
Under review as a conference paper at ICLR 2024

META COMPRESSION:
LEARNING TO COMPRESS DEEP NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Deploying large pretrained deep learning models is hindered by the limitations
of realistic scenarios such as resource constraints on the user/edge devices. Is-
sues such as selecting the right pretrained model, compression method, and com-
pression level to suit a target application and hardware become especially im-
portant. We address these challenges using a novel meta learning framework
that can provide high quality recommendations tailored to the specified resource,
performance, and efficiency constraints. For scenarios with limited to no access
to unseen samples that resemble the distribution used for pretraining, we invoke
diffusion models to improve generalization to test data and thereby demonstrate
the promise of augmenting meta-learners with generative models. When learn-
ing across several state-of-the-art compression algorithms and DNN architectures
trained on the CIFAR10 dataset, our top recommendation shows only 1% drop
in average accuracy loss compared to the optimal compression method. This is
in contrast to 25% average accuracy drop achieved by selecting the single best
compression method across all constraints.

1 INTRODUCTION

Deep neural networks (DNNs) are being increasingly adopted in diverse domains including com-
puter vision (Redmon et al., 2016), natural language processing (Vaswani et al., 2017), and speech
recognition (Amodei et al., 2015). The size of state-of-the-art DNNs has exponentially grown in
recent years (Bernstein et al., 2021), allowing them to achieve or even exceed human-level perfor-
mance for a variety of tasks (Alzubaidi et al., 2021; Silver et al., 2018). Despite this unquestionable
benefit, these DNNs have become so large that in some cases they cannot run on a single GPU.
Smaller models cannot still fit the limited resources of edge servers or end devices such as mobile
phones and smart objects in the Internet of things. This work specifically addresses such a challenge
to enable efficient computation, closer to end users.

Several approaches have been proposed to design compact yet efficient DNNs – in terms of both
accuracy and performance – by explicitly targeting resource-constrained devices, for instance. On
the one hand, model compression takes an existing DNN and applies techniques such as pruning
and (or) quantization to obtain a simplified model. The obtained model is smaller, therefore, also
faster to execute for inference. This approach has been shown to obtain a significant reduction in
model size with close to negligible loss in accuracy. Despite its potential, the performance of the
compressed can be only characterized a posteriori: a source DNN has to be first compressed and only
then evaluated. As a consequence, tailoring a model to fulfill certain requirements results in a trial-
and-error process that depends on appropriately setting the parameters of the specific compression
method.

On the other hand, network architecture search explores a design space to find a model that fulfills
application-specific requirements in an automated way. This approach effectively enables tailoring
the characteristics of a DNN architecture, for instance, based on hardware-specific constraints. How-
ever, it entails carrying out an extremely large amount of computation, exceeding several weeks of
training. Even worse, the process generally needs to be repeated from scratch for each target config-
uration. Recently, more advanced techniques have been introduced to train a so-called once-for-all
network that can be specialized for diverse target configurations without re-training. However, these
schemes significantly constrain the design space and still require substantial computation.

1

Under review as a conference paper at ICLR 2024

Problems

Datasets Pre-trained
models

Compression methods

Pruning Quantization Other schemes

Problems

CIFAR10,
ImageNet,
CARS, ...

RestNet-18,
VGG-19, ...

Slim pruning,
TaylorFO, ...

DoReFa, LSQ,
UAQ, ...

Knowledge
distillation, ...

Sparsity: 50%, 25%, ... Precision: 16 bits, 8 bits, ...

Meta learning
Compression settings

(a)

1 10 20 30 40 50 60 70 80 90 100 110 120
Compression level constraints

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Ac
cu

ra
cy

Exhaustive search
Meta compression
static Empirical risk minimization

(b)

Figure 1: (a) Given several datasets and models pre-trained on them, meta compression predicts the accuracy of
a source model when compressed with different methods and settings, without running it. (b) Meta compression
outperforms a recommendation strategy based on empirical risk minimization for high compression levels (at
least 50 times), with a close-to-optimal prediction accuracy.

This article bridges the gap between these two extremes by introducing meta compression, a novel
approach based on meta learning to simplify a source DNN into one that fulfills application- and
device-specific constraints. Our approach aims at answering the following questions: Which is the
simplest DNN that achieves a certain accuracy? Which is the most accurate DNN that can run on
a given device? It does so by predicting the accuracy of a compressed DNN based on a collection
of problems, consisting of several reference DNN models, compression methods, and their settings
(Figure 1).

Our approach relies on pre-trained DNN models as a key design choice to reduce the computational
overhead of meta learning. Such a choice entails several challenges related to the partitioning of
the source source dataset the DNN was trained on. For instance, the training / testing split may not
be known, or the data not used for training may be not enough for meta learning. For this reason,
we leverage diffusion models to augment the original dataset as a fundamental operation to achieve
high prediction accuracy.

We extensively evaluate our proposed framework by using several popular DNNs trained on the
CIFAR10 dataset. We obtain 92% top-5 recommendation accuracy compared to 15% top-4 accuracy
achievable using a static compression algorithm. Our top recommendation is only 1% far from the
optimal compression method in terms of average accuracy loss. Our analysis also reveals that meta
compression generalizes well to new datasets, new architectures, and new compression methods.

2 RELATED WORK

Model compression. DNN compression broadly encompasses techniques aiming at simplifying
a source model into a smaller one (Hoefler et al., 2021). Among them, the major approaches are
quantization, to reduce the precision of operands, and pruning, to sparsify a network by removing
“unimportant” weights or activation values (Gholami et al., 2021; Liang et al., 2021). Both benefit
from fine-tuning to restore accuracy (Sanh et al., 2020) and can jointly be applied for further reduc-
tion in model size (Hu et al., 2021; Yang et al., 2020; Frantar & Alistarh, 2022). However, charac-
terizing the performance of specific compression methods have been elusive. (Kuzmin et al., 2023)
introduce an analytical framework to compare pruning and quantization. However, their results are
limited to magnitude pruning and uniform quantization as considered separately. In contrast, our
solution allows to predict the accuracy of diverse compression methods, including those leveraging
fine-tuning, even when jointly applied.

Network architecture search. Network architecture search aims at automatically selecting a model
that can satisfy certain properties (Elsken et al., 2019). In this broad context, AutoNBA (Fu et al.,
2021) devises a search strategy over networks, bitwidths, and features for hardware acceleration. To
reduce computation, OFA (Cai et al., 2019) takes a reference DNN as a backbone to build a so-called
once-for-all network. Such a network is trained in such a way that it can be tailored for hardware-
specific constraints at a later stage, without re-training – the latter phase achieves pruning as a side
effect. The same approach is extended in APQ (Wang et al., 2020) to also consider quantization.

2

Under review as a conference paper at ICLR 2024

Metadata
extractionEvaluation

data (E)

Accuracy
prediction
model (g)

Compression
method (Ki)

Compressed
classifier

Pretrained
classifier (c)

Fine-tuning
data (F)

Predicted
accuracy (Â)

Training
loop

True
accuracy (A)

ℓ(A,Â)

(a)

Metadata
extraction

Evaluation
data (E)

Accuracy
prediction
model (g)

Pretrained
classifier (c)

Compression
methods {Ki

 }

argmax
Compression
method
recomm. (î)

(b)

Figure 2: (a) The inner loop of the meta learning process involves training a model to predict the performance
of a classifier once compressed with a certain method and related settings. (b) Once learned, the accuracy
prediction model can be leveraged to recommend the best compression method for a given problem.

