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ABSTRACT

Video panoptic segmentation requires consistently segmenting (for both ‘thing’ and
‘stuff” classes) and tracking objects in a video over time. In this work, we present
MaXTron, a general framework that exploits Mask XFormer with Trajectory At-
tention to tackle the task. MaXTron enriches an off-the-shelf mask transformer
by leveraging trajectory attention. The deployed mask transformer takes as input
a short clip consisting of only a few frames and predicts the clip-level segmen-
tation. To enhance the temporal consistency, MaXTron employs within-clip and
cross-clip tracking modules, efficiently utilizing trajectory attention. Originally
designed for video classification, trajectory attention learns to model the temporal
correspondences between neighboring frames and aggregates information along
the estimated motion paths. However, it is nontrivial to directly extend trajectory
attention to the per-pixel dense prediction tasks due to its quadratic dependency
on input size. To alleviate the issue, we propose to adapt the trajectory attention
for both the dense pixel features and object queries, aiming to improve the short-
term and long-term tracking results, respectively. Particularly, in our within-clip
tracking module, we propose axial-trajectory attention that effectively computes
the trajectory attention for tracking dense pixels sequentially along the height-
and width-axes. The axial decomposition significantly reduces the computational
complexity for dense pixel features. In our cross-clip tracking module, since the
object queries in mask transformer are learned to encode the object information,
we are able to capture the long-term temporal connections by applying trajectory
attention to object queries, which learns to track each object across different clips.
Without bells and whistles, MaXTron demonstrates state-of-the-art performances
on video segmentation benchmarks. Code will be publicly available.

1 INTRODUCTION

Video panoptic segmentation (Kim et al., 2020) is a challenging computer vision task that requires
temporally consistent pixel-level scene understanding by jointly segmenting objects of both ‘thing’
(e.g., person, car) and ‘stuff’ classes (e.g., sky, grass), and associating them (i.e., tracking ‘thing’
objects) across all frames in a video. It can benefit the wide-ranging downstream applications,
such as autonomous driving, robot visual control, and video editing. Numerous approaches have
been proposed to address the task in a variety of ways. They can be categorized into frame-level
segmenters (Kim et al., 2020; Wu et al., 2022c¢), clip-level segmenters (Athar et al., 2020; Qiao et al.,
2021), and video-level segmenters (Wang et al., 2021b; Heo et al., 2022), which process the video
either in a frame-by-frame, clip-by-clip, or whole-video manner.

Among them, clip-level segmenters draw our special interest, as it innately captures the local motion
within a short period of time (a few frames in the same clip) compared to frame-level segmenters as
well as avoids the memory constraints incurred by the video-level segmenters when processing long
videos. Specifically, clip-level segmenters first pre-process the video into a set of short clips, each
consisting of just a few frames. They then predict clip-level segmentation masks and associate them
(i.e., tracking objects across clips) to form the final temporally consistent video-level results. The
whole pipeline requires two types of tracking: within-clip and cross-clip tracking. The within-clip
tracking can be implicitly achieved by the clip-level segmenters, while the cross-clip tracking aims to
merge the clip-level predictions into video-level results. As a result, existing clip-level segmenters (Li
et al., 2023b; Shin et al., 2024), directly extending the modern image segmentation models (Cheng
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Figure 1: Visualization of Learned Axial-Trajectory Attention. In this short clip of four frames depicting the
action ‘playing basketball’, the basketball location at frame 1 is selected as the reference point (mark in red). We
compute the axial-trajectory attention sequentially along H-axis and W-axis. To better understand our method,
we multiply the H-axis and W-axis trajectory attentions to visualize the trajectory of the reference point over
time (i.e., a bright point corresponds to a high attention value in both the H- and W-axis trajectory attention). As
shown in the figure, the learned axial-trajectory attention is able to capture the basketball’s motion path.

et al., 2022; Yu et al., 2022b) to clip-level segmentation, delegate the duty of within-clip tracking
to the clip-level segmenter, and mainly focus on improving the cross-clip tracking to ensure the
consistency between neighboring clips. However, they overlook the potential of improving within-clip
tracking as well as the long-term consistent tracking beyond neighboring clips.

In this work, we propose MaXTron, a meta-architecture that exploits Mask XFormer with Trajectory
Attention to address the challenges. MaXTron is built on top of an off-the-shelf clip-level segmenter
and consists of a within-clip tracking module and a cross-clip tracking module. The two proposed
modules improve the temporal consistency by leveraging trajectory attention (Patrick et al., 2021),
which is originally introduced for the task of video classification. Specifically, we adapt the trajectory
attention for processing both the dense pixel features and object queries, aiming to improve the
within-clip and cross-clip tracking results, respectively.

The trajectory attention learns to model the temporal correspondences between neighboring frames
by estimating the motion paths along the time-axis and aggregating information along the trajectories.
This property makes trajectory attention a suitable operation to improve the within-clip tracking
performance. However, it has computation complexity quadratic to the input size, preventing us from
directly applying it to the per-pixel dense video segmentation. Unlike video classification, which
pre-processes the input frames into a small set of patch tokens through patch embedding, to tackle this
challenge for video segmentation, we propose axial-trajectory attention for effectively computing
the trajectory attention sequentially along the height- and width-axes in our within-clip tracking
module and thus unleash the power of trajectory attention for dense pixel-wise tracking (see Fig. 1).
Additionally, we enhance our within-clip tracking module by incorporating the multi-scale deformable
attention (Zhu et al., 2020), which is stacked iteratively with the proposed axial-trajectory attention
to ensure that the learned clip features are both temporally and spatially consistent. Afterwards, the
transformer decoder (Cheng et al., 2022; Yu et al., 2022b) is applied to obtain clip-level predictions,
where clip object queries are learned to encode the objects in each clip (i.e., each query is responsible
of predicting an object’s mask and semantic class in the clip). At this stage, a clip-level segmenter
enhanced with the proposed within-clip tracking module is able to capture motion information within
each clip, achieving consistent predictions in a near-online manner.

Moreover, we strengthen the model with a carefully designed cross-clip tracking module, which
takes all the clip object queries as input. Specifically, each clip is processed by its own set of object
queries. Given a video partitioned into several clips, we obtain several sets of object queries from the
clip-level segmenter. To capture the whole-video temporal connections, we apply trajectory attention
to all the clip object queries. Intuitively, since each object query is learned to encode one object
in a clip, applying trajectory attention to all the object queries learns to track each object across
different clips through finding its trajectory in the video. In addition to trajectory attention, we also
propose the temporal atrous spatial pyramid pooling (Temporal-ASPP) to capture object motion at
different time spans. The resulting cross-clip tracking module iteratively stacks trajectory attention
and Temporal-ASPP to refine the object queries of a video. It allows us to take the whole video as
input during inference, encouraging temporal consistency in a complete offline manner.

In summary, we introduce MaXTron, a simple yet effective unified meta-architecture for video
segmentation. MaXTron enriches existing clip-level segmenters by introducing a within-clip tracking
module and a cross-clip tracking module, thus achieving much better temporally consistent seg-
mentation results. We instantiate MaXTron by employing either Video-kMaX (Shin et al., 2024) or
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Tube-Link (Li et al., 2023b) as the clip-segmenters. Consequently, MaXTron achieves a significant
performance improvement on video panoptic segmentation (Kim et al., 2020) and video instance
segmentation (Yang et al., 2019) (where only the ‘thing’ objects are segmented), respectively. Without
bells and whistles, MaXTron improves over Video-kMaX (Shin et al., 2024) by 8.5% and 5.2%
VPQ on VIPSeg (Miao et al., 2022) with ResNet50 (He et al., 2016) and ConvNeXt-L (Liu et al.,
2022b), respectively. Moreover, it also achieves 3.5% VPQ improvement on VIPSeg compared to
the concurrent state-of-the-art model DVIS (Zhang et al., 2023), when using ResNet50. We also
show that MaXTron can boost the strong baseline Tube-Link (Li et al., 2023b) on video instance
segmentation by 0.9% AP, 4.7% AP'°"¢, and 6.5% AP on Youtube-VIS-2021 (Yang et al., 2021a),
Youtube-VIS-2022 (Yang et al., 2022), and OVIS (Qi et al., 2022) with Swin-L (Liu et al., 2021).

