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ABSTRACT

Deep generative models are well-known neural network-based architectures that
learn a latent distribution whose samples can be mapped to sensible real-world
data such as images, video, and speech. Such latent distributions are, however,
often difficult to interpret. In generative adversarial networks (GANs), some ear-
lier supervised methods aim to create an interpretable (structured) latent distribu-
tion or discover interpretable directions for image editing which require exploit-
ing the data labels or annotated synthesized samples during training, respectively.
In contrast, we propose using an unsupervised structured distribution modeling
technique that incorporates space-filling curves into vector quantization, which
makes the latent distribution interpretable by capturing its underlying morphologi-
cal structure. We apply this technique to model the latent distribution of pretrained
StyleGAN2 and BigGAN networks on various image datasets. Our experiments
show that the proposed approach yields an interpretable model of the latent dis-
tribution such that it determines which part of the latent distribution corresponds
to specific generative factors such as age, pose, hairstyle, background, data class,
etc. Furthermore, we can use the points and direction of a space-filling line for
controllable data augmentation and applying intelligible image transformations,
respectively. The implementation of our proposed method is publicly available1.

1 INTRODUCTION

Generative adversarial networks (GANs) (Goodfellow et al., 2014) are powerful deep generative
models that can be applied to a wide range of applications such as data augmentation (Antoniou
et al., 2017; Shorten & Khoshgoftaar, 2019), image manipulation (editing) (Härkönen et al., 2020;
Voynov & Babenko, 2020; Shen et al., 2020; Jahanian et al., 2019; Yüksel et al., 2021; Shen & Zhou,
2021; Abdal et al., 2021; Wang et al., 2018b; Plumerault et al., 2020; Yang et al., 2021; Goetschal-
ckx et al., 2019; Alaluf et al., 2022; Roich et al., 2022; Pehlivan et al., 2023; Liu et al., 2023), video
generation (Wang et al., 2018a), and speech enhancement (Pascual et al., 2017). For image data,
GANs map a latent distribution to an output image space by learning a non-linear mapping through
adversarial training (Voynov & Babenko, 2020). After learning such mapping function, GANs are
capable of creating realistic high-resolution images by sampling from the latent distribution (Kar-
ras et al., 2019; 2020; Brock et al., 2018). However, this latent distribution is a black-box in the
sense that we cannot interpret what image each latent vector would generate regarding semantic at-
tributes (e.g. gender, age, accessories, etc.) (Shen et al., 2020) and what are the human-interpretable
directions for editing these semantic attributes (Voynov & Babenko, 2020). Hence, having a more
comprehensive interpretation of the latent space is an important research problem that if solved leads
to more controllable generations.

Prior works can be categorized into three principal approaches aimed at making the latent distribu-
tions of generative models more interpretable.

1. Introducing structure into the latent distribution using data labels. The main rationale behind
these approaches (Klys et al., 2018; Xue et al., 2019; An et al., 2021) is that they take advantage of
labeled data (with respect to the features of interest) and train the generative model in a supervised
manner to learn a structured latent distribution in which data with specific labels reside in isolated

1The link to our GitHub repository (hidden for double-blind rule).
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subspaces of the latent distribution. Hence, this structured latent distribution can be interpretable
such that the user could have control over data generation and manipulation with respect to the
labels. However, these supervised methods suffer from two main drawbacks. First, they require
human labeling, whose cost can increase prohibitively when increasing dataset size (Voynov &
Babenko, 2020). Second, they might prevent the latent distribution from learning some intrinsic
structures that a human labeler is unaware of (Voynov & Babenko, 2020).

2. Disentangling the latent distribution dimensions. These methods (Chen et al., 2016; Higgins
et al., 2017; Ramesh et al., 2018; Lee et al., 2020; Liu et al., 2020) strive to train the generative
model in an unsupervised way to obtain a disentangled latent distribution. In a disentangled latent
distribution, changes in each latent dimension make variations only in one specific generative fac-
tor, while keeping the other generative factors unchanged. In other words, these approaches aim
to model various generative factors existing in the data to different latent dimensions and make
these dimensions (generative factors) independent of each other. Therefore, these methods are in-
terpretable in the sense that they allow control over data generation with respect to the generative
factors. However, the downside of the techniques with disentangled distribution is that they are less
efficient in generation quality and diversity (Voynov & Babenko, 2020).

