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ABSTRACT

Measuring nonlinear feature interaction is an established approach to understanding
complex patterns of attribution in many models. In this paper, we use Shapley
Taylor interaction indices (STII) to analyze the impact of underlying data struc-
ture on model representations in a variety of modalities, tasks, and architectures.
Considering linguistic structure in masked and auto-regressive language models
(MLMs and ALMs), we find that STII increases within idiomatic expressions and
that Transformer ALMs scale STII with syntactic distance, just as LSTM-based
ALMs do. Our speech model findings reflect the phonetic principal that the open-
ness of the oral cavity determines how much a phoneme’s acoustics vary based on
context. Our wide range of results illustrates the benefits of interdisciplinary work
and domain expertise in interpretability research.

1 INTRODUCTION

Feature attribution is a common approach to interpreting modern neural networks. One classic method
is the Shapley decomposition (Shapley, 1952), which is adapted from game theory scenarios where
the goal is to attribute credit—a Shapley value—within the context of a multi-agent cooperative game.
The Shapley decomposition assumes approximately linear features, usually an incorrect assumption
where deep learning is concerned. Consequently, researchers have often tried to quantify the validity
of the approximate linearity assumption in Shapley values (Kumar et al., 2021). These methods
calculate the degree of nonlinearity, or Shapley interaction, among a set of features; itself a metric
that can be used to interpret the representations produced by a complex model.

This paper investigates Shapley interactions in a number of tasks and architectures. We use Shapley
interactions as a case study to illustrate the importance of grounding model interpretations in the
underlying structure of the data and the target models. To this end, we draw connections between
interaction metrics and various structural properties of the data in each setting: syntax, tokenization,
and idiomatic expressions in masked and autoregressive language models (MLMs and ALMs,
respectively); phoneme articulation differences in speech models; and distinctions between edges,
foreground, and background pixels in image classifiers. After introducing our approach to Shapley
interactions, we apply them in a variety of settings and find the following.

• When we control for positional distance (Section 3.1), Transformer-based MLMs—but
not ALMs—show a strong correlation between feature interaction and syntactic proximity
on a pair of context tokens (Section 3.2). Both LMs often exhibit stronger interactions
between pairs of context tokens within an idiomatic Multiword Expression (MWE), but the
pattern (Section 3.3) is more consistent in MLMs predicting nearby tokens and in ALMs
predicting distant tokens. This combination of observations would suggest that the structure
of nonlinear interactions learned by MLMs is more overtly hierarchical than that of ALMs.

• It is known to phonologists that the acoustics of a vowel cannot be interpreted in isolation
because the vocal tract is shaped by nearby consonants (Rakerd, 1984). We find that acoustic
features in speech models accordingly interact more around transitions between consonants
and vowels compared to transitions between two consonants (Section 4.1). Furthermore,
consonance have more nonlinear interactions on average between consecutive acoustic
features near their transition if the consonant is articulated with a more open oral cavity
similar to a vowel, rather than a closed oral cavity (Section 4.2).

• In image classifiers, pixels close to object boundaries exhibit less local interaction, likely
because any perturbations are obscured by nearby edge compression artifacts (Appendix A.1).
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Considering the edge pixels themselves in detail, edges interact more with nearby foreground
object pixels than with other nearby pixels, but interact similarly with all distant pixels
(Appendix A.2). We may infer that the boundary of the object is determined by both
foreground and edge pixels, but at a distance other interactions take precedence, such as the
edge-edge interactions that determine the shape of an edge overall.

2 BACKGROUND: SHAPLEY INTERACTIONS

Shapley values are used to attribute decisions to specific features in predictive models, ideally by
exhaustively evaluating each possible coalition of interacting features. Specifically, the Shapley value
of a feature is obtained by computing the difference in a model’s output when a feature is included
versus when it is withheld from a given set.

