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Abstract

While large language models (LLMs) demon-
strate impressive capabilities, their reliance on
parametric knowledge often leads to factual
inaccuracies. Retrieval-Augmented Genera-
tion (RAG) mitigates this by leveraging exter-
nal documents, yet existing approaches treat
retrieved passages as isolated chunks, ignor-
ing valuable document structure that could en-
hance knowledge acquisition and utilization.
Motivated by this gap, we propose Retrieve-
DocumentRoute-Read (RDR?), a novel frame-
work that explicitly incorporates document
structure throughout the RAG process. RDR?
employs an LLM-based router to dynamically
navigate document structure trees, jointly eval-
uating content relevance and hierarchical rela-
tionships to assemble optimal evidence. Our
key innovation lies in formulating document
routing as a trainable task, with automatic be-
havior curation and structure-aware passage
selection inspired by human reading strategies.
Through comprehensive evaluation on three
challenging datasets, RDR? achieves state-of-
the-art performance, demonstrating that ex-
plicit structural awareness significantly en-
hances RAG systems’ ability to acquire and
utilize knowledge, particularly in complex sce-
narios requiring multi-document synthesis.

1 Introduction

Large language models (LLMs) (Brown et al.,
2020) have demonstrated remarkable capabilities
across a wide range of natural language process-
ing (NLP) tasks, yet even state-of-the-art models
continue to generate factually incorrect responses
(Mallen et al., 2023; Min et al., 2023; Ji et al.,
2023) despite their growing scale and capability
(Ouyang et al., 2022). Retrieval-Augmented Gen-
eration (RAG) (Lewis et al., 2020; Guu et al.,
2020; Borgeaud et al., 2022) addresses these lim-
itations through a Retrieve-and-Read paradigm,
which first retrieves relevant passages then uses

them as context for generation (Lewis et al.,
2020; Izacard and Grave, 2021; Jiang et al., 2022;
Shi et al., 2024). This approach combines the
strengths of information retrieval and generative
models, proving particularly effective for atomic-
fact question answering (QA) (Joshi et al., 2017;
Thorne et al., 2018; Kwiatkowski et al., 2019;
Mallen et al., 2023) where a single precise re-
trieval suffices to answer clear information needs.

Recent advances in RAG have extended its capa-
bilities to complex knowledge-intensive scenarios
requiring multi-perspective responses, particularly
for factual-inductive queries that demand coherent
synthesis of multiple knowledge fragments (Fan
et al., 2019; Stelmakh et al., 2022; Amouyal et al.,
2023). However, current RAG frameworks pro-
cess retrieved passages as isolated chunks, discard-
ing their inherent document structure - a limitation
stemming from both structure-agnostic pipeline
design and the flat-context paradigm of standard
retrieval methods.

While fixed chunking ensures retrieval effi-
ciency, it restricts query-adaptive content selec-
tion, discarding the document’s native organiza-
tion which humans naturally exploit for informa-
tion navigation and relational reasoning. At the
reading phase, retrieved passages are simply or-
dered by relevance scores, potentially disrupting
their original sequence in the source document.
Even with useful information, this loss of struc-
tural priors forces the model to implicitly recon-
struct relationships that were explicitly encoded in
the source hierarchy. This structural blindness con-
strains RAG’s knowledge acquisition and synthe-
sis capabilities.

In this paper we ask: can LLMs leverage doc-
ument structural information, and can RAG sys-
tems benefit from such structural awareness? We
propose Retrieve-DocumentRoute-Read (RDR?),
where a structure-aware LM performs document
routing through three behaviors inspired by how



humans selectively read sections, expand promis-
ing headings, and skip irrelevant parts when
browsing articles. Through this process, RDR? dy-
namically assembles query-oriented passages for
better knowledge acquisition and utilization.

We evaluate RDR? on three representative
datasets requiring multi-document synthesis, cov-
ering ambiguous (ASQA (Stelmakh et al., 2022)),
list-style (QAMPARI (Amouyal et al., 2023)), and
in-depth (ELI5 (Fan et al., 2019)) question answer-
ing. Across all datasets, RDR? achieves new state-
of-the-art results with only the router trained on
questions from the ASQA training set (without
answer supervision), while keeping the retriever
and reader off-the-shelf. Additionally, RDR? en-
ables test-time scaling without weight updates and
demonstrates generalization across different RAG
components (i.e., retrievers and readers).