2 RELATED WORK

Attention in Video Transformer The self-attention mechanism (Vaswani et al., 2017) is widely
explored in the modern video transformer design (Bertasius et al., 2021; Arnab et al., 2021; Neimark
et al., 2021; Fan et al., 2021; Patrick et al., 2021; Liu et al., 2022a; Wang & Torresani, 2022) with a
primary focus on video classification to reason about the temporal information contained in the video.
While most works treat time as just another dimension and directly apply global space-time attention,
specifically, the divided space-time attention (Bertasius et al., 2021) applies temporal attention and
spatial attention separately within each block and achieves superior performance while reducing
the computational complexity compared to the standard global space-time attention. Deformable
video transformer (Wang & Torresani, 2022) exploits the motion displacements encoded in the video
codecs (e.g., MPEG-4) to guide where each query should attend in their deformable space-time
attention, thus achieving better performance. Trajectory attention (Patrick et al., 2021) learns to
capture the motion path of each query along the time dimension. Our work builds on top of trajectory
attention and further extends it from a single label video classification to the dense per-pixel video
segmentation by incorporating it with axial-attention (Ho et al., 2019; Huang et al., 2019; Wang et al.,
2020) to improve the temporal consistency, while keeping the computational cost manageable. We
also apply trajectory attention to object queries for efficiently associating cross-clip predictions.

Video Panoptic Segmentation Video panoptic segmentation seeks for holistic video understanding
including ‘thing’ and ‘stuff” classes. It requires consistently segmenting them and tracking ‘thing’
instances, where the latter one also serves as the key challenge for video instance segmentation. Both
video panoptic and instance segmentation employ similar tracking modules, and thus we briefly
introduce them together. Based on the input manner, they can be roughly categorized into frame-level
segmenters (Yang et al., 2019; Kim et al., 2020; Yang et al., 2021b; Ke et al., 2021; Fu et al., 2021;
Li et al., 2022; Wu et al., 2022c; Huang et al., 2022; Heo et al., 2023; Liu et al., 2023; Ying et al.,
2023; Li et al., 2023a), clip-level segmenters (Athar et al., 2020; Qiao et al., 2021; Hwang et al.,
2021; Wu et al., 2022a; Athar et al., 2023; Li et al., 2023b; Shin et al., 2024), and video-level
segmenters (Wang et al., 2021b; Lin et al., 2021; Wu et al., 2022b; Heo et al., 2022; Zhang et al.,
2023). Specifically, TubeFormer (Kim et al., 2022) tackles multiple video segmentation tasks in a
unified manner (Wang et al., 2021a), while TarVIS (Athar et al., 2023) proposes task-independent
queries. Tube-Link (Li et al., 2023b) exploits contrastive learning to better align the cross-clip
predictions. Video-kMaX (Shin et al., 2024) extends the image segmenter (Yu et al., 2022b) for clip-
level video segmentation, and introduces a hierarchical location-aware memory buffer for augmenting
cross-clip association. VITA (Heo et al., 2022) exhibits a simple video-level segmenter framework by
introducing a set of video queries. DVIS (Zhang et al., 2023) proposes a referring tracker to denoise
the frame-level predictions and a temporal refiner to reason about long-term tracking relations. Our
work focuses specifically on improving clip-level segmenters, and is thus mostly related to the clip-
level panoptic segmeters Video-kMaX (Shin et al., 2024) and Tube-Link (Li et al., 2023b). Building
on top of them, MaXTron proposes the within-clip and cross-clip tracking modules for enhancing the
temporal consistency within each clip and over the whole video, respectively. Our cross-clip tracking
module is also similar to VITA (Heo et al., 2022) and DVIS (Zhang et al., 2023) in the sense that
object queries are refined to obtain the final video outputs. However, our model builds on top of
clip-level segmenters (instead of frame-level segmenters), and we simply use trajectory attention and
the proposed Temporal-ASPP to refine the object queries, while VITA introduces another set of video
queries and DVIS additionally cross-attends to the queries cashed in the memory.
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Figure 2: Overview of MaXTron, which builds two components on top of a clip-level segmenter (blue): the
within-clip tracking and cross-clip tracking modules ( ). The within-clip tracking module exploits axial-
trajectory attention and multi-scale deformable attention for enhancing the local consistency within neighboring
frames, while the cross-clip tracking module improves long-term consistency using trajectory attention along
with Temporal-ASPP. We obtain video features by concatenating all clip features output by the pixel decoder
(totally K clips), and video prediction by multiplying () video features and refined clip object queries.

3 METHOD

In this section, we briefly overview the video segmentation framework that exploits the clip-level
segmenter in Sec. 3.1. We then introduce the proposed within-clip tracking and cross-clip tracking
modules for the clip-level segmenter in Sec. 3.2 and Sec. 3.3, respectively.

3.1 VIDEO SEGMENTATION WITH CLIP-LEVEL SEGMENTER

Formulation of Video Segmentation Recent works (Kim et al., 2022; Li et al., 2022) have unified
different video segmentation tasks as a simple set prediction task (Carion et al., 2020), where the input
video is segmented into a set of tubes (a tube is obtained by linking segmentation masks along the
time axis) to match the ground-truth tubes. Concretely, given an input video V' € REXFXHXW ith
L represents the video length and H, W represent the frame height and width, video segmentation
aims at segmenting it into a set of N class-labeled tubes:

{9} = { (i, pi()) 1Ly M
where m; € and p;(c) represent the predicted tube and its corresponding semantic
class probability. The ground-truth set containing M class-labeled tubes is similarly represented as
{y:} = {(mi, pi(c))},. These two sets are matched through Hungarian Matching (Kuhn, 1955)
during training to compute the losses.

[O 1]L><H><W

Formulation of Clip-Level Video Segmentation The above video segmentation formulation is
theoretically applicable to any length L of video sequences. However, in practice, it is infeasible
to fit the whole video into modern large network backbones (Liu et al., 2021) during training. As a
result, most works exploit frame-level segmenter (Cheng et al., 2022; Huang et al., 2022) or clip-level
segmenter (Qiao et al., 2021; Kim et al., 2022) (a clip is a short video sequence typically of two or
three frames) to get frame-level or clip-level tubes first and further associate them to obtain the final
video-level tubes. In this work, we focus on the clip-level segmenter, since it better captures local
temporal information between frames in the same clip. Formally, we split the whole video V into
a set of non-overlapping clips: v; € RT*3*HxW "where T represents the length of each clip in
temporal dimension (assuming that L is divisible by 7" for simplicity; if not, we simply duplicate the
last frame). For the clip-level segmenter, we require 7" > 2.

Overview of Proposed MaXTron Given the independently predicted clip-level segmentation, we
propose MaXTron, a meta-architecture that builds on top of an off-the-shelf clip-level segmenter
(e.g., Video-kMaX (Shin et al., 2024) or Tube-Link (Li et al., 2023b)) to generate the final temporally
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consistent video-level segmentation results. Building on top of the clip-level segmenter, MaXTron
contains two additional modules: within-clip tracking module and cross-clip tracking module, as
shown in Fig. 2. We detail each module in the following subsections, and choose Video-kMaX (Shin
et al., 2024) as the baseline for simplicity in describing the detailed designs.

3.2  WITHIN-CLIP TRACKING MODULE

As shown in Fig. 3, the main compo-
nent of the within-clip tracking mod-
ule is the proposed axial-trajectory at- e 4 4

tention, which decomposes the trajec- MSDeforn o Tsfoln
. . . —> Gt Aitontion, ttantion, —>
tory attention (Patrick et al., 2021) in N

. . . . v
the height-axis and width-axis, and ef- mput XN, p—
clip features within-clip tracking module clip features

fectively learns to track objects across

th§ f}‘ame.s n thef same clip (thus called Figure 3: Within-clip tracking module iteratively stacks Multi-
within-clip tracklng): In the module, we  gcaje Deformable Attention and axial-trajectory attention (se-
also propose to enrich the features by  quentially along H- and W-axes) for N, times, and outputs the
exploiting the multi-scale deformable at-  spatially and temporally consistent clip features. We visualize
tention (Zhu et al., 2020). We explain the attention w.r.t. the reference point (red) at frame 1.

the module in detail below.