Formally, Shapley values are calculated by taking the marginal contribution of a set of target features
A to each subset S ⊆ N\A, where N denotes the set of all features. For a value function v, here
the logit outputs of a neural network, the Shapley value is the weighted average across all possible
subsets when ablating A, given by:

ϕ(A) =
∑

S⊆N\A

|S|!(|N | − |S| − 1)!

|N |!
(v(S ∪A)− v(S)) (1)

Shapley values decompose into a close approximation of the output when interactions are additive,
such that ϕ(∅) ≈

∑
i∈S v({i}). In scenarios where features are dependent and their composition is

non-linear, Shapley values do not account for interacting effects between coalitions. The violation of
Shapley assumptions can be computed through the Shapley residual (Kumar et al., 2021):

ri = ∇iϕ−∇ϕ({i}) (2)

To calculate second order interactions, we rely on the Shapley Taylor interaction index (STII)
(Agarwal et al., 2019) using the discrete second-order derivative. For simplicity, we consider the case
of interaction between a pair of feature sets A and B. Shapley values are scalars, but the influence
on each unit in a vector can be computed individually to form a vector of Shapley values. Taking
this approach to compute a vector of interactions, we use the norm as a scalar metric of interaction.
Similar to Saphra & Lopez (2020), we scale the residual by the norm of the entire sequence with no
feature ablations.

STIIA,B =
∥ϕ(∅)− ϕ(A)− ϕ(B) + ϕ(A,B)∥2

∥ϕ(∅)∥2
(3)

Calculating the Shapley values for each coalition requires iterating over the powerset of N , requiring
O(2|N |) calculations. In high-dimensional input spaces, the exact calculation of Shapley residuals is
therefore prohibitively expensive. We approximate Shapley values by using Monte Carlo Permutation
Sampling (Castro et al., 2009).

3 LANGUAGE MODELING

Our first experiments are on language models, measuring how known associations between tokens
correlate with Shapley-based measures of feature interaction. We consider the influence of token
position, idiomatic phrases, and syntax. We find that MLMs and ALMs differ in their interaction
structure, especially in how they respond to syntax.

Datasets All English language modeling experiments use wikitext-2-raw-v1 (Merity et al., 2016)
tokenized and dependency parsed (for syntax experiments) with spaCy (Honnibal et al., 2020). For
MWE experiments, we use the AMALGrAM (Schneider et al., 2014a) supersense tagger, which
identifies both strong and weak (Schneider et al., 2014b) MWEs. For syntax experiments, we
resolve incompatibilities between the spaCy tokenizer and the model-specific tokenizers by assigning
overlapping tokens a syntactic distance of zero.
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Experimental Setup We analyze two models, the ALM GPT-2 (Radford et al., 2019) and the MLM
BERT-base-uncased (Devlin et al., 2018). We apply softmax to logit outputs to ensure interactions
across examples are comparable. Each sample sentence is unpadded and truncated to 20 tokens. The
first and second tokens in an interacting pair are, respectively, xt1 and xt2 where t1 and t2 provide
the indices of the features in an input sequence. We measure their non-linear interactions by the
Shapley interaction of two feature sets containing a single token each, STII{xt1},{xt2}. We denote
the index of the target token to be predicted as ttarget. We ablate the tokens by replacing them with
the padding token of the tokenizer.
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Figure 1: Average interaction scores monotonically decrease with greater interacting token pair
distance di and with a greater prediction distance dp.

3.1 POSITIONAL DISTANCES

One potential factor influencing interactions between tokens is the positional distance between the
interacting pair, where it is likely that stronger interactions occur between closer tokens. We also
consider the positional distance between the interacting pair and the target of prediction. These
surface-level positional differences are the dominant factor in feature interaction.

