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Abstract

Relational reasoning lies at the core of many NLP tasks, drawing on complemen-
tary signals from text and graphs. While prior research has investigated this dual
complementarity, a detailed and systematic understanding of text-graph interplay
and its effect on hybrid models remains underexplored. We take an analysis-driven
approach using a unified architecture with knowledge co-distillation (CoD) across
five diverse relational reasoning tasks. By tracking how text and graph representa-
tions evolve during training, we uncover interpretable patterns of alignment and
divergence, and provide insights into when and why their integration is beneficial.

1 Introduction

Incorporating modalities beyond the surface form of the text has shown promise for challenging
natural language processing (NLP) tasks like relational reasoning based tasks, which require
understanding or inferring the semantic relationships within the input [Nastase et al., 2015]. Key
examples include relation extraction [Christopoulou et al., 2019, Guo et al., 2020], knowledge base
question answering (KBQA) [Tian et al., 2024, Feng and He, 2025, Gao et al., 2025], and structured
document interpretation or reasoning [Wang et al., 2023, Chen et al., 2025].

A common and effective way to encode relational structure is through graphs [Yao et al., 2018, Lee
et al., 2023, Gururaja et al., 2023, Dutt et al., 2022], where nodes represent textual units and edges
encode relationships [Scarselli et al., 2009, Bruna et al., 2014, Veličković et al., 2018]. This explicit
structure supplies complementary signals often absent from plain text.

While many tasks utilize this text-graph representation to improve performance, how they complement
each other remains underexplored. Prior work notes that models often fail to integrate modalities
effectively [Stanton et al., 2021], raising open questions: How do text and graph representations
relate to each other during learning? Under what conditions is their integration beneficial?

We address these questions with an analysis-oriented approach and introduce a unified framework
for characterizing the alignment and complementarity between text and graph representations under
knowledge co-distillation (CoD) [Yao et al., 2024]. Across five diverse relational reasoning tasks,
we systematically analyze how text and graph representations complement each other under CoD,
identify consistent patterns ranging from complementarity to alignment, and provide practical insights
to inform the effective use of CoD.

∗ Work done while the author was a student at Carnegie Mellon University.
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2 Task suite and formulations

We select five relational reasoning tasks to span a spectrum from strong complementarity to near-
complete alignment between text and graph representations (Figure 1). The tasks vary in whether
the graph encodes the prediction target explicitly, whether nodes correspond directly to text spans,
and whether reasoning is local or global. The tasks include event temporal relation extraction
(ETRE), multilingual relation extraction (MLRE), form understanding (FU), question answering over
knowledge bases (KBQA), and relation path prediction (RPP). We outline the details in Table 2.

3 Unified framework for analysis
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Figure 2: Unified framework for analyzing text-graph complementarity. A text sequence and its
graph are encoded separately, then (1) combined for task prediction and (2) projected into a shared
space, where a contrastive co-distillation (CoD) objective promotes mutual learning and enables
representation-level analysis.
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Figure 1: Task spectrum of representation relation-
ships from complementary to alignment.

We propose a unified, task-agnostic framework,
R2-CoD (Figure 2), to analyze how text and
graph representations relate during learning.

Across tasks, each instance corresponds to a text-
graph pair. These are encoded using modality-
specific encoders: ht = ft(q) and hg = fg(G).
We then create a hybrid representation hhybrid
through concatenation or residual connection to
perform task-specific prediction and compute
the task loss: hhybrid = ffuse(ht, hg), Ltask =
L(hhybrid, y), where y denotes the gold supervi-
sion and L(·, ·) is the task-specific loss func-
tion. We present model configurations, loss
function, and evaluation metrics used for each
task in Table 5. To enable direct comparison,

we map each representation into a shared latent space via MLP projection heads during training:
ztext = MLPt(ht), zgraph = MLPg(hg).

