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Abstract001

Navigation instruction generation for visually002
impaired (VI) individuals (NIG-VI) is critical003
yet relatively underexplored. This study, hence,004
focuses on producing precise, in-situ, step-005
by-step navigation instructions that are prac-006
tically usable by VI users. Concretely, we pro-007
pose LaF-GRPO (LLM-as-Follower GRPO),008
where an LLM simulates VI user responses to009
generate rewards guiding the Vision-Language010
Model (VLM) post-training. This enhances011
instruction usability while reducing costly real-012
world data needs. To facilitate training and test-013
ing, we introduce NIG4VI, a 27k-sample open-014
sourced benchmark. It provides diverse naviga-015
tion scenarios with accurate spatial coordinates,016
supporting detailed, open-ended in-situ instruc-017
tion generation. Experiments on NIG4VI show018
the effectiveness of LaF-GRPO by quantita-019
tive metrics (e.g., Zero-(LaF-GRPO) boosts020
BLEU +14%; SFT+(LaF-GRPO) METEOR021
0.542 vs. GPT-4o’s 0.323) and yields more in-022
tuitive, safer instructions. Code and benchmark023
are available at https://github.com/instruction-024
generation/anonymous-llm-as-follower.025

1 Introduction026

The Visually Impaired (VI) community, comprising027

approximately 2.2 billion individuals globally with028

partial or complete blindness, underscores the sig-029

nificant need for effective assistive technologies.1030

Enhancing their quality of life through Visually031

Impaired Assistance (VIA) has motivated exten-032

sive research, e.g., VIALM (Zhao et al., 2024) and033

WalkVLM (Yuan et al., 2025). This paper specifi-034

cally focuses on Navigation Instruction Generation035

for VI users (NIG-VI), a VIA sub-area. Navigation036

Instruction Generation (NIG) was initially concep-037

tualized for general embodied agents, producing038

high-level trajectory plans. Yet, NIG-VI, being039

people-centered, operates under fundamentally dif-040

ferent constraints. As shown in Figure 1, effective041

1https://www.who.int/publications/i/item/9789241516570

Task Description with Location Information:
- Current location:  (-97.79, 135.41)
- Current rotation yaw: -146.17°
- Next step target location: (-98.2, 135.25)

(b)

LaF-GRPO (Ours)：<think> Move straight
ahead at 12 o’clock for 0.4 meters. ...bushes
on the left to avoid the pedestrian; traffic
sounds from the right road.... </think>
<answer> Proceed straight at 12 o’clock for
0.4 meters. Bushes on your left, road with
traffic to the right; pause if you hear voices
or engines. </answer>

ASSITER：walk straight 0.5 meters, road and
beach on your left and street on your right.

Bird-View

Front-View

(a)

Benchmark GT：Continue straight toward 12
o’clock for 0.4 meters. Hedge and water to
your left; palm tree and pedestrian at 3
o’clock. Guide cane left to avoid the trunk;
pause if engines or voices approach the road
edge.

Figure 1: A NIG4VI sample. (a) The bird’s-eye view
map with waypoints and corresponding front-view im-
ages. (b) The system takes front-view images, task
descriptions, and position data (in the blue box) as input
to generate navigation instructions with the benchmark
output (in the yellow box) and our model output (in the
green box). The grey box indicates a non-VI navigation.

NIG-VI systems must generate in-situ step-level 042

instructions that (1) integrate non-visual sensory 043

cues (auditory/tactile landmarks, surface textures) 044

(2) provide accurate directional and distance guid- 045

ance to compensate for lack of visual referencing, 046

and (3) adapt to urban obstacles - all within map- 047

coordinate systems while ensuring walking safety. 048

Early attempts such as ASSISTER (Huang et al., 049

2022) laid the initial groundwork in this field, yet 050

suffered from architectural limitations of BERT- 051

based systems (Devlin et al., 2019). The advent of 052

Vision-Language Models (VLMs) introduces new 053

opportunities through their multimodal understand- 054

ing and generation capabilities. RL-based post- 055

training methods like GRPO (DeepSeek-AI, 2025) 056

further enhance reasoning abilities, enabling VLMs 057

to align with NIG-VI that demands people-centered 058

guidance. However, most existing approaches rely 059

on large-scale parallel data for fine-tuning, which 060

can be costly and fail to incorporate interactive user 061
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feedback essential for people-centered guidance.062

