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Abstract001

While large language models (LLMs) demon-002
strate impressive capabilities, their reliance on003
parametric knowledge often leads to factual004
inaccuracies. Retrieval-Augmented Genera-005
tion (RAG) mitigates this by leveraging exter-006
nal documents, yet existing approaches treat007
retrieved passages as isolated chunks, ignor-008
ing valuable document structure that could en-009
hance knowledge acquisition and utilization.010
Motivated by this gap, we propose Retrieve-011
DocumentRoute-Read (RDR2), a novel frame-012
work that explicitly incorporates document013
structure throughout the RAG process. RDR2014
employs an LLM-based router to dynamically015
navigate document structure trees, jointly eval-016
uating content relevance and hierarchical rela-017
tionships to assemble optimal evidence. Our018
key innovation lies in formulating document019
routing as a trainable task, with automatic be-020
havior curation and structure-aware passage021
selection inspired by human reading strategies.022
Through comprehensive evaluation on three023
challenging datasets, RDR2 achieves state-of-024
the-art performance, demonstrating that ex-025
plicit structural awareness significantly en-026
hances RAG systems’ ability to acquire and027
utilize knowledge, particularly in complex sce-028
narios requiring multi-document synthesis.029

1 Introduction030

Large language models (LLMs) (Brown et al.,031

2020) have demonstrated remarkable capabilities032

across a wide range of natural language process-033

ing (NLP) tasks, yet even state-of-the-art models034

continue to generate factually incorrect responses035

(Mallen et al., 2023; Min et al., 2023; Ji et al.,036

2023) despite their growing scale and capability037

(Ouyang et al., 2022). Retrieval-Augmented Gen-038

eration (RAG) (Lewis et al., 2020; Guu et al.,039

2020; Borgeaud et al., 2022) addresses these lim-040

itations through a Retrieve-and-Read paradigm,041

which first retrieves relevant passages then uses042

them as context for generation (Lewis et al., 043

2020; Izacard and Grave, 2021; Jiang et al., 2022; 044

Shi et al., 2024). This approach combines the 045

strengths of information retrieval and generative 046

models, proving particularly effective for atomic- 047

fact question answering (QA) (Joshi et al., 2017; 048

Thorne et al., 2018; Kwiatkowski et al., 2019; 049

Mallen et al., 2023) where a single precise re- 050

trieval suffices to answer clear information needs. 051

Recent advances in RAG have extended its capa- 052

bilities to complex knowledge-intensive scenarios 053

requiring multi-perspective responses, particularly 054

for factual-inductive queries that demand coherent 055

synthesis of multiple knowledge fragments (Fan 056

et al., 2019; Stelmakh et al., 2022; Amouyal et al., 057

2023). However, current RAG frameworks pro- 058

cess retrieved passages as isolated chunks, discard- 059

ing their inherent document structure - a limitation 060

stemming from both structure-agnostic pipeline 061

design and the flat-context paradigm of standard 062

retrieval methods. 063

While fixed chunking ensures retrieval effi- 064

ciency, it restricts query-adaptive content selec- 065

tion, discarding the document’s native organiza- 066

tion which humans naturally exploit for informa- 067

tion navigation and relational reasoning. At the 068

reading phase, retrieved passages are simply or- 069

dered by relevance scores, potentially disrupting 070

their original sequence in the source document. 071

Even with useful information, this loss of struc- 072

tural priors forces the model to implicitly recon- 073

struct relationships that were explicitly encoded in 074

the source hierarchy. This structural blindness con- 075

strains RAG’s knowledge acquisition and synthe- 076

sis capabilities. 077

In this paper we ask: can LLMs leverage doc- 078

ument structural information, and can RAG sys- 079

tems benefit from such structural awareness? We 080

propose Retrieve-DocumentRoute-Read (RDR2), 081

where a structure-aware LM performs document 082

routing through three behaviors inspired by how 083
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humans selectively read sections, expand promis-084