However, APQ only supports channel pruning and uniform quantization. Instead, our approach
allows to plug-in arbitrary pruning and quantization schemes as compression methods.

Meta learning. Meta learning involves iterating over ML tasks while an outer training loop opti-
mizes meta parameters (Hospedales et al., 2022) and has been applied to different scenarios (Garg
& Kalai, 2018; Verma et al., 2020). Metapruning (Liu et al., 2019) applies meta learning to predict
weights of a channel-pruned DNN, which is in turn employed to derive a specific channel pruning
strategy. Instead, our approach applies meta learning to predict the performance of a compressed
model and is not limited to pruning channels. In a different context, a few solutions have recently
leveraged diffusion models in the context of meta learning. Among them, Meta-DM (Hu et al.,
2023) performs data augmentation to improve the performance of few-shot learning, whereas the
work in (Nava et al., 2023) carries out zero-shot task adaptation with both classifier and classifier-
free guidance. In contrast, we introduce a framework for meta compression where diffusion models
generate validation data to improve prediction performance.

3 META COMPRESSION

We now introduce the system model and describe our meta-compression scheme (Figure 1). For
clarity, we first address a single problem and compression method, then extend our consideration to
a collection of them.

3.1 OVERVIEW AND SYSTEM MODEL

A source dataset D = {T, F,E, V } consists of different, disjoint sets: T for training, F for fine-
tuning, E for evaluation, and V for testing. A classifier1 c is pre-trained on T . Given these, a
problem is defined as p = (c, F,E). A compression method K uses the pre-trained classifier c and
the fine-tuning dataset F to obtain a compressed classifier c′ = K(c, F). The loss of the compressed
classifier is assessed over the evaluation setE to obtain the true accuracyA. An accuracy prediction
model g takes metadata as input – namely, the features devised by the meta compression – to derive
the predicted accuracy Ã.

Accordingly, the training of the prediction model follows the process in Figure 2a. Metadata extrac-
tion involves computing problem features, compression method features, and compressed classifier
performance (see Section 3.3). A given classifier c compressed by using a configuration i with Ki,
then the performance of the compressed classifier c′i is assessed by using the evaluation dataset E.
In summary, training the meta predictor g involves learning a mapping from problem-specific and
compression method-specific features to the compressed classifier performance.

We can proceed to the recommendation once the accuracy prediction model is trained. The first type
of recommendation involves selecting the most accurate compression model that satisfies device-
specific constraints. To do so, we first prepare a shortlist of compression methods along with their
settings. We then refine the candidate options by restricting to those that satisfy the given constraints,
for instance, expressed in terms of model size or target compression ratio. The best compression
method can be selected by a simple arg max function over the predicted accuracy values (Figure
2b).

1We consider classification problems here for clarity, even though our formulation is general and can be
applied to different domains. An application to regression tasks is provided in Section B.4.2.

3

Under review as a conference paper at ICLR 2024

The second type of recommendation entails selecting the method achieving the highest compression
while satisfying an application-specific accuracy target. For this purpose, we consider all available
compression methods as predictions and prepare a shortlist of those fulfilling the accuracy constraint.
Similar to the previous case, we use the arg max function to obtain the method that achieves the
highest predicted compression.

It should be now clear how meta compression can answer the research questions introduced earlier.
It remains to see how meta learning is effective across multiple problems and compression methods.

3.2 PROBLEM STATEMENT

So far we have limited our attention to a single problem p and a given compression method K,
specialized into Ki according to different configurations. We now extend our consideration to a
collection of problems and compression methods, and precisely state the problem we are addressing.

In classification problems, D is a labeled dataset (X ,Y) and c = L(T) is a classifier obtained by
learner L : (X ,Y)∗ → YX – the set of all functions fromX to Y – based on the training set T ∼ µn.
A function l : Y × Y → [0, 1] is such that l(y, ŷ) is the loss when the prediction is ŷ and the true
label is y. lµ(c) = E(x,y)∼µ [l(y, c(x)] computes the expected loss of a classifier over some data
distribution µ.

Now, consider a compression method K : YX × (X × Y)∗ → YX such that c′ = K(c, F). Note
that we drop the index i from Ki for convenience. The loss of the compressed classifier can be
evaluated by using the evaluation dataset E. To evaluate the loss of a compression method K,
consider a distribution over problems p ∼ ν. Each problem specifies a pretrained classifier c ∈ YX ,
and retraining and evaluation dataset F,E ∈ (X × Y)∗. Then, the expected loss of a compression
method can be defined as

lν(K) = Ep∼ν [l(y,K(c, F)(x))]

Given a family of compression methods K that satisfy certain compression level constraints, con-
sider the task of selecting the best performing compression method across several problems. A
practical objective is to select the compression method with the lowest empirical error across multi-
ple problems, namely, to carry out an empirical risk minimization (ERM). Accordingly, consider a
collection P of problems, containing problems (cτ , Fτ , Vτ) = pτ ∈ P . Then,

ERMK(P) ∈ arg min
K∈K

∑
pτ∈P

∑
(xt,yt)∈Eτ

l(yt,K(cτ , Fτ)(xt))

Theorem 1. For any finite family K of compression algorithms, any distribution ν over problems
pτ , and any n ≥ 1, δ > 0,

Pr
P∼νn

[
lν (ERMK(P)) ≤ min

K∈K
lν(K) +

√
2

n
log
|K|
δ

]
≥ 1− δ

Solving ERMK(P) gives the single best compression method across all problems in the collection.
By focusing on a specific problem, it is further possible to select the compression method that is
best suited to it. Hence, given problem specification pτ , consider the task of choosing the best
compression method among candidates {K1, . . . ,Km}. To solve this, consider problem features
φ(cτ , Fτ , Eτ) ∈ Φ, and compression method features γ(K) ∈ Γ. Also consider a family F of
functions f : Φ × Γm → {1, . . . ,m}, which select a compression method among m based on
extracted features. Then, the objective of finding the function that selects the best compression
method based on ERM can be defined as

arg min
f∈F

∑
pτ∈P

∑
(xt,yt)∈Eτ

l(yt,Kf(φ(pτ),γ(K1),...,γ(Km))(cτ , Fτ)(xt)) (1)

We further simplify the design of recommendation function f by using a loss prediction function
g : Φ × Γ → R≥0, that predicts the loss of a compressed classifier c′ for a given problem pτ and
compression method Ki.

g(φ(pτ), γ(Ki)) ≈ lµ(Ki(cτ , Fτ))

4

Under review as a conference paper at ICLR 2024

Accordingly, the ERM objective for learning g is

arg min
g∈G

∑
pτ∈P

∑
i

[g(φ(pτ), γ(Ki))− lµe(Ki(cτ , Fτ))]2 (2)

Once g has been learned using sufficient data, f can be described in terms of g as

f(φ(pτ), γ(K1), . . . , γ(Km)) = arg min
i={1,...,m}

g(φ(pτ), γ(Ki)) (3)

This finds the best compression method for any problem dτ . It naturally follows that we also find
the best compression methods across all problems, which was the ERM objective of learning f .
This formulation of f has an additional benefit, it allows us to solve this performance-constrained
compression maximization problem as well using the same accuracy prediction function g.

