any dataset. Despite the reconstruc-
tion error being considerably higher, we also notice reasonable domain transfer capabilities between
FIGR-8 images and Fonts when training the VSQ module only on one dataset and keeping the max-
imum stroke length consistent. Qualitative examples of the re-usability of the VSQ module are
reported in the Appendix.

MNIST (0) Fonts (A) Icons (Star)

Model MSE Ó FID Ó CLIP Ò MSE Ó FID Ó CLIP Ò MSE Ó FID Ó CLIP Ò

Im2Vec (filled) 0.218 2.20 24.61 0.087 1.64 26.27 0.120 2.40 30.90
Im2Vec n/a n/a n/a 0.060 6.33 25.78 0.110 11.17 30.40

VSQ 0.130 11.2 26.68 0.020 4.50 29.13 0.002 1.26 31.64
VSQ + PI n/a n/a n/a 0.012 0.61 29.46 0.001 0.07 32.94

Table 2: Results for reconstructions of GRIMOIRE and Im2Vec on the test-set, using the class re-
ported next to the dataset name. The last row includes post-processing.

5.2 GENERATIONS

Text Conditioning. We compare GRIMOIRE with Im2Vec by generating glyphs and icons and
handwritten digits, and report the results in Table 3. Despite Im2Vec being tailored for single classes
only, our general model shows superior performance in CLIPScore for all datasets. Im2Vec shows
a generally lower FID score in the experiments with filled shapes, which we attribute again to the
lower resolution of the ground truth images (MNIST) and a bias in the metric itself as CLIP struggles
to produces meaningful visual embeddings for sparse images (Chowdhury et al., 2022) as for Fonts,
FIGR-8. In contrast, in the generative results on unfilled shapes, GRIMOIRE almost consistently
outperforms Im2Vec by a large margin for glyphs and icons.

Note that we establish new baseline results for the complete datasets, as Im2Vec does not support
text or class conditioning.

Looking at qualitative samples in Figure 4 and Figure 1, one can see that contrary to the claim that
surplus shapes collapse to a point (Reddy et al., 2021), there are multiple redundant shapes present
in the generations of Im2Vec. A single star might then be represented by ten overlapping almost
identical paths. The qualitative results in Figure 5 confirm this behaviour on the MNIST dataset. We
also show that setting Im2Vec to predict only one single SVG path leads the model to compress the
shape area and use its filling as a stroke width.

Overall, GRIMOIRE produces much cleaner samples with less redundancy, which makes them easier
to edit and visually more pleasing. The text conditioning also allows for more flexibility. The

MNIST (0) MNIST (Full) Fonts (A) Fonts (Full) FIGR-8(Star) FIGR-8(Full)

Model FID Ó CLIP Ò FID Ó CLIP Ò FID Ó CLIP Ò FID Ó CLIP Ò FID Ó CLIP Ò FID Ó CLIP Ò

Im2Vec (filled) 2.22 24.69 n/a n/a 1.20 25.81 n/a n/a 2.97 31.72 n/a n/a
Im2Vec n/a 25.21 n/a n/a 5.36 25.39 n/a n/a 11.59 31.88 n/a n/a
GRIMOIRE (ours) 12.25 26.60 9.25 25.25 5.61 30.60 1.67 28.64 6.25 32.24 0.64 29.00

Table 3: Results generations of GRIMOIRE and Im2Vec. GRIMOIRE is trained with all the classes
of the dataset and conditioned to the respective class using the text description. FID uses test-data
as a target.
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generations are also diverse, as can be seen in Figure 4 where we showcase multiple generations for
the same classes from FIGR-8. Additional generations on all datasets are provided in the Appendix.

Phone Heart Light bulb Arrow User Home Settings

Figure 4: Examples of text-conditioned icon generation from GRIMOIRE.

GRIMOIRE Im2Vec (One path) Im2Vec (Ten Paths)

G
en

er
at

io
ns

Figure 5: Generative results for the MNIST dataset from GRIMOIRE and Im2Vecwith the number of
predicted paths fixed to one and ten respectively. Since Im2Vec does not accept any conditioning,
we sample after training Im2Vec only on the digit Zero. For GRIMOIRE, we use the models trained
on the full dataset conditioned on the respective class.