When relating STII to the latent structure of a sequence, we control for both interacting pair distance
di, i.e., positional distance between the interacting pair (Equation 4); and prediction distance dp,
i.e., the positional distance between the pair and the predicted target token (Equation 5).

di(xt1 , xt2 , xttarget) = t2 − t1 (4)

dp(xt1 , xt2 , xttarget) = min
t∈{t1,t2}

|ttarget − t| (5)

3.1.1 RESULTS

We confirm from Figure 1 that in both ALMs and MLMs, STII monotonically decreases at greater
distances, whether between the interacting pair (interacting pair distance di) or between the last
token in that pair and the target prediction token (prediction distance dp). The dramatic decline of
STII with increased prediction distance implies that when these models predict tokens, they treat the
more distant context as a bag of words rather than as complex syntactic relations (Khandelwal et al.,
2018). We also see that closer tokens interact more strongly with each other. Our other experiments
stratify samples by these distances when we study other factors influencing feature interactions, as it
is clear that higher interacting pair distance and positional distance both reduce the interaction score
in MLMs and ALMs.

3.2 SYNTACTIC DISTANCE

Syntactic structure can also influence an LM’s predictions. If a model composed distant syntactic
relations in a linear way, it would treat the wider context as though it were a bag of words. By
instead exhibiting strong interactions between syntactically close tokens, the model would closely
entangle the meaning of a modifier with its head. We measure syntactic distance by the number of
dependency edges traversed to connect a pair of tokens, a metric encoded by projected representations
in both MLMs (Hewitt & Manning, 2019) and ALMs (Murty et al., 2022). We verify the role of
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Figure 2: Each cell represents the Spearman correlation between syntactic distance and STII, for a
given interacting pair distance and prediction distance. Each syntactic distance included must have at
least 50 data points. We only provide results for cells where there exists at least one direct syntactic
modifier pair separated by the positional distance di and the Spearman correlation given at that cell is
statistically significance (p < 0.05).

modifier connections by the Spearman correlation between syntactic distance and STII, stratified by
interacting pair distance and prediction distance.

3.2.1 RESULTS

Figure 2 shows correlation between syntactic distance and STII. Our analysis reveals that, for
autoregressive language models (ALMs), all statistically significant correlations are negative. In
contrast, non-autoregressive language models (MLMs) exhibit both positive and negative correlations.
This finding aligns with previous research on LSTMs (Saphra & Lopez, 2020), which indicates
that syntax is handled more consistently in autoregressive models, while non-autoregressive models
display greater variability.

The inconsistencies observed in non-autoregressive models may stem from their handling of positional
proximity in less intuitive ways, complicating the relationship between syntactic and linear distance.
The interaction between these two dimensions may be more difficult to manage in MLMs, leading to
the varied correlation outcomes.

This finding suggests that we can interpret feature interaction as a distinctly syntactic alternative to the
inherent distance encoding found in autoregressive architectures (Haviv et al., 2022). In these models,
the degree of interaction is learned to prioritize syntactic relationships rather than depending solely
on positional information within the language modeling objective. This highlights a fundamental
difference in how these models integrate syntactic structure and distance.

3.3 MULTIWORD EXPRESSIONS

Classical treatments of semantics are compositional, implying that the meaning of a sentence is
derived by composing the meanings of each individual word. However, there are groups of words
whose meaning can only be derived when looking at the entire group rather than the individual words.
These word groups, known as multiword expressions (MWEs), include idioms like break a leg,
where the isolated meaning of each of the component words break, a, and leg fail to compose the
meaning of the entire expression. Higher interaction values for the tokens in the idiom would indicate
a less compositional treatment of the whole phrase.

In these experiments, we compare interactions between arbitrary pairs of tokens to interactions
between tokens contained within an MWE. The extreme case where there is no Shapley residual
would imply perfect compositionality—after all, linear addition is compositional—so our hypothesis
is that MWEs have a larger than average residual.
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(a) ALM experiments
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Figure 3: Each plot represents the trend in STII for a given prediction distance dp, responding to the
x-axis of interacting pair distance di. Trend is given for the average over: all pairs, strong MWE
relations, and weak MWE relations.

3.3.1 RESULTS

Figure 3 compares the STII between tokens that belong to the same MWE to the average STII
between all tokens, stratified by interacting pair distance di and prediction distance dp. For the both
ALM and MLM (Figure 3b), STII is higher when the interacting pair is in a MWE. The effect is
consistent across positional distances and more pronounced when predicting nearby tokens.