To bridge this gap, we propose LLM-as-063

Follower GRPO (LaF-GRPO)—the first GRPO-064

based framework for the NIG-VI task, featuring065

two novel components: (1) an LLM that simu-066

lates VI user responses to navigation instructions067

by interpreting their likely actions, and (2) a VLM068

post-training procedure for instruction generation,069

guided by LLM-as-Follower reward. LaF-GRPO070

mitigates the need for costly VI user trials while071

ensuring instruction usability with human-in-the-072

loop navigation simulation. Also, viewing the073

scarcity of VI navigation benchmarks, we construct074

NIG4VI - a comprehensive VI navigation instruc-075

tion benchmark featuring 27k samples for simula-076

tion experiments. Fully open-sourced with granular077

spatial metadata, NIG4VI enables the generation078

of detailed, open-ended in-situ instructions.079

We then experiment with LaF-GRPO on080

NIG4VI and find: (1) Qwen2.5-VL models trained081

with Zero-(LaF-GRPO) outperforms the Zero-Shot082

baseline, achieving superior scores across diverse083

metrics. (2) Qwen2.5-VL-7B models trained084

with SFT+(LaF-GRPO) show leading performance,085

achieving a METEOR score of 0.542, substantially086

higher than GPT-4o. (3) Beyond quantitative gains,087

LaF-GRPO can potentially help generate people-088

centered instructions with enhanced linguistic vari-089

ety, more intuitive directional cues, richer environ-090

mental details, and crucial safety considerations.091

In summary, our main contributions are:092

• We propose the LaF-GRPO framework, the093

first method to employ GRPO for NIG-VI with a094

novel LLM-simulated follower feedback;095

• We contribute the NIG4VI benchmark, the096

first open-source comprehensive dataset featuring097

precise multi-modal navigation contexts to facili-098

tate robust model evaluation for VI navigation;099

• We present extensive empirical studies100

across VLMs under various paradigms (Zero-shot,101

Zero-(LaF-GRPO), SFT, and SFT+(LaF-GRPO)),102

demonstrating the effectiveness of our approach.103

2 Related Work104

2.1 VLMs and VIA105

VLMs (Liu et al., 2023; Dai et al., 2023; OpenAI,106

2024a; Anthropic, 2024; Team, 2024) have drawn107

attention for combining visual perception with lan-108

guage generation. Refining VLMs with Reinforce-109

ment Learning (Ouyang et al., 2022) improves110

alignment with human preferences and enhances111

reasoning abilities. Recent success in Group Rel- 112

ative Policy Optimization (GRPO) (DeepSeek-AI, 113

2025) has led to RL fine-tuned VLMs like VLM-R1 114

(Shen et al., 2025), AlphaDrive (Jiang et al., 2025), 115

and MedVLM-R1 (Pan et al., 2025), broadening 116

their application range. VIA with VLMs is closely 117

related to visual captioning and Visual Question 118

Answering (VQA). VIALM (Zhao et al., 2024) 119

frames VIA as a VQA task, generating step-by- 120

step guidance from environment images and user 121

requests. While VIALM emphasizes environment- 122

grounded guidance with tactile information, it is 123

not specifically designed for navigation. WalkVLM 124

(Yuan et al., 2025) extends this to dynamic walking 125

assistance and introduces the Walking Awareness 126

Dataset (WAD). Though WalkVLM tackles naviga- 127

tion, its focus remains on video captioning rather 128

than precise orientation and mobility guidance. 129

2.2 Navigation Instruction Generation (NIG) 130

There are two main branches for NIG studies: NIG 131

for embodied agents and NIG for the visually im- 132

paired. Prior research on NIG for embodied agents 133

has predominantly focused on advanced visual 134

processing techniques while generating trajectory- 135

level instructions. More details can be found in 136

Appendix A. For the NIG-VI branch, ASSISTER 137

(Huang et al., 2022) introduced the UrbanWalk 138

benchmark for in-situ instructional guidance and 139

developed a navigation assistance model. Our work 140

improves upon ASSISTER in two key ways: (1) 141

we introduce a more detailed evaluation benchmark 142

covering orientation, mobility, scene description, 143

and safety warnings; and (2) we leverages advanced 144

VLMs within a GRPO framework with an LLM- 145

as-Follower reward mechanism, leading to more 146

effective navigation instructions. 147

3 NIG-VI Task and LaF-GRPO Method 148

3.1 NIG-VI Task Formulation 149

We start this section by describing the NIG-VI task 150

of generating in-situ step-by-step natural language 151

instructions to guide VI users along a pre-planned 152

route P = [p1, . . . , pK ] using a VLM-based as- 153

sistant system. The route P consists of positional 154

waypoints pi leading to a destination and is gen- 155

erated using the A* algorithm. At each discrete 156

step i of the navigation, the VLM receives two pri- 157

mary inputs: a front-view camera image x(i)image and 158

a task description which includes the user’s cur- 159

rent pose x
(i)
pose = (x

(i)
loc, x

(i)
rot) represented by their 160
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O2: <think>The bus is to the right, and a motorcycle is
approaching from the left. There are streetlights on both sides,
with a street ahead. Step forward half a meter; tap the cane
near the left to check for light poles, and listen for the cyclist.
</think>\n<answer>Move forward half a meter, using your cane to
check both sides for obstacles. Pause if you hear engines or
nearby voices, and step clear if necessary.</answer>

Question:
Generate navigation instructions for visually
impaired users based on the provided front-view
image and step information:
- Current location: {'location': {'x': 98.39,
'y': 212.54}, 'rotation_yaw': 133.35}
- Target goal (next step): {'location': {'x':
98.39, 'y': 212.55}, 'rotation_yaw': 130.54}
... describe the surroundings.... If there is a
high likelihood of collision with any object,
include a clear warning for the user....

Answer:
Turn slightly left toward 10 o’clock and hold. Bus idling on your right; motorcycle ahead in fog.
Avoid proximity to the bus, pause until engine sounds fade—use your cane and listen closely.

Action interpretation: 
{"move": {"direction": "10 o'clock","distance": "0 meters"},"detailed_hazard_alert": true}

Front-View

A Training Sample

Text

SFT

Navigation Instruction:
Turn slightly to your right, about 1 o'clock direction, and proceed forward
for approximately 0.5 meters...Trees and vegetation ....Be cautious of
potential traffic, as there are roads and a parked blue car nearby. ...The
ground is paved, likely a sidewalk or road edge...changes in surface texture.

Action Interpretation:
"{'move': {'direction': \"1 o'clock\", 'distance': '0.5 meters'},
'detailed_hazard_alert': True}"

Input: 
  A Navigation Instruction
Output: 
  Action Interpretation

ρφLLM Training Data Construction

Training A LLM-based Action Interpreter

VLM Two-Stage Post-Training

SFTInput: (Image, Question)
Output: Answer πθ

O1: <think> Move forward slightly left
toward 11 o’clock. Stay near the sidewalk
edge on the left to avoid the bus by your
right; listen for motorcycle engines
ahead. </think>\n<answer> Proceed at 11
o’clock, adjusting slightly left. Stay left
of the bus and pause if engines approach.
</answer> 

πθ

Reward
Functions

π(ref)

Input: (Image, Question)

Reward (r1)   1.0
Reward (r2)   1.0

Reward (r1)   0.19
Reward (r2)   0.19

Reward (r1)   0.7
Reward (r2)   0.0

π ρφ

LLM-as-Follower rewardFormat reward Text Generation reward

Group Computation

GRPO

Stage 1 Supervised Fine-tuning Warm-Up

Stage 2  Reinforcement Learning Exploration

Figure 2: Method Overview. Top left: Training sample with input, target output, and generated navigation
instruction’s action interpretation. Bottom left: Action interpreter training using LLaMA-3-8B-Instruct to simulate
VI users’ navigation responses. Right: Post-training procedures for VLMs processing with LaF-GRPO using
multiple reward functions (format, text generation, and LLM-as-Follower reward).

location x
(i)
loc ∈ R3 and rotation x

(i)
rot ∈ R3 within161

a global map coordinate system, as well as the162

next target waypoint pi+1 ∈ P . Based on these163

inputs, the VLM π generates a sequence of tokens164

y = y(i) = (y
(i)
1 , y

(i)
2 , . . . , y

(i)
t ) of token length165

t. The generated instruction y might also include166

details about the current surroundings captured in167

x
(i)
image and any necessary safety alerts:168

yj ∼ πθ(y
(i)
j |x(i)image, x

(i)
loc, x

(i)
rot , pi+1, y

(i)
<j) (1)169

where θ denotes the adjustable model parameters.170

3.2 The LaF-GRPO Framework171

We then discuss our LaF-GRPO framework to172

tackle the NIG-VI task. It aims to address the chal-173

lenges of ensuring that navigation instructions are174

people-centered, practically usable by the VI users,175

while mitigating the need for costly real-world data176

collection with VI participants. The overview of177

LaF-GRPO is illustrated in Figure 2, where the178

framework comprises two key components: (1)179

an LLM (without a visual encoder to “see”) that180

simulates VI users’ responses to navigation instruc-181

tions by interpreting how these users would act182

upon hearing the instructions, and (2) a VLM post-183

training procedure that generates these instructions184

with (1)’s feedback. LaF-GRPO first employs an185

action interpreter to produce structured interpreta-186

tions of potential user actions, which are then used187

to compute the LLM-as-Follower reward. This re-188

ward signal subsequently guides the VLM training189

process of navigation instruction generation that190

is more likely to be effectively followed by VI users 191

in real-world navigation scenarios. 192

Action Interpreter. The action interpreter mod- 193

els VI user responses to navigation instructions. We 194

fine-tune an LLM ρ with parameters φ to predict 195

potential user actions from verbal guidance. Given 196

VLM-generated instruction tokens y, it produces 197

a structured action interpretation A. Formally, we 198

define A as a structured dictionary containing: (1) 199

a ‘move’ action with associated ‘direction’ (indi- 200

cated using clock positions) and ‘distance’ parame- 201

ters, and (2) a ‘detailed_hazard_alert’ boolean flag 202

that indicates whether the user perceives warnings 203

about nearby obstacles, as illustrated in Figure 2 204

Left. To train such an action interpreter, we utilize 205

training samples generated based on the prompt 206

template detailed in Table 8 in Appendix E. 207

Navigation Instruction Generator. For VI guid- 208

ance, we use a pre-trained VLM π with parameters 209

θ for in-situ navigation instruction generation. The 210

training of this generator involves two stages: Su- 211

pervised Fine-tuning (SFT) and Group Relative Pol- 212

icy Optimization (GRPO). For SFT training details, 213

please refer to Appendix B. For the GRPO, specif- 214

ically, we propose LaF-GRPO, which is based on 215

the standard GRPO (see below) reward function 216

yet incorporates a novel LLM-as-Follower reward. 217

GRPO. The training process of GRPO aims to 218

optimize the policy πθ by maximizing the objective 219

function JGRPO(θ). For a given query q, GRPO 220

first samples a batch of G outputs {o1, o2, . . . , oG} 221

using an older version of the policy, πθold . The 222
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training process of GRPO aims to optimize the223

policy πθ by maximizing the objective function:224

JGRPO(θ) = Eq,{oi}∼πθold

[
1

G

G∑
i=1

Li − βDKL(πθ||πref)