Axial-Trajectory Attention Trajectory attention (Patrick et al., 2021) was originally proposed to
capture the object motion information contained in the video for the classification task. However,
unlike video classification, where input video is usually pre-processed into a small set of tokens and
the output prediction is a single label, video segmentation requires dense prediction (i.e., per pixel)
results, making it infeasible to directly apply trajectory attention, which has quadratic complexity
proportional to the input size. To unleash the potential of trajectory attention in video segmentation,
we propose axial-trajectory attention that deploys trajectory attention in a manner similar to axial-
attention (Ho et al., 2019; Huang et al., 2019; Wang et al., 2020), which not only effectively captures
object motion information but also reduces the computational cost.

Formally, given an input video clip consisting of 7" frames, we forward it through a frame-level
network backbone (e.g., ConvNeXt (Liu et al., 2022b)) to extract the feature map F' € RT*XPxHxW
where D, H, W stand for the dimension, height and width of the feature map, respectively. We note
that the feature map F’ is extracted frame-by-frame via the network backbone, and thus no temporal
information exchange between frames. We further reshape the feature into Fj, € RWXTHXD o
obtain a sequence of TH pixel features x;;, € R”. Following (Vaswani et al., 2017), we linearly
project x5, to a set of query-key-value vectors qup, kin, vin, € RP. We then perform axial-attention
along trajectories (i.e., the probabilistic path of a point between frames as defined by (Patrick
et al., 2021)). Specifically, for each reference point at a specific time-height th position and its
corresponding query g, we construct a set of trajectory points 3/, which represents the pooled
information weighted by the trajectory probability. The axial-trajectory extends for the duration of
the video clip, and its point 345, € RP at different times ¢’ is defined as follows:

~ exp (qen, Kyrnr)
Yitrn = Vi . 2)
%: Zﬁ exp (Qn, kt’ﬁ>

Note that this step computes the axial-trajectory attention in H-axis (index h’), independently for
each frame. It finds the axial-trajectory path of the reference point th across frames ¢’ in the clip by
comparing the reference point’s query qy to the keys k;/,/, only along the H-axis.

To reason about the intra-clip connections, we further pool the trajectories over time ¢’. Specifically,
we linearly project the trajectory points 45, and obtain a new set of query-key-value vectors:

Aih = Wo¥eh, ken = WiYun, Virn = Wo¥wn, 3

where W, W, and W, are the linear projection matrices for query, key, and value. We then update
the reference point at time-height ¢h position by applying 1D attention along the time ¢’

- €xXp a,hj 'h
Yth = tht/h : < f~ tt~ > . 4
v > exp (Aen, kyzp)
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Figure 4: Cross-clip tracking module refines the K sets of clip object queries by iteratively performing trajectory
attention and temporal atrous spatial pyramid pooing (Temporal-ASPP) for N times.

With the above update rules, we propagate the motion information in H-axis in the video clip. To
capture global information, we further reshape the feature into F,, € R#*TW>D and apply the same
axial-trajectory attention (but along the W -axis) consecutively to capture the width dynamics as well.

The proposed axial-trajectory attention effectively reduces the computational complexity of original
trajectory attention from O(T?H?W?) to O(T?H*W + T?W?H), allowing us to apply it to the
dense video feature maps, and to reason about the motion information across frames in the same clip.

Within-Clip Tracking Module To enhance the features spatially, we further adopt the multi-scale
deformable attention (Zhu et al., 2020) for exchanging information at different scales of feature.
Specifically, we apply the multi-scale deformable attention to the feature map F' (extracted by the
network backbone) frame-by-frame, which effectively exchanges the information across feature map
scales (stride 32, 16, and 8) for each frame. In the end, the proposed within-clip tracking module is
obtained by iteratively stacking multi-scale deformable attention and the proposed axial-trajectory
attention (for N,, times) to ensure that the learned features are spatially consistent across the scales
and temporally consistent across the frames in the same clip.

Transformer Decoder After extracting the spatially and temporally enhanced features, we follow
typical video mask transformers (e.g., Video-kMaX (Shin et al., 2024) or Tube-Link (Li et al., 2023b))
to produce clip-level predictions, where clip object queries Cy, € RV > (for k-th clip) are iteratively
refined by multiple transformer decoder layers (Carion et al., 2020). The resulting clip object queries
are used to generate a set of IV class-labeled tubes within the clip, as described in Sec. 3.1.

Clip-Level (Near-Online) Inference With the above within-clip tracking module, our clip-level
segmenter is capable of segmenting the video in a near-online fashion (i.e., clip-by-clip). Unlike
Video-kMaX (Shin et al., 2024) which takes overlapping clips as input and uses video stitching (Qiao
et al., 2021) to link predicted clip-level tubes, our method simply uses the Hungarian Matching (Kuhn,
1955) to associate the clip-level tubes via the clip object queries (similar to MinVIS (Huang et al.,
2022); but we work on the clip-level, instead of frame-level), since our input clips are non-overlapping.

3.3 CRrOSS-CLIP TRACKING MODULE

Though axial-trajectory attention along with the multi-scale deformable attention effectively improves
the within-clip tracking ability, the inconsistency between clips (i.e., beyond the clip length T') still
remains a challenging problem, especially under the fast-moving or occluded scenes. To address
these issues, we further propose a cross-clip tracking module to refine and better associate the
clip-level predictions. Concretely, given all the clip object queries {C, }5_; € RENXD of a video
(which is divided into K = L/T non-overlapping clips, and k-th clip has its own clip object queries
C) € RNV*D), we first use the Hungarian Matching to align the clip object queries as the initial
tracking results (i.e., “clip-level inference” in Sec. 3.2). Afterwards, they are refined by our proposed
cross-clip tracking module to capture whole-video temporal connections (i.e., cross all clips). As
shown in Fig. 4, the proposed cross-clip tracking module contains two operations: trajectory-attention
and Temporal Atrous Spatial Pyramid Pooling (Temporal-ASPP). We explain each operation below.

Trajectory Attention For k-th clip, the clip object queries C}, encode the clip-level tube predictions
(i.e., each query in C}, generates the class-labeled tube for a certain object in k-th clip). Therefore,
associating clip-level prediction results is similar to finding the trajectory path of object queries in the
whole video. Motivated by this observation, we propose to also exploit trajectory attention (Patrick
et al., 2021) for capturing the whole-video temporal connections between clips. Formally, for a video
divided into K clips (and each clip is processed by N object queries), each object query C,, € {Cy}
is first projected into a set of query-key-value vectors qgn, Kgn, Vin € RP. Then we compute a set
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of trajectory queries Ziokim by calculating the probabilistic path of each object query:

=~ €exXp <qkna kk:’n’)
Z n = nt ot . 5
. ; S e (akn ki) ©)

After further projecting the trajectory queries Zk k/n INLO Qrn, Ekk/n, Vi Similarly to Equ. (3), we
aggregate the whole-video cross-clip connections along the trajectory path of object queries through:

~ exp (qy aEkk’
Lin, = § Vik'n * < Z ~n> . ©6)
I 27 exD (Akns Kyz,)

Temporal-ASPP While the above trajectory attention reasons about the whole-video temporal
connections, it can be further enriched by a short-term tracking module. Motivated by the success
of the atrous spatial pyramid pooling (ASPP (Chen et al., 2017)) in capturing spatially multi-scale
context information, we extend it to the temporal domain. Specifically, our Temporal-ASPP module
contains three parallel temporal atrous convolutions (Chen et al., 2015) with different rates applied to
the updated object queries Z for capturing object motion at different time spans.