3.3 META FEATURES AND ACCURACY PREDICTOR

We use gradient boosted decision trees (Chen & Guestrin, 2016) as the accuracy prediction model.
(White et al., 2021) consider numerous models for predicting the performance of DNNs for NAS.
Their findings show that the XGBoost model is often the best choice in the low query time regime,
which is also our focus.

Obtaining a compressed classifier requires applying a compression method K to a pretrained classi-
fier c and possibly retraining using tuning dataset F . Thus, making predictions about the compressed
classfier performance requires problem features φ(pτ) and compression method features γ(Ki). To
accurately evaluate the behavior of the compressed classifier, we also need an evaluation dataset E
that is separate from the tuning dataset. We describe these features in more detail in this section.

Problem features (φ(pτ) ∈ Φ). A problem pτ = (cτ , Fτ , Eτ) consists of a pretrained classifier,
and tuning and evaluation dataset. To describe the pretrained classifier, we extract two set of fea-
tures, architecture features and solution features. Architecture features encode information about
the modules used as building blocks of the DNN architecture. Solution features are used to describe
the particular solution learned from training the model. These include norms of weights, gradients,
and loss and accuracy of c evaluated using E.

Compression method features (γ(Ki) ∈ Γ). The compression process typically consists of iter-
ative pruning and retraining, followed by quantization and retraining. We consider several popular
pruning and quantization methods in our experiments. Each pruning method is encoded using a
unique pruning identifier, and target sparsity level. Similarly, each quantization method is encoded
with a unique quantization identifier and target level.

Compressed classifier performance. We evaluate the loss and accuracy of the compressed classi-
fier on evaluation dataset E to be used as the ground truth for predictions.

The accuracy prediction model g takes in problem features and compression method features, and
predicts the compressed classifier performance. The complete process of learning the accuracy
prediction model g, and obtaining compression method recommendations using it is described in
the next section.

4 EXPERIMENTAL EVALUATION

We conduct extensive experiments to evaluate the efficacy of the proposed meta compression algo-
rithm against the state of the art in pruning and quantization (Liu et al., 2017; Esser et al., 2020). We
also study the impact of two design choices: choice of evaluation data and choice of meta features.
Finally, we evaluate the generalization performance of our meta learner to new evaluation data, new
architectures, and new compression methods. The performance of the recommended compression
method is always evaluated using the test set V , which is left untouched until this step.

While we conduct an extensive analysis for classifiers trained for CIFAR10 (Krizhevsky, 2009)
classification task in this section, we provide additional results in the appendix to help gauge gener-
alization to larger dataset problems, using an ImageNet (Deng et al., 2009) experiment in B.4.1, and

5

Under review as a conference paper at ICLR 2024

generalization to regression tasks using models provided in the tabular dataset benchmark (Gorish-
niy et al., 2021) in B.4.2. Also note that while the following evaluation is focussed on the compres-
sion constrained accuracy maximization task, it proposed should works for the accuracy constrained
compression maximization task as well, for which we present some results in B.4. The code for re-
producing the experiments is available at https://anonymous.4open.science/r/DeeperCompression-
4EED/

4.1 EXPERIMENTAL SETUP

4.1.1 ARCHITECTURES

Our setup consists of several popular DNN models trained on the CIFAR10 dataset consisting of
VGG19 (Simonyan & Zisserman, 2014), ResNet18 (He et al., 2015b), GoogLeNet (Szegedy et al.,
2014), DenseNet121 (Huang et al., 2016), ResNeXt29-2x64d (Xie et al., 2016), MobileNet (Howard
et al., 2017), MobileNetV2 (Sandler et al., 2018), DPN92 (Chen et al., 2017), SENet18 (Hu
et al., 2017), ShuffleNetV2 (Ma et al., 2018), RegNetX-200MF (Radosavovic et al., 2020), Sim-
pleDLA (Yu et al., 2017), with their implementations in (Kuang-Liu, 2017). Unless stated other-
wise, F consists of 20% randomly sampled images from the CIFAR10 training dataset, E consists
of 10k images generated using a diffusion model trained on CIFAR10 train dataset, and V is com-
prised of the complete CIFAR10 test dataset. Metadata extraction for a single pruning,quantization
level (40 retraining epochs) takes around 40 minutes on a Tesla A100 GPU. This data is extracted
for 10 different sparsity and 4 different quantization levels, totaling 40 combinations. The total time
required to run this configuration is approximately 26 hours (12 GPUs for 1.0833 days, i.e., 13 GPU
days) considering parallel execution on 12 Tesla A100 GPUs for 12 different architectures.

4.1.2 COMPRESSION METHODS

Pruning. We consider different families and types of pruning methods. Specifically, we consider
the following for unstructured pruning: magnitude pruning, consisting of a simple weight pruning
scheme; and pruning+tuning, as the former followed by retraining for 40 epochs. For structured
pruning, instead we consider: L1 norm pruning (Li et al., 2016), which removes weights with low L1
norms; network slimming (Liu et al., 2017), which masks scaling factors in later batch normalization
layers to prune channels in convolution layers; and TaylorFO (Molchanov et al., 2019), which prunes
convolutional layers based on the first-order Taylor expansion on weights.

Quantization. We consider the following quantization methods: uniform affine quantizer (Krish-
namoorthi, 2018), which maps continuous values to discrete levels by scaling and rounding within
a given quantization range; Dorefa-net (Zhou et al., 2016), which represents the weights and activa-
tions through a ternary code to save storage, in addition to employing a mix of fixed-point quantiza-
tion, scaling, and rounding to reduce quantization error; learned step-size quantization (Esser et al.,
2020), which employs a learnable scaling factor and a fixed quantization step size.

4.2 RECOMMENDATION PERFORMANCE

We evaluate the recommendation performance of the proposed meta compression algorithm by con-
sidering whether any of the top-k recommendations for a given constraint performs at most ε worse
than the optimal recommendation. We compute top-k recommendation accuracy by averaging this
across several constraints. We also compute top-1 error, which reports how far off is the top recom-
mendation from the optimal recommendation in terms of compressed model accuracy (on average).
For comparison, we also consider selecting the single best pruning and quantization method on a
dataset of problems and recommending the same for all architectures and compression level con-
straints. We find that Slim pruning (Liu et al., 2017) and learned step size quantization (Esser et al.,
2020) perform the best based on empirical risk minimization. The top-1 static strategy involves
quantizing to 4 bits with LSQ and we adapt Slim pruning rate to match the compression level pro-
vided in the constraint. For this reason, we consider the top-4 metric2 for the fixed strategy due to
the four quantization levels – 32, 16, 8, and 4 bits – and matching pruning levels to achieve desired
compression.

2For a fair comparison, we report the same top-4 accuracy for meta compression where applicable.