While learning a shared space enables comparison, it cannot solely influence how text and graph will
complement one another. We thus apply a contrastive knowledge co-distillation (CoD) objective [Yao
et al., 2024] which combines a contrastive loss with a stop-gradient operation [Chen and He, 2021] to
explicitly encourage bidirectional knowledge transfer.

Formally, the contrastive loss lcl between the teacher t and the student s representations is:

lcl(t, s) = − log
esim(t,s)/τ∑

u 1[u̸=t] esim(t,u)/τ
(1)

where u indicates representations from the training data other than t and s, sim(., .) is cosine
similarity, τ is the temperature scaling parameter [Tian et al., 2022]. This bidirectional design ensures
that either modality can act as teacher or student at each step, thus mutually distilling knowledge
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from each other. Hence, the full CoD loss is computed as

LCoD =
1

2

∑
i

[lcl(z
text
i , ẑi

graph) + lcl(zi
graph, ẑi

text)] (2)

where .̂ is the stop gradient operator [Chen and He, 2021] that sets the input variable to a constant.
Finally, we combine this with the task loss to enable end-to-end model optimization: Ltotal =
Ltask + λLCoD, where λ controls the weight of the CoD signal. CoD serves as a task-agnostic
framework to facilitate learning and analysis over dual modalities.

We assess representational relations using PCA visualizations [Ferrone and Zanzotto, 2020] as well
as cosine similarity and within/between-modality distances.

4 Analysis and discussions

4.1 RQ1: Does combining text and graph representations improve performance?

Task Dataset Text Graph CoD T+G

ETRE TDDAuto 61.6 34.6 77.1 68.9
FU FUNSD 33 22 38 35
MLRE REDfm 79.7 48.6 78.6 79.5
RPP WebQSP 62.4 63.2 65.9 65.6
KBQA WebQSP 80.7 52.2 83.8 83.5

Table 1: Task performance. Best performance in
bold, second-best underlined.2

We compare four model configurations: (1)
text-only, (2) graph-only, (3) hybrid with CoD,
and (4) hybrid without CoD in Table 1 and
Table 8. Across the tasks and model back-
bones, we observe that hybrid models consis-
tently outperform the text-only and graph-only
baselines, with CoD leads to further gains at
minimal computational cost (Table 7). The
only exception is MLRE where the hybrid ap-
proaches achieve performance comparable to
the the text-based baseline, possibly because
large-scale pretraining enables transformers to
encode syntax internally [Starace et al., 2023, Liu et al., 2024], thus employing off-the-shelf parsers
to capture dependency information shows little promise [Sachan et al., 2021]. In KBQA, where text
and graph encode the same information in different formats (linearized vs. topological), CoD offers
only marginal gains. In contrast, tasks like FU where text and graph encode different information
(form content versus layout structure from OCR), CoD shows more improvement.

4.2 RQ2: How do text and graph representations relate during learning?

Complementarity (ETRE): The text and graph representations remain well-separated throughout
training (Figure 3a and 8). In ETRE, the text representation provides local semantic cues around
event mentions, while the graph encodes structural information in an attempt to quantify semantic
temporal and discourse relations. These structural and semantic divergences could lead text and graph
representations to retain independent representation space.

Partial alignment (MLRE and RPP): Here, the text and graph representations move closer in the
shared space during training, yet do not collapse into a single unified cluster (Figure 3b, 10 and 13).
This behavior aligns with the task objective, for example, in RPP, the objective is to classify the
reasoning path traversed in the graph, not specific tokens or nodes. Thus, the representations can
evolve in parallel without needing to fully align.

Complete alignment (FU and KBQA): Here, text and graph representations show strong con-
vergence (Figure 3c and 16). By the final epochs, the paired embeddings often form overlapping
clusters. The fine-grained one-to-one correspondence between a graph node and a text token span
likely encourages representations to align. In FU, OCR tokens are linked to spatially grounded nodes,
while in entity ranking, candidate answer entities are matched between graph nodes and text tokens.