Cross-Clip Tracking Module The proposed cross-clip tracking module iteratively stacks the
trajectory attention and Temporal-ASPP to refine all the clip object queries {Cy }/_, of a video,
obtaining a temporally consistent prediction at the video-level.

Video-Level (Offline) Inference With the proposed within-clip and cross-clip tracking modules,
built on top of any clip-level video segmenter, we can now inference the whole video in an offline
fashion by exploiting all the refined clip object queries. We first obtain the video features by
concatenating all clip features produced by the pixel decoder (totally K clips). The predicted video-
level tubes are then generated by multiplying all the clip object queries with the video features (similar
to image mask transformers (Wang et al., 2021a; Yu et al., 2022a)). To obtain the predicted classes
for the video-level tubes, we exploit another 1D convolution layer (i.e., the Temporal 1D Conv” in
the top-right of Fig. 4) to generate the temporally weighted class predictions, motivated by the fact
that the object queries on the trajectory path should have the same class prediction.

4 EXPERIMENTAL RESULTS

We evaluate MaXTron based on two different clip-level segmenters on four widely used video
segmentation benchmarks to show its generalizability. Specifically, for video panoptic segmentation
(VPS), we build MaXTron based on Video-kMaX (Shin et al., 2024) and report performance on
VIPSeg (Miao et al., 2022). We also build MaXTron on top of Tube-Link (Li et al., 2023b) for
video instance segmentation (VIS) and report the performance on Youtube-VIS 2021 (Yang et al.,
2021a), 2022 (Yang et al., 2022), and OVIS (Qi et al., 2022). We follow the original setting of
Video-kMaX and Tube-Link to use the same training losses. Note that when training the cross-clip
tracking module, both the clip-level segmenter and the within-clip tracking module are frozen due to
memory constraint. We provide more implementation details in the appendix.

4.1 IMPROVEMENTS OVER BASELINES

We first provide a systematic study to validate the effectiveness of the proposed modules.

Video Panoptic Segmentation (VPS) Tab. | summarizes the improvements over the baseline
Video-kMaX (Shin et al., 2024) on the VIPSeg dataset. To have a fair comparison, we first reproduce
Video-kMaX in our PyTorch framework (which was originally implemented in TensorFlow (Weber
et al., 2021a)). Our re-implementation yields significantly better VPQ results, compared to the
original model (e.g., 4.5% VPQ improvement with ResNet50), establishing a solid baseline. As
shown in the table, using the proposed within-in clip tracking module improves over the reproduced
solid baseline by 3.4% and 3.5% VPQ with ResNet50 and ConvNeXt-L, respectively. Employing
the proposed cross-clip tracking module further improves the performance by additional 0.6% and
0.9% VPQ with ResNet50 and ConvNeXt-L, respectively. Finally, using the modern ConvNeXtV2-L
brings another 1.5% and 0.9% improvements, when compared to the ConvNeXt-L counterparts.

Video Instance Segmentation (VIS) Tab. 2 summarizes the improvements over the baseline
Tube-Link (Li et al., 2023b) on the Youtube-VIS-21, -22, and OVIS datasets. Similarly, to have
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method backbone |RP WC CC|VPQ VPQ™ VPQS|VPQ' VPQ* VPQ* VPQ®
Video-kMaX ResNet50 - - | 382 - - - - - -
- | 427 425 429 | 466 437 409 398

Video-kMaX ResNet50 VaR
MaXTron ResNet50 v v - | 46.1 45.6 46.6 | 47.1 464 458 453
MaXTron ResNet50 vV Vv VvV 467 4677 466 | 47.8 47.0 462 457

Video-kMaX ConvNeXt-L
Video-kMaX  ConvNeXt-L
MaXTron ConvNeXt-L
MaXTron ConvNeXt-L
MaXTron ConvNeXtV2-L
MaXTron ConvNeXtV2-L

- - | 51.9 - - - -
- |527 541 513 | 5577 539 518 494
- 562 584 540 | 56.8 563 558 555
57.1 593 548 | 579 57.0 56.6 563
- |577 583 571 | 586 580 573 569
v | 580 588 572 | 59.0 583 57.6 570

a) [VPS] VIPSeg val set

NN NN
SSENENENE
(\

Table 1: Video Panoptic Segmentation (VPS) results. We reproduce baseline Video-kMaX (column RP) by
taking non-overlapping clips as input and replacing their hierarchical matching scheme with simple Hungarian
Matching on object queries. WC: Our Within-Clip tracking module. CC: Our Cross-Clip tracking module.

a fair comparison, we first reproduce the Tube-Link results, using their official code-base. Our
reproduction yields similar performances to the original model, except OVIS, where we observe a
gap of 4.1% AP for ResNet50. On Youtube-VIS-21 (Tab. 2a), the proposed within-clip tracking
module improves the reproduced baselines by 0.6% and 0.6% for ResNet50 and Swin-L, respectively.
We note that Tube-Link builds on top of Mask2Former (Cheng et al., 2021), which already adopts
six MSDeformAttn layers; thus, it is a even stronger baseline to improve upon. Using our cross-
clip tracking module additionally improves the performance by 0.1% and 0.3% for ResNet50 and
Swin-L, respectively. On Youtube-VIS-22 (Tab. 2b), our proposed modules bring more significant
improvements, showing our method’s ability to handle the challenging long videos in the dataset.
Specifically, using our within-clip tracking module shows 4.4% and 1.7% AP'"¢ for ResNet50 and
Swin-L, respectively. Our cross-clip tracking module further improves the performances by 0.5% and
3.0% AP""¢ for ResNet50 and Swin-L, respectively. On OVIS (Tab. 2¢), even though we did not
successfully reproduce Tube-Link (using their provided config files), we still observe a significant
improvement brought by the proposed modules over the reproduced baselines. Particularly, our
within-clip tracking modules improves the baselines by 2.2% and 5.8% AP for ResNet50 and Swin-L,
respectively. Another improvements of 0.7% and 0.7% AP for ResNet50 and Swin-L can be attained
with the proposed cross-clip tracking module. To summarize, our proposed modules bring more
remarkable improvements for long and challenging datasets, such as Youtbue-VIS-22 and OVIS.

4.2 COMPARISONS WITH OTHER METHODS

After analyzing the improvements brought by the proposed modules, we now move on to compare
our MaXTron with other state-of-the-art methods.

Video Panoptic Segmentation (VPS) As shown in Tab. 3, in the online/near-online setting, when
using ResNet50, our MaXTron significantly outperforms TarVIS (Athar et al., 2023) (which co-trains
and exploits multiple video segmentation datasets) by a large margin of 12.6% VPQ. MaXTron also
performs better than the very recent ICCV 2023 work DVIS (Zhang et al., 2023) (trained with 5 frames
and tested with 1 frame) by a healthy margin of 6.9% VPQ. When using the stronger backbones,
MaXTron with ConvNeXt-L still outperforms TarVIS and DVIS with Swin-L by 8.2% and 1.5% VPQ,
respectively. The performance is further improved by using the modern ConvNeXtV2-L backbone,
attaining 57.7% VPQ. In the offline setting, MaXTron with ResNet50 outperforms DVIS by 3.5%
VPQ, while MaXTron with ConvNeXt-L performs comparably to DVIS with Swin-L. Finally, when
using the modern ConvNeXtV2-L, MaXTron achieves 58.0% VPQ, setting a new state-of-the-art.