ing headings, and skip irrelevant parts when085

browsing articles. Through this process, RDR2 dy-086

namically assembles query-oriented passages for087

better knowledge acquisition and utilization.088

We evaluate RDR2 on three representative089

datasets requiring multi-document synthesis, cov-090

ering ambiguous (ASQA (Stelmakh et al., 2022)),091

list-style (QAMPARI (Amouyal et al., 2023)), and092

in-depth (ELI5 (Fan et al., 2019)) question answer-093

ing. Across all datasets, RDR2 achieves new state-094

of-the-art results with only the router trained on095

questions from the ASQA training set (without096

answer supervision), while keeping the retriever097

and reader off-the-shelf. Additionally, RDR2 en-098

ables test-time scaling without weight updates and099

demonstrates generalization across different RAG100

components (i.e., retrievers and readers).101

Our main contributions are:102

• The proposal of RDR2, the first RAG frame-103

work explicitly incorporates document struc-104

ture throughout the retrieval and reading pro-105

cess, to enhance both knowledge acquisition106

and utilization;107

• A novel formulation of document routing as a108

trainable task, with an automatic behavior cu-109

ration pipeline and LLM-based router train-110

ing;111

• Comprehensive experiments on ASQA,112

QAMPARI, and ELI5 establishing RDR2’s113

consistent superiority over state-of-the-art114

methods.115

2 Related Work116

Retrieval-Augmented Generation (Lewis et al.,117

2020; Guu et al., 2020; Borgeaud et al., 2022)118

(RAG) augments language models with non-119

parametric knowledge through retrieved pas-120

sages, demonstrating significant improvements121

in knowledge-intensive tasks (Ram et al., 2023;122

Asai et al., 2023a). The standard Retrieve-and-123

Read framework operates in two stages: (1) a124

dense retriever (typically a bi-encoder architecture125

(Karpukhin et al., 2020; Ni et al., 2022; Wang126

et al., 2024)) retrieves passages relevant to the in-127

put question, and (2) an LM reader processes these128

passages either as an off-the-shelf model (Ram129

et al., 2023; Zhou et al., 2024; Li et al., 2025)130

or through task-specific fine-tuning (Izacard et al.,131

2023; Lin et al., 2023; Jain et al., 2023; LUO et al.,132

2024; Gan et al., 2024) to generate grounded re-133

sponses. While effective for simple tasks with 134

clear information needs, RAG systems show lim- 135

itations in complex scenarios, necessitating more 136

advanced methods. 137

Knowledge Acquisition. To achieve more com- 138

prehensive knowledge acquisition, recent works 139

develop enhanced retrieval mechanisms. FLARE 140

(Jiang et al., 2023) prompts an LLM to actively 141

decide when and what to retrieve based on the 142

model’s confidence (i.e., token probabilities). Ma 143

et al. (2023) introduces query rewriting to bridge 144

the gap between user questions and retrieval re- 145

quirements. CoRAG (Wang et al., 2025) fine- 146

tunes an LLM to generate intermediate retrieval 147

chains, enabling step-by-step multi-hop querying. 148

Unlike prior works that focus on pre-retrieval 149

query optimization, our approach enhances knowl- 150

edge acquisition through post-retrieval document 151

routing - iteratively exploring document hierar- 152

chies to uncover useful information. 153

Knowledge Utilization. For knowledge uti- 154

lization, effective RAG requires critical evalua- 155

tion and integration of retrieved knowledge. SELF- 156

RAG (Asai et al., 2023b) fine-tunes LLMs to 157

critique retrieved passages via self-reflection, as- 158

sessing their relevance, supportiveness, and util- 159

ity. RankRAG (Yu et al., 2024) instruction-tunes 160

a single LLM for the dual purpose of context 161

ranking and answer generation, improving end-to- 162

end knowledge grounding. Departing from static 163

chunk filtering, our method dynamically assem- 164

bles node-level information units within document 165

hierarchy, achieving both structural integrity and 166

adaptive flexibility. 167

Structure Information. Several approaches 168

have attempted to incorporate structural informa- 169

tion into RAG frameworks. GraphRAG (Edge 170

et al., 2024) processes documents into a knowl- 171

edge graph with hierarchical community sum- 172

maries, establishing a RAG paradigm distinct 173

from semantic retrieval over flat text chunk. RAP- 174

TOR (Sarthi et al., 2024) constructs hierarchi- 175

cal document embeddings through recursive node- 176

level clustering and summarization, capturing 177

progressively abstracted semantic content across 178

tree levels. While existing approaches offline- 179

encode hierarchical information into fixed repre- 180

sentations (e.g., summaries or embeddings), our 181

framework online-perceives document structure 182

through dynamic routing. 183
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Figure 1: Overwiew of the RDR2 framework. RDR2 extends standard Retrieve-and-Read with document-structure-
aware routing for iterative, fine-grained knowledge retrieval.

3 Methodology184

We propose Retrieve-DocumentRoute-Read185

(RDR2), a framework that iteratively assembles186

informative and complete passage chunks via a187

structure-aware LLM to enhance RAG pipeline188

with beter knowledge acquiring and utilization. In189

this section, we first present the overview of the190

RDR2 framework, as illustrated in Figure 1. Then191

we define a tree structure that represents the doc-192

ument hierarchy while maintaining stable scope193

and adaptive contextual focus. Lastly, we give194

the scheme of how to construct an LLM-based195

routing module, as the core component of our196

proposed framework.197

3.1 Retrieve-DocumentRoute-Read198

The Retrieve-DocumentRoute-Read (RDR2)199

framework consists of three stages:200

Retrieve. Given an input question q, retrieve201

the top-k most relevant passage chunks Cre =202

{c(1)re , · · · , c(k)re } by the Retriever.203

Cre = Retriever(q) (1)204

Document Route. For each passage subset205

C
(i)
re ⊆ Cre grouped by their originating document206

di, reconstruct a routed passage c
(i)
ro conditioned207

on the question q and the document di via the208

Router.209

Cro = {c(i)ro }
m

i=1 c(i)ro = Router(q, di) (2)210

Read. Generate the answer a to the question q,211

leveraging both the routed passages Cro and the212

parametric knowledge of the Reader.213

a = Reader(q, [c(1)ro , · · · , c(m)
ro ]) (3)214

3.2 Document Structure Representation 215

While standard RAG frameworks process only flat 216

content chunks, our approach preserves critical 217

structural information through formal tree repre- 218

sentations. To capture hierarchical relationships 219

in documents, we define two types of nodes: (1) 220

Structure nodes represent organizational hierarchy 221

(i.e., headings), and (2) Content nodes contatain 222

substantive textual information (i.e., passages). 223

Document Structure Tree. A Document Struc- 224

ture Tree (DST) encodes the full document hierar- 225

chy, where each node is represented as: 226

DST-node = ⟨id, text, τ, parent, C⟩ (4) 227

Here τ ∈ {structure, content} denotes the node 228

type, and C indicates the ordered set of child nodes. 229

Each node is defined by a unique identifier (id), 230

associated text content - either a heading title (for 231

structure nodes) or passage text (for content nodes) 232

- and a pointer to its parent node’s id (null for the 233

root). The root node, always a structure node, cor- 234

responds to the document title. 235

Retrieval Subtree. A Retrieval Subtree (RST) 236

is a subtree derived from the DST designed to 237

maintain stable retrieval scope while adaptively 238

updating contextual focus. An RST consists of (1) 239

all structure nodes (complete document hierarchy), 240

and (2) selected content nodes (partial content cov- 241

erage). 242

During inference, the RST is first initialized 243

with content siblings of retrieved passages, then 244

iteratively updated by replacing them with content 245

nodes under a single router-selected heading while 246

preserving all structure nodes (See Algorithm 1 in 247

Appendix A.2). This constrained derivation strat- 248
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egy ensures stable RST size while dynamically re-249

fining the contextual focus.250

3.3 Routing Module251

As shown in Figure 2, the routing module syner-252

gistically combines document tree structure with253

an LLM-based router, enabling structure-aware254

retrieval-augmented generation.255

Figure 2: Workflow of the routing module. Given a
user input q and a document structure tree (Section 3.2)
anchored by retrieved passage, RDR2 maintains a re-
trieval subtree s where: (i) all structure nodes persist,
(ii) only content nodes under currently selected head-
ings are expanded (previous fold). At step t, the router
generates behavior bt = Router(q, st) to: (a) select
useful content nodes, (b) unfold a promising structure
node, or (c) stops routing.