Cosine similarity increases due to CoD, but tasks with complementarity like ETRE show a weaker
increase (bounded near 0.4). Complementarity is reflected when between-group distance stays higher

2We present results for one representative dataset per task due to resource constraints. Similar trends hold for
other datasets. For FU, the model was pretrained on a 1,000-example subset of its original pretraining corpus.
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than within-group distance, as in ETRE. In partial and complete alignment tasks, their between-group
trends diverge: it increases in partial alignment tasks (MLRE and RPP), whereas it decreases steadily
and eventually approaches the within-group distances in complete alignment ones (FU and KBQA).

4.3 RQ3: How do task characteristics shape the effects of CoD?

Same input, different task objectives Although RPP and KBQA share the identical input, they
differ in task objectives: RPP identifies graph-level reasoning patterns, and KBQA scores entities at
a node level. Under CoD, RPP shows partial convergence whereas KBQA aligns strongly, which
suggests that the level of reasoning (global vs. local) shapes representational behavior.

Same reasoning scope, different graph construction: ETRE (complementarity) and FU (complete
alignment) both involve pairwise reasoning, but their graph designs differ in how directly they capture
the task. FU graphs encode layout relations that closely match the target key–value associations. In
ETRE, the graph encodes linguistic cues that support but do not directly define the target temporal
relation. This indicates that how well the graph structure reflects the task objective can influence
whether CoD promotes complementarity or alignment.

With or without token-node correspondence In FU and KBQA entity-ranking, there exists a
one-to-one correspondence between graph nodes and text token spans, unlike the complementary
information encoded in ETRE. This highlights that explicit token–node correspondence could act as
a structural prior that facilitates CoD towards alignment.

(a) Results for ETRE (Complementarity).

(b) Results for MLRE (Partial Alignment).

(c) Results for FU (Complete Alignment).

Figure 3: Representative examples of (1) PCA visualizations at initial and final epochs; (2) distances
within text (blue), within graph (yellow), and between the two (green).
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5 Conclusion

We analyze how text and graph representations complement each other under a unified framework
unified contrastive co-distillation (CoD). Across five relational reasoning tasks we selected, we
observe a spectrum from complementarity to alignment, shaped by factors such as whether the graph
encodes the target directly, whether nodes map to text spans, and whether reasoning is local or global.
These findings improve our understanding of text-graph representation relations and offer practical
insights into applying CoD in structured NLP tasks.
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Task Goal Input Output Example K-Type
ETRE Predict temporal

relation between
two events

Text passage
+ Syntactic
graph and
Time-aware
graph

Relation label
(e.g., BE-
FORE/AFTER)

In: Atlanta nineteen ninety-six. A bomb <E1> blast </E1>
shocks the Olympic games. One person is killed. January
nineteen ninety-seven. Atlanta again. This time a bomb
at an abortion clinic. More people are <E2> hurt </E2>.
Out: Event E1 took place BEFORE Event E2.

Episodic

MLRE Predict semantic
relation between
entities

Text passage
+ Dependency
graph

Relation label
(e.g. sibling)

In: The <E1> wood </E1> is used as fuel and to make
posts for <E2> fences </E2>. Out: The relation between
E1 and E2: material used

Episodic

FU Predict token
relationships in
scanned forms

OCR tokens
with layout
info

Label over token
pairs

We present an example in Figure 5 Episodic

RPP Predict reasoning
path over the KG
for a question.

Question +
KG subgraph

Reasoning Path In: Question: What was Elie Wiesel’s father’s name?
KG: Elie Wiesel <E1> | <E1>
book.author.book_editions_published <E2> |
<E3> people.person.gender <E4> ...
Out: Reasoning Pattern Type: T2 — The answer is
located a single-hop away from the two constraints.
Entities ranked: <E6>, <E4>, ...