3. Exploring meaningful directions in the latent distribution. The main goal of these tech-
niques (Härkönen et al., 2020; Voynov & Babenko, 2020; Shen et al., 2020; Jahanian et al., 2019;
Yüksel et al., 2021; Shen & Zhou, 2021; Abdal et al., 2021; Wang et al., 2018b; Plumerault et al.,
2020; Yang et al., 2021; Goetschalckx et al., 2019; Alaluf et al., 2022; Roich et al., 2022; Pehli-
van et al., 2023; Liu et al., 2023) is to find the directions in the latent distribution which lead to
intelligible data transformations such as changing the age, pose, hairstyle in face synthesis task.
Here the interpretability of the latent distribution refers to the user’s control over generation pro-
cess by manipulating latent vectors along these discovered meaningful directions. Based on their
methodology, these approaches can be divided into two categories; supervised (Jahanian et al., 2019;
Plumerault et al., 2020; Yang et al., 2021; Goetschalckx et al., 2019; Shen et al., 2020) and unsuper-
vised (Härkönen et al., 2020; Shen & Zhou, 2021; Voynov & Babenko, 2020; Yüksel et al., 2021).

One downside of these supervised methods is that they require a large amount of data sampling
(collection) together with the use of pretrained classifiers or human labelers to label the collected
data with respect to the user-predefined semantic directions, which are expected to be discovered
from the latent distribution (Shen & Zhou, 2021). In addition, these methods are limited to finding
only the desired directions which the user is interested in (Voynov & Babenko, 2020). On the other
hand, in unsupervised methods of Voynov & Babenko (2020); Yüksel et al. (2021), the user has to
choose the hyper-parameter K (the number of semantic directions to discover) for training, where
a large value for K results in discovering repetitive directions. Similarly, SeFa (Shen & Zhou,
2021) also requires the user to choose K. As GANSpace (Härkönen et al., 2020) applies principal
component analysis (PCA) on the latent distribution, the number of examined directions (K) is
really large (equal to the latent distribution dimension). However, not all PCA directions necessarily
correspond to changing an independent and meaningful generative factor. Furthermore, in all these
unsupervised methods there is no prior knowledge about what type of specific transformation each
of these K discovered directions corresponds to. Hence, the user has to do an exhaustive search over
all available K directions to determine which directions are practical and what they refer to.

Space-filling vector quantizer (SFVQ) (Vali & Bäckström, 2023) is a recently introduced approach
that helps to make the latent distribution more interpretable. SFVQ is a novel structured distribution
modeling technique that incorporates space-filling curves into vector quantization (VQ), where VQ
codebook elements play the role of corner points in a space-filling curve. According to the intrinsic
structure in the space-filling curves, it is expected that SFVQ captures the existing structure in the
latent distribution such that adjacent codebook vectors refer to similar content.

In this paper, we applied the SFVQ method to discover the underlying structure in the latent distri-
bution of the pretrained StyleGAN2 (Karras et al., 2020) and BigGAN (Brock et al., 2018) models
for an image generation task using FFHQ (Karras et al., 2019), AFHQ (Choi et al., 2020), LSUN
Cars (Yu et al., 2015), CIFAR10 (Krizhevsky et al., 2009), and ImageNet (Deng et al., 2009) datasets.
In contrast to the methods belonging to the first and second categories above, our unsupervised pro-
posed method neither needs any human labeling nor puts any constraint on the learned latent dis-
tribution. Thus, we avoid any degradation in the generation quality and diversity. Moreover, our
method does not need any hyper-parameter tuning like selecting the number of discovered direc-
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tions (K) as in (Shen & Zhou, 2021; Voynov & Babenko, 2020; Yüksel et al., 2021) or the training
loss weight coefficient as in (Voynov & Babenko, 2020). Furthermore, in contrast to the methods
of (Härkönen et al., 2020; Shen & Zhou, 2021; Voynov & Babenko, 2020; Yüksel et al., 2021), by
using SFVQ we have a clear perception of the discovered direction of change in advance, and we are
capable of discovering new and unique directions when the bitrate of SFVQ is high. To explore the
structure of the latent distribution and find its interpretable directions, the user is required to study
the learned SFVQ only once by observation.

Our experiments demonstrate that our proposed technique makes the latent distribution of Style-
GAN2 interpretable in the sense that what type of generations to expect from each part of the latent
distribution regarding age, hairstyle, pose, background, accessories (for FFHQ dataset), color, breed,
pose (for AFHQ dataset) and class of data (for CIFAR10 dataset). In addition, we observe that the
space-filling lines (the lines connecting the space-filling curve’s corner points or VQ codebook vec-
tors) are mainly located inside the latent distribution. This property renders numerous meaningful
latent vectors favorable for controllable data augmentation by interpolating between adjacent code-
book vectors. Furthermore, we observe that the direction of the space-filling line connecting two
subsequent codebook vectors can be used as a meaningful direction leading to human interpretable
image transformation. The main novelties of this paper are:

• Applying SFVQ to interpret the underlying structure and find interpretable directions of
changes in the latent distribution for image generation task using GANs (for the first time).

• Employing SFVQ for controllable data augmentation for images using GANs.