Our main contributions are:

* The proposal of RDR?, the first RAG frame-
work explicitly incorporates document struc-
ture throughout the retrieval and reading pro-
cess, to enhance both knowledge acquisition
and utilization;

* A novel formulation of document routing as a
trainable task, with an automatic behavior cu-
ration pipeline and LLM-based router train-
ing;

* Comprehensive experiments on ASQA,
QAMPARI, and ELI5 establishing RDR?’s
consistent superiority over state-of-the-art
methods.

2 Related Work

Retrieval-Augmented Generation (Lewis et al.,
2020; Guu et al., 2020; Borgeaud et al., 2022)
(RAG) augments language models with non-
parametric knowledge through retrieved pas-
sages, demonstrating significant improvements
in knowledge-intensive tasks (Ram et al., 2023;
Asai et al., 2023a). The standard Retrieve-and-
Read framework operates in two stages: (1) a
dense retriever (typically a bi-encoder architecture
(Karpukhin et al., 2020; Ni et al., 2022; Wang
et al., 2024)) retrieves passages relevant to the in-
put question, and (2) an LM reader processes these
passages either as an off-the-shelf model (Ram
et al., 2023; Zhou et al., 2024; Li et al., 2025)
or through task-specific fine-tuning (Izacard et al.,
2023; Lin et al., 2023; Jain et al., 2023; LUO et al.,
2024; Gan et al., 2024) to generate grounded re-

sponses. While effective for simple tasks with
clear information needs, RAG systems show lim-
itations in complex scenarios, necessitating more
advanced methods.

Knowledge Acquisition. To achieve more com-
prehensive knowledge acquisition, recent works
develop enhanced retrieval mechanisms. FLARE
(Jiang et al., 2023) prompts an LLM to actively
decide when and what to retrieve based on the
model’s confidence (i.e., token probabilities). Ma
et al. (2023) introduces query rewriting to bridge
the gap between user questions and retrieval re-
quirements. CoRAG (Wang et al., 2025) fine-
tunes an LLM to generate intermediate retrieval
chains, enabling step-by-step multi-hop querying.
Unlike prior works that focus on pre-retrieval
query optimization, our approach enhances knowl-
edge acquisition through post-retrieval document
routing - iteratively exploring document hierar-
chies to uncover useful information.

Knowledge Utilization. For knowledge uti-
lization, effective RAG requires critical evalua-
tion and integration of retrieved knowledge. SELF-
RAG (Asai et al.,, 2023b) fine-tunes LLMs to
critique retrieved passages via self-reflection, as-
sessing their relevance, supportiveness, and util-
ity. RankRAG (Yu et al., 2024) instruction-tunes
a single LLM for the dual purpose of context
ranking and answer generation, improving end-to-
end knowledge grounding. Departing from static
chunk filtering, our method dynamically assem-
bles node-level information units within document
hierarchy, achieving both structural integrity and
adaptive flexibility.

Structure Information. Several approaches
have attempted to incorporate structural informa-
tion into RAG frameworks. GraphRAG (Edge
et al., 2024) processes documents into a knowl-
edge graph with hierarchical community sum-
maries, establishing a RAG paradigm distinct
from semantic retrieval over flat text chunk. RAP-
TOR (Sarthi et al., 2024) constructs hierarchi-
cal document embeddings through recursive node-
level clustering and summarization, capturing
progressively abstracted semantic content across
tree levels. While existing approaches offline-
encode hierarchical information into fixed repre-
sentations (e.g., summaries or embeddings), our
framework online-perceives document structure
through dynamic routing.
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Figure 1: Overwiew of the RDR? framework. RDR? extends standard Retrieve-and-Read with document-structure-
aware routing for iterative, fine-grained knowledge retrieval.

3 Methodology

We  propose  Retrieve-DocumentRoute-Read
(RDR?), a framework that iteratively assembles
informative and complete passage chunks via a
structure-aware LLM to enhance RAG pipeline
with beter knowledge acquiring and utilization. In
this section, we first present the overview of the
RDR? framework, as illustrated in Figure 1. Then
we define a tree structure that represents the doc-
ument hierarchy while maintaining stable scope
and adaptive contextual focus. Lastly, we give
the scheme of how to construct an LLM-based
routing module, as the core component of our
proposed framework.

3.1 Retrieve-DocumentRoute-Read

The  Retrieve-DocumentRoute-Read
framework consists of three stages:

Retrieve. Given an input question ¢, retrieve
the top-k most relevant passage chunks C,. =
{cﬁ), e cyz)} by the Retriever.

(RDR?)