Static

KBQA
entity-
ranking

Extract answers
from a KG for a
question

Ranked list
of candidate
entities

Table 2: For each task, we state the goal, the input/output format, an illustrative example, and the graph
construction method. We also distinguish between tasks grounded in episodic knowledge (context-
dependent and document-specific), and those involving static knowledge (holds independently of
context) in the Knowledge(K)-Type column.

A Task suite details

A.1 Task illustrations

See Table 2.

A.2 Data processing for reasoning pattern prediction and KBQA entity-ranking

RP Illustration Definition Example Question S-expression

T-0 A single-hop path from the con-
straint to the answer.

What is the name of
money in Brazil?

(JOIN (R location.country.currency_used)
m.015fr)

T-1 A two-hop path from the constraint
to the answer.

Where does the Queen of
Denmark live?

(JOIN (R people.place_lived.location)
(JOIN (R people.person.places_lived)
m.0g2kv))

T-2 Two single-hop paths arising from
two different constraints and con-
verging to the same answer.

What was Elie Wiesel’s
father’s name?

(AND (JOIN people.person.gender
m.05zppz) (JOIN (R people.person.parents)
m.02vsp))

T-3 Two paths (one single-hop and an-
other two-hop) arising from two dif-
ferent constraints and converging to
the same answer.

Where did Joe Namath at-
tend college?

(AND (JOIN common.topic.notable_types
m.01y2hnl) (JOIN (R educa-
tion.education.institution) (JOIN (R
people.person.education) m.01p_3k)))

T-4 Two two-hop paths arising from two
different constraints and converging
to an intermediate common node be-
fore reaching the answer.

Who does Zach Galifi-
anakis play in The Hang-
over?

(JOIN (R film.performance.character)
(AND (JOIN film.performance.film
m.0n3xxpd) (JOIN (R film.actor.film)
m.02_0d2)))

Table 3: Reasoning patterns with their corresponding definitions, example questions, and S-
expressions.

We use the WebQSP dataset [Yih et al., 2016] for our two KBQA related experiments, i.e. reasoning
pattern prediction and entity-ranking. An exploratory analysis of WebQSP highlighted a significant
overlap of relations and classes across the train and test splits. Subsequently, we employed the
approach of Jiang and Usbeck [2022] to obtain development and test splits that characterize different
generalization levels in equal proportion. The three generalization levels for KBQA tasks include
i.i.d, compositional, and zero-shot.

The i.i.d. case implies that the questions observed during inference follow similar logical templates
to those during training; for example the questions “Who was the author of Oliver Twist?” and “Who
wrote Pride and Prejudice?” follow similar logical templates. We contrast this with the compositional
case, where questions in the test split operate over the same set of relations that were present in the
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RP Illustration i.i.d. Comp Z.S. Total

T-0 50.3 0.0 49.7 54.5
T-1 37.3 44.3 18.4 23.5
T-2 17.1 47.1 35.7 5.2

T-3 83.3 6.7 10.0 2.2

T-4 12.8 81.5 5.6 14.5

ALL 40.8 24.9 34.3 100.0
Table 4: Distribution of reasoning patterns over the generalization splits (i.i.d., compositional (Comp),
zero-shot (Z.S.)) of our modified WebQSP dataset.

Figure 4: Example depicting the supplemental information provided by the dependency tree. The
entities of interest are wood and fences, having the relationship material_used. The path wood←
used→ make→ posts→ fences elicits this relationship.

training set (such as the “written-by” relation), but different logical templates. For example, the
questions “Who wrote Pride and Prejudice?” and “Who wrote both The Talisman and It?” require
reasoning over the same relation “written-by” but follows different reasoning paths, since the former
involves only one constraint or entity, whereas the latter involves two. Finally, questions in the
zero-shot split operate over new or unseen relations that were not present in the training dataset. For
example, the questions “Who wrote Pride and Prejudice?” and “Who directed Pride and Prejudice in
2005?” involves different relations, i.e. “written-by” and “directed-by” respectively. We defer the
readers to past work [Gu et al., 2021, Jiang and Usbeck, 2022, Dutt et al., 2023] for a more thorough
description of the different generalization splits.