Vector Conditioning. We also evaluate GRIMOIRE on another task previously unavailable for
image-supervised vector graphic generative models, which is text-guided icon completion. Fig-
ure 6 shows the capability of our model to complete an unseen icon, based on a set of given context
strokes that start at random positions. GRIMOIRE can meaningfully complete various amounts of
contexts, even when the strokes of the context stem from disconnected parts of the icon. We provide
a quantitative analysis in Section A.10. The results in this section are all obtained with the default
pipeline that post-processes the generation of our model. A detailed analysis of our post-processing
is provided in Section A.5 and Section A.6.

5.3 FLEXIBILITY

Finally, we demonstrate the flexibility of GRIMOIRE through additional qualitative results on new
SVG attributes. One of the advantages of splitting the generative pipeline into two parts is that the
ART module can be fully decoupled from the visual attributes of the SVG primitives. Instead, the
vector prediction head of the VSQ can be extended to include any visual attribute supported by the
differentiable rasterizer. Specifically, we activate the prediction heads Φwidth and Φcolor —outlined in
Section 3.1— to enable learning of stroke width and color, respectively. We train the VSQ module
on input patches while varying the values of those attributes and present the qualitative outcomes in
Figure 7, where each stroke is randomly colored using an eight-color palette and a variable stroke
width. The VSQ module accurately learns these features without requiring altering the size of the
codebook or modifying any other network configurations.

A similar analysis is conducted with closed shapes, and the results are reported in Figure 8, showing
that the VSQ module jointly maps both shape and color to a single code. This highlights the minimal
requirements of GRIMOIRE in supporting additional SVG features. In contrast, other state-of-the-art
vector-based generative models often rely on complex tokenization pipelines, making the extension
to new SVG attributes more cumbersome and less flexible.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

νcontext “ 0 νcontext “ 1 νcontext “ 3 νcontext “ 10 νcontext “ 15

M
ap
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Figure 6: Different completions with varying number of context segments νcontext (marked in red).
GRIMOIRE can meaningfully complete irregular starting positions of the context strokes.

Figure 7: Inputs (top) and corresponding reconstructions (bottom) generated by a VSQ model
trained to predict not only the shape but also the visual attributes of the input strokes, such as color
and stroke width. Input from the test-set.

6 CONCLUSION

This work presents GRIMOIRE, a novel framework for generating and completing complex SVGs,
trained solely on raster images. GRIMOIRE improves existing raster-supervised SVG generative
networks in output quality, while offering significantly greater flexibility through text-conditioned
generation. We validate GRIMOIRE on filled shapes using a simple tile-patching strategy to create
the input data, and on strokes using fonts and icons datasets. Our results demonstrate the supe-
rior performance of GRIMOIRE compared to existing models, even when adapted to specific image
classes. Additionally, we show that GRIMOIRE can be seamlessly extended to support new SVG
attributes when included in the training data.

Future work could explore incorporating additional vector primitives, expanding visual features, or
employing a hierarchical approach to patch extraction.

Orig VSQ Orig VSQ Orig VSQ

Two in royal blue Four in purple Six in in teal

Figure 8: Reconstruction of MNIST digits when the VSQ module also predicts the filling color. The
left side shows the tiling of the original raster images, the right side reports the reconstructions from
the VSQ module. No post-processing is applied. Input from the test-set.
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A APPENDIX

A.1 EXAMPLES OF SEGMENTATION-GUIDED PATCH EXTRACTION

In this section, we provide example results on emoji generation using some of the options mentioned
in Section 6. The model setup is similar to the experiments presented for the MNIST dataset with
one fundamental difference: each predicted closed shape targets one layer of the entire image canvas
instead of a tile. This setting enables the prediction of a final SVG that resembles real-world use
cases where vector data is a set of editable layers, ultimately composited altogether. Our training
data is created using the Segment Anything (SAM) model from Meta, which provides a series of
masks for the entire image. In our extraction pipeline, each mask produces one layer. We quantize
the original image into 4,096 possible colors and create a raster layer for each mask by using the
median color in the original image for its respective mask. A qualitative example of the results
from the extraction pipeline is shown in Figure 9. The image also depicts a three-dimensional
visualization of the final extracted layers sorted by their area.

Original Image SAM masks

Original Image SAM masks

Figure 9: Layer extraction with SAM.