2 METHODS

2.1 VECTOR QUANTIZATION

Vector quantization (VQ) is a method for data compression (analogous to k-means algorithm (Mac-
Queen et al., 1967)) that models the probability density function of a distribution by a set of code-
book vectors spreading over the whole distribution space. If the bitrate is B bits, VQ divides the
data samples into K = 2B clusters such that each cluster is represented by a codebook vector as
its cluster center. Figure 1(a) shows the VQ applied on a 2D pentagon distribution. Applying VQ
means to map all data points within a Voronoi region (cluster) to its codebook vector (cluster center).
For an input vector x ∈ R1×D and codebook matrix C ∈ RK×D, VQ is defined as

x̂ = argmin
Ck

∥x− Ck∥2, 0 ≤ k < K, (1)

so that ∥·∥2 refers to the Euclidean distance. Ck ∈ R1×D is the nearest codebook vector from C to
the input vector x regarding the Euclidean distance.

2.2 SPACE-FILLING VECTOR QUANTIZER (SFVQ)

Figure 1: Codebook vectors (blue
points) of a 6 bit (a) vector quantizer,
and (b) space-filling vector quantizer
(curve in black) on a pentagon distribu-
tion (gray points). Voronoi regions for
VQ are shown in green.

Space-filling curves are piece-wise continuous curves
created by recursion, and if the recursion repeats infinitely
the curve entirely fills a multi-dimensional distribution.
The Hilbert curve (Sagan, 2012) is a well-known type of
space-filling curve, in which the corner points are deter-
mined with a specific mathematical formulation at each
recursion step. Motivated by space-filling curves, we
can interpret the vector quantization (VQ) function as
mapping of input data points onto a space-filling curve,
whose corner points are the codebook vectors of VQ.
This approach is called the space-filling vector quan-
tizer (SFVQ), through which we can map the input data
not only on the codebook vectors but also on the line con-
necting these codebook vectors. Figure 1 illustrates a 6 bit
VQ and SFVQ applied on a pentagon distribution.
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2.2.1 SFVQ TRAINING

To train the SFVQ, we use a dithering technique, which guarantees the codebook vectors would not
diverge during training. To map the input vector x on the SFVQ’s curve, first we generate a dithered
codebook matrix Cdither by means of interpolation at random places between all two neighboring
vectors of the current base codebook matrix C. Then, we apply ordinary VQ operation of Equation 1
using the dithered codebook Cdither on the input vector x. In other words, we map x to the closest
codebook vector of Cdither as

x̂ = Cdither
j = (1− λ)Cj + λCj+1, (2)

such that Cj and Cj+1 represent the two subsequent codebook vectors from the base codebook C
which their interpolation Cdither

j is the the closest dithered codebook vector to x, and λ is the dither-
ing (interpolation) factor. To generate the dithered codebook during training, we sample λ’s from
the uniform distribution of U [0, 1) that ensures random interpolation between subsequent vectors of
the base codebook. This type of randomized interpolation imposes a sense of continuity between
consecutive vectors of the base codebook and has a regularization effect. If our objective is to train
the SFVQ module alone (independent of any other training modules), the mean squared error (MSE)
between the input vector x and its quantized form x̂ can be applied as the training loss function,

MSE(x, x̂) = ∥x− x̂∥2 = ∥x− (1− λ)Cj − λCj+1∥2. (3)

In this scenario, there is no necessity to propagate gradients through the non-differentiable argmin
function in Equation 1. This is because x̂ and consequently the MSE loss are functions of the
leaf variables (Cj and Cj+1) which need gradients. On the other hand, if our intention is to train
the SFVQ module together with other modules, we have to find a solution for gradient collapse
issue (Vali & Bäckström, 2022) to pass the gradients through the non-differentiable argmin func-
tion. To achieve this, we can apply the recently introduced noise substitution in vector quantization
(NSVQ) (Vali & Bäckström, 2022) technique, which defines the final quantized input vector as:

x̃ = x+ ∥x− x̂∥ · v

∥v∥
, (4)

where v is a random vector sampled from a normal distribution (N (0, 1)). NSVQ does not need
any hyper-parameter tuning and yields faster convergence and more accurate gradients than the
commonly used straight through estimator (Bengio et al., 2013) method.

2.2.2 SFVQ INFERENCE

By minimizing the mean squared error (MSE) in Equation 3, the optimal value for λ in the interval
of i and i+ 1 can be calculated as

λoptimal =
(Ci+1 − Ci)

T (x− Ci)

∥Ci+1 − Ci∥2
. (5)

During inference, to determine where the input vector x is mapped on the learned SFVQ line, first,
we find the closest codebook vector index k∗ from C to x using Equation 1. Here we can inspect
two intervals of {Ck∗−1, Ck∗} and {Ck∗ , Ck∗+1}. Then, we calculate the λoptimal and x̂ for these
two intervals by the use of Equations 5 and 2, respectively. Finally, we compute the MSE between
the input vector x and the two obtained mappings x̂ for each interval and map x to the interval with
the lower MSE value.