Task Formulation. We define document rout-256

ing task as iterative navigation through a docu-257

ment structure tree, dynamically assembling fine-258

grained passage chunks with both content rel-259

evance and structural integrity. This process260

emerges through compositional application of261

three atomic behaviors at each step:262

• [ANSWER]: Select a visible content node263

when its text directly answers the question;264

• [EXPAND]: Unfold a collapsed structure265

node if its heading text or contextual position266

suggests potential relevance;267

• [REFUSE]: Stop exploring the current sub-268

tree when no nodes satisfy [ANSWER] or269

[EXPAND] criteria.270

Behavior Curation. Standard RAG datasets271

consists of a question with a reference answer,272

without providing the intermediate routing trajec-273

tories. We propose an automatic method for curat- 274

ing routing behaviors solely from the question, re- 275

quiring no necessary access to the answer. Specif- 276

ically, given a question q, we first retrieve top-k 277

passages via an off-the-shelf retriever, access their 278

originating document, and derive corresponding 279

retrieval subtrees S. We condition an LLM respec- 280

tively on each subtree si ∈ S, along with the ques- 281

tion q to generate a single-turn routing behavior 282

b. Finally, the routing dataset cruated consists of 283

⟨q, s, b⟩ triples. 284

Training. The training paradigm focuses on 285

equipping the model with fundamental decision- 286

making capabilities through exposure to individ- 287

ual routing behaviors (as opposed to complete iter- 288

ative procedures). We fine-tune an LLM on the cu- 289

rated routing dataset using the standard next-token- 290

prediction objective under supervised-fine-tuning 291

(SFT), where the cross-entropy lossL is computed 292

only on the target output tokens. This approach 293

provides the necessary components for multi-step 294

exploration during inference. 295

L = − logP (b|q, s) (5) 296

We convert document hierarchy into LLM- 297

understandable text representation. Specifically, 298

the input retrieval subtree uses the newline- 299

delimited "id: text" format, where each level 300

of hierarchy is represented by an additional in- 301

dentation unit preceding the node identifier. The 302

output behavior follows the "[BEHAVIOR] id: 303

text_prefix" format to ensure semantic ground- 304

ing to the original id-text binding. 305

4 Experiments 306

4.1 Datasets and Metrics 307

We evaluate RDR2 on three datasets: ASQA (Stel- 308

makh et al., 2022), QAMPARI (Amouyal et al., 309

2023) and ELI5 (Fan et al., 2019), all of which 310

emphasize multi-passage comprehension and syn- 311

thesis. 312

ASQA (Stelmakh et al., 2022) is a long-form 313

factoid QA dataset featuring inherently ambigu- 314

ous questions that requires RAG methods to rec- 315

oncile diverse interpretations and produce coher- 316

ent responses. The inherent ambiguity of these 317

questions necessitates comprehensive information 318

synthesis from multiple documents. Each ques- 319

tion in ASQA is annotated with both long-form 320

answers (avg. 65 words) and extractive question- 321

answer pairs (avg. 3 instances), facilitating fine- 322
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grained correctness evaluation. We adopt the offi-323

cial metrics from the original ASQA paper, includ-324

ing Exact Match (EM), Disambig-F1 (D-F1), and325

ROUGE-L (Lin, 2004) (R-L). Following Gao et al.326

(2023), we additionally employ MAUVE (Pillutla327

et al., 2021) (Mau) for assessing response fluency.328

QAMPARI (Amouyal et al., 2023) is a list-329

style QA dataset where answers comprise multiple330

factual short entities (avg. 13 instances) extracted331

from diverse passages, requiring RAG methods to332

perform cross-document fact aggregation. Follow-333

ing the original QAMPARI paper, we evaluate us-334

ing exact-match recall and precision (Pre) against335

the gold answer list. With reference to ALCE336

benchmark (Gao et al., 2023), we consider recall337

as 100% for predictions with at least 5 correct an-338

swers (R-5). We additionally calculate their har-339

monic mean (F1-5).340

ELI5 (Fan et al., 2019) contains complex, di-341

verse, open-ended questions derived from post ti-342

tles (with optional elaborations) in Reddit’s "Ex-343

plain Like I’m Five" forum, requiring RAG meth-344

ods to elaborate in-depth explanations from multi-345

ple documents. The dataset provides web-crawled346

paragraph-length or longer answers (avg. 131347

words) as reference responses, posing unique chal-348

lenges for comprehensive knowledge integration.349

Following (Gao et al., 2023), we evaluate answer350

correctness using Claim Recall (Cla) and fluency351

with MAUVE (Mau).352

4.2 Baselines353

We evaluate our framework against three cate-354

gories of baselines: (1) No-Retrieval: the reader355

directly answers questions using only its paramet-356

ric knowledge, (2) Retrieve-and-Read: the stan-357

dard RAG pipeline with top-k retrieved passages,358

and (3) Advanced RAG: including methods based359

on proprietary LLMs: ASC and its variant ASC-360

F (Thirukovalluru et al., 2024), as well as tech-361

niques fine-tuned on open-source LLMs: SELF-362

RAG (Asai et al., 2023b), SELF-REASONING (Xia363

et al., 2025), OPEN-RAG (Islam et al., 2024), and364

FRONT (Huang et al., 2024).365

4.3 Experimental Settings366

For retrieval, we use the Wikipedia dump from367

Karpukhin et al. (2020). We construct DSTs (de-368

fined in Section 3.2) from the corresponding wiki369

pages, totaling 5.82M documents. Unless other-370

wise specified (e.g., DPR (Karpukhin et al., 2020),371

GTR (Ni et al., 2022)), we use the off-the-shelf372

Contriever-MS MARCO (Izacard et al., 2022) as 373

the retriever, with top-5 passages for all retrieval- 374

augmented methods. 375

We curate routing behaviors using Deepseek- 376

v3 (Liu et al., 2024) following the proce- 377

dure defined in Section 3.3 on ASQA train- 378

ing questions, resulting in 23,827 training sam- 379

ples (14,822 [ANSWER], 3,793 [EXPAND], and 380

5,212 [REFUSE]) and 500 test samples (287 381

[ANSWER], 90 [EXPAND], and 123 [REFUSE]). 382

The router is fine-tuned via LoRA (Hu et al., 2022) 383

on Llama-3.1-8B-Instruct (Grattafiori et al., 2024) 384

for 3.5 epochs (see Appendix A.1 for implemen- 385

tation details, Appendix A.2 for training hyperpa- 386

rameters, and Appendix sec:c for prompts). 387

For open-source models (Llama-2-13B-Chat 388

(Touvron et al., 2023) and Llama-3.1-8B-Instruct 389

(Grattafiori et al., 2024)), we employ greedy de- 390

coding with length control to match reference 391

averages, as significant inter-model length varia- 392

tions were observed (consistent with Asai et al. 393

(2023b)’s findings) to ensure fair comparison. 394

For proprietary models (ChatGPT (Ouyang et al., 395

2022) and Deepseek-v3 (Liu et al., 2024)), we set 396

temperature=0.2 without length constraints, since 397

their output lengths naturally align with the refer- 398

ence (see Appendix C for prompt details). 399

All experiments run on single NVIDIAA100- 400

PCIE-40GB GPUs. 401

5 Results and Analysis 402

We first report overall experimental results across 403

all three datasets, comparing the performance of 404

RDR2 against the baseline methods described in 405

Section 4.2. Subsequently, we conduct compre- 406

hensive ablation studies to evaluate the contribu- 407

tion of each key component in our framework. Fi- 408

nally, we investigate the framework’s behavior un- 409

der different test-time scaling conditions and its 410

robustness with various retrievers and readers. A 411

comprehensive case study can be found in Ap- 412

pendix D. 413

5.1 Main Results 414

Overall Performance. Figure 3 evaluates the 415

overall performance of RDR2 against two fun- 416

damental frameworks: no-retrieval and Retrieve- 417

and-Read. Notably, in RDR2 only the router is 418

trained on ASQA questions (without answer super- 419

vision), while both retriever and reader remain off- 420

the-shelf. QAMPARI and ELI5 serve as challeng- 421
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Figure 3: Comparison between RDR2 and baselines across all datasets with different readers. We report the primary
correctness metric for each dataset: Exact Match for ASQA, F1-5 for QAMPARI and Claim Recall for ELI5.