Each layer is center-cropped based on the bounding boxes of the SAM mask. A 10-pixel white
padding is added on all sides similarly to what was done for the MNIST. However, in this scenario,
padding does not create any artifact and merely becomes an additional scaling factor, since the
reconstructed shapes fit the whole image size. During VSQ training, the ground truth cropping
bounding boxes are used to scale and shift back the points predicted by the VSQ into the original
position. These shifting values and the hierarchy of the layers become the new target of the ART
module. We introduced minor additional changes to cope with the increasing complexity of the
data, especially the color imbalance due to the small number of samples: The VSQ module outputs
RGB colors per shape, but the raster and ground truth layers are converted into the CIE-LAB color
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space before computing the loss. The color channels (AB) of each layer are weighted inversely to
the frequency of the target color in the dataset. No weights are needed for the luminance channel.
Figure 10 reports some examples of VSQ reconstructions by layer.

Input layers. VSQ Reconstructions.

Figure 10: Inputs (left) input layers for the VSQ, (right) reconstructions of the model.

Finally, Figure 11 shows some results after compositing all the layers together. Notably, this re-
construction was achieved after training on only 110 emojis, and the results come from the test set.
Common shapes (such as circles) and colors (such as yellow) are quickly learned, whereas more
complicated shapes remain challenging (e.g., shapes of the hair). Overall, this is already a large
improvement to other raster-supervised SVG generative models. Im2Vec does not learn the colors.
As stated in the original paper and found in the repository, the colors are hard-coded to reflect the
target image (e.g., one yellow and three black shapes when the target is a simple emoji).
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Figure 11: Reconstructions of emojis from the our VSQ, all the SVG layers are rendered together.
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A.2 KEY DIFFERENCES WITH SDS METHODS

In this section, we provide clarifications on how our model differs from popular architectures based
on Score Distillation Sampling (SDS).

Lack of target. SDS methods do not involve training, and rely on pretrained backbones (often
diffusion models), which produce more artistic and visually-appealing results, but also unbound to
any specific target data. In other words, SDS methods lack any control on the target domain. To
highlight this aspect, Figure 12, Figure 13, and Figure 14 reports examples of class images adopted
in this work, and shows the different generations obtained with with GRIMOIRE and popular SDS
methods such as VectorFusion and CLIPDraw. GRIMOIRE produces simple yet diverse generations,
which are coherent with its reference dataset. In contrast, in all cases, the generations from SDS
based methods appear distant from the target distribution, often partially ignoring the “black and
white” suffix in the prompt, obviating the need for a more in-depth comparison with the results of
our work.
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Figure 12: Comparison between SVGs generated with GRIMOIRE and methods based on Score
Distillation Sampling (SDS) on the class “Heart”. The first row reports samples from FIGR-8. For
CLIPDraw and VectorFusion we used the prompt: “The icon of an heart, black and white”.

Speed. SDS methods are also iterative by design; this means that generating results is extremely
slow. One of the motivations behind training a generative pipeline like GRIMOIRE is that at inference
time, producing a new sample merely takes the time of a forward pass. Indeed, GRIMOIRE results
in two orders of magnitude faster than popular SDS based methods. In Table 4, we report the
generation time (time for inference and file saving) for an image with Grimoire, VectorFusion, and
CLIPdraw. Those values were obtained across 5 generations on one NVIDIA H100.

Model Generation Time (seconds)
GRIMOIRE (ART module) 2.34

CLIPDraw 100.19
VectorFusion 379.74

Table 4: Average generation times of an icons given only the text prompt measured on five samples
using one NVIDIA H100 GPU. SDS-based methods are extremely slow due to their iterative opti-
mization strategy and result impractical for real-life applications.
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Figure 13: Comparison between SVGs generated with GRIMOIRE and methods based on Score
Distillation Sampling (SDS) on the class “User”. The first row reports samples from FIGR-8. For
CLIPDraw and VectorFusion we used the prompt: “Icon of a user, black and white”.
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Figure 14: Comparison between SVGs generated with GRIMOIRE and methods based on Score Dis-
tillation Sampling (SDS) on the letter “A”. The first row reports samples from Fonts. For CLIPDraw
and VectorFusion we used the prompt: “The letter A, font”.

A.3 DIAGRAM FOR VSQ

In Figure 15, we have included a new figure depicting the VSQ module in detail.

The image shows the training pass on a stroke input patch when both the geometric and the recon-
struction losses are enabled. In the figure, the architecture predicts both the Bézier curve, the stroke
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width, and the colors. All of these aspects are optimized by the reconstruction loss, whereas the
point coordinates are also subjected to geometric regularization.