We characterize the complexity of the reasoning pattern to answer a given KBQA question based on
Dutt et al. [2023]. Given the modified version of WebQSP dataset, we identify the following five
reasoning patterns that accounted for ≥ 97% of the dataset across all splits. We describe the different
reasoning patterns in Table 3 and outline their distribution in the our modified WebQSP dataset in
Table 4.

To accommodate the input length constraints of models like T5, we simplify the representation of
knowledge base entities in the linearized graph input. Instead of using full entity identifiers (e.g.,
m.02896), we assign short, unique placeholder tokens (e.g., <E1>, <E2>) to each entity as a part of
the tokenizer vocabulary. This helps reduce the input sequence length and avoids unwanted subword
tokenization. In addition, we ensure that these placeholder tokens are assigned consistently across
modalities: the same entity is represented as node vi in the graph and as token <Ei> in the linearized
text.

A.3 MLRE dependency parsing illustration

See Figure 4.

A.4 FU example

We adapt an example to showcase the FU task from Nourbakhsh et al. [2024] in Figure 5.
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Figure 5: An example of FU task from the FUNSD dataset, adapted from Nourbakhsh et al. [2024].
Green links show correct predictions. Red links show false negatives. Blue links show false positives.

Task Text model Graph model Loss function Metric

ETRE RoBERTa1 {1,2,3}-layer
RGAT4

cross-entropy
(CE)

weighted F1

Form understanding RoBERTa1 2-layer RGAT4 binary CE F1
MLRE mBERT-base2 2-layer RGCN5 CE macro F1
Reasoning pattern prediction T5-base3 2-layer RGCN5 CE macro F1
KBQA entity-ranking T5-base3 2-layer RGCN5 binary CE Hits@K6

Table 5: Model configurations, training objectives, and evaluation metrics for each task. The text and
graph model backbones listed in this table are used for the primary results in Table 1.

B Task experiments details

We present the experimental details for different tasks. In Table 5, we outline the loss function that
we are optimizing, the corresponding evaluation metric, and the backbone architectures used for
the primary results reported in Table 1: the transformer model that encodes the textual information,
and the specific GNN architecture that encodes the graph information. In Table 6, we provide
hyperparameters values for our experiments. We also present statistics on the task suite datasets and
training times in Table 7. All datasets we used are publicly available, and we follow the licensing
terms and intended use of each.
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Task LR Batch
size

Drop
out Temp. Max

input len
GNN
layers

GNN
hidden dim

ETRE (TDDMan) 1e-5 16 0.1 0.1 – 2 256
ETRE (TDDAuto) 1e-5 32 0.1 0.04 – 3 256
ETRE (TB-Dense) 1e-5 32 0.1 0.9 – 1 256
MLRE 1e-5 16 0.2 0.1 512 2 768
Reasoning pattern prediction 5e-5 6 0.2 0.1 512 2 768
KBQA entity-ranking 5e-5 4 0.2 0.1 1024 2 768
Form understanding Same settings as in Nourbakhsh et al. [2024]

Table 6: Hyperparameters used across tasks. Temperature refers to τ in CoD. All experiments use a
shared space dimension of 2048.

Task Dataset Train Test Number of labels Training time

ETRE
TDDMan 4,000 1,500 5 28 min
TDDAuto 32,609 4,258 5 3h 40min
TB-Dense 4,032 1,427 6 26 min

MLRE

REDFM (en) 8,504 1,235 32 6h 7min
REDFM (es) 5,194 733 32 2h 30min
REDFM (fr) 5,452 975 32 3h 14min
REDFM (de) 5,909 811 32 2h 46min
REDFM (it) 4,597 1,086 32 2h 38min

Reasoning pattern prediction WebQSP 3,014 1,343 5 1h
KBQA answer-ranking WebQSP 3,014 1,343 Number of gold

answers
3h

Form understanding
SROIE 626 347 4 10h
FUNSD 149 50 4 4h 36min
CORD 800 100 30 17h 47min

Table 7: Task suite statistics and training times. We train for 1000 epochs for form understanding.