3 EXPERIMENTS

To evaluate how the space-filling vector quantizer (SFVQ) can be used to explain the underly-
ing structure and interpretable directions of the latent distribution of GANs, we applied it on the
intermediate latent distribution (W) of StyleGAN2 (Karras et al., 2020) and first linear layer of
BigGAN512-deep (Brock et al., 2018), similar to Härkönen et al. (2020). It has been shown that
these layers are more favorable for interpretation because they render more disentangled represen-
tations, they are not constrained to any specific distribution, and they suitably model the underlying
structure of the real data (Karras et al., 2019; Härkönen et al., 2020; Shen et al., 2020). For Style-
GAN2, we employ the pretrained models on FFHQ, AFHQ, LSUN Cars, CIFAR10 datasets, and for
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(a) (b) (c) (d)
ResultDirection

Figure 2: StyleGAN2 in-
terpretable directions.

BigGAN we use the pretrained model on ImageNet. We use these
pretrained models and extract the latent representations of our desired
layers, then we train the SFVQ on the extracted representations.

To inspect the latent distributions from different hierarchy levels, we
trained the SFVQ with various bitrates ranging from 2 to 12 bit (4 to
4096 codebook vectors). Similarly to the space-filling curves, we train
the SFVQ recursively. Whatever the target bitrate for SFVQ is, we first
start with 2 bit SFVQ (only 4 codebook vectors) and then we expand
the bitrate from 2 bit to the target bitrate by adding only one bit at each
recursion step. Since SFVQ is not very sensitive to hyper-parameter
tuning, we adopt a general setup that works for all pretrained models
and datasets. In this setup, we trained SFVQ with the batch size of
64 over 100 k number of training batches (for each recursion bitrate)
using Adam optimizer with the initial learning rate of 10−3. We used
a learning rate scheduler such that during each recursion bitrate we
halved the learning rate after 60 k and 80 k training batches.

4 RESULTS AND DISCUSSION

4.1 STYLEGAN2: UNIVERSAL INTERPRETATION

To explore a universal interpretation of a latent distribution we apply
the SFVQ on that distribution and plot the generated images from ob-
tained SFVQ’s codebook vectors (corner points). According to the in-
trinsic arrangement of corner points in a space-filling curve, we expect
the SFVQ to capture a universal morphology of the latent distribution.
As the first experiment, we apply the SFVQ on the intermediate latent
representation (W) of StyleGAN2 (Karras et al., 2020) pretrained on
CIFAR10 dataset. When generating W’s latent vectors during train-
ing, StyleGAN2 asks for class label of the image. We sampled the
class labels randomly but unbiased against class labels (i.e. we gen-
erated same number of latent vectors for each class). In Figure 3, we
plot the generated images corresponding to 6 bit SFVQ codebook vec-
tors, i.e. each image corresponds to a codebook vector. At first glance,
we observe a clear arrangement with respect to the image class, such
that images from an identical category are organized into groups. Also
apart from the horse class, all animal types and industrial vehicles are
located next to each other. In addition, there are some visible simi-
larities for subsequent codebook vectors within a class such as similar
object’s rotation, scale, color, and background. We also see these ob-
servations consistently over different bitrates of SFVQ. Furthermore,
when increasing the SFVQ’s bitrate by one (doubling the number of
codebook vectors), the number of specified codebook vectors for each
class will be approximately doubled, and as a result, the proportion
of each class remains unchanged. Therefore, from SFVQ (for any
bitrate) we can infer the portion each class occupies the latent space.
For instance, the horse class is always the dominant class of data in the
StyleGAN2 latent space by occupying about 25% of codebook vectors.

To inspect the learned SFVQ from another viewpoint, we plotted the
heatmap of Euclidean distances between all SFVQ’s codebook vectors
in Figure 4. We again observe a clear separation between different
classes, as each dark box shows a data class. It is important to note
that the SFVQ captures this class separation property because of its
inherent structure and in a completely unsupervised way. In addition,
we spot a bigger dark box shared between cat and dog classes, because
they are the most similar classes and apparently reside close to each
other in the latent space. Furthermore, next to the biggest dark box
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Figure 3: Codebook vectors of a 6 bit SFVQ in W space of StyleGAN2 pretrained on CIFAR10.

corresponding to horse, we see a lighter box which implies that the horse class is closer to animal
classes (deer, dog, cat, and bird) than industrial vehicles, as heuristically expected in reality. We
relate the isolation of the horse class from other animal classes to the location of initial codebook
vectors and the initialization bitrate.
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Figure 4: Heatmap of code-
book vectors distances for a
6 bit SFVQ in W space of
StyleGAN2 for CIFAR10.