In the shown example, we assume to use ξ codes to reconstruct one single shape. In practice, for our
experiments, we keep ξ “ 1 and disable the product of all codes that create the final embedding for
the decoder.

We report the size of each embedding of the autoencoder in the top-right corner and use the notation
adopted earlier in the paper.
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Figure 15: Overview of the VSQ pipeline with additional details.

A.4 PRE-PROCESSING

This section provides additional information regarding the pre-processing and extraction techniques
on the employed datasets.

Shapes. No pre-processing is conducted for the MNIST dataset. Images are simply tiled using a
6 ˆ 6 grid and the central position of each tile in the original image is saved.

Strokes. For the FIGR-8 dataset, the pixels outlining the icons are isolated using a contour finding
algorithm (Lorensen & Cline, 1987) and the coordinates are then used to convert them into vector
paths. This simple procedure available in our code repository allows us to efficiently apply a standard
pre-processing pipeline defined in Carlier et al. (2020) and already adopted by other studies (Wu
et al., 2023; Tang et al., 2024). The process involves normalizing all strokes and breaking them into
shorter units if their length exceeds a certain maximum percentage of the image size. Finally, each
resulting path fragment is scaled, translated to the center of a new canvas s by placing the center
of its bounding box onto the center of s, and rasterized to become part of the training data. Since
strokes in S are all translated around the image center, the original center position θ of the bounding
box in I is recorded for each s and saved. These coordinates are discretized in a range of 256 ˆ 256
values. This approach is also used for Fonts, but since the data comes in vector format, there is no
need for contour finding.

A.5 POST-PROCESSING

Our approach introduces small discrepancies with the ground truth data during tokenization. The
VSQ introduces small inaccuracies in the reconstruction of the stroke, and the discretization of the
global center positions may slightly displace said strokes. The latter serve as the training data for
the auto-regressive Transformer and therefore represent an upper limit to the final generation quality.
Similarly for MNIST, the use of white padding on each patch to facilitate faster convergence results
in small background gaps when rendering all shapes together, as shown in Figure 5. These small
errors compound for the full final image and may become fairly visible in the reconstructions.

While we opted not to modify the global reconstructions of MNIST generation, for FIGR-8 and
Fonts, we make use of SVG post-processing similar to prior work (Tang et al., 2024), which in-
troduced Path Clipping (PC) and Path Interpolations (PI). In PC, the beginning of a stroke is set
to the position of the end of the previous stroke. In PI, a new stroke is added that connects them
instead. As we operate on visual supervision, the ordering of the start and end point of a stroke is
not consistent. Hence, we adapt these two methods to not consider the start and end point, but rather
consider the nearest neighbors of consecutive strokes. We also add a maximum distance parameter
to the post-processing in order to avoid intentionally disconnected strokes to get connected. See
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Figure 16: Different SVG post-processing methods visualized. From left to right: raw generation,
results of applying PC and PI, results of applying PC and PI by only considering nearest neighbors
of consecutive strokes.

Figure 16, Figure 17 for a qualitative depiction of this process and Section A.6 for a quantitative
comparison.
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Figure 17: Some examples of text-conditioned glyph generation from GRIMOIRE. The first row
shows the unfixed model predictions, the second and third rows depict the final outputs with two
different post-processing techniques.

A.6 RESULTS WITH DIFFERENT POST-PROCESSING

In GRIMOIRE, the resulting full vector graphic generation is characterized by fragmented segments.
This is because the output strokes of the VSQ decoder are each locally centered onto a separate
canvas, and the auto-regressive Transformer, which is responsible for the absolute position of each
shape, returns only the center coordinates of the predicted shape without controlling the state of
connection between different strokes. To cope with this, in Section A.5, we introduced several post-
processing algorithms. In this section, we report additional information about the performance of
each of them for the VSQ module (reconstruction) and the overall GRIMOIRE (generation). Table 5
shows that the PC technique consistently outperforms the alternatives across both datasets in terms
of both FID and CLIPScore.