ASQA QAMPARI ELI5

EM D-F1 R-L Mau Len F1-5 R-5 Pre Cla Mau Len
Reader based on ChatGPT

ASC-F 45.0 31.9 - 41.3 106.7 18.8 45.0 13.4 22.2 22.7 172.7
ASC 44.1 32.2 - 47.0 101.2 26.2 33.0 23.0 21.4 21.3 163.6
RDR2(Ours) 46.1 37.1 38.5 70.6 49.1 26.4 29.0 30.9 23.3 14.4 155.2

Reader fine-tuned on Llama-2-13b
SELF-RAG 31.7 - 37.0 71.6 - - 1.9 1.3 6.1 - -
SELF-REASONING 35.2 - - - - - - - - - -
OPEN-RAG 36.3 - 38.1 80.0 - - - - - - -
FRONT 41.5 - - - - - 11.9 22.6 9.3 - -
RDR2(Ours) 41.7 31.6 39.2 61.2 69.6 23.2 24.3 25.0 15.4 23.9 148.3

Table 1: Comparison between RDR2 and other RAG methods on ASQA, QAMPARI and ELI5 wrt. corresponding
metrics. EM is Exact Match, D-F1 is Disambig-F1, R-L is ROUGE-L, Mau is MAUVE, F1-5 is the harmonic mean
of recall-5 (R-5) and precision (Pre), Cla is Claim Recall. Bold indicates best results within each reader category.
Gray denotes the word-level length (Len).

ing generalization tests, being completely with-422

held from our router training.423

RDR2 continuously improves RAG perfor-424

mance. With larger language models, stan-425

dard Retrieve-and-Read shows diminishing re-426

turns over no-retrieval, suggesting their stronger427

parametric knowledge reduces reliance on re-428

trieved content. While RDR2 also exhibits this429

scaling trend versus no-retrieval, its improvement430

over Retrieve-and-Read remains relatively sta-431

ble across model scales, confirming the inherent432

value of document structure awareness in retrieval-433

augmented generation.434

RDR2 effectively generalizes to held-out435

datasets. While RDR2 maintains strong perfor-436

mance on QAMPARI comparable to its ASQA re-437

sults, we observe limited gains on ELI5. This438

aligns with prior findings (Krishna et al., 2021;439

Jiang et al., 2023) on the intrinsic challenges440

of open-ended long-form QA, where the expan-441

sive space of potentially valid answers poses fun-442

damental difficulties for retrieval-augmented ap- 443

proaches and their evaluation. 444

Comparison with baselines. Table 1 compares 445

RDR2 against cutting-edge RAG methods employ- 446

ing either proprietary LLMs (ChatGPT) or fine- 447

tuned open-source Llama-2-13B variants as their 448

backbone readers. 449

RDR2 achieves new state-of-the-art results. 450

Across all three datasets - ASQA, QAMPARI and 451

ELI5 - RDR2 consistently outperforms existing 452

approaches, demonstrating strong generalization 453

across diverse QA scenarios. Specifically: 454

It is noteworthy that among the compared 455

methods based on open-source models, all re- 456

quire reader fine-tuning on carefully annotated 457

question-answer pairs (some including training set 458

of the downstream tasks), whereas our approach 459

achieves superior performance using only readily 460

available questions for router training, paired with 461

an entirely off-the-shelf reader. 462

Furthermore, methods employing proprietary 463
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LLMs generate significantly longer responses464

( 2× the gold answer length on ASQA) to achieve465

high EM recall, while our approach attains better466

results with approximately 50% shorter outputs.467

On QAMPARI, this verbosity leads to precision468

degradation, whereas our method maintains bal-469

anced precision-recall performance. These obser-470

vations collectively validate our framework’s en-471

hanced efficiency in information delivery.472

5.2 Ablation Study473

Table 2 presents comprehensive ablation stud-474

ies analyzing three critical dimensions of our475

framework: pipeline architecture (defined in Sec-476

tion 3.1), router information (defined in Sec-477

tion 3.2), and routing behaviors (defined in Sec-478

tion 3.3). We evaluate both intermediate retrieved479

passages and final generated answers, measuring480

factual correctness through Exact Match (EM) and481

verbosity via word count (Len).482

Passage Answer

EM Len EM Len
RDR2(Ours) 57.3 104.2 45.3 71.3

w/o router 51.7 100.0 40.9 69.2
w/o structure 49.8 67.5 41.3 71.0
w/o similarity 54.8 100.9 43.9 72.3

w/o content 54.2 93.9 43.7 70.0
w/o [EXPAND] 52.9 81.7 42.5 71.9
w/o [REFUSE] 61.2 176.3 42.9 70.7

Table 2: Ablation Study on ASQA. Ablated variants
(w/o = without) are defined in Section 5.2. We report
Exact Match (EM) and word-level length (Len) for pas-
sages and answers. Bold and Underline denote best and
second best results, respectively.