Video Instance Segmentation (VIS) In Tab. 4, we compare MaXTron with other state-of-the-art
methods for VIS. On Youtube-VIS-21 (Tab. 4a), MaXTron slightly outperforms TarVIS (Athar et al.,
2023) and DVIS (Zhang et al., 2023) by 0.1% and 1.1% AP, respectively. On Youtube-VIS-22
(Tab. 4b), MaXTron performs better than DVIS in both online/near-online and offline settings by
5.3% and 1.1% AP'°"¢, respectively.
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method  backbone|RP WC CC| AP method  backbone|RP WC CC|AP"* method  backbone|RP WC CC| AP
Tube-Link ResNet50| - - - [47.9 Tube-Link ResNet50| - - - | 31.1 Tube-Link ResNet50| - - - [29.5
Tube-Link ResNet50| v/ - - |47.8  Tube-Link ResNet50| v - - | 32.1 Tube-Link ResNet50| vv - - [25.48
MaXTron ResNet50| v v* - [48.4 MaXTron ResNet50| v v* - | 36.5 MaXTron ResNet50|v" v - |27.6
MaXTron ResNet50|v' v v [48.5 MaXTron ResNet50| v v* v/ | 37.0 MaXTron ResNet50| v v v |28.3
Tube-Link Swin-L | - - - [584 Tube-Link Swin-L | - - - | 342 Tube-Link Swin-L | - - - |N/A
Tube-Link Swin-L |v' - - [58.2 Tube-Link Swin-L |v - - | 342 Tube-Link Swin-L |v' - - [333
MaXTron Swin-L |v v - [58.8 MaXTron Swin-L |v' v - |359 MaXTron Swin-L (v v - |39.1
MaXTron Swin-L |v v v [59.1 MaXTron Swin-L |v' v v |38.9 MaXTron Swin-L |V v v |39.8
a) [VIS] Youtube-VIS-21 val set b) [VIS] Youtube-VIS-22 val set ¢) [VIS] OVIS val set

Table 2: Video Instance Segmentation (VIS) results. We reproduce baseline Tube-Link (column RP) with
their official code-base. We then build on top of it with our Within-Clip tracking module (WC) and Cross-Clip
tracking module (CC). For Youtube-VIS-22, we mainly report AP™" (for long videos) and see appendix for
AP (for short videos) and AP (average of them). ¥: Our best attempt to reproduce Tube-Link’s performances
(25.4%), lower than the results (29.5%) reported in the paper. Their provided checkpoints also yield lower results
(26.7%). N/A: Not available from their code-base, but we have attempted to reproduce.

method backbone ‘VPQ VPQ™ VPQS
online/near-online methods

TarVIS (Athar et al., 2023) ResNet50 |33.5 39.2 285
DVIS (Zhang et al., 2023)ft  ResNet50 [39.2 393 39.0
TarVIS (Athar et al., 2023) Swin-L 48.0 582 39.0
DVIS (Zhang et al., 2023)} Swin-L 547 548 54.6
MaXTron w/ Video-kMaX ResNet50 |46.1 45.6 46.6
MaXTron w/ Video-kMaX  ConvNeXt-L. |56.2 58.4 54.0
MaXTron w/ Video-kMaX ConvNeXtV2-L|57.7 58.3 57.1
offline methods

DVIS (Zhang et al., 2023)t ResNet5S0 [43.2 43.6 428
DVIS (Zhang et al., 2023)f Swin-L 57.6 59.9 555
MaXTron w/ Video-kMaX ResNetS5S0 |46.7 46.7 46.6
MaXTron w/ Video-kMaX  ConvNeXt-L |57.1 59.3 54.8
MaXTron w/ Video-kMaX ConvNeXtV2-L|58.0 58.8 57.2

a) [VPS] VIPSeg val set

Table 3: Video Panoptic Segmentation (VPS) results. We compare our MaXTron with other state-of-the-art
works. T: Very recent ICCV 2023 work. {: Evaluated using their open-source checkpoint.

method

online/near-online methods
TarVIS (Athar et al., 2023) ResNet50 ‘ 48.3

backbone [ AP method
online/near-online methods

DVIS (Zhang et al., 2023)7* ResNet50| 31.2

backbone l AP'one

MaXTron ResNet50 ‘ 48.4 MaXTron ResNet50 ‘ 36.5
offline methods offline methods

VITA (Heo et al., 2022) ResNet50 | 45.7 VITA (Heo et al., 2022)* ResNet50 | 31.9
DVIS (Zhang et al., 2023)1 ResNet50 | 47.4 DVIS (Zhang et al., 2023)* ResNet50 | 35.9

MaXTron ResNet50 ‘ 48.5
a) [VIS] Youtube-VIS-21 val set

MaXTron ResNetSO‘ 37.0
b) [VIS] Youtube-VIS-22 val set

Table 4: Video Instance Segmentation (VIS) results. We compare our MaXTron with other state-of-the-art
works. T: Very recent ICCV 2023 work. *: All results are reproduced by us using their official checkpoints.

5 CONCLUSION

We have presented MaXTron, a meta-architecture that enhances an off-the-shelf clip-level segmenter
with the proposed within-clip and cross-clip tracking modules, which encourage short-term and long-
term temporal consistency by leveraging trajectory attention. Specifically, the within-clip tracking
module employs the proposed axial-trajectory attention, which efficiently computes the trajectory
attention sequentially along the height- and width-axes, while the cross-clip tracking module exploits
the trajectory attention along with the proposed Temporal-ASPP to refine object queries. Conse-
quently, MaXTron demonstrates state-of-the-art performances on the video segmentation benchmarks.
We hope our work can inspire more research on efficient attentions for video segmentation.
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APPENDIX

In the appendix, we provide additional information as listed below:

* Sec. A provides the dataset information.
* Sec. B provides the implementation details.

* Sec. C provides additional experimental results, including ablation studies and more com-
parison with other methods for video panoptic segmentation (VPS) and video instance
segmentation (VIS).

 Sec. D provides visualization results.
¢ Sec. E discusses our method’s limitations.

* Sec. F provides additional materials to address the concerns in reviews.

A DATASETS

In this section, we provide more details of the experimented datasets.

VIPSeg (Miao et al., 2022) is a new large-scale video panoptic segmentation dataset, targeting for
diverse in-the-wild scenes. The dataset contains 124 semantic classes (58 ‘thing’ and 66 ‘stuff’
classes) with 3536 videos, where each video spans 3 to 10 seconds. The main adopted evaluation
metric is VPQ (video panoptic quality) (Kim et al., 2020) on this benchmark.

License: The data is released for non-commercial research purpose only.
URL: https://github.com/VIPSeg-Dataset/VIPSeg-Dataset

Youtube-VIS (Yang et al., 2019) is a popular benchmark on video instance segmentation (where
only ‘thing’ classes are segmented and tracked). It contains multiple versions. The YouTube-VIS-
2019 (Yang et al., 2019) consists of 40 semantic classes, while the YouTube-VIS-2021 (Yang et al.,
2021a) and YouTube-VIS-2022 (Yang et al., 2022) are improved versions with higher number of
instances and videos. Youtube-VIS adopts track AP (Yang et al., 2019) for evaluation.

License: Creative Commons Attribution 4.0
URL: https://youtube-vos.org/dataset/vis/

OVIS (Qi et al., 2022) is a challenging video instance segmentation dataset with focuses on long
videos (12.77 seconds on average), and objects with severe occlusion and complex motion patterns.
The dataset contains 25 semantic classes and also adopt track AP (Yang et al., 2019) for evaluation.

License: CC BY-NC-SA 4.0
URL: https://songbai.site/ovis/

B IMPLEMENTATION DETAILS

Implementation Details The proposed MaXTron is a unified approach for both near-online and
offline video segmentation (i.e., the cross-clip tracking module is only used for the offline setting).
For the near-online setting (i.e., employing the within-clip tracking module), we use a clip size of
two and four for VPS and VIS, respectively. For the offline setting (i.e., employing the cross-clip
tracking module), we adopt a video length of 24 (i.e., 12 clips) for VPS and 20 (i.e., 5 clips) for VIS.
At this stage, we only train the cross-clip tracking module, while both the clip-level segmenter and
the within-clip tracking module are frozen due to memory constraint. During testing, we directly
inference with the whole video with our full model.