A.7 IM2VEC ON OTHER CLASSES

We conducted a more in-depth analysis of the generative capabilities in Im2Vec after training on
single subsets of FIGR-8, and compare the results with GRIMOIRE. We trained Im2Vec on the
top-10 classes of FIGR-8: Camera (8,818 samples), Home (7,837), User (7,480), Book (7,163),
Clock (6,823), Flower (6,698), Star (6,681), Calendar (misspelt as caledar in the dataset, 6,230),
and Document (6,221). Table 6 compares the FID and CLIPScore with GRIMOIRE. Note that
we train our model only once on the full FIGR-8 dataset and validate the generative performance
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Model Fonts FIGR-8
MSE FID CLIP MSE FID CLIP

VSQ 0.0144 4.45 28.61 0.0045 1.29 31.17
VSQ (+PC) 0.0135 0.23 29.24 0.0023 0.10 31.97
VSQ (+PI) 0.0106 0.29 28.96 0.0028 0.07 32.0
GRIMOIRE n/a 4.44 28.45 n/a 4.20 26.96

GRIMOIRE (+PC) n/a 1.67 28.64 n/a 3.58 27.45
GRIMOIRE (+PI) n/a 1.86 28.43 n/a 4.57 26.73

Table 5: Reconstruction capabilities of our VSQ module and generative performance of GRIMOIRE
with different post-processing techniques after training on Fonts and FIGR-8.

Ground Truth α “ 0 α “ 0.1 α “ 5

Figure 18: Samples from the test set when training the VSQ module with and without our geometric
constraint. Each stroke consists of two cubic Bézier segments. Embedded within each stroke, the
red dots mark the start and end points, while the green and blue dot pairs are the control points of
each segment.

using text-conditioning on the target class, whereas Im2Vec is unable to handle training on such
diverse data. Despite Im2Vec appearing to obtain higher scores on several classes such as User or
Document, a qualitative inspection reveals how the majority of the generated samples come in the
form of meaningless filled blobs or rectangles. The traditional metrics employed in this particular
generative field, based on the pre-trained CLIP model, react very strongly to such shapes in contrast
to more defined stroke images. We refer reviewers to the qualitative samples in Table 14. We further
observe a low variance in the generations when Im2Vec learns the representations of certain classes,
such as star icons.

Model camera home user book clock cloud flower calendar document
FID CLIP FID CLIP FID CLIP FID CLIP FID CLIP FID CLIP FID CLIP FID CLIP FID CLIP

Im2Vec (filled) 9.21 27.86 3.48 26.85 2.12 28.92 7.18 27.26 6.12 26.38 17.43 24.38 6.61 25.42 4.5 27.26 12.19 28.65
Im2Vec 9.05 27.18 9.19 25.95 6.33 27.01 8.63 25.84 5.09 25.69 25.58 24.38 6.8 23.34 6.61 26.22 16.62 26.71

GRIMOIRE 6.74 29.81 7.16 27.16 5.45 26.81 6.65 27.1 7.22 26.32 6.78 24.96 10.27 22.00 5.57 26.23 4.08 27.96
GRIMOIRE (+PC) 5.77 30.22 7.6 27.41 4.38 27.18 5.8 27.24 6.79 26.45 6.05 25.51 9.37 22.46 5.09 26.41 3.81 28.21
GRIMOIRE (+PI) 7.5 29.46 7.44 27.01 5.95 26.85 6.79 27.08 7.63 26.12 7.09 24.73 9.97 22.04 5.87 25.98 4.21 27.89

Table 6: Quality of generations for GRIMOIRE and Im2Vec for the top-10 classes in FIGR-8.

A.8 QUALITATIVE RESULTS OF THE GEOMETRIC LOSS

The adoption of our geometric constraint improves the overall reconstruction error, which we at-
tribute to the network being encouraged to elongate the stroke as much as possible. The results in
Figure 18 show the effects on the control points of the reconstructed strokes from the VSQ. With
the geometric constraint, the incentive to stretch the stroke works against the MSE objective, which
results in an overall longer stroke and therefore in greater connectedness in a full reconstruction and
an overall lower reconstruction error. We also present an example with an excessively high geo-
metric constraint weight (α “ 5) demonstrating that beyond a certain threshold, the positive effect
diminishes, resulting in degenerated strokes.
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Model Fonts FIGR-8
FID CLIP FID CLIP

GRIMOIRE (w/o context) 1.67 28.64 3.58 27.45
GRIMOIRE (+ 3 stroke context) 2.78 27.25 4.65 25.31
GRIMOIRE (+ 6 stroke context) 3.16 27.25 5.46 25.54
GRIMOIRE (+ 12 stroke context) 2.95 27.57 6.04 25.85
GRIMOIRE (+ 24 stroke context) 2.25 28.12 6.05 26.39

Table 7: Generation quality of GRIMOIRE with different lengths of provided context on Fonts and
FIGR-8. Post-processing is conducted for all setups. GRIMOIRE uses textual input for all genera-
tions.