5.2.1 Pipeline Architecture483

Removing the routing module (w/o router) re-484

duces the RAG pipeline to standard Retrieve-and-485

Read framework. Our full framework significantly486

improves factual recall (+5.6 EM) while maintain-487

ing comparable passage length (104.2 vs. 100.0),488

demonstrating enhanced informativeness without489

compromising conciseness. This improvement490

carries through to answer generation (+4.4 EM),491

demonstrating consistent gains across the entire492

RAG pipeline.493

5.2.2 Router Information494

The router processes two types of information: (1)495

structure from document headings, and (2) sim-496

ilarity from retrieved passages. We ablate each 497

component: 498

Ablating Structure (w/o structure). We dis- 499

card document hierarchy and use only retrieved 500

passages1, where the router simply accepts or re- 501

fuses individual passages. We observe significant 502

drops in both passage retrieval (-7.5 EM) and an- 503

swer generation (-4.0 EM) versus the full frame- 504

work, confirming structural cues provide critical 505

gains. Compared to w/o router, this ablation yields 506

less informative passages (-1.9 EM) but better an- 507

swers (+0.4 EM), showing structural awareness en- 508

ables more effective knowledge organization de- 509

spite occasional over-filtering. 510

Ablating Similarity (w/o similarity). We ini- 511

tialize the RST with content nodes under a random 512

heading (instead of retrieved passage siblings). 513

A stricter variant (w/o content) removes content 514

nodes entirely, despite this configuration being 515

completely unseen during training. w/o similarity 516

causes moderate performance drops (-2.5 EM pas- 517

sages, -1.4 EM answers), confirming that provid- 518

ing question-relevant content offers crucial guid- 519

ance for structural understanding and document 520

routing. The small gap between these variants (0.6 521

EM passages, 0.2 EM answers) demonstrates the 522

router’s trained structural reasoning generalizes to 523

unseen document formats. 524

5.2.3 Routing Behaviors 525

We validate each atomic behavior’s necessity for 526

document routing: 527

Ablating Expansion (w/o [EXPAND]). The 528

router can only select or refuse among currently 529

visible nodes, losing the ability to explore new sub- 530

trees. The noticeable declines versus full frame- 531

work (-4.4 passage EM, -2.8 answer EM) confirms 532

expansion is crucial for discovering content that 533

can hardly be recalled by similarity alone. Yet still 534

outperforms w/o router (+1.2 passage EM, +1.6 535

answer EM), showing RAG can benefit from basic 536

structure awareness. 537

Ablating Refusal (w/o [REFUSE]). The router 538

must either answer or expand at least one node in 539

each step, potentially forcing suboptimal choices. 540

Passage informativeness is substantially increased 541

(+3.9 EM), yt its length doubled, introducing noise 542

that ultimately harms answer quality (-2.4 EM), 543

proving selective rejection is vital for concise 544

knowledge organization. 545

1To ensure fair comparison, we reconstruct content at the
node level to avoid information loss from chunk truncation
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Figure 4: Scaling test-time compute on ASQA for RDR2 framework. Left: top-k scaling. Right: expand-iter
scaling. Exact Match (EM) is reported from both passage/answer-aspect.

5.3 Test-time Scaling546

Inspired by OpenAI o1 (Jaech et al., 2024)’s ob-547

servation, our framework enables dynamic test-548

time compute scaling without model weight up-549

dates. We investigate two scaling dimensions: (1)550

top-k scaling where we vary the number of re-551

trieved passages k ∈ [0, 5], and (2) expand-iter552

scaling which controls document expansion iter-553

ations iter ∈ [0, 5], With their impacts demon-554

strated in Figure 4.555

Top-k Scaling. As shown in Figure 4 left, in-556

creasing k consistently improves both retrieval and557

answer correctness, as expanding the search space558

enhances the likelihood of capturing relevant doc-559

uments. While standard Retrieve-and-Read ex-560

hibits similar scaling trends, our framework main-561

tains a consistent performance advantage. This562

suggests that structural awareness potentially en-563

hances the benefits of retrieval test-time scaling.564

Expand-iter Scaling. As shown in Fig-565

ure 4 right, increasing expansion iterations yields566

consistent improvements in both passage util-567

ity and answer quality. Our controlled expan-568

sion mechanism introduces a novel RAG scal-569

ing paradigm, offering adjustable trade-offs be-570

tween performance and computational cost - par-571

ticularly valuable for applications with varying572

latency-accuracy requirements.573

5.4 Robustness574

Figure 3 demonstrates RDR2’s robustness to di-575

verse readers and held-out datasets. We fur-576

ther investigate the retrievers compatibility. As577

shown in Figure 5, RDR2 maintains stable per-578

formance with different retrievers across datasets,579

confirming its plug-and-play adaptability. Oppo-580

sitely, standard Retrieve-and-Read exhibits perfor-581

mance fluctuations, empirically validates that ex- 582

plicit structure perception enhances RAG’s robust- 583

ness to component variations - a key advantage for 584

modular deployments. 585
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Figure 5: Robustness experiment across different re-
trievers on ASQA and QAMPARI wrt. corresponding
correctness metrics: Exact Match for ASQA and F1-5
for QAMPARI.

6 Conclusion 586

This work introduces RDR2, a novel framework 587

that enhances RAG systems’ knowledge acquisi- 588

tion and utilization through structure-guided iter- 589

ative document routing. Our approach dynami- 590

cally navigates document structure trees using an 591

LLM-based router, which jointly considers con- 592

tent relevance and hierarchical relationships to as- 593

semble optimal evidence. Comprehensive evalu- 594

ations across three datasets demonstrate RDR2’s 595

consistent outperformance of existing methods. 596

Limitations 597

We acknowledge three key limitations of this work: 598

(1) While our routing mechanism effectively navi- 599

gates intra-document hierarchies, it processes each 600

8



document independently, lacking explicit model-601

ing of their relationships. The document count602

is determined by the initial top-k retrieval, po-603

tentially limiting inter-document knowledge inte-604

gration. (2) The framework requires offline con-605

struction of Document Structure Trees (DSTs) for606

the entire datastore. Although dynamic DST con-607

struction during inference is possible, this would608

introduce latency to the routing pipeline. (3)609

The iterative routing process incurs computational610

overhead, though this can be partially mitigated611

through controlled expansion iterations during in-612

ference.613

Ethical Concerns614

This study focuses on improving knowledge ac-615

quisition and utilization in RAG systems through616

document structure awareness. All data, models,617

and APIs used in our experiments are sourced618

from publicly available platforms to ensure trans-619

parency and reproducibility. We strictly adhere to620

ethical guidelines throughout the research process,621

guaranteeing that our work poses no harm to in-622

dividuals or groups. Furthermore, we commit to623

avoiding any form of deception or misuse of infor-624

mation in both methodology and application.625
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A Implementation Details943

A.1 Dataset curation944

As shown in Table 3, the automatically con-945

structed routing dataset consists of 23,827 training946

samples, including 14,822 [ANSWER] instances,947

3,793 [EXPAND] instances, and 5,212 [REFUSE]948

instances.949

Answer Expand Refuse Total

Train 14,822 3,793 5,212 23,827
Test 287 90 123 500

Table 3: Routing Dataset.