]
(2)225

Here, the term Li represents the clipped surrogate226

objective used in PPO (Schulman et al., 2017):227

Li = min(wiAi, clip(wi, 1− ϵ, 1 + ϵ)Ai) (3)228

where wi = πθ(oi|q)
πθold (oi|q)

is the importance sam-229

pling ratio, Ai is the estimated advantage for the230

output oi, based on relative rewards of the out-231

puts inside each group only, calculated as Ai =232
ri−mean({r1,r2,...,rG})

std({r1,r2,...,rG}) , and ϵ is a clipping hyperpa-233

rameter. The second term, −βDKL(πθ||πref), regu-234

larizes the policy by penalizing divergence from a235

reference policy πref with coefficient β. This regu-236

larization stabilizes training by keeping the model237

close to the original effective policy, preventing it238

from losing previously learned capabilities.239

3.3 LaF-GRPO Reward Functions240

GRPO leverages verifiable rewards to simplify the241

reward modeling process. To integrate LLM’s feed-242

back to enable smooth, people-centered language243

guidance in NIG-VI, LaF-GRPO utilizes three re-244

ward functions as follows. The reward calculation245

algorithm is detailed in Algorithm 1 (Appendix C).246

Format Reward. To encourage controllable247

generation for easy training, we adopt this248

binary reward (rformat ∈ {0, 1}) that evaluates249

structural compliance with the expected response250

format. Here, the reward would equal 1 if251

the output follows the required format pattern252

‘<think>.*?</think>\n<answer>.*?</answer>’253

in sequence, and 0 otherwise.254

Text Generation Reward. We adopt METEOR255

to verify text generation rewards to align the gener-256

ation to the ground-truth style. Here, METEOR is257

selected based on its evaluation of semantic overlap,258

incorporating synonymy and stemming to provide259

a nuanced, human-correlated assessment.260

LLM-as-Follower Reward. To incorporate261

LLM’s feedback for navigation, we propose the262

reward rLaF to assess the navigational quality263

of generated instructions by comparing their264

interpreted actions (move direction, move distance,265

and alert flag) against those of a reference. Our266

intuition is that spatial factors, such as directional267

Generate navigation instructions for
visually impaired...
- Current location: 
{'location': {'x': 115.43, 'y': -28.51},
'rotation_yaw': -91.57}
- Target goal (next step): 
{'location': {'x': 115.37, 'y': -29.01},
'rotation_yaw': -93.03} ...

Output:
Turn slightly right toward 1 o’clock
and walk half a meter. Buildings on
both sides, brush along the right
edge—use your cane to check for
poles and stay right to avoid the left
road; pause if footsteps approach.

Task Description: Generate
concise, real-time
navigation guidance for
visually impaired users by
combining outputs from 2 or
3 AI models.
Requirements:
1. Content Structure ...
2. Style ...
3. Format ...

Input:

Move forward approximately 0.5 meters in the direction of 0 o'clock,
ensuring you stay on the sidewalk. There is a building on your left and
vegetation on your right. The path ahead is clear, but be mindful of
potential dynamic objects like pedestrians. Keep close to the right side to
avoid the road, which is to your far left. There may be obstacles such as
poles or signs near the walkway; proceed with caution.

Proceed straight ahead for approximately 0.5 meters. You are on a wide
sidewalk with tall office buildings to your left. The road curves to your left.
On your right, there's a low stone wall bordering a grassy area with trees.
Ahead, you'll encounter some street vendors with colorful umbrellas. Be
cautious of any uneven surfaces on the sidewalk and stay alert for other
pedestrians or obstacles. The path is clear, but remain aware of your
surroundings as you move forward.

Slightly turn right and move forward for 0.5 meters. There are
buildings on your left and right. Be cautious of dynamic objects and
poles on the sidewalk.

GPT-4o

Claude-3.5

Gemini-2-
thinking

Deepseek-R1

Figure 3: DeepSeek-R1 refines initial predictions from
GPT-4o, Claude-3.5, and Gemini-2 into coherent in-
structions, using Vision-R1’s modality bridging method
(Huang et al., 2025). These are then reviewed and mod-
ified by human annotators for quality and accuracy.

accuracy (adir) and movement distance precision 268

(adist), play a direct and critical role in determining 269

navigation success. In contrast, safety alert flags 270

(aalert) serve as supplementary support for VI nav- 271

igation by indicating potential hazards, though they 272

are not primary determinants of success (Giudice 273

and Legge, 2008; Younis et al., 2019). Considering 274

these, the reward is computed as: 275

rLaF =wdir δ(adir, a
ref
dir ) + wdist δ(adist, a

ref
dist)

+ walert δ(aalert, a
ref
alert)

(4)
276

277δ(·) denotes exact match comparison. To prioritize 278

spatial factors, weighting coefficients are set such 279

that wdir +wdist > walert. This, in the end, yields 280

an rLaF score ranging from 0 to 1. 281

4 Benchmark: NIG4VI 282

We introduce the NIG4VI benchmark to address 283

the scarcity of benchmark resources in this field. 284

Inspired by the UrbanWalk, NIG4VI utilizes the 285

open-sourced CARLA Simulator (Dosovitskiy 286

et al., 2017) to collect samples from a diverse range 287

of scenarios. These scenarios span remote rural- 288

like settings (e.g., Town01) and complex metropoli- 289

tan areas (e.g., Town10), and encompass vari- 290

ous weather conditions, such as foggy and sunny 291

weather. Pedestrian trajectories are generated using 292

A* route planning algorithm, with precise geospa- 293

tial coordinates, orientation, frontal-view images, 294

and semantic segmentation images being recorded 295

at each step. NIG4VI offers two main advantages: 296

(1) its use of a realistic coordinate system facili- 297

tates easier transfer to real-world GPS applications, 298

and (2) it enables the cost-effective generation of 299

accurate and extensive data. Table 1 demonstrates 300

NIG4VI’s advantages compared to other datasets. 301
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Benchmark Level # Samples VIA NIG Spatial Acc. Open-ended Open-sourced

R2R (Anderson et al., 2018) High 21k ✗ ! ✗ ! !

REVERIE (Qi et al., 2020) High 10k / 6k ✗ ! ✗ ! !

UrbanWalk (Huang et al., 2022) Detailed 2.6k ! ! ! ✗ ✗

Merchant et al. (2024) Detailed 48 ! ! ✗ ! ✗

VIALM (Zhao et al., 2024) Detailed 200 ! ✗ ✗ ! !

WAD (Yuan et al., 2025) Detailed 12k / 120k ! ! ✗ ! !

NIG4VI (Ours) Detailed 3k / 24k ! ! ! ! !

- w/o pre-calculation Detailed 1.5k / 12k ! ! ! ! !

- with pre-calculation Detailed 1.5k / 12k ! ! ! ! !

Table 1: Comparison of the NIG4VI dataset with existing benchmarks. Unlike WAD, NIG4VI employs geospatial
coordinates for high spatial accuracy evaluation, and surpasses UrbanWalk through open-ended instruction genera-
tion that benchmarks VLMs’ capacity to produce natural navigation guidance.

4.1 Dataset Construction302

Each question’s input includes the user’s current lo-303

cation/rotation, the next step’s location/orientation,304

and visual scene data. The complete prompt tem-305

plate used to structure these inputs is detailed in306

Table 6 of Appendix E. The synthesis of the output307

is a multi-stage process involving both advanced308

reasoning models and human annotation, as illus-309

trated in Figure 3. Initially, several leading VLMs,310

specifically GPT-4o, Claude-3.5, and Gemini-2,311

generate predictions. Following a modality bridg-312

ing approach, similar to that employed in Vision-313

R1 (Huang et al., 2025), these outputs are pro-314

cessed through DeepSeek-R1 to enhance blindness-315

oriented spatial guidance and navigability. The316

specific prompt guiding DeepSeek-R1 in this re-317

finement task is detailed in Table 7.318

Crucially, all instructions undergo rigorous hu-319

man verification. This task is carried out by two320

annotators, both proficient in English and hold-321

ing at least an undergraduate-level education, fol-322

lowing a similar practice in (Zhao et al., 2024).323

The verification involves a two-stage process: first,324

one annotator performs initial content adjustments,325

adhering to task requirements. Subsequently, the326

second annotator reviews and verifies this work.327

Throughout this entire process, both annotators fo-328

cus on ensuring: (1) elimination of visual refer-329

ences (e.g., color-based descriptors), (2) validation330

of non-visual landmarks, and (3) confirmation of331

metric precision for mobility-critical parameters.332

4.2 Dataset Statistics333

Table 2 details the statistics of the dataset, which334

comprises routes collected from six distinct towns335

within the CARLA simulator. Further details on336

route sampling in the CARLA simulator are in337

Town Routes Avg dist. Avg steps # Samples

Town01 25 111.41 401 1,500 / 613
Town02 26 99.38 327 2,579
Town03 25 128.23 409 2,260
Town04 26 131.49 337 2,316
Town05 25 107.81 288 1,935
Town10 30 102.74 361 2,133

Avg. 26.2 113.51 353.8 2,222.7

Table 2: Statistics for sample routes. Dataset: 1,500
Town01 samples for training; the remaining 613
(Town01) and all other town samples for testing. ‘Avg
dist.’: average Euclidean distance (route start to end).