A.9 IMPLEMENTATION DETAILS

We use AdamW optimization and train the VSQ module for 1 epoch for Fonts and FIGR-8 and five
epochs for MNIST. We use a learning rate of λ “ 2 ˆ 10´5, while the auto-regressive Transformer
is trained for „30 epochs with λ “ 6 ˆ 10´4. The Transformer has a context length of 512.
Before proceeding to the second stage, we filter out icons represented by fewer than ten or more
than 512 VSQ tokens, which affects 12.16% of samples. We use p-sampling for our generations
with GRIMOIRE. Training the VSQ module on six NVIDIA H100 takes approximately 48, 15, and
12 hours for MNIST, FIGR-8, and Fonts, respectively; the ART module takes considerably fewer
resources, requiring around 8 hours depending on the configuration. Regarding Im2Vec, we replace
the Ranger scheduler with AdamW (Loshchilov & Hutter, 2017) and enable the weighting factor for
the Kullback–Leibler (KL) divergence in the loss function to 0.1, as it was disabled by default in
the code repository, preventing any sampling. We train Im2Vec with six paths for 105 epochs with
a learning rate of λ “ 2 ˆ 10´4 with early stopping if the validation loss does not decrease after
seven epochs. Regarding the generative metrics, we utilized CLIP with a ViT-16 backend for FID
and CLIPScore.

A.10 GENERATIVE SCORES WITH COMPLETION

To evaluate if GRIMOIRE generalizes and learns to meaningfully complete previously unseen ob-
jects, we compare the CLIPScore and FID of completions with varying lengths of context. The
context and text prompts are extracted from 1,000 samples of the test set of the FIGR-8 dataset. The
results are shown in Table 7.

While GRIMOIRE can meaningfully complete unseen objects, the quality of these completions is
generally lower than the generations under text-only conditioning. This is expected, as prompts in
the test set are also encountered during training (the class names). The CLIPScore generally drops
to its lowest point with the least amount of context and then recovers when more context is given to
the model, which coincides with our qualitative observations that with only a few context strokes,
GRIMOIRE occasionally ignores them completely or completes them in an illogical way, reducing
the visual appearance.

A.11 DOMAIN TRANSFER CAPABILITIES FOR RECONSTRUCTION

To validate how the strokes learned during the first training stage adapt to different domains, we use
our VSQ module to reconstruct Fonts after training on FIGR-8, and vice versa. Figure 19 provides a
qualitative example for each setting. Despite the loss value for each image being around one order of
magnitude higher than the in-domain test-set (MSE« 0.05), the VSQ module uses reasonable codes
to reconstruct the shapes and picks curves in the correct directions. Straight lines end up being the
easiest to decode in both cases.

A.12 CODEBOOK USAGE FOR STROKES

As described in Section 3.1, for FSQ, we fixed the number of dimensions of the hypercube to 5 and
set the individual number of values for each dimension as L “ r7, 5, 5, 5, 5s for a total codebook
size of |B| “ 4,375. In this section, we want to share some interesting findings about the learnt
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Icons on Fonts. Fonts on icons.

Figure 19: Qualitative zero-shot reconstructions from the test-set of FIGR-8 and Fonts after training
the VSQ module solely on the respective other dataset.

18.76% 12.26% 2.56% 1.73% 1.16% 1.12% 0.99% 0.94% 0.92% 0.80%

Table 8: Top ten most used strokes of the VSQ module trained on icons and their relative occurrences
in our subset of FIGR-8.

codebook. For this, we shall use the VSQ trained on FIGR-8 with ncode “ 1, nseg “ 2, a maximum
stroke length of 3.0, and the geometric constraint with α “ 0.2.

After training the VSQ on FIGR-8, we tokenize the full dataset. The resulting VQ tokens stem from
60.09% of the codebook, while 39.91% of the available codes remained unused. The ten most used
strokes make up 41.24% of the dataset, while the top 24 and 102 strokes make up roughly 50%
and 75%, respectively. These findings indicate that for these particular VSQ settings, one could
experiment with smaller codebook sizes.

To balance out the stroke distribution, one could use a different subset of FIGR-8. Currently, the
classes “menu”, “credit card”, “laptop”, and “monitor” are contributing the most to the stroke im-
balance, with 26%, 24.3%, 24.05%, and 23.8% of their respective strokes being the most frequent
horizontal one in Table 8.