Appendix B adds nuance by contrasting tokens that share a MWE with those sharing a word. Although
the MLM increases interaction between MWE tokens, the model decreases interaction between tokens
within the same word. This effect is present in multiple languages—even in synthetic languages which
compose words from long sequences of morphemes—and our investigation suggests that same-word
interaction scores are lower because subword tokens are predictable in context. In contrast, MWEs
are often sequences of common words which change meaning within the context of an idiom.

4 AUTOMATED SPEECH RECOGNITION

When interpreting interactions in speech models—in this case, predictive models trained on speech—
we consider the structure imposed by the phonology that mediates the conversion of intended words
to acoustic signal. The study of phonology is based on distinctions between different phonemes,
such as the sounds represented by s or ee in English text. These phonemes are the intended sound, but
any actual sound produced in context is called a phone, and its acoustic features are dictated by the
shape of the vocal tract at the beginning and end of its duration, determined by the phones around it.

Because speech is a series of continuous transitions between phones, acoustic features often cannot
be interpreted as a specific phoneme without access to their surrounding context. This dependence
on context is particularly true for vowels (Rakerd, 1984), as well as for vowel-like consonants such
as <l> and <j>. These variations in the dependence between phonemes are what we focus on in our
speech experiments.

Rather than considering a single pair of interacting individual input features, we use the average
pairwise interaction for all consecutive acoustic features within a time interval. Note that consecutive
features can be meaningful ways to study the interaction between phones because the transition
between phones is continuous and without a well-defined boundary. For a given interval length, we
measure STII between all temporally consecutive features pt1 and pt2 when predicting the immediate
next sound pt3 . Formally, the interaction N between different phonemes over a temporal interval
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within range δ of the approximated phone boundary time tb is:

r̄δ =

tb+δ∑
t1=tb−δ

STIIpt1
,pt2

(6)

Note, however, that in the case where no acoustic feature is sampled at exactly tb − δ, we instead
start the summation with t1 at the earliest timestamp such that t1 ≥ tb − δ.

As in other experiments, we control for the distance between features as a factor in feature pair
interaction. In speech, the relevant distance is the temporal interval between the pair of acoustic
features. Features that occur far apart in time should interact relatively little, as the vocal tract will
eventually reshape to prepare for the next phoneme. By limiting our analysis only to consecutive
acoustic samples, we therefore control for temporal interval distance.

Datasets Our speech experiments use the Common Voice dataset (Ardila et al., 2020) of English
language voice recordings, which are contributed by volunteers around the world and comprise
92 hours of recorded speech. This compilation is characterized by its rich diversity, featuring a
total of 1,570 unique voices. We pre-process the dataset by aligning the audio recordings with
their corresponding phonemes using p2fa_py3 1, an implementation of the Penn Phonetics Lab
Forced Aligner (Yuan et al., 2008), which uses acoustic models to map the audio recordings to their
corresponding phonemes. We preprocess all audio files to a WAV and standard sampling rate and
then use p2fa_py3 to detect and align phonemes within the speech to their corresponding timeframes
in the recordings, marking the start and end of each phoneme. It is important to note, as a caveat
to the following results, that identifying the exact duration of a phoneme is not only challenging
but undefined in practice, as the vocal tract is in a state of continuous transition between phonemes
throughout an utterance.

Experimental Setup The target of our speech model analysis is the Wav2Vec 2.0 model wav2vec2-
base-960h (Baevski et al., 2020), which is trained on 960 hours of English audio to predict the next
sound in a recording. When computing Shapley values, ablated acoustic features are replaced with
silence.

4.1 VOWELS AND CONSONANTS

Vowels are formed with an open vocal tract that produces no turbulent airflow, but the specific position
of each part of that anatomy—and consequently the resonance of the cavity—is largely determined
by the surrounding consonants. As predicted by the phonology literature (Rakerd, 1984), consonants
can therefore often be interpreted in isolation, but vowels rely on nearby acoustic features from
surrounding consonants. In Figure 4, we see that the consecutive acoustic features interact more for
the 0.15 interval around a consonant-vowel boundary than around a consonant-consonant boundary.