‘Avg steps’: average steps per route. ‘# Samples’: dedu-
plicated step-level (image, question) samples per town.

Appendix D. On average, each town contributes 338

approximately 26.2 navigation routes. The average 339

Euclidean distance between the start and end points 340

of these routes is 113.51 units, with an average of 341

353.8 steps required for completion. After dedu- 342

plication, the dataset yielded an average of 2,222.7 343

step-level (image, question) samples per town. It is 344

partitioned into a training set of 1,500 samples from 345

Town01 and a test set. The test set comprises the 346

remaining 613 intra-town samples from Town01, 347

along with all inter-town samples from Town02 348

(2,579), Town03 (2,260), Town04 (2,316), Town05 349

(1,935), and Town10 (2,133). Each data sample 350

is available in two versions: ‘with pre-calculation’ 351

and ‘without pre-calculation’. The ‘without pre- 352

calculation’ version requires the VLM to indepen- 353

dently calculate navigational parameters (e.g., dis- 354

tance, direction), presenting a greater challenge in 355

guidance generation. Conversely, the ‘with pre- 356

calculation’ version provides the VLM with basic 357

mathematical movement information. The VLM 358

must then validate this data and assess the surround- 359

ings to generate the final navigation instruction. 360
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Pre-Cal. Paradigm Model Intra-town (N = 613) Inter-town (N =11,223)

BLEU ↑ ROUGE ↑METEOR ↑ SPICE ↑ BLEU ↑ ROUGE ↑METEOR ↑ SPICE ↑

No

Zero-Shot

DeepSeek-VL-7B 2.179 0.152 0.182 0.116 2.223 0.157 0.196 0.112
MiniCPM-o-8B 2.009 0.145 0.234 0.131 1.969 0.142 0.233 0.129
Intern-VL-8B 1.448 0.150 0.215 0.126 1.517 0.149 0.216 0.120
Qwen-VL-7B 3.204 0.202 0.211 0.166 3.128 0.194 0.210 0.157
GPT-4o 1.748 0.169 0.249 0.149 1.617 0.165 0.249 0.142
Claude-3.5 2.803 0.216 0.304 0.211 2.749 0.211 0.301 0.202
Gemin-2 4.105 0.236 0.232 0.232 4.422 0.252 0.238 0.236

Zero-
(LaF-GRPO)

Qwen-VL-3B 3.292 0.230 0.248 0.230 3.972 0.255 0.259 0.244
Qwen-VL-7B 3.272 0.234 0.256 0.222 3.566 0.252 0.260 0.227

SFT Qwen-VL-3B 9.099 0.282 0.496 0.274 8.949 0.284 0.500 0.276
Qwen-VL-7B 9.937 0.291 0.518 0.275 9.709 0.294 0.526 0.281

SFT+
(LaF-GRPO)

Qwen-VL-3B 10.921 0.323 0.528 0.274 10.157 0.309 0.527 0.276
Qwen-VL-7B 10.037 0.284 0.545 0.283 9.002 0.276 0.535 0.278

Yes

Zero-Shot

DeepSeek-VL-7B 2.517 0.170 0.224 0.161 2.600 0.173 0.237 0.161
MiniCPM-o-8B 2.349 0.166 0.210 0.136 2.517 0.177 0.220 0.144
Intern-VL-8B 1.496 0.132 0.233 0.133 1.517 0.134 0.238 0.132
Qwen-VL-7B 2.903 0.188 0.231 0.178 3.080 0.194 0.243 0.180
GPT-4o 2.766 0.204 0.302 0.198 2.967 0.213 0.323 0.211
Claude-3.5 4.124 0.236 0.349 0.257 3.400 0.214 0.326 0.224
Gemin-2 5.132 0.252 0.266 0.269 6.144 0.276 0.283 0.284

Zero-
(LaF-GRPO)

Qwen-VL-3B 3.798 0.249 0.280 0.261 4.584 0.271 0.288 0.274
Qwen-VL-7B 3.678 0.241 0.281 0.229 4.284 0.262 0.286 0.230

SFT Qwen-VL-3B 9.923 0.308 0.512 0.280 10.724 0.318 0.519 0.280
Qwen-VL-7B 9.639 0.270 0.521 0.283 9.710 0.272 0.524 0.287

SFT+
(LaF-GRPO)

Qwen-VL-3B 11.727 0.342 0.541 0.286 10.813 0.333 0.535 0.279
Qwen-VL-7B 10.499 0.285 0.556 0.292 9.232 0.275 0.542 0.288

Table 3: Evaluation results on the NIG4VI dataset across Intra-town and Inter-town subsets. Gray cells indicate
results pertaining to Qwen2.5-VL models. Blue values highlight the best performing Qwen2.5-VL model within
the Zero-Shot and Zero-(LaF-GRPO) categories. Bold values represent the highest score for each metric under a
specific setting (with / without pre-calculation), while underlined values indicate the second-highest score.

5 Experimental Settings361

Dataset. Experiments utilized the NIG4VI362

dataset, comprising Intra-town (N = 613) and363

Inter-town (N = 11, 223) test subsets, under364

’with/without pre-calculation’ conditions.365

Models. Diverse VLMs were evaluated, falling366

into two main groups. The first group includes367

remote models: GPT-4o (OpenAI, 2024b), Claude-368

3-5-sonnet-20240620 (Anthropic, 2024), and Ge369

mini-2.0-flash-thinking-exp-01-21 (Google370

DeepMind, 2024). The second group comprises371

smaller, locally runnable VLMs: DeepSeek-VL-7B372

(Lu et al., 2024), MiniCPM-o-2.6-8B (Yao et al.,373

2024), Intern-VL-2.5-8B (Chen et al., 2024), and374

Qwen2.5-VL-3B/7B (Bai et al., 2025).375

Evaluation Metrics. Following previous studies376

in NIG (Huang et al., 2022; Fan et al., 2024; Kong377

et al., 2024), model performance was evaluated us-378

ing a suite of widely adopted metrics: BLEU (Pap-379

ineni et al., 2002), ROUGE (Lin, 2004), METEOR380

(Banerjee and Lavie, 2005), and SPICE (Ander- 381

son et al., 2016). For each of these metrics, higher 382

scores denote superior performance. 383

Baselines. We compare LaF-GRPO against two 384

primary baseline methods: (1) Zero-shot: This in- 385

volves models directly on NIG4VI without prior 386

task-specific fine-tuning. (2) Supervised Fine- 387

tuning (SFT): Models are fine-tuned to generate 388

instructions from the input. Furthermore, we im- 389

plement two variants of LaF-GRPO to understand 390

its different operational modes: (a) Zero-(LaF- 391

GRPO): LaF-GRPO is applied directly to the base 392

model without SFT. (b) SFT+(LaF-GRPO): LaF- 393

GRPO is applied to models that have first under- 394

gone SFT. Both LaF-GRPO variants utilize the pro- 395

posed LLM-as-Follower reward mechanism. 396

Implementation Deatails. LaF-GRPO training 397

utilized a single NVIDIA H20 GPU (96 GB of 398

memory). This hardware supports loading an 8B- 399

param LLM (LLaMA-3-8B) and a 3B/7B-param 400

Qwen2.5-VL model for LoRA (Hu et al., 2022) 401
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Pre-Cal. Reward Types Intra-town (N = 613) Inter-town (N = 11,223)

Format Meteor LLM BLEU ↑ ROUGE ↑ METEOR ↑ SPICE ↑ BLEU ↑ ROUGE ↑ METEOR ↑ SPICE ↑

No
✓ 10.251 0.318 0.524 0.278 9.401 0.304 0.523 0.279
✓ ✓ 10.912 0.317 0.525 0.279 10.076 0.306 0.521 0.279
✓ ✓ ✓ 10.921 0.323 0.528 0.274 10.157 0.309 0.527 0.276

Yes
✓ 11.269 0.337 0.538 0.292 10.217 0.328 0.530 0.282
✓ ✓ 11.602 0.339 0.539 0.284 10.753 0.331 0.531 0.280
✓ ✓ ✓ 11.727 0.342 0.541 0.286 10.813 0.333 0.535 0.280

Table 4: Ablation study results for the Qwen2.5-VL-3B model on the NIG4VI dataset with different reward
functions. Bold values represent the highest score for each metric under its specific pre-calculation condition.