A.13 AVERAGE STROKES IN CODEBOOK

In Section A.12, we show the ten most used strokes of our trained VSQ, but after inspecting the
full codebook we notice how neighboring codes often express very similar strokes. Therefore, to
visualize the codebook more effectively, we plot mean and minimum reductions of the full codebook
in Figure 20. Additionally, we tokenize the full FIGR-8 dataset and plot the same reductions in
Figure 21 to show the composition of the dataset.

A.14 QUALITATIVE RESULTS – RECONSTRUCTION

In Table 9 and Table 10, we provide several qualitative examples of vector reconstructions using
Im2Vec and our VSQ module on the Fonts and FIGR-8 datasets, respectively. We fill the shapes of
the images when using Im2Vec, since the model creates SVGs as series of filled circles and would
not be able to learn from strokes with a small width. Im2Vec does not converge when trained on
the full datasets, whereas it returns some approximate reconstruction of the input when only a single
class is adopted. In contrast, the VSQ module generalizes over the full dataset.

A.15 QUALITATIVE RESULTS – GENERATION

In this section, we provide qualitative examples of our reconstruction and generative pipeline, and
compared those with Im2Vec. Table 11 reports a few examples of icons generated with GRIMOIRE
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codebook mean strokes all codebook strokes

Figure 20: Different reductions of all 4,375 strokes from the VSQ codebook. The model seems to
have learned an expressive codebook-decoder mapping as the figure on the left shows a smooth and
evenly distributed stroke profile and the figure on the right displays strokes in almost every direction.

FIGR-8 mean strokes
FIGR-8 mean strokes exclud-
ing top ten strokes all FIGR-8 strokes

Figure 21: Different reductions of all strokes from the tokenized FIGR-8 dataset. The visualization
on left shows the dominance of the two most occurring strokes, the middle shows that the distribution
of strokes is skewed. The missing 39.91% of strokes are also visible in the right figure, where certain
diagonal strokes that are available in the codebook are never used.
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using only text-conditioning on classes. In Table 12 we report some generations for MNIST. In
Table 13, we report generative results for Fonts. Thanks to the conditioning, we can generate upper-
case and lower-case glyphs in bold, italic, light styles, and more. As can be seen in the table,
GRIMOIRE also learns to properly mix those styles only based on text. Finally, in Table 14, we
report some generative results on icons and Fonts for Im2Vec on a single class dataset. The results
show how the pipeline typically fails to produce meaningful or sufficiently diverse samples.
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Table 9: Examples of various reconstructions of our VSQ module after training on Fonts compared
to reconstructions of Im2Vec trained on the letter ”A” (first row) and Im2Vec trained on the full
Fonts dataset (third row).
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Table 10: Examples of various reconstructions of our VSQ module after training on icons compared
to reconstructions of Im2Vec trained on one class (first row) and Im2Vec trained on the full dataset
(third row).

A.16 GLOSSARY OF NOTATION
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Clock Luggage Shopping Bag Camera Like

Home Mail Share Target Arrow

Microphone Gift Clock Eye Cube

Sun Bell Bell Smile Clip

Smile Share Bin Book Home

Table 11: Examples of various samples generated with GRIMOIRE after training on icons, using
only text conditioning.

Table 12: Examples of a samples generated with GRIMOIRE for each digit of the MNIST dataset.
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Table 13: Examples of filled samples generated with Im2Vec after training the model on specific
classes of the dataset. For most classes, Im2Vec could not capture the diversity of the data and failed
to meaningfully converge.
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Table 14: Examples of various samples generated with GRIMOIRE after training on Fonts, using
only text conditioning.

E Network encoder
D Network decoder
I Image from the dataset
V Codebook
v Codes from the codebook
L Set of values per dimension of our codebook
l Single dimensional value
q Number of dimensions of the codebook
S Series of patches
s Single patch
C Color channels
n Number of patches
Θ Set of discrete coordinates
θ Single coordinate pair
Z Latent space
ẑ Projected embedding
d Dimension of latent
z Latent embedding
ŝ Predicted patch
ν Number of segments
P Set of points
p Point pair
ρ Euclidian distance
Φ Neural network
ξ Number of codes
T Text description
T Tokenized description
τ Text tokens
t Number of text tokens
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