4.2 MANNER OF CONSONANT ARTICULATION

While vowels are defined by how open and fronted the vocal tract is during formation, pulmonic
consonants are defined by three main features: place of articulation (such as at the teeth), voicing
(the difference between <s> and <z>), and manner of articulation. The manner of articulation
defines a hierarchy of tract occlusion from the stops (short consonants formed closing the oral cavity
completely) to the approximants (consonants that produce only slightly more turbulent airflow than
a vowel). Therefore, some consonants in practice behave more like vowels, and we expect them to
exhibit more nonlinear interactions across phoneme boundaries, as vowels do.

Our hypothesis is confirmed in Figure 5, modeled on a traditional consonant International Phonetic
Alphabet chart where each phoneme is placed in a cell with its column specified by location and
row specified by manner of articulation, with one side of a cell for voiced variants and the other
for unvoiced variants. Although the pattern is not perfect—highlighting <w> as an approximant
that is unusually interpretable in isolation—the figure shows high cross-phoneme STII for more
sonorant consonants on the lower rows, which are articulated like vowels with a more open oral

1https://github.com/jaekookang/p2fa_py3
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Figure 4: Comparison between average vowel-consonant interaction and consonant-consonant
interaction for acoustic features from adjacent phonemes. Temporal distance is considered, but unlike
in other tasks, the relationship between pair distance and pair interaction is not generally monotonic.
Confidence intervals are provided by bootstrap.

Figure 5: Consonant chart with a heat map indicating average interaction with acoustic features from
adjacent phonemes. Is is traditional in phonology, the column describe the place of articulation within
the vocal tract while the row describes the manner of articulation. Only interactions for acoustic
features within 0.1s range around the phoneme boundary are considered.

cavity. Conversely, many of the phonemes which can be interpreted in isolation fall on the top rows,
where the cavity is more closed, producing a phone much quieter than the sound of a vowel.

5 RELATED WORK

The basic version of the Shapley value and its approximation techniques do not account for linear
and non-linear interaction effects between groupings of features. In a non-linear value function
like a modern neural network, therefore, the Shapley value is by definition unfaithful. The Shapley
interaction value began with Owen (1972), studying the multilinear extension of Shapley values.
Grabisch & Roubens (1999) axiomatizes the Shapley interaction index. Recently, Fumagalli et al.
(2023) generalizes an unbiased form for approximation of interactions indices via a sampling-based
estimator. Kumar et al. (2021) characterize the limits of Shapley values and provide a geometric
interpretation for calculating interactions across all features. Tsai et al. (2023) proposes a generalized
approximation of the Shapley value to interactions by extending linear to polynomial approximations,
eliminating the need for additional conflicting axioms. Since our work focuses on pairwise interactions
in a large feature space, we use the Shapley-Taylor interaction (STII) (Agarwal et al., 2019).

Interpretability research in NLP has long exploited the underlying structure of natural language
text.Warstadt et al. (2018) assess the proficiency of language models in recognizing proper grammar
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and syntax within sentences through diagnostic challenge sets. Another common approach is
probing models to evaluate the incorporation of syntax into language models, proving beneficial but
necessitating additional parameters in the modeling process (Hewitt & Manning, 2019; Belinkov,
2021). Bai et al. (2021) consider how to explicitly integrate syntactic information into pre-trained
models, providing marginal improvements over the state-of-the-art. Our work adds to a strong body
of evidence that LMs to represent the latent structure of language internally.

Our work is also not the first to use feature interactions to investigate model behavior in the context
of natural language structure. Prior work in the area focus primarily on older architectures such as
LSTMs (Saphra & Lopez, 2020) and simple tasks such as text classification (Jumelet & Zuidema,
2023; Chen et al., 2020; Singh et al., 2019). Building upon the foundational contributions of prior
studies, our initial exploration in language models delves into a comprehensive analysis of modern
Transformer-based autoregressive and masked language models. In a departure from previous
research, we not only examine the relationship between feature interactions and syntax, but also
consider their implications for idiomatic expressions.