6

https://anonymous.4open.science/r/DeeperCompression-4EED/
https://anonymous.4open.science/r/DeeperCompression-4EED/

Under review as a conference paper at ICLR 2024

1 10 20 30 40 50 60 70 80 90 100 110 120
Compression level constraints

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Exhaustive search
Meta compression T-5
Meta compression T-1
Static ERM T-4 Acc
Static ERM T-1 Acc

(a)

Metric Meta Compression Static ERM
T5 Accuracy 0.92 0.15
T1 Accuracy 0.66 0.06
T1 Error 0.01 0.25
MAE 0.10 0.12
Kendall Tau 0.65 -

(b)

Figure 3: (a) Comparison of dynamic recommendation of meta compression against static recommendation of
optimal ERM based on the state of the art, namely, the combined used of Slim pruning and LSQ (Liu et al.,
2017; Esser et al., 2020). (b) Recommendation performance of prediction.

Compression Algorithm T5 Acc. T1 Acc. T1 Error MAE
Prune + Quant 0.97 0.92 0.02 0.14
Level-prune + Dorefa-quant 0.97 0.65 0.04 0.07
L1-prune + Dorefa-quant 0.93 0.45 0.04 0.08
TaylorFO-prune + Dorefa-quant 0.85 0.38 0.06 0.08
Slim-prune + Dorefa-quant 0.99 0.70 0.03 0.18
Level-prune + LSQ-quant 0.98 0.78 0.01 0.02
L1-prune + LSQ-quant 0.99 0.64 0.02 0.06
TaylorFO-prune + LSQ-quant 1.0 0.64 0.03 0.07
Slim-prune + LSQ-quant 0.98 0.72 0.02 0.17

Table 1: MAE of the predictor g trained for different compression algorithms.

We start by splitting the set of architectures into train set and test set. The meta prediction model is
trained for architectures in the train split, and used to predict performance of architectures in the test
split. We perform several such splits to remove any bias towards a specific split. We set tolerable
accuracy drop ε to 0.01 and vary the minimum compression constraint between 1x to 120x, with
a step size of 10. For each constraint, we compare the predictions made using our meta prediction
model against the optimal choice found using exhaustive search. The average results across multiple
splits are reported in Figure 3a. The figure clearly shows how the proposed Meta Compression
approach outperforms fixed recommendation with ERM. Figure 3b reports aggregate metrics across
all compression constraints, and we see that the top-5 performance is 92% and the average error
is only 0.01 compared to 0.25 for static recommendation with ERM. In other words, one of our
top-5 recommendations performs close to the optimal compression algorithm 92% of times and the
performance of the recommended compression method is off by only 1% accuracy on average. The
Kendall Tau correlation of our predictions is also comparable to the results reported in (White et al.,
2021) despite having a more complex learning task, as it involves predicting the performance of new
architectures further modified by applying different compression methods.

The recommendation performance of different compression methods is detailed in Table 1. It pro-
vides a breakdown of how well our recommendations work for different compression methods, for
the same setup as that used for Figure 3. The purpose of the table is: to understand whether cer-
tain compression methods are significantly easier to predict; and to compare retraining-based com-
pression methods against one-shot compression methods. Interestingly, the results show that mean
absolute error (MAE) in accuracy prediction for one-shot pruning and quantization (Purne+Quant)
is on average worse than the same for compression algorithms with retraining. This could be ex-
plained by the fact that retraining shifts and concentrates the compressed model accuracies towards
higher accuracy values. However, the top-5 recommendation performance is still high, suggesting
that the meta predictor is often able to order input configurations correctly even when the accuracy
predictions for specific input configurations are worse on average.

7

Under review as a conference paper at ICLR 2024

1.0 6.0 12.0 16.0 24.0 32.0 48.0 80.0
Compression level

0.2

0.4

0.6

0.8

1.0

C
om

pr
es

se
d

m
od

el
 a

cc
ur

ac
y

(a)

1.0 6.0 12.0 16.0 24.0 32.0 48.0 80.0
Compression level

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

 p
re

di
ct

io
n

ab
so

lu
te

 e
rro

r

(b)

Figure 4: (a) Compressed model accuracy and (b) absolute error in accuracy prediction for different compres-
sion levels

Figure 4 illustrates the distribution of compressed model accuracies at various compression levels
grouped into equal sized bins for different metrics. Specifically, Figure 4a shows the prediction
performance of learned prediction model g for the samples in those bins. We see that the prediction
error is slightly better at very low compression levels, where the compressed models are also more
accurate. The average prediction error stays roughly the same with increasing compression levels,
however, the variance of error does grow. Further increasing the compression levels beyond those
in the figure considerably reduces accuracy (below 50%), making the sheer value of accuracy not
meaningful – for these reason they were not reported. Figure 4b shows the absolute error in predic-
tion accuracy for different compression levels. The results highlight that such an error is consistently
low, even for compression levels of 48x and 80x. The variance is more pronounced in the higher
range of the absolute error, although most of the values are concentrated below the mean.

4.3 DESIGN CONSIDERATIONS

Applying the proposed meta learning to predict compressed classifier performance involves making
several design considerations. One of them is the choice of the prediction model g. An empirical
analysis has revealed that feed forward DNNs did not provide improvement over gradient boosted
decision trees (Chen & Guestrin, 2016), which were chosen as the prediction model g. Other key
choices involve selecting evaluation data and the meta features. Analysis of various meta features
can be found in the appendix. Considerations involved in selecting evaluation data are discussed
next.

4.3.1 EVALUATION DATA

The primary metric under consideration when choosing evaluation data E is generalization perfor-
mance to test data. For satisfactory outcomes, it is desirable that the evaluation data contains samples
not seen during the pretraining or fine-tuning phase. In the ideal scenario, this could be achieved by
hiding some of the train data during the training phase and use it as evaluation data. However, this
is often impossible, as the available pre-trained models already make use of the full training data.
One could instead sample evaluation data from test data to avoid retraining the models from scratch
with partial train data. Unfortunately, this approach has its own drawbacks. First, we risk leaking
information from test data, possibly compromising the integrity of the final test evaluation. Second,
sampling from test data implies a very limited dataset size. Instead, we propose using diffusion
models to generate evaluation data. Such an approach overcomes the limitations mentioned above
with remarkable performance.

Table 5b details the impact of data selection on prediction accuracy and MAE. Each row of the table
refers to drawing eval data from different sources: the test set, data generated from the entire source
dataset with Diffusion-Based Generative Models (Karras et al., 2022), the ideal scenario, and the
training set. We can see that diffusion model achieves even better top-5 accuracy than the ideal
scenario, as also evident from Figure 5a which shows it as a function of the compression level. This

8

Under review as a conference paper at ICLR 2024

1 10 20 30 40 50 60 70 80 90 100 110 120
Compression level constraints

0.2

0.4

0.6

0.8

1.0

To
p-

5
Ac

cu
ra

cy

Eval from Diffusion model
Eval in Ideal scenario
Eval from Test
Eval from Train

(a)

Eval selection T5 Acc. T1 Acc. T1 Error MAE
From test data 0.85 0.55 0.06 0.12
With diffusion model 0.92 0.66 0.01 0.10
Ideal 0.89 0.58 0.03 0.12
From training data 0.48 0.14 0.13 0.24

(b)

Figure 5: (a) Evaluation data selection choices and (b) Prediction performance for different data selection
strategies

could be explained by reduced test performance of pretrained classifiers in the ideal scenario due to
reduction in size of the train dataset.