C Extended CoD results

To further demonstrate the robustness and generality of CoD, we apply it to new model combinations
on two representative tasks: reasoning pattern prediction and ETRE (Table 8). We also demonstrate
additional CoD performance across each language data for MLRE in Table 9.

D Full visualization results across tasks

D.1 ETRE results

See Figure 8, Figure 6 and Figure 7 for results on TDDMan, TimeBank-Dense and TDDAuto datasets,
respectively. See Figure 9 for results on TDDMan dataset when no CoD is applied.

D.2 MLRE results

See Figure 10 for PCA plots, and Figure 11 for cosine similarity and distance metrics results.

1Liu et al. [2019]
2Devlin et al. [2019]
3Raffel et al. [2023]
4Busbridge et al. [2019]
5Schlichtkrull et al. [2017]
6K indicates the number of correct answers for an instance.
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(a) Reasoning pattern prediction
Text encoder Graph encoder Hybrid (CoD) Text only Graph only

T5 RGCN 0.6190 0.5700 0.5840
T5 RGAT 0.6120 0.5700 0.4966
BERT RGCN 0.5999 0.5835 0.5840
BERT RGAT 0.5956 0.5835 0.4966
GPT-2 RGCN 0.6022 0.5614 0.5840
GPT-2 RGAT 0.6049 0.5614 0.4966

(b) Event temporal relation extraction (ETRE)
Text encoder Graph encoder Hybrid (CoD) Text only

TDDMan
BERT GCN 0.411 0.447
BERT RGCN 0.384 0.447
BERT RGAT 0.481 0.447
RoBERTa GCN 0.435 0.445
RoBERTa RGCN 0.452 0.445
RoBERTa RGAT 0.551 0.445

TDDAuto
BERT GCN 0.631 0.624
BERT RGCN 0.647 0.624
BERT RGAT 0.683 0.624
RoBERTa GCN 0.748 0.689
RoBERTa RGCN 0.665 0.689
RoBERTa RGAT 0.771 0.689

TB-Dense
BERT GCN 0.790 0.775
BERT RGCN 0.782 0.775
BERT RGAT 0.810 0.775
RoBERTa GCN 0.805 0.767
RoBERTa RGCN 0.847 0.767
RoBERTa RGAT 0.856 0.767

Note that we did not record numbers for the graph-only approach because the graph approach for this task yields
incredibly poor results without the incorporation of linear transformers [Yao et al., 2024].

Table 8: Additional results for (a) Reasoning pattern prediction and (b) ETRE using different text
and graph encoder backbones. CoD consistently improves over baselines across all combinations in
Reasoning pattern prediction, and improves 78% of the times across all 18 cases for ETRE. These
results demonstrate CoD’s generality across diverse model architecture combinations.

Language Text only Graph only Hybrid + CoD Hybrid + no-CoD

de 80.41 ± 0.61 47.13 ± 2.76 80.35 ± 0.71 79.55 ± 0.40
en 85.94 ± 1.41 52.21 ± 0.56 84.57 ± 2.25 84.74 ± 1.07
es 80.49 ± 0.61 51.21 ± 1.47 76.64 ± 1.09 80.26 ± 0.44
fr 77.47 ± 0.73 45.62 ± 1.60 78.80 ± 0.58 78.31 ± 0.78
it 74.25 ± 0.36 46.61 ± 1.98 72.67 ± 1.40 74.76 ± 1.02

Avg 79.71 ± 3.95 48.55 ± 3.21 78.61 ± 4.17 79.53 ± 3.32

Table 9: F1 score results on MLRE task for the REDfm dataset.
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(a) Initial epoch (b) Intermediate epoch (c) Final epoch

(d) Cosine similarity (e) Distance within text

(f) Distance within graph (g) Distance between text and graph

Figure 6: Results for ETRE on the TimeBank-Dense dataset.