Moreover, in the scope of analyzing learning algorithms for speech, Chrupała et al. (2020) examined
the phonological representation in neural networks trained on spoken languages using probes and
representation similarity analysis, revealing phonological information implicitly encoded by internal
representations. Furthermore, Markert et al. (2021) analyzed models trained for Automatic Speech
Recognition through various attribution methods such as SHAP. These prior works underscore
the significance of analyzing low-level feature interactions in models across different modalities,
providing motivation for our exploratory study.

6 FUTURE WORK

Our primary objective in this work has been to showcase the versatility of these methods while
demonstrating how much their interpretation requires a deep understanding of the underlying structure
of the data. This work suggests a number of open questions and follow-up problems in addition to its
application on further tasks and domains.

Speech has multiple layers of structure, as it comprises both an acoustic signal and the language
structure underlying the utterance. Our investigation of feature interactions is limited to the phonetic
level, but future work may find the degree to which these multiple layers of linguistic structure affect
nonlinear feature interactions. Do these speech models exhibit similar interaction patterns to the
autoregressive language models we also analyze? Speech, often neglected in interpretability research,
is ripe with open problems.

While we compare the behavior of the models trained on the MLM and ALM objectives, we do not
compare any models that are trained on the same objective with different architectures. The inductive
bias and function of a given architecture are matters of great interest to many researchers in machine
learning, and we believe that measuring nonlinear interactions can provide many insights into how
specific models are similar and different.

This work has not taken full advantage of the versatility of Shapley residuals as a tool. Higher
order Shapley interactions (Sundararajan et al., 2020) provide a method of hierarchical clustering
on features and introduce yet more nuance into approximations of linear and nonlinear behavior in
neural networks. We also do not consider interactions of internal model features. We suggest that
future work in the area should incorporate knowledge about the underlying semantics of the input as
well as the model architecture.

Finally, and most crucially, we believe that followup work in this area should be interdisciplinary.
Speech, language, image processing, and other areas that can benefit from interpretability are all
well-studied, with decades or even centuries of scientific research. By collaborating with specialists
in these data domains, we can potentially contribute not only to the understanding of artificial models,
but also to the understanding of the natural phenomena in question. Interpretability is an important
new area in the emerging field of AI for scientific understanding and discovery, and we encourage
others to start future work by finding domain experts to choose questions worth asking.
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7 CONCLUSIONS

In accordance with The Bitter Lesson (Sutton, 2019), researchers and engineers typically apply
machine learning methods generically, incorporating as little explicit data structure as possible.
However, The Bitter Lesson does not apply to interpretability. Instead, meaningful interpretations of
representational and mechanistic structures at scale should be informed by the underlying structure
of data. Our results show how to use constituents, phones, and object boundaries to build a scientific
understanding that goes beyond intuitions about n-grams, acoustic features, and pixels.

These results have spanned modality and task. By measuring feature interaction in language models,
we find that multiword expressions are handled well compositionally both in MLMs and ALMs. In
speech prediction models, we show that consecutive acoustic features near a phone transition have
more nonlinear interactions if the transition is between a consonant and vowel, rather than between
two consonants. We also see that in this sense, sonorant consonants behave more like vowels. In our
image classifier experiments, we see that pixels on object boundaries interact most with nearby pixels
in the object foreground, but interact similarly with all pixels further away. Furthermore, pixels closer
to an object boundary are more locally linear, indicating that they have little individual influence on
the semantics of their local region.