Cyre = Retriever(q) (D
Document Route.
7(«2) C Ci. grouped by their originating document
d;, reconstruct a routed passage cq(%) conditioned
on the question ¢ and the document d; via the

Router.

For each passage subset

m

Cro = {07("2'0)}1‘:1 61(%) = ROUter(Qy dz) 2)

Read. Generate the answer a to the question g,
leveraging both the routed passages C.., and the
parametric knowledge of the Reader.

a = Reader(q, [V, - -, ™))

TOo

3)

3.2 Document Structure Representation

While standard RAG frameworks process only flat
content chunks, our approach preserves critical
structural information through formal tree repre-
sentations. To capture hierarchical relationships
in documents, we define two types of nodes: (1)
Structure nodes represent organizational hierarchy
(i.e., headings), and (2) Content nodes contatain
substantive textual information (i.e., passages).

Document Structure Tree. A Document Struc-
ture Tree (DST) encodes the full document hierar-
chy, where each node is represented as:

DST-node = (id, text, T, parent, C) 4)

Here 7 € {structure, content} denotes the node
type, and C indicates the ordered set of child nodes.
Each node is defined by a unique identifier (id),
associated text content - either a heading title (for
structure nodes) or passage text (for content nodes)
- and a pointer to its parent node’s id (null for the
root). The root node, always a structure node, cor-
responds to the document title.

Retrieval Subtree. A Retrieval Subtree (RST)
is a subtree derived from the DST designed to
maintain stable retrieval scope while adaptively
updating contextual focus. An RST consists of (1)
all structure nodes (complete document hierarchy),
and (2) selected content nodes (partial content cov-
erage).

During inference, the RST is first initialized
with content siblings of retrieved passages, then
iteratively updated by replacing them with content
nodes under a single router-selected heading while
preserving all structure nodes (See Algorithm 1 in
Appendix A.2). This constrained derivation strat-



egy ensures stable RST size while dynamically re-
fining the contextual focus.

3.3 Routing Module

As shown in Figure 2, the routing module syner-
gistically combines document tree structure with
an LLM-based router, enabling structure-aware
retrieval-augmented generation.
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Figure 2: Workflow of the routing module. Given a
user input ¢ and a document structure tree (Section 3.2)
anchored by retrieved passage, RDR? maintains a re-
trieval subtree s where: (i) all structure nodes persist,
(i1) only content nodes under currently selected head-
ings are expanded (previous fold). At step ¢, the router
generates behavior b; = Router(q, s¢) to: (a) select
useful content nodes, (b) unfold a promising structure
node, or (c) stops routing.

Task Formulation. We define document rout-
ing task as iterative navigation through a docu-
ment structure tree, dynamically assembling fine-
grained passage chunks with both content rel-
evance and structural integrity. This process
emerges through compositional application of
three atomic behaviors at each step:

* [ANSWER]: Select a visible content node

when its text directly answers the question;

* [EXPAND]: Unfold a collapsed structure
node if its heading text or contextual position
suggests potential relevance;

» [REFUSE]: Stop exploring the current sub-
tree when no nodes satisfy [ANSWER| or
[EXPAND)] criteria.

Behavior Curation. Standard RAG datasets

consists of a question with a reference answer,
without providing the intermediate routing trajec-

tories. We propose an automatic method for curat-
ing routing behaviors solely from the question, re-
quiring no necessary access to the answer. Specif-
ically, given a question g, we first retrieve top-k
passages via an off-the-shelf retriever, access their
originating document, and derive corresponding
retrieval subtrees S. We condition an LLM respec-
tively on each subtree s; € S, along with the ques-
tion ¢ to generate a single-turn routing behavior
b. Finally, the routing dataset cruated consists of
(q, s, b) triples.

Training. The training paradigm focuses on
equipping the model with fundamental decision-
making capabilities through exposure to individ-
ual routing behaviors (as opposed to complete iter-
ative procedures). We fine-tune an LLM on the cu-
rated routing dataset using the standard next-token-
prediction objective under supervised-fine-tuning
(SFT), where the cross-entropy loss £ is computed
only on the target output tokens. This approach
provides the necessary components for multi-step
exploration during inference.

L = —log P(blg, s) 6))

We convert document hierarchy into LLM-
understandable text representation. Specifically,
the input retrieval subtree uses the newline-
delimited "id: text" format, where each level
of hierarchy is represented by an additional in-
dentation unit preceding the node identifier. The
output behavior follows the "[BEHAVIOR] id:
text_prefix" format to ensure semantic ground-
ing to the original id-text binding.