Pre-Cal. Model Intra-town (N = 613) Inter-town (N = 11,223)

BLEU ↑ ROUGE ↑ METEOR ↑ SPICE ↑ BLEU ↑ Rouge ↑ METEOR ↑ SPICE ↑

No
7B-format+meteor+LLM (1k) 9.401 0.283 0.529 0.274 8.963 0.281 0.530 0.275
7B-format+meteor+LLM (2k) 9.657 0.280 0.539 0.276 9.001 0.276 0.535 0.274
7B-format+meteor+LLM (3k) 10.037 0.284 0.545 0.283 9.002 0.276 0.535 0.278

Yes
7B-format+meteor+LLM (1k) 10.265 0.279 0.543 0.286 9.463 0.271 0.540 0.285
7B-format+meteor+LLM (2k) 10.136 0.284 0.550 0.292 9.245 0.276 0.541 0.284
7B-format+meteor+LLM (3k) 10.499 0.285 0.556 0.292 9.232 0.275 0.542 0.288

Table 5: Ablation study results for the Qwen2.5-VL-7B model on the NIG4VI dataset with varying training sample
sizes. Bold values represent the highest score for each metric under its specific pre-calculation condition.

fine-tuning. The reward weights were configured402

as (wdir, wdist, walert) = (0.4, 0.4, 0.2) based on403

analysis of navigation failure factors, prioritizing404

spatial parameters over contextual alerts. Training405

on 3k samples took approximately 15 hours, with406

the key hyperparameter group size G set to 8.407

6 Results and Discussions408

6.1 Main Results409

We present Table 3, which summarizes model410

performance on NIG4VI, categorized by pre-411

calculation and training paradigms, and evaluated412

on intra-town and inter-town subsets. Compar-413

ing LaF-GRPO with the baselines reveals: (1)414

Zero-Shot vs. Zero-(LaF-GRPO): Zero-(LaF-415

GRPO) significantly enhances the Zero-Shot per-416

formance of VLMs, validating the effectiveness417

of LaF-GRPO. While the Zero-(LaF-GRPO) re-418

sults suggest that increased model size (from 3B419

to 7B) does not necessarily guarantee improved420

performance across all metrics, it is noteworthy421

that for METEOR evaluations, specifically in intra-422

town scenarios, the 7B model achieved the high-423

est scores (i.e., 0.256 and 0.281). This outcome424

may be attributable to the use of METEOR as a425

text generation reward during training and to the426

potentially more refined tuning applied to the 7B427

models. (2) SFT & SFT+(LaF-GRPO): SFT and428

SFT+(LaF-GRPO) yield significantly superior per-429

formance compared to Zero-Shot and Zero-(LaF-430

GRPO) models across all metrics and subsets, af- 431

firming the efficacy of fine-tuning. The SFT+(LaF- 432

GRPO) approach further enhances performance be- 433

yond SFT. Moreover, under the SFT+(SFT-GRPO) 434

paradigm, Qwen-VL-3B consistently achieves the 435

highest BLEU and ROUGE scores, while Qwen- 436

VL-7B excels in METEOR and SPICE. This perfor- 437

mance pattern is observed for both intra-town and 438

inter-town subsets and holds true regardless of pre- 439

calculation. This may be attributable to 7B mod- 440

els demonstrating enhanced linguistic diversity in 441

their outputs relative to 3B models. (3) Additional 442

Observations: Scores are generally higher with 443

pre-calculation than without, likely because it re- 444

duces the mathematical computation difficulty for 445

the models. While both intra-town and inter-town 446

results demonstrate consistent trends, intra-town 447

evaluations typically yield higher scores. This is 448

understandable as the intra-town test set comprises 449

samples from the same town environments as the 450

training set, leading to a closer data distribution. 451

6.2 Ablation Study 452

Reward Types Table 4 presents an ablation study 453

investigating the impact of different reward types 454

during SFT+(LaF-GRPO) training with the Qwen- 455

VL-3B model. LaF-GRPO, incorporating the LLM- 456

as-Follower reward, consistently achieves the high- 457

est BLEU, ROUGE, and METEOR scores. This 458

trend holds true across both intra-town and inter- 459

town evaluations, with or without pre-calculation. 460
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<think>...</think><answer>Turn
right toward 130 degrees and
walk two small steps. Stay near
the brick wall on your right; road
edge left—use your cane to
check for poles. Pause if engines
approach.</answer>

<think>...</think><answer>Turn
slightly right toward 1 o’clock
and walk two small steps. Keep
your cane near the pole on the
left and the fence with bushes
to the right; stay alert for
nearby movement.</answer>

<think>...</think><answer>Turn
slightly right toward 167
degrees and walk two small
steps. Buildings left, trees right
—use your cane near railings;
listen for traffic.</answer>

<think>...</think><answer>Step
forward 0.5 meters. Buildings
left, bushes right; use your cane
near the left railing and listen
for traffic. Pause if you hear
engines.</answer>

Turn slightly right toward 132
degrees and walk half a meter.
Keep your cane near the road
edge on the left; buildings close
on both sides. Pause if you hear
engines or bells—use your cane
to check for poles ahead.

Turn slightly right toward 150
degrees. Keep your cane near
the building wall on the left;
vegetation and a fence line the
right. Pause if you hear
footsteps ahead—use your cane
to check for uneven pavement.

Turn slightly right toward 167
degrees. Buildings on left, trees
along right; use your cane to
check for uneven pavement.
Pause if you hear engines or
bells.

Turn slightly right toward 175
degrees. Buildings on left,
bushes and benches along right
sidewalk; road sounds from
right. Use your cane to check
for benches ahead—pause if
surfaces feel uneven.

Front-
View

SFT

SFT+
LaF-GRPO

Figure 4: A comparative case study of navigational guidance provided by SFT and SFT+(LaF-GRPO) methods
across successive steps. Findings indicate that SFT+(LaF-GRPO) (Ours) generates instructions with greater
linguistic variety and more effectively incorporates o’clock directions and specific travel distances.