In the second experiment, we applied a 5 bit SFVQ on the W space
of the pretrained StyleGAN2 model on FFHQ dataset. Images cor-
responding to the SFVQ’s codebook vectors are represented in Fig-
ure 8. We observe some similarities among neighboring codebook
vectors such as baby-aged faces for indices [6-7], hat accessory for
indices [13-16], eyeglasses for indices [18-19], rotation from right
to left from index 17 to 20, and rotation from left to right from
index 27 to 31. Based on our investigations, the StyleGAN2’s inter-
mediate latent space for FFHQ, AFHQ, and LSUN Cars are much
denser and more entangled than CIFAR10, because all of them are
trained on not a very diverse data like CIFAR10. Therefore, that is
why we cannot obtain an absolutely clear and distinctive universal
interpretation out of the SFVQ’s codebook vectors visualization in
Figure 8. We provided a similar figure for a 6 bit SFVQ for AFHQ
dataset in section A.1 in the Appendix.

As the third experiment, we examined a 2 bit SFVQ applied on the W space of StyleGAN2 pre-
trained on FFHQ dataset and displayed the generated images corresponding to each four SFVQ’s
corner points in Figure 5(a). We observe a clear separation for females and males while we only
have two individual identities each representing the average face for females and males. From this
SFVQ curve we can infer some more interesting properties. We hypothesize that each SFVQ line
corresponds to a semantic direction of change which is shown in Figure 5(b). Direction I (direction
from codebook vector 1 to 2) is for changing rotation to the right, direction II refers to the gender
change, and direction III is for changing rotation to the left. For more clarification, we compute
the angles between these directions in degrees, which confirms our hypothesis. The direction II is
almost orthogonal to two other directions and also directions I and III are approximately inverse of
each other (with 159.6 degrees difference).

4.2 STYLEGAN2: INTERPRETABLE DIRECTIONS OF CHANGES

Figure 5(a) also reminds us of the PCA-based method of GANSpace (Härkönen et al., 2020) which
finds PCA directions as interpretable directions of changes. Similar to the first two PCA directions
of GANSpace that refer to the change of gender and rotation, the SFVQ lines are also laid down
along the directions in which the training data has the most variance, i.e. gender and rotation.
However, in the learned W distribution, the semantic directions are not necessarily orthogonal to
each other, and that is why only the first 100 (out of 512) GANSpace’s PCA orthogonal directions
lead to noticeable changes. In contrast in the SFVQ curve, each direction could potentially work
for a meaningful and obvious change. In addition, by plotting and observing the corner points of
SFVQ in advance, we have prior information about the direction of change. Hence, we can simply
select the intended direction and only search for the proper layers in StyleGAN2 or BigGAN to
modify along the desired direction. Whereas in unsupervised methods of Voynov & Babenko
(2020); Yüksel et al. (2021); Shen & Zhou (2021); Härkönen et al. (2020), the user is required to
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Figure 5: (a) Codebook vectors of a
2 bit SFVQ in W space of StyleGAN2
pretrained on FFHQ and (b) their se-
mantic directions. Numbers in blue
show the angle between directions.

exhaustively search over all K detected directions to find
the desired one (apart from searching for the suitable lay-
ers to modify). Therefore, in this case, the SFVQ is
more helpful by reducing the search space. All above-
mentioned observations and discussions motivate us to
utilize the SFVQ curve for discovering interpretable di-
rections of changes which we study in the following.

We applied SFVQ with different bitrates on the W space
of StyleGAN2 pretrained on FFHQ, AFHQ, and LSUN
Cars datasets and spotted some useful interpretable direc-
tions which are shown in Figure 2. Columns (a) and (b)
represent the discovered direction from two SFVQ’s sub-
sequent codebook vectors, column (c) is the test vector
in the latent space to which we apply the direction, and
column (d) is the final result after applying the direction.
Similar to the GANSpace naming convention, the term Wi-Wj means we only manipulate the style
blocks within the range [i-j]. We take the directions only from SFVQ’s subsequent codebook vec-
tors, but not from two necessarily similar though far apart codebook vectors because otherwise, one
can find directions accidentally by taking two codebook vectors from an ordinary VQ which might
lead to a meaningful direction. To show the practicality of the discovered directions better, we ap-
ply all of them only on one identical test image (except for the Beard direction which is specified to
males). One great advantage of our proposed method over other previous approaches is that it almost
keeps the identity of the test image (column (c)) fixed when applying the desired direction. Another
major advantage is that we could find many new and unique directions which were not found in
previous methods, such as Asian Face, Graduation Hat, Hat, Beard for FFHQ, Age, Eye Color,
Bicolor Face for AFHQ, and Classic, Background Removal for LSUN Cars. Important to note that
the directions for the AFHQ dataset are class-agnostic, i.e. the direction for one animal works for
other animal species, as we found the directions from Wolf and Cat classes, but we applied them
to a Dog class. In a similar way, you can see how the Hat direction (discovered for males) works
logically but in a different way for females. However, some discovered directions do not necessarily
work for all animal species in the AFHQ dataset, because the transformations are restricted by the
dataset bias of individual animal classes (Jahanian et al., 2019) (see section A.2 in the Appendix).