4 Experiments

4.1 Datasets and Metrics

We evaluate RDR? on three datasets: ASQA (Stel-
makh et al., 2022), QAMPARI (Amouyal et al.,
2023) and ELI5 (Fan et al., 2019), all of which
emphasize multi-passage comprehension and syn-
thesis.

ASQA (Stelmakh et al., 2022) is a long-form
factoid QA dataset featuring inherently ambigu-
ous questions that requires RAG methods to rec-
oncile diverse interpretations and produce coher-
ent responses. The inherent ambiguity of these
questions necessitates comprehensive information
synthesis from multiple documents. Each ques-
tion in ASQA is annotated with both long-form
answers (avg. 65 words) and extractive question-
answer pairs (avg. 3 instances), facilitating fine-



grained correctness evaluation. We adopt the offi-
cial metrics from the original ASQA paper, includ-
ing Exact Match (EM), Disambig-F; (D-F;), and
ROUGE-L (Lin, 2004) (R-L). Following Gao et al.
(2023), we additionally employ MAUVE (Pillutla
et al., 2021) (Mau) for assessing response fluency.

QAMPARI (Amouyal et al., 2023) is a list-
style QA dataset where answers comprise multiple
factual short entities (avg. 13 instances) extracted
from diverse passages, requiring RAG methods to
perform cross-document fact aggregation. Follow-
ing the original QAMPARI paper, we evaluate us-
ing exact-match recall and precision (Pre) against
the gold answer list. With reference to ALCE
benchmark (Gao et al., 2023), we consider recall
as 100% for predictions with at least 5 correct an-
swers (R-5). We additionally calculate their har-
monic mean (F;-5).

ELIS (Fan et al., 2019) contains complex, di-
verse, open-ended questions derived from post ti-
tles (with optional elaborations) in Reddit’s "Ex-
plain Like I’'m Five" forum, requiring RAG meth-
ods to elaborate in-depth explanations from multi-
ple documents. The dataset provides web-crawled
paragraph-length or longer answers (avg. 131
words) as reference responses, posing unique chal-
lenges for comprehensive knowledge integration.
Following (Gao et al., 2023), we evaluate answer
correctness using Claim Recall (Cla) and fluency
with MAUVE (Mau).

4.2 Baselines

We evaluate our framework against three cate-
gories of baselines: (1) No-Retrieval: the reader
directly answers questions using only its paramet-
ric knowledge, (2) Retrieve-and-Read: the stan-
dard RAG pipeline with top-k retrieved passages,
and (3) Advanced RAG: including methods based
on proprietary LLMs: ASC and its variant ASC-
F (Thirukovalluru et al., 2024), as well as tech-
niques fine-tuned on open-source LLMs: SELF-
RAG (Asai et al., 2023b), SELF-REASONING (Xia
et al., 2025), OPEN-RAG (Islam et al., 2024), and
FRONT (Huang et al., 2024).

4.3 Experimental Settings

For retrieval, we use the Wikipedia dump from
Karpukhin et al. (2020). We construct DSTs (de-
fined in Section 3.2) from the corresponding wiki
pages, totaling 5.82M documents. Unless other-
wise specified (e.g., DPR (Karpukhin et al., 2020),
GTR (Ni et al., 2022)), we use the off-the-shelf

Contriever-MS MARCO (Izacard et al., 2022) as
the retriever, with top-5 passages for all retrieval-
augmented methods.

We curate routing behaviors using Deepseek-
v3 (Liu et al, 2024) following the proce-
dure defined in Section 3.3 on ASQA train-
ing questions, resulting in 23,827 training sam-
ples (14,822 [ANSWER], 3,793 [EXPAND], and
5,212 [REFUSE]) and 500 test samples (287
[ANSWER], 90 [EXPAND], and 123 [REFUSE]).
The router is fine-tuned via LoRA (Hu et al., 2022)
on Llama-3.1-8B-Instruct (Grattafiori et al., 2024)
for 3.5 epochs (see Appendix A.1 for implemen-
tation details, Appendix A.2 for training hyperpa-
rameters, and Appendix sec:c for prompts).

For open-source models (Llama-2-13B-Chat
(Touvron et al., 2023) and Llama-3.1-8B-Instruct
(Grattafiori et al., 2024)), we employ greedy de-
coding with length control to match reference
averages, as significant inter-model length varia-
tions were observed (consistent with Asai et al.
(2023b)’s findings) to ensure fair comparison.
For proprietary models (ChatGPT (Ouyang et al.,
2022) and Deepseek-v3 (Liu et al., 2024)), we set
temperature=0.2 without length constraints, since
their output lengths naturally align with the refer-
ence (see Appendix C for prompt details).