This underscores the significant benefit of the LLM-461

as-Follower reward signal for the NIG4VI task.462

LaF-GRPO vs. Standard GRPO We conducted463

an additional experiment on the inter-town sub-464

set. It reveals that LaF-GRPO-trained models465

demonstrate superior navigational accuracy (68.1%466

vs. 67.3% ) and their instructions were more fre-467

quently selected by GPT-4o for helpfulness and468

clarity (58.3% vs. 41.7% of cases). We identify469

two primary advantages of LaF-GRPO over stan-470

dard GRPO, which utilizes only format and text471

generation rewards: (1) Navigational Accuracy:472

LaF-GRPO provides more precise movement and473

orientation accuracy. (2) Instruction Clarity: The474

inclusion of an action interpreter requirement en-475

courages VLMs to produce instructions compre-476

hensible to the follower and thus clearer and more477

structured. Details are provided in Appendix F.478

Training Sample Sizes Table 5 presents an abla-479

tion study on the Qwen2.5-VL-7B model trained480

with SFT+(LaF-GRPO), illustrating the effect of481

varying training sample sizes (1k, 2k, and 3k). For482

the two metrics METEOR and SPICE, which are483

often considered more comprehensive in text gen-484

eration, increasing the volume of training data gen-485

erally leads to enhanced performance. Across the486

majority of evaluated conditions (with/without pre-487

calculation), scaling up to 3k samples typically488

yields the optimal or near-optimal scores. Never-489

theless, for the 7B models in the inter-town setting,490

training with 2k samples also achieves comparable491

METEOR scores (i.e., 0.535 and 0.541), indicating492

training data efficiency at this sample size.493

6.3 Case Study 494

Figure 4 provides a qualitative comparison of our 495

SFT+(LaF-GRPO) method against the SFT base- 496

line. Notably, SFT+(LaF-GRPO) generates instruc- 497

tions with greater linguistic variety and more in- 498

tuitive directional cues. For instance, in Step 2, 499

SFT+(LaF-GRPO) employs an o’clock direction 500

(“Turn slightly right toward 1 o’clock") and a relat- 501

able distance ("two small steps"), contrasting with 502

SFT’s numerical bearing ("150 degrees"). This ap- 503

proach can yield guidance that is more naturally 504

understood by VI users. Furthermore, SFT+(LaF- 505

GRPO), leveraging its internal reasoning process 506

(i.e. the <think>...</think> blocks), frequently 507

incorporates more environmental details and safety 508

considerations. For example, its instruction for 509

Step 4 ("Step forward 0.5 meters; ...use your cane 510

near the left railing and listen for traffic") also 511

emphasizes immediate safety interactions. Full 512

instruction texts for Zero-(LaF-GRPO), SFT, and 513

SFT+(LaF-GRPO) are available in Appendix F. 514

7 Conclusion 515

This study addresses navigation instruction gen- 516

eration for the visually impaired individuals. We 517

constructed the NIG4VI benchmark. Following 518

this, we developed LaF-GRPO, a training paradigm 519

for VLMs that incorporates an LLM-as-Follower 520

reward. Experimental evaluations established LaF- 521

GRPO’s superiority over baselines and standard 522

GRPO, with future qualitative analysis confirming 523

the generated instructions’ real-world practicality. 524
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Limitations525

The main limitations of this work include two pri-526

mary aspects: the data source for the benchmark527

NIG4VI and the computational demands of our pro-528

posed training methodology, LaF-GRPO. (1) The529

first limitation pertains to the benchmark NIG4VI,530

as its data is collected within a simulated environ-531

ment. A domain gap inevitably exists between such532

simulated conditions and the multifaceted complex-533

ities of the real world, as simulators may not fully534

capture the entire spectrum of real-world environ-535

mental dynamics. Nevertheless, simulators facil-536

itate large-scale data acquisition, enable precise537

and automated annotation, and provide a crucial538

foundation for initial model development and sys-539

tematic evaluation. Future work will focus on incor-540

porating more diverse, real-world data and explor-541

ing sim-to-real transfer techniques to mitigate this542

gap. (2) Second, training the LaF-GRPO model543

is resource-intensive, requiring substantial compu-544

tational power and considerable time. However,545

this high cost is primarily a one-time investment546

and does not significantly affect deployment. Once547

trained, the LaF-GRPO model operates efficiently548

during inference, ensuring practical, responsive549

real-time navigation instructions for end-users.550

Ethical Considerations551

Our work has been conducted with a strong com-552

mitment to ethical practices and transparency553

throughout the development process: (1) Licens-554

ing: Data collection was performed using the555

CARLA Simulator, which is distributed under an556

MIT license. Our use of CARLA aligns with its557

original intended purpose and adheres to its licens-558

ing terms. Our research incorporates publicly avail-559

able open-source VLMs, specifically the Qwen2.5-560

VL-3B and Qwen2.5-VL-7B models. These mod-561

els are licensed under Apache 2.0. This permissive562

licensing allows code modification, fostering in-563

novation and broader application. (2) Instruction564

Biases and Safety: Our method generates naviga-565

tion instructions. A core design principle of our566

NIG-VI system is safety awareness. This focus on567

safety and bias mitigation supports the responsible568

application of AI in navigation technologies.569
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Appendix738

A Related Work Details739

General NIG for Embodied Agents Prior re-740

search on navigation instruction generation (NIG)741

for embodied agents has predominantly focused742

on advanced visual processing techniques while743

generating trajectory-level instructions. BEVIn-744

structor (Fan et al., 2024) employs a Bird’s-Eye745

View encoder and iterative refinement for clearer746

instructions. SAS (Gopinathan et al., 2024) uses747

structural and semantic knowledge with adversar-748

ial reward learning to improve instruction qual-749

ity. C-Instructor (Kong et al., 2024) focuses on750

style-controlled instruction generation and adopts a751

chain-of-thought with landmarks mechanism. Our752

approach differs in two significant ways: (1) while753

existing methods emphasize visual representation754

techniques, our LaF-GRPO approach prioritizes755

navigation feedback for VLM fine-tuning; and (2)756

traditional NIG systems generate trajectory-level757

instructions for complete routes, whereas NIG-VI758

scenario provides step-level in-situ instructions.759

B SFT Details760

SFT The objective of SFT is to maximize the761

likelihood of the generated instruction y given762

the input image and question. The output y =763

{y1, y2, ..., yt} is a sequence of navigation instruc-764

tion tokens. The input question xquestion includes765

positional information xloc, xrot, and pi+1. The loss766

function is defined as:767

LSFT = −
T∑
t=1

logPθ(yt | y<t, ximage, xquestion),

(5)768

where where yt represents the t-th token of the769

navigation instruction, y<t denotes all preceding770

tokens, and T is the total instruction length.771

C Algorithm Details772

D Route Sampling in CARLA773

Figure 5 illustrates BEV maps of CARLA towns774

with sampled routes highlighted in blue. Figure 6775

illustrates examples of sampled start and end points776

for pedestrians in CARLA Town03 and Town10.777

Along a given route or trajectory, front-facing RGB778

images and corresponding semantic segmentation779

views can be collected (Figure 7).780

Algorithm 1 LaF-GRPO Reward Calculation
Require: Generated output oi, Reference output oref, Weights

α, β, γ (default)
Ensure: Combined reward score ri
1: function CALCULATEREWARD(oi, oref)
2: ▷ Format Reward: r(1) ← 1/0
3: ▷ Text Generation Reward:
4: r(2) ← METEOR(oi, oref)
5: ▷ LLM-as-Follower Reward:
6: ai ← ExtractAction(oi)
7: aref ← ExtractAction(oref)

8: r(3) ← action_compare(ai, aref)
9: ▷ Compute weighted reward:

10: ri ← α · r(1) + β · r(2) + γ · r(3)
11: return ri
12: end function

E Prompt Details 781

Table 6 presents a detailed prompt template. 782

This specific version is formulated without pre- 783

calculation. For experimental conditions employ- 784

ing a "with pre-calculation" approach, this base 785

prompt is augmented by an additional sentence 786

that explicitly states the calculated distance and 787

direction, such as: "The movement direction is 788

[DIRECTION] direction with a distance of [DIS- 789

TANCE]." Table 7 outlines the prompt used for gen- 790

erating step-level instructions with the DeepSeek- 791

R1 model. Finally, Table 8 describes the prompt 792

for generating action interpreter samples. 793

F Results Details 794

Additional Observations Scores are generally 795

higher with pre-calculation than without. This is 796

likely because pre-calculation reduces the mathe- 797

matical computation difficulty for the models. Fur- 798

thermore, while both intra-town and inter-town 799

results demonstrate consistent trends, intra-town 800

evaluations typically yield higher scores. This is 801

understandable as the intra-town test set comprises 802

samples from the same town environments as the 803

training set, leading to a closer data distribution. 804

LaF-GRPO vs. Standard GRPO Table 9 de- 805

scribes the prompt used by GPT-4o to calculate 806

navigational accuracy, while Table 10 presents the 807

prompt for GPT-4o to select a better navigation 808

instruction. Examples are in Table 11 and Table 12. 809

810

Case Study Figure 8 compares the navigational 811

guidance outputs and instructions generated by 812

Zero-(LaF-GRPO), SFT, and SFT+(LaF-GRPO). 813

11



(a) Town01 (b) Town02

(c) Town03 (d) Town04

(e) Town05 (f) Town10

Figure 5: BEV maps of CARLA towns with sampled routes highlighted in blue

(a) Town03 (b) Town10

Figure 6: Examples of sampled start and end points for pedestrians in CARLA Town03 and Town10.
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Figure 7: Example pairs of front-facing RGB images and their corresponding semantic segmentation views.