4.4 GENERALIZATION PERFORMANCE

We train the meta-predictor across multiple problems and compression algorithms. Therefore, it is
extremely important to analyze how well the meta-predictor generalizes to new samples consisting
of unseen data, DNN architectures, and compression algorithms. Such an analysis allows to assess
how learnable characteristics effectively transfer to unseen samples. For this reason, we carried out
several experiments which are described in detail in the appendix. Here we present a summary of
our findings.

New architectures. The first question is how well a meta-predictor trained on one set of archi-
tectures translates to new architectures. On average, the accuracy of our predicted compression
method shows only 1% drop in accuracy compared to the optimal compression method, and a top 5
recommendation accuracy of 92%. This suggests strong generalization to new architectures.

New data. This option considers what happens if the evaluation data used for training the meta
prediction model is not available at test time. When generalizing to new data and new architectures,
there is a 2% drop in accuracy of the predicted compression method compared to the optimal com-
pression method. While this is slightly worse than the previous case, the top 5 recommendation
accuracy is still 91%. These results also suggest strong generalization to new data.

New compression methods. For this setting, we obtain top-5 accuracy of 86% and 11% average
drop in accuracy for the predicted compression method. This drop in performance was to be ex-
pected, as our compression method features are not descriptive enough to capture similarities and
dissimilarities between different compression methods. There is good scope for improvement here
by designing more descriptive compression method features.

5 CONCLUSION

Machine learning applications rely on deep neural networks (DNNs) that have become substantially
complex and large. Training them requires a significant amount of resources and time, leading
to energy wastage. These DNNs cannot either be deployed as such at the edge or onto resource-
constrained devices. Large, overparametrized DNNs can be effectively slimmed down though. How
to achieve a good compression-accuracy tradeoff is a big challenge. We address it by learning how
to compress DNNs with a novel meta-learning approach – the first, to the best of our knowledge. We
train a regression model to predict the accuracy of a pre-trained DNN after being compressed with
a combination of techniques (including pruning and quantization) without having to evaluate it. We
take a flexible yet rigorous approach to achieve provably good meta learning. We also carry out an
extensive evaluation against state-of-the art compression schemes. The obtained results demonstrate
that meta compression is effective, and that diffusion models allow its applications even to scenarios
in which evaluation data is scarce, thereby extending its applicability in practice.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Laith Alzubaidi, Jinglan Zhang, Amjad J Humaidi, Ayad Al-Dujaili, Ye Duan, Omran Al-Shamma,
José Santamaría, Mohammed A Fadhel, Muthana Al-Amidie, and Laith Farhan. Review of deep
learning: Concepts, cnn architectures, challenges, applications, future directions. Journal of big
Data, 8:1–74, 2021.

Dario Amodei, Rishita Anubhai, Eric Battenberg, Carl Case, Jared Casper, Bryan Catanzaro, Jing-
dong Chen, Mike Chrzanowski, Adam Coates, Greg Diamos, Erich Elsen, Jesse Engel, Linxi
Fan, Christopher Fougner, Tony Han, Awni Hannun, Billy Jun, Patrick LeGresley, Libby Lin,
Sharan Narang, Andrew Ng, Sherjil Ozair, Ryan Prenger, Jonathan Raiman, Sanjeev Satheesh,
David Seetapun, Shubho Sengupta, Yi Wang, Zhiqian Wang, Chong Wang, Bo Xiao, Dani Yo-
gatama, Jun Zhan, and Zhenyao Zhu. Deep speech 2: End-to-end speech recognition in english
and mandarin, 2015.

Liane Bernstein, Alexander Sludds, Ryan Hamerly, Vivienne Sze, Joel Emer, and Dirk Englund.
Freely scalable and reconfigurable optical hardware for deep learning. Scientific reports, 11(1):
3144, 2021.

Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. Once-for-all: Train one
network and specialize it for efficient deployment. arXiv preprint arXiv:1908.09791, 2019.

Tianqi Chen and Carlos Guestrin. XGBoost: A scalable tree boosting system. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD
’16, pp. 785–794, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-4232-2. doi: 10.1145/
2939672.2939785. URL http://doi.acm.org/10.1145/2939672.2939785.

Yunpeng Chen, Jianan Li, Huaxin Xiao, Xiaojie Jin, Shuicheng Yan, and Jiashi Feng. Dual path
networks, 2017. URL https://arxiv.org/abs/1707.01629.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey. The
Journal of Machine Learning Research, 20(1):1997–2017, 2019.

Steven K Esser, Jeffrey L McKinstry, Deepika Bablani, Rathinakumar Appuswamy, and Dharmen-
dra S Modha. Learned step size quantization. In International Conference on Learning Repre-
sentations, 2020.

Elias Frantar and Dan Alistarh. Optimal brain compression: A framework for accurate post-training
quantization and pruning. Advances in Neural Information Processing Systems, 35:4475–4488,
2022.

Yonggan Fu, Yongan Zhang, Yang Zhang, David Cox, and Yingyan Lin. Auto-nba: Efficient and
effective search over the joint space of networks, bitwidths, and accelerators. In International
Conference on Machine Learning, pp. 3505–3517. PMLR, 2021.

Vikas Garg and Adam T Kalai. Supervising unsupervised learning. Advances in Neural Information
Processing Systems, 31, 2018.

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer.
A survey of quantization methods for efficient neural network inference. arXiv preprint
arXiv:2103.13630, 2021.

Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. Revisiting deep learning
models for tabular data. Advances in Neural Information Processing Systems, 34:18932–18943,
2021.

Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H Friedman. The elements of
statistical learning: data mining, inference, and prediction, volume 2. Springer, 2009.

10

http://doi.acm.org/10.1145/2939672.2939785
https://arxiv.org/abs/1707.01629

Under review as a conference paper at ICLR 2024

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition, 2015a.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition, 2015b. URL https://arxiv.org/abs/1512.03385.

Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste. Sparsity in deep
learning: Pruning and growth for efficient inference and training in neural networks. The Journal
of Machine Learning Research, 22(1):10882–11005, 2021.

T. Hospedales, A. Antoniou, P. Micaelli, and A. Storkey. Meta-learning in neural networks: A
survey. IEEE Transactions on Pattern Analysis & Machine Intelligence, 44(09):5149–5169, sep
2022. ISSN 1939-3539. doi: 10.1109/TPAMI.2021.3079209.

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications, 2017. URL https://arxiv.org/abs/1704.04861.

Jie Hu, Li Shen, Samuel Albanie, Gang Sun, and Enhua Wu. Squeeze-and-excitation networks,
2017. URL https://arxiv.org/abs/1709.01507.

Peng Hu, Xi Peng, Hongyuan Zhu, Mohamed M Sabry Aly, and Jie Lin. Opq: Compressing deep
neural networks with one-shot pruning-quantization. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 35, pp. 7780–7788, 2021.

Wentao Hu, Xiurong Jiang, Jiarun Liu, Yuqi Yang, and Hui Tian. Meta-dm: Applications of diffu-
sion models on few-shot learning, 2023.

Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger. Densely connected
convolutional networks, 2016. URL https://arxiv.org/abs/1608.06993.

Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf, William J. Dally, and Kurt
Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and <0.5mb model size,
2016.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models, 2022.