For the curation of the routing dataset, we col-950

lect queries from the training set of ASQA, which951

are then fed into the retriever to get top-k relevant952

chunks. Based on the retrieval result, we identify953

the original Document Structure Tree and utilize954

the Levenshtein Distance algorithm to map the re-955

trieved chunk to content nodes within the structure956

tree, using a sliding window with a stride of one.957

Consequently, we employ the RST Derivation Al-958

gorithm 1 to traverse and preserve all siblings, an-959

cestors and descendants with content type of the960

mapping nodes, resulting in the corresponding Re-961

trieval Subtrees. Finally, we use the DeepSeek-V3962

API to construct single-turn routing results given963

the queries and subtrees.964

A.2 Training details965

We choose Llama-3.1-8B-instruct as the backbone966

of the routing model and employ LoRA for effi-967

cient fine-tuning. Specifically, we set lora_rank as968

8, lora_alpha as 16, gradient accumulated batch969

size as 8, learning rate as 1e-5 and epoch as 5. We970

also compare different training settings, as shown971

in Table 4, and finally select the model based on972

instruct model with tag format prompt.973

B More Experiments974

B.1 Main results975

As shown in Table 5 and Table 6, we report full976

results of our main experiment. We can observe977

that:978

Algorithm 1 RST derivation
Require: DST , Lighted nodes

1: function LIGHTNODES(Tree, Nodes)
2: for each node ∈ Nodes do
3: siblings ← GETSIBLINGS(Tree,

node) ▷ Acquiring necessary sibling nodes
4: for each sibling ∈ siblings do
5: if sibling.type = "content" then
6: sibling.lighted← True
7: end if
8: end for
9:

10: current← node
11: while current.parent ̸= ∅ do
12: current← current.parent
13: if current.type = "structure" then
14: break ▷ Acquiring necessary

upper ancestor nodes
15: end if
16: current.lighted← True
17: end while
18:

19: for each sibling ∈ siblings do
20: if sibling.type = "content" then
21: LIGHTDESCENDANTS(Tree,

sibling) ▷ Acquiring necessary lower
descendant nodes

22: end if
23: end for
24: end for
25: end function

(1) With different backbone models, regardless 979

of their openness or parameter scale, our frame- 980

work consistently outperforms baseline methods 981

across all evaluation metrics. 982

(2) Compared to state-of-the-art approaches, 983

our framework demonstrates superior perfor- 984

mance on most metrics. 985

(3) Our framework significantly narrows the per- 986

formance gap between open-source and propri- 987

etary models. 988

(4) Our framework exhibits strong generaliza- 989

tion ability on factual reasoning question answer- 990

ing tasks, by learning document routing capabili- 991

ties. 992

B.2 Ablation Study 993

Full results of the ablation study are shown in Ta- 994

ble 7. To evaluate the end-to-end ranking correct- 995

ness of the retrieval process, we propose the In- 996
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Prompt Post-processing Model Train Epoch ANS-F1 EXP-PRE REF-ACC XPL-AVG COL-RATE

enclose
√

base full 7.0 86.3 46.9 82.9 0.6 0.0
enclose

√
inst full 7.0 86.1 50.3 83.7 0.6 0.0

enclose
√

inst lora 4.5 84.0 55.7 81.3 0.4 0.0
tag

√
inst lora 3.5 83.0 57.1 87.0 0.4 0.0

tag Œ inst lora 5.0 84.4 51.1 77.2 7.6 0.4

Table 4: Comparison of different training settings. We evaluate performance of fine-tuned rout-
ing models on the curated test set. ANS-F1 is the f1 score of [ANSWER] behavior, EXP-PRE
is the precision of [EXPAND] behavior, REF-ACC is the accuracy of the [REFUSE] behav-
ior, XPL-AVG is the percentage of expelled output, COL-RATE is the rate of collapsed output.
Enclose and tag prompt represent the format of "[expand]" and "<expand></expand>", respec-
tively.

Figure 6: Training loss curve of routing model. Figure 7: Routing model dev performance.

verse Information Rank Score Scorepsg. Given997

the set of retrieved passages C = {ci}topki=1 and the998

set of reference short answers A, the score is de-999

fined as follows.1000

Scorepsg =

∑
i=1:|C|

1
i · EM(ci, A)

|C|
(6)1001

This metric models the gain of correctness infor-1002

mation with a position-based decay, which aligns1003

with the tendency of both retrieval and generation1004

modules to favor top-ranked results.1005

B.3 Test-time Scaling1006

We report statistics of test-time scaling in Table 81007

and Table 9, including top-k and expand-iter scal-1008

ing.1009
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ASQA

Methods EM(HIT) D-F1 ROUGE MAUVE LEN

Reader based on text-davinci-003
No-retrieval 33.8 24.2 33.3 - -
Retrieve-and-Read 40.0 27.1 34.0 - -
FLARE 41.3 28.2 34.3 - -

Reader based on ChatGPT
No-retrieval 34.1(9.7) 27.4 35.7 18.2 57.5
Retrieve-and-Read 42.8(16.1) 34.4 38.0 57.0 51.1
ASC-F 45.0 31.9 - 41.3 106.7
ASC 44.1 32.2 - 47.0 101.2
RDR2(Ours) 46.1(18.6) 37.1 38.5 70.6 49.1

Reader based on GPT-4o
No-retrieval 41.4(13.7) 33.9 36.2 23.3 58.8
Retrieve-and-Read 47.0(19.1) 36.5 38.4 39.9 68.4
RDR2(Ours) 48.2(21.0) 39.0 38.4 48.3 63.8

Reader based on DeepSeek-V3
No-retrieval 43.0(16.7) 33.1 36.3 21.9 69.2
Retrieve-and-Read 48.8(21.9) 37.4 37.5 36.7 74.2
RDR2(Ours) 50.8(23.2) 39.8 37.8 37.3 68.9

Reader based on Llama-2-13b
No-retrieval 24.7(6.5) 19.3 35.1 13.4 65.9
Retrieve-and-Read 36.5(13.5) 26.9 39.2 31.4 61.2
SELF-RAG(FT) 31.7(8.4) 26.4 37.0 71.6 27.0
SELF-REASONING(FT) 35.2 - - - -
OPEN-RAG(FT) 36.3 - 38.1 80.0 -
FRONT 41.5 - - - -
RDR2(Ours) 41.7(16.9) 31.6 39.2 61.2 69.6

Reader based on Llama-3.1-8b
No-retrieval 28.7(7.5) 22.0 34.7 40.7 65.2
Retrieve-and-Read 40.9(15.9) 30.9 37.9 73.6 69.2
RDR2(Ours) 45.3(18.7) 34.9 38.2 79.2 71.3