D.3 RPP results

See Figure 13 and Figure 12 for Reasoning Pattern Prediction task with and without CoD applied,
respectively.

D.4 FU results

See Figure 16, Figure 14, and Figure 15 for results on CORD, SROIE, and FUNSD datasets,
respectively.

D.5 KBQA entity-ranking results

See Figure 17 and Figure 18 for results for KBQA entity-ranking with and without CoD applied,
respectively.
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(a) Initial epoch (b) Intermediate epoch (c) Final epoch

(d) Cosine similarity (e) Distance within text

(f) Distance within graph (g) Distance between text and graph

Figure 7: Results for ETRE on the TDDAuto dataset.

(a) Initial epoch (b) Intermediate epoch (c) Final epoch

(d) Cosine similarity (e) Distance within text

(f) Distance within graph (g) Distance between text and graph

Figure 8: Results for ETRE on the TDDMan dataset. PCA visualizations (top) at initial, intermediate,
and final training stages, and corresponding distance-based metrics (bottom).
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(a) Initial epoch (b) Intermediate epoch (c) Final epoch

(d) Cosine similarity (e) Distance within text

(f) Distance within graph (g) Distance between text and graph

Figure 9: Results for ETRE on the TDDMan dataset when no CoD is applied.
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(a) Initial epoch (de) (b) Intermediate epoch (de) (c) Final epoch (de)

(d) Initial epoch (en) (e) Intermediate epoch (en) (f) Final epoch (en)

(g) Initial epoch (es) (h) Intermediate epoch (es) (i) Final epoch (es)

(j) Initial epoch (fr) (k) Intermediate epoch (fr) (l) Final epoch (fr)

(m) Initial epoch (it) (n) Intermediate epoch (it) (o) Final epoch (it)

Figure 10: PCA plots for MLRE across the different languages in the REDfm dataset.
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(a) Cosine similarity (b) Distance within text

(c) Distance within graph (d) Distance between text and graph

Figure 11: Cosine similarity and distance results for MLRE on the REDfm dataset.
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(a) Initial epoch (b) Intermediate epoch (c) Final epoch

(d) Cosine similarity (e) Distance within text

(f) Distance within graph (g) Distance between text and graph

Figure 12: Results for reasoning pattern prediction on the WebQSP dataset when no CoD is applied.

(a) Initial epoch (b) Intermediate epoch (c) Final epoch

(d) Cosine similarity (e) Distance within text

(f) Distance within graph (g) Distance between text and graph

Figure 13: Results for reasoning pattern prediction on the WebQSP dataset.
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(a) Initial epoch (b) Intermediate epoch (c) Final epoch

(d) Distance within text (e) Distance within graph (f) Distance between text and graph

Figure 14: Results for form understanding on the SROIE dataset.

(a) Initial epoch (b) Intermediate epoch (c) Final epoch

(d) Distance within text (e) Distance within graph (f) Distance between text and graph

Figure 15: Results for form understanding on the FUNSD dataset.

(a) Initial epoch (b) Intermediate epoch (c) Final epoch

(d) Distance within text (e) Distance within graph (f) Distance between text and graph

Figure 16: Results for form understanding on the CORD dataset.3
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(a) Initial epoch (b) Intermediate epoch (c) Final epoch

(d) Cosine similarity (e) Distance within text

(f) Distance within graph (g) Distance between text and graph

Figure 17: Results for KBQA entity-ranking on the WebQSP dataset.
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(a) Initial epoch (b) Intermediate epoch (c) Final epoch

(d) Cosine similarity (e) Distance within text

(f) Distance within graph (g) Distance between text and graph

Figure 18: Results for KBQA entity-ranking on the WebQSP dataset when no CoD is applied.
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