We experiment with four backbones for MaXTron: ResNet50 (He et al., 2016), Swin-L (Liu et al.,
2021), ConvNeXt-L (Liu et al., 2022b) and ConvNeXt V2-L (Woo et al., 2023). For VPS experiments,
we first reproduce Video-kMaX (Shin et al., 2024) based on the official PyTorch re-implementation
of kMaX-DeepLab (Yu et al., 2022b). We employ a specific pre-training protocol for VIPSeg, closely
following the prior works (Weber et al., 2021b; Kim et al., 2022; Shin et al., 2024). Concretely,
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starting with an ImageNet (Russakovsky et al., 2015) pre-trained backbone, we pre-train the kMaX-
DeepLab and Multi-Scale Deformable Attention (MSDeformAttn) in our within-clip tracking module
on COCO (Lin et al., 2014). The within-clip and cross-clip tracking modules deploy NV,, = 2 and
N, = 6 blocks, respectively, for VPS. On the other hand, for VIS experiments, we use the official
code-base of Tube-Link (Li et al., 2023b). Since Tube-Link is built on top of Mask2Former (Cheng
et al., 2022) and thus already contains six layers of MSDeformAttn, we simplify our within-clip
tracking module by directly inserting axial-trajectory attention after each original MSDeformAttn. As
a result, the within-clip and cross-clip tracking modules use /V,, = 6 and N. = 4 blocks, respectively,
for VIS. We note that we do not use any other video datasets (e.g., pseudo COCO videos) for
pre-training axial-trajectory attention.

C ADDITIONAL EXPERIMENTAL RESULTS

In this section, we provide more experimental results, including the ablation studies on the proposed
within-clip and cross-clip tracking modules (Sec. C.1), as well as more detailed comparisons with
other state-of-the-art methods (Sec. C.2).

C.1 ABLATION STUDIES

We conduct the ablations studies on the VIPSeg dataset due to its scene diversity and long-length
videos, using ResNet50 (He et al., 2016).

Within-Clip Tracking Module In Tab. 5, we ablate the design choices of the proposed within-clip
tracking module. To begin with, we employ one MSDeformAttn (Multi-Scale Deformable Attention)
and one TrjAttn (Trajectory Attention) with NV,, = 2 (i.e., stacking two blocks of them), obtaining the
performance of 45.3% VPQ. Replacing the TrjAttn with the proposed AxialTrjAttn (Axial Trajectory
Attention, sequentially along H- and W -axes) yields a comparable performance of 45.4%. Stacking
two AxialTrjAttn layers in each block leads to our final setting with 46.1%. We note that it will
be Out-Of-Memory, if we stack two TrjAttn layers in a V100 GPU. Increasing or decreasing the
number of blocks N,, degrades the performance slightly. If we employ one more AxialTrjAttn
layers per block, the performance drops by 0.4%. Finally, if we change the iterative stacking scheme
to a sequential manner (i.e., stacking two MSDeformAttn, followed by four AxialTrjAttn), the
performance also decreases slightly by 0.3%.

Cross-Clip Tracking Module Tab. 6 summarizes our ablation studies on the design choices of
the proposed cross-clip tracking module. Particularly, in Tab. 6a, we adopt different operations in
the module. Using self-attention (Self-Attn), instead of trajectory attention (TrjAttn) degrades the
performance by 0.3% VPQ. Removing the Temporal-ASPP operation also decreases the performance
by 0.2%. In Tab. 6b, we ablate the atrous rates used in the three parallel temporal convolutions (with
kernel size 3) of the proposed Temporal-ASPP. Using atrous rates (1,2, 3) (i.e., rates set to 1, 2, and
3 for those three convolutions, respectively) leads to the best performance. In Tab. 6¢, we find that
using N, = 6 blocks in the cross-clip tracking module yields the best result.

C.2 COMPARISONS WITH OTHER METHODS

Video Panoptic Segmentation (VPS) In Tab. 7, we compare with more state-of-the-art methods
on the VIPSeg dataset. We observe the similar trend as discussed in the main paper, and thus simply
list all the other methods for a complete comparison.

Video Instance Segmentation (VIS) In Tab. 8, we report more state-of-the-art methods on the
Youtube-VIS-21 dataset. As shown in the table, our MaXTron with ResNet50 backbone demonstrates
a better performance than the other methods (as discussed in the main paper), while our MaXTron
with Swin-L performs slightly worse than TarVIS (Athar et al., 2023) in the online/near-online
setting and than DVIS (Zhang et al., 2023) in the offline setting. We think the performance can
be improved by exploiting more video segmentation datasets, as TarVIS did, or by improving the
clip-level segmenter (particularly, our baseline Tube-Link with Swin-L performs worse than the other
state-of-the-art methods with Swin-L).

For the Youtube-VIS-22 results, we notice that the reported numbers in some recent papers are not
comparable, since some papers report AP (AP for long videos) while some papers use AP*!, which
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#MSDeformAttn  #TrjAttn  #AxialTrjAttn N, | VPQ
42.7
453
454
46.1
44.7
45.2
45.7
45.8
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Table 5: Ablation on within-clip tracking module. We vary the number of Multi-Scale Deformable Attnetion
(#MSDeformAttn), number of Trajectory Attention (#TrjAttn), or number of Axial-Trajectory Attention (#Axial-
TrjAttn). N,, detnotes the number of blocks (i.e., repetitions). —: Not using any operations. The final setting is
marked in grey.

SelfAttn TrjAttn Temporal-ASPP ‘ VPQ atrous rates ‘ VPQ
v v 46.4 (1,2,3) |46.7
v v 46.7 (1,2,5) |46.5
v 46.5 (1,3,5) | 464
a) Operations b) Temporal-ASPP ¢) Number of blocks V.

Table 6: Ablation on cross-clip tracking module. We vary operations in the block, Temporal-ASPP (atrous
rates), and number of blocks V. (i.e., repetitions). The final setting is marked in grey.

is the average of AP'°"2 and AP*"" (AP for short videos). To carefully and fairly compare between
methods, we therefore reproduce all the state-of-the-art results by using their official open-source
checkpoints, and clearly report their AP APong and APht ip Tab. 9. Similar to the discussion in
the main paper, our MaXTron with ResNet50 significantly improves over the baseline Tube-Link
and performs better than other state-of-the-art methods (particularly in AP'°"¢). However, our results
with Swin-L lag behind other state-of-the-art methods with Swin-L, whose gap may be bridged by
improving the baseline Tube-Link Swin-L.

In Tab. 10, we summarize more comparisons with other state-of-the-art methods on OVIS. As shown
in the table, our method remarkably improves over the baseline, but performs worse than the state-of-
the-art methods, partially because we fail to fully reproduce the baseline Tube-Link that our method
heavily depends upon. Similar to our other VIS results, we think the improvement of clip-level
segmenter will also lead to the improvement of MaXTron.

D VISUALIZATION RESULTS

We provide visualization results in Fig. 5, Fig. 6, Fig. 7, and Fig. 8 for different video sequences.
We compare with DVIS (Zhang et al., 2023) and our re-implemented Video-kMaX (Shin et al., 2024)
with ResNet50 as backbone and inference the video in an online/near-online fashion.