Table 5: Main results of RDR2(ASQA). We report full results of different API and open-sources
models, together with results of no-retrieval and retrieve-and-read baselines.
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QAMPARI ELI5

Methods F1-5(F1) REC-5(REC) PRE CLAIM MAUVE LEN

Reader based on ChatGPT
No-retrieval 17.7(12.5) 18.5(10.6) 20.8 23.6 14.4 145.3
Retrieve-and-Read 22.2(15.7) 22.1(13.4) 27.9 22.3 12.2 141.5
ASC-F 18.8(15.7) 45.0(29.8) 13.4 22.2 22.7 172.7
ASC 26.2(19.5) 33.0(20.5) 23.0 21.4 21.3 163.6
RDR2(Ours) 26.4(19.8) 29.0(18.7) 30.9 23.3 14.4 155.2

Reader based on GPT-4o
No-retrieval 26.0(19.3) 28.7(17.6) 30.5 26.5 20.2 158.4
Retrieve-and-Read 23.7(17.0) 23.2(14.7) 31.0 24.5 17.9 154.7
RDR2(Ours) 28.4(21.4) 30.8(20.3) 34.8 25.3 16.9 165.3

Reader based on DeepSeek-V3
No-retrieval 23.4(18.4) 28.7(18.8) 23.3 26.3 15.6 137.4
Retrieve-and-Read 23.2(17.1) 24.6(15.7) 27.3 26.6 14.9 132.4
RDR2(Ours) 27.8(21.7) 32.1(21.6) 31.1 27.4 13.2 152.3

Reader based on Llama-2-13b
No-retrieval 14.9(10.3) 16.4(9.0) 14.3 14.7 21.9 140.2
Retrieve-and-Read 21.0(14.7) 22.0(12.9) 21.6 14.9 20.8 141.2
SELF-RAG - 1.9 1.3 6.1 - -
FRONT - 11.9 22.6 9.3 - -
RDR2(Ours) 23.2(16.7) 24.3(14.9) 25.0 15.4 23.9 148.3

Reader based on Llama-3.1-8b
No-retrieval 13.8(10.3) 19.3(11.1) 13.1 16.0 18.8 139.5
Retrieve-and-Read 20.9(15.1) 23.6(14.3) 22.9 16.3 21.6 141.9
RDR2(Ours) 25.3(19.5) 32.3(21.1) 25.7 16.9 20.3 141.6

Table 6: Main results of RDR2(QAMPARI & ELI5). We report full results of different API and
open-sources models, together with results of no-retrieval and retrieve-and-read baselines.

Method P-EM(P-HIT) P-SCORE P-LEN EM(HIT) D-F1 LEN

RDR2(Ours) 57.3(34.2) 12.7 104.2 45.3(18.7) 38.2 71.3
w/o router 51.7(28.3) 10.2 100.0 40.9(15.9) 30.9 69.2
w/o structure 49.8(28.0) 10.6 67.5 41.3(15.0) 32.5 71.0
w/o similarity 54.8(32.7) 11.8 100.9 43.9(17.8) 33.2 72.3

w/o content 54.2(31.3) 11.7 93.9 43.7(18.0) 34.0 70.0
w/o [expand] 52.9(30.8) 11.5 81.7 42.5(16.1) 32.5 71.9
w/o [refuse] 61.2(37.0) 13.4 176.3 42.9(16.4) 32.8 70.7

Table 7: Ablation results of RDR2(ASQA).
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Methods EM(HIT) D-F1 ROUGE MAUVE LEN

Retrieve-and-Read
top-0 28.7(7.5) 22.0 34.7 40.7 65.2
top-1 33.2(11.8) 25.4 35.1 68.1 65.2
top-2 36.7(13.2) 28.2 36.8 70.2 66.6
top-3 38.2(14.0) 29.5 37.3 75.8 69.7
top-4 40.1(14.6) 30.7 37.7 74.0 70.5
top-5 40.9(15.9) 30.9 37.9 73.6 69.2

RDR2(Ours)
top-0 28.7(7.5) 22.0 34.7 40.7 65.2
top-1 39.4(15.1) 30.2 36.0 69.1 70.5
top-2 41.6(16.5) 32.6 37.7 71.8 69.6
top-3 42.0(16.5) 32.9 37.8 77.7 68.6
top-4 44.0(17.1) 33.9 38.2 76.2 69.4
top-5 45.3(18.7) 34.9 38.2 79.2 71.3

Table 8: Statistics of top-k scaling.

Methods P-EM(P-HIT) P-SCORE P-LEN EM(HIT) D-F1 ROUGE MAUVE LEN

RDR2(Ours)
iter-0 52.9(30.8) 11.5 81.7 42.5(16.1) 32.5 37.7 76.7 71.9
iter-1 55.1(32.7) 12.1 95.5 43.3(17.1) 33.3 37.9 75.9 72.0
iter-2 56.4(33.2) 12.5 95.4 44.3(18.9) 34.5 38.1 78.7 69.3
iter-3 56.7(33.5) 12.6 98.9 44.9(19.6) 35.1 38.2 78.9 68.9
iter-4 56.9(33.7) 12.6 100.1 45.0(18.6) 34.8 38.2 76.0 71.1
iter-5 57.3(34.2) 12.7 104.2 45.3(18.7) 34.9 38.2 79.2 71.3

Table 9: Statistics of expand-iter scaling.

16



C Prompts1010

We show the detailed prompt of data curation, rout-1011

ing and inference as follows:1012

Prompt C.1: Train data curation prompt

You are an expert in reading comprehension tasked with identifying relevant paragraphs from a
document tree to answer a question. Follow these steps carefully:

1. Strict Relevance Assessment:
* First determine if the document’s root heading is fundamentally relevant to the question.
* If the document is clearly about a different topic, immediately return "Cannot answer".
* Only proceed if the document is relevant or potentially relevant to the question.

2. Comprehensive Answer Extraction:
* For expanded paragraphs (visible content):

- Tag as "answer" ONLY if the paragraph DIRECTLY and COMPLETELY answers the question.
- If multiple paragraphs together provide a complete answer, tag ALL relevant ones.
- When paragraphs contain conflicting or supplementary information, include all that are relevant.

3. Collapsed Heading Expansion:
* If any unexpanded nodes might contain information that can answer the question? Tag as "expand"
when ANY of these are true:

- The heading contains synonyms or standard terminology related to the question.
- The section appears in the expected position within a standardized document structure.
- Expanded sibling sections under the same parent contain answers.

4. Output Requirements:
* Strictly use this JSON format:

[
{
"id": [integer],
"tag": "answer"|"expand",
"explanation": "[concise rationale]"

}
]
OR "Cannot answer".