4.3 BIGGAN: INTERPRETABLE DIRECTIONS OF CHANGES

(a) (b) (c) (d)
ResultDirection

Figure 6: BigGAN interpretable direc-
tions.

BigGAN512-deep (Brock et al., 2018) samples a random
vector z from a normal prior distribution p(z) and maps it
to an image. Since in BigGAN512-deep the intermediate
layers also take the latent vector z as input (i.e. skip-z
connections), the latent vector z has the most effect on
the generated output image. Hence, we have to find the
semantic directions in p(z) space. However, as p(z) is
an isotropic distribution, it is difficult to find useful di-
rections from it (Härkönen et al., 2020). Therefore, sim-
ilar to GANSpace, we first train the SFVQ on the first
linear layer (L) of BigGAN512-deep to search for inter-
pretable directions within this space, and afterward we
transfer these directions back to z space. To this end, we
sample 106 random vectors from p(z) and map these vec-
tors to the SFVQ codebook vectors (already trained on
L). Finally, for a codebook vector in L, we find its corre-
sponding codebook vector in p(z) by taking the mean of
the vectors in p(z) which get mapped to this SFVQ code-
book vector. In this way, we would get the corresponding
SFVQ curve in p(z) space. Now, we use this SFVQ (in
p(z) space) to interpret the latent space of BigGAN512-
deep. Note that to compute the SFVQ curve for BigGAN,
we select a class label and keep the class vector fixed.
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Figure 8: Codebook vectors of a 5 bit SFVQ in W space of StyleGAN2 pretrained on FFHQ.

Figure 7: Semantic directions compari-
son of our method with GANSpace for
StyleGAN2 pretrained on FFHQ.

We computed the SFVQ curve over different bitrates in
the p(z) space of BigGAN512-deep for golden retriever
class and discovered some interpretable directions which
are shown in Figure 6. The directions are not restricted
only to these represented here, as one user can find other
directions by searching over all SFVQ corner points over
different bitrates. Columns (a) and (b) represent the dis-
covered direction from two SFVQ’s subsequent codebook
vectors, column (c) is the test vector in the latent space
to which we apply the direction, and column (d) is the
final result after applying the direction. Similar to the
GANSpace naming convention, the term Zi-Zj means we
only manipulate the skip-z connections within the range
[i-j]. Apart from basic geometrical directions (Rotation
and Zoom In), we could also discover some more spe-
cific directions such as Lay Down and Open Mouth as
found in Yüksel et al. (2021), and Add Grass as found
in Härkönen et al. (2020). It is noteworthy that the dis-
covered directions by SFVQ for golden retriever class are
class-agnostic, i.e. they work also for other classes. For
more details see section A.3 in the Appendix.

4.4 COMPARISON WITH GANSPACE

In Figure 7, we compare our proposed method with
GANSpace (Härkönen et al., 2020) over five interpretable
directions. To have a fair comparison, for GANSpace’s
edits, we used their official implementation. In addition,
we got standard deviation (σ) values for all directions
from GANSpace’s method, except for the Smile direction
which had a small σ that led to minimal image edits. The
σ value determines the magnitude of the step that we take
toward a direction of change. We decided to change the σ
value in a wider range (up to 4σ) to measure the extent of
validity for each direction. The images in red squares re-
fer to the initial test image to which we apply the changes.
According to the Gender direction, we observe that our
method remains in the valid range of generations better
than GANSpace in changing a female to a male. Regard-
ing the Rotation direction, our method is better in keeping the identity, hair color, hairstyle, and lips’
shape intact. Under Smile direction, our method yields much better smile edits and less changes in
face appearance than GANSpace. For Hair Color and Makeup directions, both methods perform
almost the same, except that GANSpace changes the face shininess when changing the hair color.

5 SUBSIDIARY STUDY: THE TRAVELING SALESMAN PROBLEM

Space-filling vector quantizer (SFVQ) has some parallels with the classic traveling salesman prob-
lem (TSP) (Flood, 1956) in bringing order and arrangement to a set of codebook vectors. One could
ask whether we can achieve a better codebook arrangement than SFVQ by applying an ordinary
vector quantization (VQ) as usual and, afterward, use one of the traveling salesman solutions to

8
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Figure 9: Comparison of codebook arrangement
property of the SFVQ with ordinary VQ post-
processed by traveling salesman solvers over
three sparse distributions.

reorganize VQ codebook vectors. The sce-
nario of TSP is that we have a list of cities
(codebook vectors) and the distances between
them, then we aim to discover the shortest pos-
sible route to visit each city only once. In
fact, TSP is an NP-hard problem to solve. We
can interpret these cities as the codebook of
a VQ. If we learn an 8 bit VQ as usual and
we want to rearrange the codebook vectors for
minimum distance, then there are 256 ! possi-
ble permutations for rearrangement. This is
an astronomically large number (8.5 × 10506).
It is thus practically infeasible to do an ex-
haustive search for all possible permutations
in most, relatively high bitrate, cases of VQ.
Hence, it is recommended to use heuristic TSP
solvers that have lower computational complex-
ity such as nearest neighbor (Johnson & Mc-
Geoch, 1997), greedy (Johnson & McGeoch,
1997), Christofides (Christofides, 1976) and
etc.