Prompt Template

Generate navigation instructions for visually impaired users based on the provided front-view image and
step information:
- Current location:
{’location’: {’x’: [START_X], ’y’: [START_Y]},
’rotation_yaw’: [START_YAW]}
- Target goal (next step):
{’location’: {’x’: [TARGET_X], ’y’: [TARGET_Y]}, ’rotation_yaw’: [TARGET_YAW]}
Determine the direction and distance to the next step:
- If the angle is between -15° and 15°, the direction is straight ahead ("0 o’clock").
- If the angle is between 15° and 45°, the direction is slightly to the right ("1 o’clock").
- For angles beyond this, map the directions incrementally in 30° steps (e.g., "2 o’clock" through "11
o’clock").
- For angles near ±180° or wraparound (165° to -165°), the direction is directly behind ("6 o’clock").
- Calculate the distance using the Euclidean distance formula.
Semantic view information:[
‘top_left’: [TOP_LEFT_SEM_OBJ],
‘top_middle’: [TOP_MID_SEM_OBJ],
‘top_right’: [TOP_RIGHT_SEM_OBJ],
‘bottom_left’: [BOTTOM_LEFT_SEM_OBJ],
‘bottom_middle’:[BOTTOM_MID_SEM_OBJ],
‘bottom_right’:[BOTTOM_RIGHT_SEM_OBJ] ]
- Incorporate this information to describe the surroundings in combination with the image. If there is a
high likelihood of collision with any object, include a clear warning for the user.
Provide only the final navigation instructions for the step, including spatial and environmental details, as
well as potential safety warnings. Do not include any additional or unrelated text.

Table 6: Detailed prompt template for navigation instructions for visually impaired users (without Pre-Calculation).
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<think>The sidewalk curves
slightly right ahead; road to your
left with traffic sounds. Keep
centered, use your cane near the
brick wall on the right to avoid
poles. Pause if you hear engines
or footsteps approaching.
</think><answer>Turn right
toward 130 degrees and walk
two small steps. Stay near the
brick wall on your right; road
edge left—use your cane to
check for poles. Pause if engines
approach.</answer>

<think>The building on your right
has a low fence with bushes; the
left has a pole near the sidewalk
edge. Stay centered between
the pole and fence, using your
cane to check uneven pavement.
Pause if you hear footsteps or
engines.</think><answer>Turn
slightly right toward 1 o’clock
and walk two small steps. Keep
your cane near the pole on the
left and the fence with bushes
to the right; stay alert for
nearby movement.</answer>

<think>The path is clear ahead,
bordered by buildings on your
left and trees to the right. Use
your cane near the left railing to
avoid uneven steps; listen for
traffic from the right road.
Proceed straight two small
steps.</think><answer>Turn
slightly right toward 167
degrees and walk two small
steps. Buildings left, trees right
—use your cane near railings;
listen for traffic.</answer>

<think>The path is clear ahead,
bordered by buildings on your
left and trees to the right. Use
your cane near the left railing to
avoid benches; listen for traffic
from the road to your right.
Proceed straight one small step.
</think><answer>Step forward
0.5 meters. Buildings left,
bushes right; use your cane near
the left railing and listen for
traffic. Pause if you hear
engines.</answer>

<think>The user is currently
standing near the corner of a
building, facing slightly left. The
target goal is just ahead and to
the right, indicating a slight turn
to the right. The surroundings
include a sidewalk, a pole, and
some vegetation. There is no
immediate obstacle in the path,
but the user should be cautious
of the fence and the wall on the
right side to avoid collision.
</think><answer>Move straight
ahead for about 0.8 meters.
Watch for the fence and wall on
your right to avoid collision.
</answer>

<think>The user is currently
standing near the entrance of a
building, facing slightly left. The
next step involves moving
forward towards another
building entrance. The path
appears clear, but there is a
tree trunk on the right side that
could potentially obstruct the
path if not carefully navigated
around. The surroundings include
buildings, sidewalks, and
vegetation, indicating an urban
environment.</think>
<answer>Move straight ahead for
about 0.2 meters. Watch for the
tree trunk on your right to avoid
collision.</answer>

<think>The user is currently
standing on a sidewalk near a
building, facing slightly left. The
next step involves moving
forward along the sidewalk
towards another part of the
building. The environment
includes trees, poles, and a truck
visible in the distance. There are
no immediate obstacles in the
path, but the user should be
aware of the railing on the left
side to avoid potential collisions.
</think><answer>Move straight
ahead for about 0.5 meters.
Watch for the railing on your
left to avoid collision.</answer>

<think>The user is currently
standing on a sidewalk near a
building, facing slightly to the
right. The next step involves
moving forward towards another
part of the sidewalk. The
environment includes buildings,
poles, and a fence. There is a
high likelihood of collision with
the pole and fence if the user
moves directly ahead without
caution. It's important to
navigate carefully around these
obstacles.</think><answer>Move
straight ahead for about 0.5
meters. Watch out for the pole
and fence on your right to avoid
a collision.</answer>

Turn slightly right toward 132
degrees and walk half a meter.
Keep your cane near the road
edge on the left; buildings close
on both sides. Pause if you hear
engines or bells—use your cane
to check for poles ahead.

Turn slightly right toward 150
degrees. Keep your cane near
the building wall on the left;
vegetation and a fence line the
right. Pause if you hear
footsteps ahead—use your cane
to check for uneven pavement.

Turn slightly right toward 167
degrees. Buildings on left, trees
along right; use your cane to
check for uneven pavement.
Pause if you hear engines or
bells.

Turn slightly right toward 175
degrees. Buildings on left,
bushes and benches along right
sidewalk; road sounds from
right. Use your cane to check
for benches ahead—pause if
surfaces feel uneven.

Front-
View

Zero-
(LaF-GRPO)

SFT

SFT+
(LaF-GRPO)

Figure 8: Case study of Zero-(LaF-GRPO), SFT and SFT+(LaF-GRPO) navigational guidance over steps.
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Prompt for Generating Step-Level Instructions with DeepSeek-R1

Task Description: Generate concise, real-time navigation guidance for visually impaired users by
combining outputs from 2 or 3 AI models.

Requirements:
1. Content Structure must include: (1) Action: Provide clock-direction references (e.g., "11 o’clock")
with metric distances (e.g., "0.5 meters") or relatable analogies (e.g., "two small steps"). (2) Environment:
Describe left, right, and ahead in 5-10 words, focusing on tactile or sound cues (e.g., "bushes on left",
"traffic sounds from right"). (3) Hazards: Explicitly identify immediate dangers (e.g., "benches", "road
edge") with actionable warnings (e.g., "pause and listen for bike bells").
2. Style: Use natural, conversational language, avoiding robotic terms. Prioritize critical information,
removing redundant descriptions, and incorporate sensory guidance when necessary (e.g., "use your cane
to check", "listen for engines").And avoid words like "watch" or "see" since visually impaired individuals
may not be able to perceive their environment through sight.
3.Format: Limit to 2-3 sentences. Output only the polished instruction text.

Output the concise navigation guidance text only.

This is an output example: Turn slightly left toward 11 o’clock and walk half a meter. Keep your cane
near the bushes on the left to avoid benches; listen closely for traffic from the right road. Pause if you
hear engines or bells.

The model 1’s generated text is: [GPT-4o’s INSTRUCTION]
The model 2’s generated text is: [Gemini-2’s INSTRUCTION]
The model 3’s generated text is: [Claude-3.5’s INSTRUCTION]

You must make sure output the polished instruction only, without additional words!
Now output the polished result:

Table 7: Prompt for Generating Step-Level Instructions with DeepSeek-R1
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Prompt for Generating Action Interpreter Samples with DeepSeek-R1

Assume you are a blind person. Analyze the instruction through these steps:
1. Determine if movement parameters exist:
- Extract direction: Convert any directional information (e.g., left, right, east, west) into the "X o’clock"
format (e.g., "2 o’clock" for a slight right turn, "9 o’clock" for a left turn).
- Extract distance: Ensure the distance includes a numerical value and a unit (e.g., meters, steps).

2. Check for danger alerts:
- Identify if the instruction includes detailed warnings about hazards (e.g., specific obstacles at specific
directions or distances). If hazards are mentioned but lack detail, consider the alert as non-detailed.
3. If both direction and distance are missing, or if the instruction is unclear or ambiguous, return None
for the movement parameters

Output Format:
{

"move": {
"direction": "X o’clock", // Replace "X" with the appropriate value (e.g., "2 o’clock").
"distance": "Y meters/steps" // Replace "Y" with the numerical value and unit.