* Never include irrelevant paragraphs just because they mention similar keywords.
* For multi-part answers, include ALL relevant paragraphs.
* If no paragraphs meet the strict criteria, return "Cannot answer".

## Question
{question}

## Document
{context}

1013

Prompt C.2: Routing module prompt

You are asked to identify relevant nodes in a document tree that can answer the given question. Use
[ANSWER] if a paragraph directly contributes to answering the question. Use [EXPAND] if a collapsed
heading might contain information that can answer the question. If neither exists, reply exactly
"Cannot answer".
## Question
{question}

## Document
{context}

## Response

1014
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Prompt C.3: Reader prompt

Instruction: Write an accurate, engaging, and concise answer for the given question. Use an unbiased
and journalistic tone.
## Paragraph
{paragraph}

## Question
{question}

## Response

1015

D Case Study1016

We show a complete demonstration of our RDR21017

as follows, including comparison of generation1018

and retrieval stage and detailed routing behaviors.1019
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User question What is the tallest ride at six flags over texas?
Short answers The Titan, The New Texas Giant, The Texas Giant, Texas

SkyScreamer, Superman: Tower of Power
Stand long answer The Six Flags Over Texas theme park has a number of different

rides and roller coasters. The park’s tallest swing ride is the Texas
SkyScreamer at 400 feet and tallest triple drop tower ride is Super-
man: Tower of Power at 325 feet. The tallest roller coaster at the
park in 2001 was The Titan at 245 feet. The park’s tallest wooden
roller coaster in 2011 was The New Texas Giant at 153 feet, while its
tallest one in 1990 was The Texas Giant at 143 feet.

No-Retrieval output At Six Flags Over Texas, thrill-seekers can experience the park’s
tallest ride, the ’ Mr. Freeze: Reverse Blast ’. However, more re-
cently, it has been surpassed by the ’ Dare Devil Dive ’ in the ’Thrill
Zone’ area of the park, but that is no longer there.

RAG output According to the information provided, Six Flags Over Texas has
had several record-breaking attractions over the years. In 2003, the
park opened the Superman Tower of Power , which was the tallest
ride of its kind in the world at the time of its opening. However, it
does not specify if it is still the tallest ride in the park.

RDR2 output According to the information provided, the tallest ride at Six Flags
Over Texas is the Texas SkyScreamer , which stands at a height of

400 feet. In 2003, the park opened the Superman Tower of Power ,
which was the tallest ride of its kind in the world at the time. It’s
also worth noting that the park has had several record-breaking
roller coasters, including the Titan , which is the tallest, fastest, and
longest coaster in Texas.

Table 10: End-to-end comparison between three frameworks.
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Top-3 Retrieval Chunks

Six Flags Over Texas bringing back the past when they reopened Casa Mag-
netica. In 2003 Six Flags Over Texas opened the
Superman Tower of Power . This was the tallest ride of its kind

in the world at the time of its opening. [...] For 2007 and 2008,
Six Flags Over Texas was home to "Cirque’,

Six Flags Over Texas end of the decade, Six Flags Over Texas had added ten roller
coasters to its list of attractions. During the first decade of the
21st century, Looney Tunes USA was restructured. In 2001, the
park introduced its tallest, fastest, longest roller coaster, Titan .
[...] The park has also made steps toward

Titan (roller coaster) Titan is a steel hyper coaster located at Six Flags Over Texas
in Arlington, Texas. Unlike most hypercoasters, Titan is a com-
bination of an out and back roller coaster and a twister roller
coaster. It stands at 245 feet and contains a 255 drop at 85 miles
per hour. It is the tallest, fastest, and longest coaster in Texas.
[...] In August 2000, Six

Routing Passages

Six Flags Over Texas During the first decade of the 21st century, Looney Tunes USA
was restructured. In 2001, the park introduced its tallest, fastest,
longest roller coaster, Titan. [...] In 2003 Six Flags Over Texas
opened the Superman Tower of Power . This was the tallest ride
of its kind in the world at the time of its opening. [...]

* Tallest Roller Coaster in Texas - Titan (245ft)
* Tallest swing ride in the world Texas Skyscreamer (400ft)

(2013)
Titan (roller coaster) Titan is a steel hyper coaster located at Six Flags Over Texas

in Arlington, Texas. Unlike most hypercoasters, Titan is a com-
bination of an out and back roller coaster and a twister roller
coaster. It stands at 245 feet and contains a 255 drop at 85 miles
per hour. It is the tallest, fastest, and longest coaster in Texas.

Table 11: Comparison between retrieval chunks and routing passages.
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Document Structure Tree

-1: Six Flags Over Texas
0: ==Introduction==

1: Six Flags Over Texas is a 212-acre (86 ha) theme park located in Arlington,
Texas, east of Fort Worth and about 15 miles (24km) west of Dallas. [...]

2: The park is managed by the Six Flags Entertainment Corp., which also owns
53.1% interest of the Texas Limited Partnership that owns the park. [...]

3: ==History==
4: ===Initial planning and construction===
[...]
16: ===1990s===

17: The 1990s was a rather rough decade in comparison from decades past. The
decade started off with a bang when Six Flags Over Texas introduced the Texas Giant
roller coaster. [...]

18: ===2000s===
19: During the first decade of the 21st century, Looney Tunes USA was restruc-

tured. In 2001, the park introduced its tallest, fastest, longest roller coaster, Titan . [...]
In 2003 Six Flags Over Texas opened the Superman Tower of Power . This was the
tallest ride of its kind in the world at the time of its opening. [...]

20: ===2010s===
29: ==Firsts, bests, and other records==

30: ===Firsts and ones of a kind===
40: ===Records===

41: * Tallest Roller Coaster in Texas - Titan (245ft)
42: * Fastest Roller Coaster in Texas - Titan (85mph)
43: * Largest Land Based Oil Derrick - Oil Derrick (300ft)
44: * Tallest swing ride in the world Texas Skyscreamer (400ft) (2013)

45: ===Awards===
48: ==Events==
54: ==Areas and attractions==

56: ===Star Mall===
[...]
157: ===Tower===

168: ==Former Attractions==

Routing Behaviors

Light content node 17 from retrieved passages.
1 [EXPAND] 0

Light content node 1, 2 from expand behavior.
2 [REFUSE]

Light content node 19 from retrieved passages.
3 [ANSWER] 19 [EXPAND] 40

Light content node 41, 42, 43, 44 from expand behavior.
4 [ANSWER] 41, 44

Routing Passages: 19, 41, 44

Table 12: Demonstration of routing behaviors.
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