Raghuraman Krishnamoorthi. Quantizing deep convolutional networks for efficient inference: A
whitepaper. arXiv preprint arXiv:1806.08342, 2018.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, University
of Toronto, 2009. URL https://www.cs.toronto.edu/~kriz/cifar.html.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In F. Pereira, C.J. Burges, L. Bottou, and K.Q. Weinberger
(eds.), Advances in Neural Information Processing Systems, volume 25. Curran Associates, Inc.,
2012. URL https://proceedings.neurips.cc/paper_files/paper/2012/
file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.

Liu Kuang-Liu. Pytorch-cifar. https://github.com/kuangliu/pytorch-cifar, 2017.
[Online; accessed 2023-04-16].

Andrey Kuzmin, Markus Nagel, Mart van Baalen, Arash Behboodi, and Tijmen Blankevoort. Prun-
ing vs quantization: Which is better? arXiv preprint arXiv:2307.02973, 2023.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. arXiv preprint arXiv:1608.08710, 2016.

Tailin Liang, John Glossner, Lei Wang, Shaobo Shi, and Xiaotong Zhang. Pruning and quantization
for deep neural network acceleration: A survey. Neurocomputing, 461:370–403, 2021.

Zechun Liu, Haoyuan Mu, Xiangyu Zhang, Zichao Guo, Xin Yang, Kwang-Ting Cheng, and Jian
Sun. Metapruning: Meta learning for automatic neural network channel pruning. In Proceedings
of the IEEE/CVF international conference on computer vision, pp. 3296–3305, 2019.

11

https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1709.01507
https://arxiv.org/abs/1608.06993
https://www.cs.toronto.edu/~kriz/cifar.html
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://github.com/kuangliu/pytorch-cifar

Under review as a conference paper at ICLR 2024

Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang. Learn-
ing efficient convolutional networks through network slimming. In Proceedings of the IEEE
international conference on computer vision, pp. 2736–2744, 2017.

Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shufflenet v2: Practical guidelines for
efficient cnn architecture design, 2018. URL https://arxiv.org/abs/1807.11164.

Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio, and Jan Kautz. Importance estimation
for neural network pruning. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 11264–11272, 2019.

Elvis Nava, Seijin Kobayashi, Yifei Yin, Robert K. Katzschmann, and Benjamin F. Grewe. Meta-
learning via classifier(-free) diffusion guidance, 2023.

Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, and Piotr Dollár. Designing
network design spaces, 2020. URL https://arxiv.org/abs/2003.13678.

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once: Unified,
real-time object detection, 2016.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4510–4520, 2018.

Victor Sanh, Thomas Wolf, and Alexander Rush. Movement pruning: Adaptive sparsity by fine-
tuning. Advances in Neural Information Processing Systems, 33:20378–20389, 2020.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A general reinforcement
learning algorithm that masters chess, shogi, and go through self-play. Science, 362(6419):1140–
1144, 2018.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition, 2014. URL https://arxiv.org/abs/1409.1556.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition, 2015.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Du-
mitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions,
2014. URL https://arxiv.org/abs/1409.4842.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2017.

Vinay Kumar Verma, Dhanajit Brahma, and Piyush Rai. Meta-learning for generalized zero-shot
learning. In Proceedings of the AAAI conference on artificial intelligence, volume 34, pp. 6062–
6069, 2020.

Tianzhe Wang, Kuan Wang, Han Cai, Ji Lin, Zhijian Liu, Hanrui Wang, Yujun Lin, and Song Han.
Apq: Joint search for network architecture, pruning and quantization policy. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2078–2087, 2020.

Colin White, Arber Zela, Robin Ru, Yang Liu, and Frank Hutter. How powerful are performance
predictors in neural architecture search? Advances in Neural Information Processing Systems,
34:28454–28469, 2021.

Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual
transformations for deep neural networks, 2016. URL https://arxiv.org/abs/1611.
05431.

Haichuan Yang, Shupeng Gui, Yuhao Zhu, and Ji Liu. Automatic neural network compression by
sparsity-quantization joint learning: A constrained optimization-based approach. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2178–2188, 2020.

12

https://arxiv.org/abs/1807.11164
https://arxiv.org/abs/2003.13678
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.4842
https://arxiv.org/abs/1611.05431
https://arxiv.org/abs/1611.05431

Under review as a conference paper at ICLR 2024

Fisher Yu, Dequan Wang, Evan Shelhamer, and Trevor Darrell. Deep layer aggregation, 2017. URL
https://arxiv.org/abs/1707.06484.

Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely efficient
convolutional neural network for mobile devices, 2017.

Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. Dorefa-net: Train-
ing low bitwidth convolutional neural networks with low bitwidth gradients. arXiv preprint
arXiv:1606.06160, 2016.

A PROOF OF THEOREM 1

Theorem 1. For any finite family K of compression algorithms, any distribution ν over problems
dτ , and any n ≥ 1, δ > 0,

Pr
P∼νn

[
lν(ERMK(P)) ≤ min

K∈K
lν(K) +

√
2

n
log
|K|
δ

]
≥ 1− δ

Proof. Let

ε =

√
2

n
log
|K|
δ
.

Consider an empirical estimate of lν(K) using some dataset of problems P ∼ νn, (cτ , F, E) =
pτ ∈ P , given by

lP (K) =
1

n

∑
pτ∈P

∑
(xt,yt)∈E

l(yt,K(cτ , Fτ)(xt)).

Denote the optimal compression method K0 ∈ arg minK∈K lν(K). Writing the Chernoff bound for
lP (K0), we have

Pr
P∼νn

[lP (K0) ≥ lν(K0) + ε/2] ≤ e−2n(ε/2)
2

.

Now, consider the set B of bad compression methods that are more than ε far away from lν(K0).
More formally, B = {K ∈ K | lν(K) ≥ lν(K0) + ε}. By writing the Chernoff bound for each
K ∈ B, we have

Pr
P∼νn

[lP (K) ≤ lν(K)− ε/2] ≤ e−2n(ε/2)
2

.

Clearly, lν(ERMK) ≥ lν(K0) + ε holds only if lD(K) ≤ lD(K0) for some K ∈ B. Specifically,
either lP (K) ≤ lν(K)− ε/2 for some K ∈ B, or lD(K0) ≥ lν(K0) + ε/2. By applying the union
bound, the result holds with probability at most |K|e−2n(ε/2)2 = δ.

B ADDITIONAL EXPERIMENTS

B.1 EXPERIMENTAL SETUP

ImageNet setup. We considered the following architectures: VGG11 (Simonyan & Zisserman,
2015), Squeezenet (Iandola et al., 2016), Densenet121 (Huang et al., 2016), Alexnet (Krizhevsky
et al., 2012), Resnet (He et al., 2015a) and Shufflenet (Zhang et al., 2017) F consists of 30k labelled
images taken from the Imagenet train dataset, V (30k images) andE (20k images) consists of images
sampled from the Imagenet validation dataset (50k images) in the ratio of 3:2 respectively.

XGBoost meta prediction. The XGBoost model is configured with 100 estimators (number of
trees) and a maximum depth of 10 for each tree. The features are preprocessed as follows before
being fed to the XGBoost model:

Categorical Feature Encoding. The raw data from the dataframe was converted into a format that
could be effectively used by the XGBoost model. To achieve this, we encoded categorical features
– including dataset identifier, compression method identifier – through a one-hot encoding.