To compare the performance of TSP heuris-
tic solutions with the SFVQ, we examine their
ability to model three sparse toy distributions
of circles, moons, and spiral in 3D space. We
chose the distributions to be sparse because it
makes the task more challenging. We applied
ordinary VQ and SFVQ with different bitrates ranging from 7 to 10 bit (with identical initialization
and hyper-parameter settings), and then for VQ we rearranged its codebook vectors by the nearest
neighbor (NN) and Christofides TSP heuristic solvers. Figure 9 demonstrates the results for the 9 bit
case such that the order in the space-filling line is shown with color coding (light to dark color =
first to last codebook vector) for both methods of VQ+TSP and SFVQ. Since the training objective
of SFVQ is different from VQ, SFVQ locates the codebook vectors such that the line connecting the
subsequent codebook vectors mainly desires to fill up the distribution space and as a result, the line
ends up landing inside the distribution space. To affirm this fact, look at the upper and lower parts
of spiral dataset arranged by VQ+Christofides and VQ+NN methods. VQ locates fewer codebook
vectors for these two parts of the spiral data, and thus we observe a narrow line that does not fill
the distribution’s space properly. Furthermore, we notice more unfavorable jumps (outsider lines or
lines breaking the arrangement) for VQ+TSP methods than the SFVQ, due to their improper code-
book arrangement. Therefore, we generally observe that the SFVQ achieves a much better codebook
arrangement than VQ+TSP for all three distributions. The property of having lines mostly located
inside the distribution’s space is desirable for controllable data augmentation which we discuss in
section A.4 in the Appendix.

6 CONCLUSION

Generative adversarial networks (GANs) are well-known image synthesis models that are widely
used to generate high-quality images. However, still there is not sufficient control over generations
in GANs, because their latent distribution acts as a black-box and is thus hard to interpret. In
this paper, we used the novel unsupervised space-filling vector quantizer (SFVQ) technique to get
a universal interpretation of the latent distribution of GANs as well as to find their interpretable
directions of changes. Our experiments showed that the SFVQ is capable of capturing the underlying
morphological structure in the latent space and discovering better and more consistent interpretable
directions compared to the state-of-the-art GANSpace method. SFVQ gives the user a proper control
for generating images and manipulating them, and reduces the search space for finding the desired
direction of a change. SFVQ is a generic tool for modeling distributions that is neither restricted to
any specific neural network architecture nor any data type (e.g. image, video, speech, etc.).

9
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7 REPRODUCIBILITY STATEMENT

In our GitHub repository, we uploaded the PyTorch code of the space-filling vector quantizer
(SFVQ) along with an example of how to train it on a sample Gaussian distribution. In addition,
we put some other Python codes which give the instructions on how to track the training logs man-
ually and make sure that SFVQ is getting trained in the correct way, how to initialize the codebook
vectors for SFVQ, and how to expand the SFVQ’s bitrate (number of codebook vectors) at each
recursion step. We also uploaded the discovered directions of Figure 2 and Figure 6 along with a
code that makes the user capable of applying and experimenting with these directions. Furthermore,
we uploaded the learned SFVQ’s codebook vectors for different datasets over different bitrates for
StyleGAN2 and BigGAN models along with a code to plot the corresponding images from these
codebooks. We also put the code for controllable data augmentation (discussed in section A.4 in
the Appendix). At the end, in the README.md file we mentioned all other relevant details such
as required Python libraries and how to train the SFVQ together with other modules that require
gradient.
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A APPENDIX

A.1 STYLEGAN2: UNIVERSAL INTERPRETATION (CONTINUATION)

Similar to what discussed in section 4.1, we apply the SFVQ to capture a universal morphology of
the latent distribution and we expect that consecutive codebook vectors in SFVQ refer to similar
images. Hence, we applied a 6 bit SFVQ on the W space of the StyleGAN2 model pretrained on
AFHQ dataset. Images corresponding to the SFVQ’s codebook vectors are represented in Figure 10.
We can see that similar animal species are generally located next to each other. In addition, there are
some other similarities among neighboring codebook vectors such as change in rotation (from right
to left) when moving from index 0 to index 10, change in rotation (from left to right) when moving
from index 26 to index 34, light-colored animals for indices [22-25], bi-colored animals for indices
[26-29], and baby-aged cats for indices [61-62].