E LIMITATIONS

The proposed MaXTron builds on top of off-the-shelf clip-level segmenters with the proposed
within-clip and cross-clip tracking modules. Even though flexible, its performance depends on the
underlying employed clip-level segmenter. As a result, we foresee any new breakthrough developed
for the clip-level segmenter will also in turn improve our method’s performances. Additionally, when
training the proposed cross-clip tracking module, the clip-level segmenter and the within-clip tracking
module are frozen (due to the GPU memory limit), which may lead to a sub-optimal result (ideally,
end-to-end training leads to a better performance). We leave it as a future work to efficiently fine-tune
the whole model for processing long videos.
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method backbone | VPQ VPQ™ VPQ™
online/near-online methods

ViP-DeepLab (Qiao et al., 2021) ResNet50 16.0 - -
VPSNet-FuseTrack (Kim et al., 2020) ResNet50 17.0 - -
VPSNet-SiamTrack (Woo et al., 2021) ResNet50 17.2 - -
Clip-PanoFCN (Miao et al., 2022) ResNet50 229 - -
Video K-Net (Li et al., 2022) ResNet50 26.1 - -
TubeFormer (Kim et al., 2022) Axial-ResNet50-B3 | 31.2 - -
TarVIS (Athar et al., 2023) ResNet50 335 39.2 28.5
Video-kMaX (Shin et al., 2024) ResNet50 38.2 - -
Tube-Link (Li et al., 2023b) ResNet50 39.2 - -
DVIS (Zhang et al., 2023)T1 ResNet50 39.2 39.3 39.0
TarVIS (Athar et al., 2023) Swin-L 48.0 58.2 39.0
Video-kMaX (Shin et al., 2024) ConvNeXt-L 51.9 - -
DVIS (Zhang et al., 2023)} Swin-L 54.7 54.8 54.6
MaXTron w/ Video-kMaX (ours) ResNet50 46.1 45.6 46.6
MaXTron w/ Video-kMaX (ours) ConvNeXt-L 56.2 58.4 54.0
MaXTron w/ Video-kMaX (ours) ConvNeXt V2-L 57.7 58.3 57.1
offline methods

DVIS (Zhang et al., 2023)7 ResNet50 43.2 43.6 42.8
DVIS (Zhang et al., 2023)1 Swin-L 57.6 59.9 55.5
MaXTron w/ Video-kMaX (ours) ResNet50 46.7 46.7 46.6
MaXTron w/ Video-kMaX (ours) ConvNeXt-L 57.1 59.3 54.8
MaXTron w/ Video-kMaX (ours) ConvNeXt V2-L 58.0 58.8 57.2

Table 7: VIPSeg val set results. We provide more complete comparisons with other state-of-the-art methods. {:
Very recent ICCV 2023 work. I: Evaluated using their open-source checkpoint.

method backbone \ AP APsy AP35 ARy ARy
online/near-online methods

MinVIS (Huang et al., 2022) ResNet50 | 442 66.0 48.1 392 51.7
IDOL (Wu et al., 2022c¢) ResNet50 | 43.9 68.0 496 38.0 509
GenVIS,ear-oniine (Heo et al., 2023)  ResNet50 | 46.3  67.0 502 40.6 532
DVIS (Zhang et al., 2023)t ResNet50 | 464 684 496 39.7 535
GenVISonine (Heo et al., 2023) ResNet50 | 47.1 67.5 51.5 41.6 547
Tube-Link (Li et al., 2023b) ResNet50 | 47.9 70.0 502 423 552
TarVIS (Athar et al., 2023) ResNet50 | 48.3 69.6 532 405 559
MinVIS (Huang et al., 2022) Swin-L 553 76.6 620 459 60.8
IDOL (Wu et al., 2022c¢) Swin-L 56.1 80.8 63,5 450 60.1
Tube-Link (Li et al., 2023b) Swin-L 584 794 643 475 63.6
DVIS (Zhang et al., 2023) Swin-L 587 804 66.6 475 64.6
GenVISonine (Heo et al., 2023) Swin-L 59.6 809 658 487 65.0
GenVIS ear-oniine (Heo et al., 2023) Swin-L 60.1 80.9 66.5 49.1 64.7
TarVIS (Athar et al., 2023) Swin-L 60.2 814 67.6 476 64.8
MaXTron w/ Tube-Link (ours) ResNet50 | 484 71.1 51.8 420 574
MaXTron w/ Tube-Link (ours) Swin-L 588 813 650 46.7 62.7
offline methods

VITA (Heo et al., 2022) ResNet50 | 45.7 674 495 409 53.6
DVIS (Zhang et al., 2023)} ResNet50 | 474 71.0 516 399 552
VITA (Heo et al., 2022) Swin-L 575 806 61.0 4777 62.6
DVIS (Zhang et al., 2023)t Swin-L 60.1 83.0 684 477 657
MaXTron w/ Tube-Link (ours) ResNet50 | 48.5 709 524 423 579
MaXTron w/ Tube-Link (ours) Swin-L 59.1 819 649 469 63.8

Table 8: Youtube-VIS-21 val set results. We provide more complete comparisons with other state-of-the-art
methods. T: Very recent ICCV 2023 work.
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method backbone | AP" | AP™ APs, AP;s  AR;  ARw | AP™ APy AP;s AR ARy
online/near-online methods

MinVIS (Huang et al., 2022)* ResNet350 | 32.8 | 439 669 475 388 519 | 216 429 181 188 256
GenVISpearontine (Heo et al., 2023)*  ResNet30 | 38.1 | 459 663 502 408 537 | 303 509 327 255 362
DVIS (Zhang et al., 2023)t* ResNet50 | 38.6 | 460 681 504 397 535 | 312 504 368 302 357
Tube-Link (Li et al., 2023b)* ResNet50 | 39.5 | 479 704 505 426 559 | 31.1 561 312 291 363
MinVIS (Huang et al., 2022)" SwinL | 435 | 550 778 606 453 603 | 319 514 330 282 353
Tube-Link (Li et al., 2023b)* Swin-L | 460 | 578 787 634 470 627 | 342 532 379 315 389
DVIS (Zhang et al., 2023)t* Swin-L | 489 | 588 80.6 659 475 639 | 39.0 560 430 330 435
MaXTron w/ Tube-Link (ours) ResNet50

41.6‘ 46.8 68.1 505 415 56.2‘ 36.5 61.1 417 323 423

MaXTron w/ Tube-Link (ours) Swin-L 47.3 58.7 81.1 649 469 627 359 620 37.0 342 397
offline methods

VITA (Heo et al., 2022)* ResNet50 | 38.8 45.7 66.6 50.1 41.0 53.1 31.9 538 37.0 31.1 373
DVIS (Zhang et al., 2023)1* ResNet50 | 41.6 472 708 51.0 40.0 549 359 584 399 322 419
VITA (Heo et al., 2022)" Swin-L 49.3 57.6 804 625 477 623 41.0 62.1 439 394 435
DVIS (Zhang et al., 2023)1" Swin-L 52.4 59.9 827 683 478 652 44.9 663 489 37.1 532
MaXTron w/ Tube-Link (ours) ResNet50 | 41.3 45.6 68.0 51.1 402 547 37.0 634 367 29.0 402
MaXTron w/ Tube-Link (ours) Swin-L ‘ 48.8 ‘ 58.7 81.0 642 466 635 ‘ 38.9 644 393 320 423

Table 9: Youtube-VIS-22 val set results. We provide more complete comparisons with other state-of-the-art
methods. {: Very recent ICCV 2023 work. *: All results are reproduced by us using their official checkpoints.
We report AP and AP for short and long videos, respectively, and AP*! by averaging them.

method backbone | AP APsy AP;s AR, ARy
online/near-online methods

MinVIS (Huang et al., 2022) ResNet50 | 25.0 455 240 139 297
Tube-Link (Li et al., 2023b)* ResNet50 | 254 449 265 14.1 30.1
Tube-Link (Li et al., 2023b) ResNet50 | 29.5 51.5 302 155 345
IDOL (Wu et al., 2022c¢) ResNet50 | 30.2 51.3 30.0 150 375
DVIS (Zhang et al., 2023)7 ResNet50 | 30.2 550 305 145 373
TarVIS (Athar et al., 2023) ResNet50 | 31.1 52,5 304 159 399
GenVISear-online (Heo et al., 2023)  ResNet50 | 345 594 350 16.6 38.3
GenVISonine (Heo et al., 2023) ResNet50 | 35.8 60.8 36.2 16.3 39.6
Tube-Link (Li et al., 2023b)® Swin-L 333 546 328 168 37.7
MinVIS (Huang et al., 2022) Swin-L 394 615 413 18.1 433
IDOL (Wu et al., 2022c¢) Swin-L 426 657 452 179 49.6
TarVIS (Athar et al., 2023) Swin-L 432 678 446 180 504
GenVISonine (Heo et al., 2023) Swin-L 452 69.1 484 19.1 48.6
GenVIS ear-ontine (Heo et al., 2023) Swin-L 454 692 478 189 49.0
DVIS (Zhang et al., 2023)t Swin-L 47.1 719 492 194 525
MaXTron w/ Tube-Link ResNet50 | 27.6 50.1 272 146 325
MaXTron w/ Tube-Link Swin-L 39.1 623 39.8 185 423
offline methods