These studies do not focus on individual data samples, but on patterns in the structure underlying the
data. Understanding these general patterns requires greater domain expertise than is often required
for sample-level interpretability research. We hope to inspire future interdisciplinary work with
phonology, syntax, visual perception, and other sciences that characterize corpus-wide structural
phenomena.
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A IMAGE CLASSIFICATION

While LMs use hierarchical syntactic structure and speech models interpret continuous transitions
between phonemes, image classification models are often viewed as composing high- and low-
frequency features (Schubert et al., 2021). Work in computer vision and interpretability often
contrasts the lowest frequency features (shapes) with the highest frequency (textures) by localizing
them to edge and non-edge pixels, respectively. We will leverage this framework by focusing on the
interactions between pixels in the foreground, background, and object boundaries.

We find that edge pixels—associated with the lowest frequency features—have the smallest nonlinear
interaction with nearby pixels. Additionally, we compute the magnitude of interactions between
pixels at various Manhattan distances that occur in edges, backgrounds, and object foregrounds. We
find that edge pixels interact most strongly with nearby pixels if they belong to the object foreground,
but this trend does not apply between more distant pixels.

Datasets We use the MNIST handwritten image dataset (LeCun et al., 2010) and the CIFAR-100
(Krizhevsky, 2009) image classification dataset.

Experimental Setup We conduct experiments using pre-trained Vision Transformer (ViT) (Doso-
vitskiy et al., 2020) models for both MNIST and CIFAR-100 datasets from the Hugging Face model
hub. We take a sample of 100 images from different classes in each dataset for our interpretability
analysis target. The outputs are standardized at an image level to control for the variance in the
interaction level across different images. We use a reference value of the channel-wise mean pixel
value to replace ablated features. We evaluate other options for a reference value and include these in
the Appendix.

A.1 LOCAL RECONSTRUCTION

For each pixel, we consider a local square grid of length d and take the mean value of the neighboring
pixel interactions according to Equation 7, excluding the central pixel at (i, j) from the mean.

r̄ij =
1

N

i+d∑
x=i−d

j+d∑
y=j−d

STII(i,j),(x,y) (7)

By taking an aggregate of the interactions in a small neighborhood of pixels, we reproduce a version
of the image (Figure 6) using a heatmap. The similarity to the original image is predominantly
because edges have much lower average interactions with neighboring pixels than does the object
or background. Within the object foreground, furthermore, the farther the pixel is from the nearest
edge, the higher the interaction values for that pixel. Pixels near the edge have smaller interaction
values because the local region’s structure is defined by the edge, so perturbing a nearby pixel does
not change the patch’s overall interpretation and the perturbed pixel blends in as an edge compression
artifact. In contrast, perturbing a pixel far from the edge changes the potential semantics of the local
region.

A.2 PAIRWISE PIXEL INTERACTIONS

Each pixel in an image falls within an edge, object foreground, or background region. We now
consider the interactions between pixels on the edge of an object and those elsewhere in an image:
elsewhere on an edge, on the object foreground, or in the background. As the strength of interaction
is strongly correlated with the distance between target pixel pairs, we control for their Manhattan
distance.

For both the CIFAR-100 and MNIST datasets, close pixels have the highest interaction with an edge
pixel if they are in the object foreground distance, possibly due to the model inferring the boundary
of the edge. As the distance between interacting pixels increases, all interaction values fall; farther
pixels appear to contribute similarly to the inferred edge boundary regardless of where they fall in the
underlying scene.
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(a) Image of a rose from CIFAR-100.
(b) Heatmap of local pixel interactions for
the rose.
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(c) Image of a digit from MNIST.
(d) Heatmap of local pixel interactions for
the digit.
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Figure 6: Each pixel represents the average interaction with nearby (distance = 2) pixels as calculated
by Equation 7.

B MULTILINGUAL SUBWORD TOKENS

We present additional experiments conducted in a multilingual setting, aiming to explore the dis-
tinctive nature of relationships between subword tokens that belong to the same word. We ran the
experiments on German, Turkish and English. We observe that on average STII is lower for subword
token pairs from the same word, as compared to STII for all adjacent pairs. The possible reason for
that is that a subword token is more predictable from the rest of the word, so it is easier for the model
to identify the possible token if it belongs to the same word. The interactions are therefore dampened
because the addition of the masked subword token contains very little information that cannot be
inferred from context.