},
"detailed_hazard_alert": true/false // Set to ‘true‘ if detailed hazard warnings are present, otherwise

‘false‘.
}
or, if the instruction is invalid or incomplete:
{

"move": None,
"detailed_hazard_alert": true/false // Set to ‘true‘ if any hazard warnings are present, even if incom-

plete.
}

Examples:
Example 1:
Input: ‘Walk forward approximately 0.5 meters, maintaining your current direction (0 o’clock). The
surroundings include a sidewalk on the right with walls and vegetation, buildings to the left, and roads
ahead.’
Output: {"move": {"direction": "0 o’clock", "distance": "0.5 meters"},"detailed_hazard_alert": false}
Example 2:
Input: ‘Turn left, and move forward to avoid the building on your right.’
Output: {"move": {"direction": "9 o’clock", "distance": "0 meters"}, "detailed_hazard_alert": true}
Example 3:
Input: ‘Caution: wet floor ahead.’
Output: {"move": None,"detailed_hazard_alert": true}

Now, solve the following task:
Input Instruction: [INPUT INSTRUCTION]
Output:

Table 8: Prompt for Generating Action Interpreter Samples with DeepSeek-R1
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Prompt Template for Navigational Accuracy Calculation

I will provide you with one prediction and one reference_ground_truth. Your task is to evaluate the
prediction against the reference_ground_truth based on two criteria: movement direction and distance.
You will then return a score of 1, 0.5, or 0 based on the following rules:
Return 1 if:

– The movement direction in the prediction is correct when compared to the reference_ground_truth,
AND

– The distance in the prediction is correct when compared to the reference_ground_truth.
Return 0.5 if:

– The movement direction is correct BUT the distance is incorrect, OR
– The movement direction is incorrect BUT the distance is correct.

Return 0 if:
– The movement direction in the prediction is incorrect when compared to the reference_ground_truth,

AND
– The distance in the prediction is incorrect when compared to the reference_ground_truth.

Prediction: [PREDICTION]
Reference Ground Truth: [REFERENCE]
Output only the score without additional words.

Table 9: Prompt Template for Navigational Accuracy Calculation.

Prompt template for Instruction Clarity Evaluation

I will provide you with two predictions: pred_1 and pred_2. Your task is to determine which of these two
predictions offers clearer and better-structured instructions.
Evaluate pred_1 and pred_2 based on the following criteria for instruction quality:

Movement Guidance: How clear, concise, and actionable is the guidance for movement?
Environment Surrounding: How well are relevant details about the surrounding environment described?
Potential Safety Alerts: Is necessary information regarding potential safety hazards included appropri-
ately?
Based on your comparative evaluation of these criteria, decide which prediction is better.

pred_1: [PREDICTION_1]
pred_2: [PREDICTION_2]

Output: Return “1” if pred_1 is better, or “2” if pred_2 is better.
Output only 1 or 2 without additional words.

Table 10: Prompt Template for Evaluating Instruction Clarity.
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Types Info Format+METEOR Format+METEOR+LLM
(Ours)

Navigational
Accuracy

Town05,
w/o pre-calculation
move_gt:
(11 o’clock,
0.5 meters)

<think> Move forward half a
meter toward 12 o’clock.
Buildings line your left; road
sounds from the right. Avoid
poles ahead—use your cane to
check pavement. </think>
<answer> Turn slightly left
toward 11 o’clock and walk
half a meter. Keep your cane
near the buildings on the left;
pause if you hear traffic
approaching from the right.
</answer>

<think> Turn slightly left
toward 11 o’clock and walk
half a meter. Keep your cane
near the building edge on the
right to avoid poles; traffic
sounds from the left road.
Pause if you hear engines or
bells. </think>
<answer> Turn slightly left
toward 11 o’clock and walk
half a meter. Buildings on your
right, road sounds from the left;
use your cane to check for
poles and pause if engines
approach. </answer>

Town05,
w/o pre-calculation
move_gt:
(10 o’clock,
0.5 meters)

<think> Move forward half a
meter toward 12 o’clock. Keep
your cane near the bushes on
the left; road edge and rocks to
the right. Pause if you hear
traffic and check for poles with
your cane. </think>
<answer> Proceed straight at
12 o’clock for half a meter. Use
your cane to avoid poles and
the rocky wall on the right;
listen closely for engines.
</answer>

<think> The road curves left
toward 10 o’clock, with bushes
on your left and a rocky cliff to
the right. A pole is ahead at 12
o’clock; steer slightly left to
avoid it and check the sidewalk
edge with your cane. </think>
<answer> Turn slightly left
toward 11 o’clock and take two
small steps. Use your cane to
check the left curb and avoid
the pole ahead; listen for traffic
from the right road. </answer>

Town10,
with pre-calculation
move_gt:
(11 o’clock,
0.2 meters)

<think>Move slightly right
toward 1 o’clock for 0.2 meters.
Keep your cane near the
building edge on the left; traffic
sounds from the right road.
Pause at the pole ahead—check
for uneven pavement with your
cane. </think>
<answer> Turn slightly right
toward 1 o’clock and walk 0.2
meters. Use your cane to check
the sidewalk edge and pause if
you hear traffic approaching.
</answer>

<think>Turn slightly left
toward 11 o’clock and walk 0.2
meters. Keep your cane near
the building on the right to
avoid the traffic pole; listen for
engines from the road to your
left. </think>
<answer> Turn slightly left
toward 11 o’clock and walk 0.2
meters. Building on your right,
road to the left; use your cane
to check for the traffic pole
ahead and pause if you hear
engines. </answer>

Table 11: Example comparison of different formats for Navigational Accuracy
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Types Info Format+METEOR Format+METEOR+LLM
(Ours)

Instruction
Clarity

Town05,
w/o pre-calculation
move_gt:
(12 o’clock, 0.5 meters)

<think> Move forward half a
meter toward 12 o’clock.
Buildings line your left; road
sounds from the right. Avoid
potted plants ahead—pause if
engines approach. </think>

<answer> Proceed straight at
12 o’clock for half a meter. Use
your cane to check for planters
and listen for traffic.
</answer>

<think> Move forward half a
meter toward 12 o’clock.
Buildings line your left; road
sounds from the right. Avoid
potted plants ahead—use your
cane to check. </think>

<answer> Proceed straight at
12 o’clock for half a meter.
Buildings on left, road sounds
right; use your cane to
navigate around potted plants
ahead. Pause if engines
approach. </answer>

Town03,
with pre-calculation
move_gt:
(12 o’clock, 0.5 meters)

<think> Move slightly left
toward 11 o’clock for half a
meter. Keep your cane near the
bushes on the left to avoid the
bench; listen for traffic from
the right road. Pause if you
hear engines or bells.
</think>

<answer> Turn left toward 11
o’clock and walk half a meter.
Use your cane to check the left
hedge; pause for traffic sounds
from the right road. </answer>

<think> Move slightly left
toward 11 o’clock for half a
meter. Keep your cane near the
bushes on the left to avoid the
bench; listen for traffic from
the right road. </think>

<answer> Turn left toward 11
o’clock and walk half a meter.
Bushes on your left, road
sounds from the right; use your
cane to check the path and
pause if you hear engines.
</answer>

Town10,
with pre-calculation
move_gt:
(1 o’clock, 0 meters)

<think> Turn slightly right
toward 1 o’clock and take two
small steps. Keep your cane
near the building on the left;
traffic sounds from the right
road. Pause if you hear
engines or bells. </think>

<answer> Turn slightly right
toward 1 o’clock and take two
small steps. Use your cane
near the building on the left;
pause for traffic sounds from
the right. </answer>

<think> Turn slightly right
toward 1 o’clock and take two
small steps. Keep your cane
near the building on the left;
traffic sounds from the right
road. Pause if engines
approach and check for uneven
pavement. </think>

<answer> Turn slightly right
toward 1 o’clock and take two
small steps. Buildings on your
left, road with trucks to the
right; use your cane to avoid
poles and pause if engines
approach. </answer>

Table 12: Example comparison of different formats for Instruction Clarity
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