A.2 CLASS-AGNOSTIC DIRECTIONS FOR STYLEGAN2 PRETRAINED ON AFHQ

According to what discussed in section 4.2, in this section we aim to test whether and how the
discovered direction of Bicolor Face (in Figure 2) is class-agnostic across different AFHQ animal
classes. To this end, we applied this direction to all existing animal species in AFHQ dataset and
represent the results in Figure 11. We observe that this direction works well for Cat and Dog classes,
because there exist enough data (i.e. cats and dogs with bicolored face) within AFHQ dataset.
Therefore, the learned latent space supports this transformation. In addition, this transformation

12
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Figure 10: Codebook vectors of a 6 bit SFVQ in W space of StyleGAN2 pretrained on AFHQ.

Direction

W6-W7

Figure 11: Applying Bicolor Face direction
to different animal species of AFHQ dataset.

more or less works for Wolf class, since Wolf looks
like Siberian husky (which exists in AFHQ dataset)
and this transformation leads the Wolf class to be-
come similar to a Siberian husky. However, the Bi-
color Face direction does not work for other animal
classes of Fox, Leopard, Cheetah, Tiger, and Lion.
The reason comes from the fact that the learned la-
tent space is constrained by dataset bias of individual
classes (Jahanian et al., 2019). In other words, since
there is not any image with bicolored face from these
animal classes within AFHQ dataset, the learned la-
tent space does not support this transformation for
them. The σ value determines the magnitude of
step which we take toward Bicolor Face direction of
change. To make sure whether this direction works
for these five animal classes, we used larger σ value
(bigger steps) for these classes. We observe that
even with larger steps, not only there is no mean-
ingful transformation effect of the desired direction,
but also in the very last step (3σ) the images turn to
become unrealistic by having some artifacts.

A.3 CLASS-AGNOSTIC DIRECTIONS
FOR BIGGAN PRETRAINED ON IMAGENET

As discussed in section 4.3, we found that the
discovered directions (in p(z) space of BigGAN)
by SFVQ for the golden retriever class are class-
agnostic. It means the detected directions also work
when applied on other data classes within the Ima-
geNet dataset. To confirm this fact, we applied all
five directions found for the golden retriever (in Fig-
ure 6) on the husky class, and we illustrate the results
in Figure 12. The image in the middle column (in red
square) is the initial test image to which we apply the
directions, such that we step along both sides of a di-
rection. According to the figure, we observe that all
five directions are valid for husky class resulting in
meaningful and expected transformations.

A.4 CONTROLLABLE DATA AUGMENTATION

According to what discussed in section 5, having lines mostly located inside the distribution’s space
and rare unfavorable jumps makes the SFVQ desirable for data augmentation task, such that we
have a large number of meaningful latent points (located on the SFVQ’s curve) to generate valid
images by GANs. By plotting SFVQ’s corner points as in Figure 10, we have an idea of potential
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Figure 12: Class-agnostic directions; applying five discovered directions by SFVQ for the golden
retriever class on the husky class using BigGAN pretrained on ImageNet.

Figure 13: Generated images from 20 equally-spaced points on the line connecting two neighboring
codebook vectors of VQ and SFVQ for AFHQ dataset.

Figure 14: Generated images from 20 equally-spaced points on the line connecting two neighboring
codebook vectors of VQ and SFVQ for FFHQ dataset.

generations from each SFVQ’s line in advance. Hence, we can have a controllable data augmen-
tation by generating N new images while taking N points on the line connecting two subsequent
codebook vectors. By controllable we mean, the user has control over what type of images with
specific characteristics he/she intends to augment by selecting the corner points from the visualized
SFVQ curve. Accordingly, we chose the subsequent codebook vectors of index 23 and 24 from
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Figure 10, and then we took N = 20 equally spaced points on the line connecting them. To have
more diverse generations, we added noise to the selected points in random orthogonal directions to
the line. Besides, we did the same generations with the same setting for a 6 bit VQ as well. The
generations for these N = 20 points are demonstrated in Figure 13. As expected, all generations
of SFVQ follow properties of their corner points consistently such that they are all from the same
breed with light color and change in age and rotation. However, the generations for two neighboring
codebook vectors (under Euclidean distance) of VQ do not follow any specific rule as their rotation,
color, and breed change several times.

There are some cases in which two neighboring codebook vectors of VQ can give more consistent
generations, but such cases are not mainly expected due to the different properties of VQ compared
to SFVQ. However, we mainly have a consistency in generations when sampling between two neigh-
boring codebook vectors of SFVQ. As another experiment, we also sampled N = 20 equally spaced
points from the line connecting two baby-aged corner points (codebook vectors) of a SFVQ trained
W space of StyleGAN2 for FFHQ dataset. The generated images are shown in the bottom row of
Figure 14. We also take two neighboring codebook vectors (under Euclidean distance) of a 6 bit
VQ trained on the same W space as SFVQ, and plot the generations in the top row of Figure 14.
We observe that for SFVQ we get a good consistency in generations as all 20 generated images are
from baby-aged faces. However, the generated images for VQ does not follow a specific rule as we
observe changes in gender, age, face color among them.
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