Datasets We use the Turkish NER dataset ((Altinok, 2023)) and the GermEval German NER dataset
((Benikova et al., 2014)). As in English, these datasets are drawn from Wikipedia.

Experimental Setup We use XLM-RoBERTa, a multilingual variant of RoBERTa designed for
MLM modeling. Non-linear interactions are then calculated for same-word subword tokens and
interactions between any two tokens. The methodology mirrored that described earlier for calculating
non-linear interactions, specifically the MWE experiments.
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(a) Interactions between pixels in CIFAR-100
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Figure 7: Each line represents the average interactions between features in the image as measured by
STII, controlling for Manhattan distance. The error bar corresponds to a 95% confidence interval
obtained via bootstrap sampling.
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Figure 8: Each plot represents the trend in STII for adjacent context tokens when predicting the
immediate next token. Trend is given for the average over all pairs and tokens within the same word

B.1 RESULTS

Figure 8 illustrates significantly lower Shapley interaction values for tokens within the same word
compared to interactions between all token pairs. Perhaps surprisingly, this effect holds for both
diverse morphological types, meaning that these languages are extremely different in how they
construct words. Turkish, as an agglutinative language, would have many subword tokens with varied
inflections; German, a polysynthetic language, has many subword tokens that correspond to their own
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Figure 9: Correlation of loss with STII

words in other languages; and English, a moderately analytic language, would have fewer distinct
morphemes per word. However, tokenization schemes do not necessarily align with morphological
distinctions, and so they may be inferred from context even in a synthetic language such as Turkish
or German.

Now, we consider the hypothesis that the greater predictability of subword tokens is the reason why
same-word tokens have lower interactions. Examining the Spearman correlations of cross-entropy
loss with Shapley values for tokens within the same word versus any pair of tokens (Figure 9),
we observe a positive correlation in both cases. This suggests that as the model’s uncertainty in
predicting a token increases, non-linear interactions tend to elevate. Intriguingly, the correlation for
tokens within the same word surpasses the average case, indicating a more pronounced increase in
interaction—and same-word interaction as a case to be further considered.

The results differ from the MWE case, where the interactions are much stronger within the MWE,
here the interactions are lesser within the tokens of the same word, likely because subword tokens
are more predictable given the rest of the word than the tokens in MWE, which are sequences of
common words that often change meaning in the context of a specific idiom.

C CHOICE OF REFERENCE FOR IMAGE CLASSIFICATION

The reference value refers to the choice of substitution value for a given pixel in an image. A reference
value is needed for the evaluation of the Shapley value, as the value substituted for an ablated feature.

We evaluate several options for the reference value to use for pixels A,B in Equation 3 when
ablating features from an image. In practice, choosing a reference value should incorporate domain
specific knowledge (Shrikumar et al., 2017). In our experiments we consider zero-reference and
mean-reference, where the ablated pixel values are set to zero or the channel-wise mean value. We
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Figure 10: The highlighted pixels on the CIFAR image both change the prediction from true class,
skunk, to a mouse when either pixel is changed to the reference value. When both pixels are changed
to the reference value, the prediction again becomes skunk. This is likely due to the single black pixel
representing an eye feature on the skunk fur.

also evaluate a blur-reference, but due to it’s dependence on a local kernel, we decide against this
approach because we aim for standardization in the reference value for the pixel pairs.

We recognize that the choice of reference value can impact different datasets in different ways
depending on the context. For example, due to MNIST images having a black background, the
zero reference will have zero impact when the feature ablation is contained in the background. This
contrasts with CIFAR-100 images, where a black pixel can represent an eye feature, thus changing
the dynamics of the interaction. An example of an image where ablation forms a possible spurious
eye is illustrated in Figure 10.

Although zero-reference and mean-reference approaches yield similar results in our experiments, we
opt for the mean reference. This choice is driven by its consistent behavior across datasets, which
reduces the chances of having an outlier-like impact on the calculation.
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