13

https://arxiv.org/abs/1707.06484

Under review as a conference paper at ICLR 2024

Metric Meta Compression Static ERM
T1 Acc 0.77 0.25
T1 Error 0.08 0.44
MAE 0.12 0.13

Table 2: Recommendation performance for the ImageNet setup.

Numerical Features. Numerical features including loss and accuracy of the pretrained classifier,
gradient norms were incorporated after scaling them between 0 and 1. The number of architecture
parameters was divided into 10 bins and linearly mapped onto the [0,1] interval.

Additional features. Features encoding the 5 largest eigenvalues of Hessian were considered in early
experiments, but were dropped after observing low feature importance in predictions as reported in
the Appendix B.3.2. Similarly, detailed architecture features were also considered in experiments by
encoding each layer into two variables, namely, the layer type (e.g., convolutional, fully-connected)
and the layer size.

B.2 COMPUTE COST DETAILS

Meta Training cost. Extracting metadata for a single pruning and quantization level (40 retraining
epochs) on ImageNet takes approximately 300 minutes using an AMD MI250x GPU. This process
is performed for 10 different sparsity levels and 4 different quantization levels, resulting in a total
of 40 combinations. To complete this configuration, it would require around 200 hours in total,
utilizing 6 AMD MI250x GPUs running in parallel for 8 days (equivalent to 48 GPU days). This
parallel execution accounts for 6 different architectures.

Meta Recommendation cost. For CIFAR 10 setup, given a new architecture and compression con-
straint, it takes around 0.002 seconds to run inference (Meta recommendation) using the XGBoost
model on a CPU. Considering a given constraint and a new architecture, there are approximately 36
combinations to explore. Each combination consists of one sparsity level paired with one of four
quantization levels (32, 16, 8, and 4 bits). For each compression method (total 9 of them are used)
and sparsity/quantization level, the search process takes around 5 minutes. To perform an exhaustive
search and identify the optimal compression regime, it is necessary to evaluate all 36 combinations
(4 sparsity / quantization combinations for 9 compression method combinations). This search would
require approximately 3 hours to complete (36 combinations / 5 minutes per combination) for a sin-
gle architecture under the given constraint. Similarly for Imagenet setup, given a new architecture
and compression constraint, it takes around 0.002 seconds to run inference (Meta recommendation)
using the XGBoost model on a CPU. In this case, there are approximately 18 combinations to ex-
plore. Each combination consists of one sparsity level paired with one of two quantization levels
(32 and 16 bits). For each compression method (total 9 of them are used) and sparsity/quantization
level, the search process takes around 20 minutes. To perform an exhaustive search and identify the
optimal compression regime, it is necessary to evaluate all 18 combinations (2 sparsity / quantization
combinations for 9 compression method combinations). This search would require approximately 6
hours to complete (18 combinations for 20 minutes per combination) for a single architecture under
the given constraint.

B.3 RESULTS

B.4 ACCURACY CONSTRAINED COMPRESSION MAXIMIZATION

This section presents the results for the accuracy-constrained compression maximization problem,
instead of the compression-constrained accuracy maximization results already shown in the paper.
The results are shown in Figures 6a and 6b. They show that the predictor has an even better perfor-
mance in this task, particularly, it achieves a top-5 recommendation accuracy of 98% (as opposed to
92%).

B.4.1 IMAGENET EXPERIMENT

Recommendation performance. We conducted ImageNet recommendation experiments for a
smaller set of compression levels due to significantly higher compute cost of fine tuning ImageNet

14

Under review as a conference paper at ICLR 2024

0.10 0.15 0.20 0.25 0.30 0.35 0.40
Accuracy constraints

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Re

co
m

m
en

da
tio

n
Ac

cu
ra

cy

Exhaustive search
Meta compression T-5
Meta compression T-1

(a)

Metric Meta Compression
T5 Acc 0.98
T1 Acc 0.84

T1 Error 0.1
MAE 0.07

(b)

Figure 6: (a) Comparison of dynamic recommendation of meta compression against static recommendation of
optimal ERM based on the state of the art, namely, the combined used of Slim pruning and LSQ (Liu et al.,
2017; Esser et al., 2020). (b) Recommendation performance of prediction.

2 4 6 8 10 12 14 16 18 20 22 24
Compression level constraints

0.2

0.3

0.4

0.5

0.6

Pr
ed

ict
ed

 M
od

el
Ac

cu
ra

cy

Exhaustive search
Meta compression
Static Empirical risk minimization

(a)

2 4 6 8 10 12 14 16 18 20 22 24
Compression level constraints

0.2

0.4

0.6

0.8

1.0

Re
co

m
m

en
da

tio
n

Ac
cu

ra
cy

Exhaustive search
Meta compression T-5
Meta compression T-1
Static ERM T-1 Acc

(b)

Figure 7: (a) Average accuracy of models compressed using the top recommended compression method across
several compression level constraints. (b) Top-k recommendation accuracy across several compression level
constraints..

Compression Algorithm T5 Acc. T1 Acc. T1 Error MAE
Prune + Quant 0.98 0.80 0.03 0.13
Level-prune + Dorefa-quant 0.69 0.49 0.16 0.25
L1-prune + Dorefa-quant 0.81 0.55 0.03 0.08
TaylorFO-prune + Dorefa-quant 0.73 0.66 0.02 0.08
Slim-prune + Dorefa-quant 0.90 0.79 0.04 0.19
Level-prune + LSQ-quant 1.0 1.0 0.01 0.10
L1-prune + LSQ-quant 0.95 0.79 0.02 0.06
TaylorFO-prune + LSQ-quant 0.97 0.75 0.02 0.06
Slim-prune + LSQ-quant 0.93 0.85 0.01 0.13

Table 3: MAE of the predictor g trained for different compression algorithms for the ImageNet setup.

models. The maximum sparsity level is set to 0.94, quantization precisions considered are 32 bits
and 16 bits, and the maximum compression level is set to 24. We have considered 10 different spar-
sity levels ranging from 0 to 0.94. We evaluate the recommendation performance of the proposed
meta compression algorithm by considering whether any of the top-k recommendations for a given

15

Under review as a conference paper at ICLR 2024

1.0 4.0 6.0 8.0 12.0 16.0 18.0 24.0
Compression level

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
om

pr
es

se
d

m
od

el
 a

cc
ur

ac
y

(a)

1.0 4.0 6.0 8.0 12.0 16.0 18.0 24.0
Compression level

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

 p
re

di
ct

io
n

ab
so

lu
te

 e
rro

r

(b)

Figure 8: (a) Compressed model accuracy and (b) absolute error in accuracy prediction for different compres-
sion levels for the ImageNet setup

Eval data selection T5 Acc. T1 Acc. T1 Error MAE
From test data 0.78 0.77 0.08 0.12
From training data 0.35 0.14 0.30 0.17

Table 4: Recommendation performance for different data selection strategies with the ImageNet setup.

constraint performs at most ε worse than the optimal recommendation. We find that the best static
strategy for this case involves quantizing to 32 bits with LSQ and adapting Slim pruning rate to
match the compression level provided in the constraint. We set ε to 0.01, same as the CIFAR10
setup, and vary the minimum compression constraint between 1x to 24x, with a step size of 1.