VITA (Heo et al., 2022) ResNet50 | 19.6 412 174 11.7 26.0
DVIS (Zhang et al., 2023)t ResNet50 | 33.8 604 335 153 395
VITA (Heo et al., 2022) Swin-L 277 519 249 149 33.0
DVIS (Zhang et al., 2023)7 Swin-L 486 747 505 188 538
MaXTron w/ Tube-Link ResNet50 | 283 50.7 27.0 146 34.0
MaXTron w/ Tube-Link Swin-L 39.8 645 40.1 17.9 437

Table 10: OVIS val set results. We provide more complete comparisons with other state-of-the-art methods. §:
Reproduced by us using their official code-base. f: Very recent ICCV 2023 work.
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Figure 5: Qualitative comparisons on videos with unusual viewpoints in VIPSeg. MaXTron exhibits
consistency in prediction even with an unusual view while DVIS and Video-kMaX fail to consistently detect all
animals over time.
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Figure 6: Qualitative comparisons on videos with complex indoor scenes as background in VIPSeg.
MaXTron accurately segments out the boundary of cat and person with correct classes, while DVIS and Video-
kMaX fail to do so.
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input frames DVIS Video-kMaX MaXTron

Figure 7: Qualitative comparisons on videos with light and shade in VIPSeg. MaXTron makes accurate and
consistent predictions under different illumination situations. DVIS fails at the junction between light and shade
(e.g., the fish tank) while Video-kMaX completely fails at dark places.

input frames DVIS Video-kMaX MaXTron

Figure 8: Qualitative comparisons on videos with multiple instances in VIPSeg. MaXTron detects more
instances with accurate boundary. DVIS fails to segment out the crowded humans while Video-kMaX performs
badly on the stuff classes.
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F REBUTTAL

F.1 MORE AXIAL-TRJECTORY ATTENTION MAP VISUALIZATIONS

We provide more visualizations of the learned axial-trajectory attention maps in Fig. 9, 10, 11 and
12. Concretely, in Fig. 9, we select the basketball in the first frame as the reference point and show
that our axial-trajectory attention accurately tracks it along the moving trajectory. In Fig. 10, we
select the black table in the first frame as the reference point. We note that the camera motion is very
small in this short clip and the table thus remains static. Our axial-trajectory attention still accurately
keeps tracking at the same location as time goes by. In Fig. 11 and 12, we show two failure cases of
axial-trajectory attention where the selected reference point is not discriminative enough, sometimes
yielding inaccurate axial-trajectory. To be specific, in Fig. 11, we select the left light of the subway in
the first frame as reference point. Though axial-trajectory attention precisely associates its position at
the second frame, in the third frame the attention becomes sparse, mostly because that there are many
similar ‘light’ objects in the third frame and the attention dilutes. Similarly, in Fig. 12, we select the
head of the human as the reference point. Since the human wears a black jacket with a black hat, the
selected reference point has similar but ambiguous appearance to the human body, yielding sparse
attention activation in the whole human region.

F.2 FAILURE CASES OF MAXTRON

We provide visualizations of failure cases of MaXTron in Fig. 13 and 14. In general, we observe
three common patterns of errors: heavy occlusion, fast moving objects, and extreme illumination.

Specifically, the first challenge is that when there are heavy occlusions caused by multiple close-by
instances, MaXTron suffers from ID switching, leading MaXTron to assign inconsistent ID to the
same instance. For example, in clip (a) of Fig. 13, the ID of the human in red dress changes between
frame 2 and 3, while in clip (b) of Fig. 13 the two humans in the back are recognized as only one
human until frame 3 due to the heavy occlusion. The second common error is that in videos containing
fast motion, MaXTron suffers from precisely predicting the boundary of the moving object. In clip
(c) of Fig. 14, the human’s legs are not segmented out in frame 1 and 3. The last common error is
that in videos containing extreme or varying illumination, MaXTron might fail to detect the objects
thus fails to generate consistent segmentation. In clip (d) of Fig. 14, the objects under the extreme
illumination can not be well segmented.

F.3 DETAILED FIGURES OF TRAJECTORY-ATTENTION AND TEMPORAL-ASPP

We provide figures to illustrate the details of Axial-Trajectory-Attention and Temporal-ASPP
in Fig. 15 and 16, respectively. The proposed axial-trajectory attention contains two steps of attention
where the first step is to compute the axial-trajectories based on the reference points along H-axis or
W-axis (Eq. 2), and the second step is to conduct temporal attention to aggregate information along
the trajectories (Eq. 4). In this way, axial-trajectory attention effectively reasons about the global
cross-clip connections. Our Temporal-ASPP module contains three parallel atrous convolutions with
different atrous sizes (which are set to (1, 2, 3), respectively) to capture local cross-connections across
different time spans.
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input frames axial-trajectory attention maps overlay results

Figure 9: Visualization of Learned Axial-Trajectory Attention. In this short clip of three frames depicting
the action ‘play basketball’, the basketball at frame 1 is selected as the reference point (mark in red). The
axial-trajectory attention is able to accurately track the moving basketball across frames. Best viewed by zooming
in.

input frames axial-trajectory attention maps overlay results

Figure 10: Visualization of Learned Axial-Trajectory Attention. In this short clip of three frames depicting a
student at class, the right static table at frame 1 is selected as the reference point (mark in red). Even though
the table remains static across the frames, our axial-trajectory attention is still able to accurately track it. Best
viewed by zooming in.
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input frames axial-trajectory attention maps overlay results

Figure 11: [Failure mode] Visualization of Learned Axial-Trajectory Attention. In this short clip of three
frames depicting a moving subway, the left front light at frame 1 is selected as the reference point (mark in red).
While the axial-trajectory attention can still more or less capture the same front light at the frame 2, it gradually
loses the focus since there are many similar “’light” objects in the clip. Best viewed by zooming in.

input frames axial-trajectory attention maps overlay results

Figure 12: [Failure mode] Visualization of Learned Axial-Trajectory Attention. In this short clip of three
frames depicting the action ‘downhill ski’, the head of the human at frame 1 is selected as the reference point
(mark in red). Since the head and the human body have similar appearance, the axial-trajectory attention becomes
diluted among the human body. Best viewed by zooming in.
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Figure 13: Failure modes caused by heavy occlusion. MaXTron fails to predict consistent ID for the same
instance when there is heavy occlusion. (a) The ID of the human changes between frame 2 and 3 (see red box).
(b) The two humans are recognized as only one until frame 3 (see red box). Best viewed by zooming in.
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Figure 14: Failure modes caused by fast-moving and extreme illumination scenarios. MaXTron fails
to predict accurate boundary due to the large motion and extreme illumination. (c) The human’s leg is not
segmented out in frame 1 and 3 (see red box). (d) The objects under extreme illumination can not be well
segmented (see red box). Best viewed by zooming in.
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Figure 15: Illustration of Axial-Trajectory Attention (only Height-axis trajectory attention is shown for
simplicity), which includes two steps: computing the trajectories y along Height-axis (Eq. 2) of the dense pixel
feature maps x (whose shape is T'H x D, where T', H, and D denote the clip length, input feature height and
channels, respectively) and then computing temporal attention along the axial-trajectories (Eq. 4) for effectively
capturing the within-clip connections to obtain the updated features y.

atrous conv, Temporal -ASPP

000 w/ rate 1
000 < -atrous conv Concat ((xdcov ] — (layernorm ] —» O O O
O O O w/ rate 2 i O O O
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Figure 16: Illustration of Temporal-ASPP, which operates on the clip object queries and includes three parallel
atrous convolution with different atrous rates to aggregate local temporal cross-clip connections across different
time spans followed by 1x1 convolution and layer norm to obtain the final updated clip object queries.
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