The top-1 recommendation performance and MAE of learned accuracy prediction function g are
tabulated in Table 2. We see that the top-1 error reveals 8% average drop in accuracy compared to
44% drop using the static ERM approach. The same observation can also be made from Figure 7,
where Meta Compression significantly outperforms the static recommendation strategy at higher
compression level constraints.

Table 3 shows the recommendation performance for different compression methods, and Figure 8
shows the distribution of compressed model accuracies and absolute error in accuracy prediction at
several compression levels. Compared to the CIFAR10 setup, the accuracy of compressed models
drops rapidly as compression level increases. This can be improved with more fine-tuning using
more data and retraining epochs, however, also requiring more compute resources. Once again, we
can see that the variance of compressed model accuracies is correlated with mean absolute error in
accuracy prediction at different compression level ranges. The absolute error values are concentrated
below the mean, and the mean always stays below 0.12.

Eval data selection. For the ImageNet setup, we conducted experiments with two data selection
choices, a) E sampled from train data, and b) E sampled from test data. Table 4 tabulates the
results. The behavior is consistent with the observation made for the CIFAR setup, that sampling
from test data (and using a reduced testset for final evaluation) performs significantly better than
sampling from train data as the feature evaluations done during the meta-training phase generalize
well to testing/recommendation phase.

B.4.2 CALIFORNIA HOUSING REGRESSION EXPERIMENT

We conducted an additional experiment using DNNs trained on the California housing regression
dataset. In a similar setup to the one used for obtaining Figure 3a in the paper, we set up an exper-
iment with 4 benchmark architectures from (Gorishniy et al., 2021) (DCNv2, SNN, ResNet, MLP;
3:1 train:test split), 12 different compression levels, and compressed classifier accuracy prediction
changed to compressed regressor RMSE prediction. Separate data splits were used for training, eval-
uation, and testing. RMSE values were clipped to fall in the interval [0,1] (RMSE of all pretrained
models is less than 0.51). The obtained results are reported in the table below.

16

Under review as a conference paper at ICLR 2024

Metric T1 Acc. T1 Error MAE Kendall Tau
Meta Compression 1.00 0.00 0.13 0.51

Table 5: Meta recommendation and meta prediction performance for the California housing regression experi-
ment.

0.00 0.05 0.10 0.15 0.20 0.25
Xgboost Feature Importance

param_size
Pruning_bin_TaylorFO

Qnt_bin_DoreFa
c__bin_ptqt_level_lsq

quant_prec
gradient_l0

c__bin_level_dorefa
c__bin_ptqt_slim_lsq

gradient_l1
sparsity

Pruning_bin_Slim
orig_loss

orig_accuracy
c__bin_pq

Pruning_bin_Level

Figure 9: Feature importance for the compressed model accuracy prediction task for combined CIFAR10 and
Imagenet setup

Meta compression achieves 100% top-1 recommendation accuracy when predicting the regression
performance of a new architecture, clearly demonstrating the applicability of Meta Compression to
the tabular dataset domain.

B.4.3 META FEATURE SELECTION

The learned accuracy prediction model g also offers valuable insights about the specific meta fea-
tures that contribute the most towards accurate compressed model accuracy predictions. Specifically,
decision trees allow us to compute the feature importance by using the Breiman equation (Hastie
et al., 2009), which are reported in Figure 9. The results show that a few compression algorithm
tags, followed by the loss and accuracy of the pretrained classifier are the strongest predictor which
also makes intuitive sense. Target sparsity level is a stronger predictor than target quantization
level, which could be due to more sparsity levels and fewer quantization levels being present in the
dataset. Interestingly, aggregate gradient metrics such as L0 and L1 norm of gradients have more
importance than the number of parameters in the pretrained model. This adds weight to the intuition
that observing the slope of the solution learned after pretraining reveals insights about the compres-
sion performance of the model. We also experimented with using features such as more descriptive
architecture features, and using largest eigenvalues of Hessian to extract second order derivative
information, but observed no significant improvement.

B.5 GENERALIZATION PERFORMANCE

In this section, we describe the methodology used for performing the generalization experiments.
The obtained results for the CIFAR10 and ImageNet setup are presented in Figure 10.

New architectures (N-Y-N). This is the default setup. It assumes using the same evaluation data
and compression methods that have been used during meta training to be also used at the recom-
mendation phase. This resembles a typical deployment scenario where we apply previously known
compression methods to new pretrained models. To evaluate this, we split the set of 12 pretrained
DNNs for CIFAR10 in a 3:1 train-test ratio, and the 6 models for ImageNet in a 2:1 train-test ra-
tion. We report the average the performance across multiple random splits. Worse results for the
ImageNet setup can be explained by 2 factors, a) use of E sampled from test set instead of using
diffusion model, and b) lack of sufficient training data due to worse train-test split, fewer architec-
tures, fewer compression levels. When comparing the performance when eval data is sampled from
test data, we obtain 8% top-1 error for the ImageNet setup which is only slightly worse than the 6%
top-1 error obtained for the CIFAR10 setup.

17

Under review as a conference paper at ICLR 2024

New data New arch. New Compr. T5 Acc. T1 Acc. T1 Error MAE
No Yes No 0.92 0.66 0.01 0.10
Yes Yes No 0.91 0.66 0.02 0.11
No No Yes 0.86 0.34 0.11 0.13
Yes No Yes 0.85 0.34 0.12 0.15

(a)
New data New arch. New Compr. T5 Acc. T1 Acc. T1 Error MAE
No Yes No 0.78 0.77 0.08 0.12
Yes Yes No 0.78 0.77 0.09 0.13
No No Yes 0.74 0.51 0.14 0.14
Yes No Yes 0.74 0.51 0.15 0.14

(b)

Figure 10: Generalization performance of g to new data, architectures, and compression methods for (a) CI-
FAR10 setup and (b) ImageNet setup.

New data (Y-Y-N). This considers the case when the evaluation data used for meta-feature compu-
tation during training is not available at the testing phase. We are still giving recommendations for
new architectures as in the previous case. The obtained results for both the CIFAR10 setup and the
ImageNet setup show only slight drop in performance in this case.

New compression methods (N-N-Y, Y-N-Y). This considers generalization to new compression
methods while giving recommendations for pretrained models already seen during the meta-training
phase. To evaluate this, we split the set of compression specifications into train set and test set based
on the compression method used, and keep the same set of pretrained classifiers in both the train set
and the test set. For both setups, Figure 10 reveals considerable drop in top-1 error and accuracy but
marginal drop in top-5 accuracy compared to the case of new architectures.

18

	Introduction
	Related Work
	Meta Compression
	Overview and system model
	Problem Statement
	Meta features and accuracy predictor

	Experimental evaluation
	Experimental setup
	Architectures
	Compression methods

	Recommendation performance
	Design considerations
	Evaluation data

	Generalization performance

	Conclusion
	Proof of Theorem 1
	Additional experiments
	Experimental setup
	Compute cost details
	Results
	Accuracy constrained compression maximization
	ImageNet experiment
	California housing regression experiment
	Meta feature selection

	Generalization performance