All experiments run on single NVIDIAA100-
PCIE-40GB GPUs.

S Results and Analysis

We first report overall experimental results across
all three datasets, comparing the performance of
RDR? against the baseline methods described in
Section 4.2. Subsequently, we conduct compre-
hensive ablation studies to evaluate the contribu-
tion of each key component in our framework. Fi-
nally, we investigate the framework’s behavior un-
der different test-time scaling conditions and its
robustness with various retrievers and readers. A
comprehensive case study can be found in Ap-
pendix D.

5.1 Main Results

Overall Performance. Figure 3 evaluates the
overall performance of RDR? against two fun-
damental frameworks: no-retrieval and Retrieve-
and-Read. Notably, in RDR? only the router is
trained on ASQA questions (without answer super-
vision), while both retriever and reader remain off-
the-shelf. QAMPARI and ELIS serve as challeng-
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ASQA QAMPARI ELI5
EM D-F; R-L Mau Len |F;-5 R-5 Pre| Cla Mau Len
Reader based on ChatGPT
ASC-F 450 31.9 - 413 106.7 | 18.8 450 134|222 227 1727
ASC 44.1 32.2 - 470 101.2 | 262 33.0 23.0|214 213 1636
RDR?(Ours) 46.1 371 385 70.6 49.1 | 264 29.0 309|233 144 1552
Reader fine-tuned on Llama-2-13b

SELF-RAG 31.7 - 37.0 71.6 - - 1.9 1.3 6.1 - -
SELF-REASONING 35.2 - - - - - - - - - -
OPEN-RAG 36.3 - 38.1 80.0 - - - - - - -
FRONT 41.5 - - - - - 11.9 226 | 9.3 - -
RDR?(Ours) 417 316 392 612 696 | 232 243 250|154 239 1483

Table 1: Comparison between RDR? and other RAG methods on ASQA, QAMPARI and ELIS5 wrt. corresponding
metrics. EM is Exact Match, D-F; is Disambig-F;, R-L is ROUGE-L, Mau is MAUVE, F;-5 is the harmonic mean
of recall-5 (R-5) and precision (Pre), Cla is Claim Recall. Bold indicates best results within each reader category.

Gray denotes the word-level length (Len).

ing generalization tests, being completely with-
held from our router training.

RDR? continuously improves RAG perfor-
mance. With larger language models, stan-
dard Retrieve-and-Read shows diminishing re-
turns over no-retrieval, suggesting their stronger
parametric knowledge reduces reliance on re-
trieved content. While RDR? also exhibits this
scaling trend versus no-retrieval, its improvement
over Retrieve-and-Read remains relatively sta-
ble across model scales, confirming the inherent
value of document structure awareness in retrieval-
augmented generation.

RDR? effectively generalizes to held-out
datasets. While RDR? maintains strong perfor-
mance on QAMPARI comparable to its ASQA re-
sults, we observe limited gains on ELI5. This
aligns with prior findings (Krishna et al., 2021;
Jiang et al., 2023) on the intrinsic challenges
of open-ended long-form QA, where the expan-
sive space of potentially valid answers poses fun-

damental difficulties for retrieval-augmented ap-
proaches and their evaluation.

Comparison with baselines. Table 1 compares
RDR? against cutting-edge RAG methods employ-
ing either proprietary LLMs (ChatGPT) or fine-
tuned open-source Llama-2-13B variants as their
backbone readers.

RDR? achieves new state-of-the-art results.
Across all three datasets - ASQA, QAMPARI and
ELI5 - RDR? consistently outperforms existing
approaches, demonstrating strong generalization
across diverse QA scenarios. Specifically:

It is noteworthy that among the compared
methods based on open-source models, all re-
quire reader fine-tuning on carefully annotated
question-answer pairs (some including training set
of the downstream tasks), whereas our approach
achieves superior performance using only readily
available questions for router training, paired with
an entirely off-the-shelf reader.

Furthermore, methods employing proprietary



LLMs generate significantly longer responses
(2x the gold answer length on ASQA) to achieve
high EM recall, while our approach attains better
results with approximately 50% shorter outputs.
On QAMPARI, this verbosity leads to precision
degradation, whereas our method maintains bal-
anced precision-recall performance. These obser-
vations collectively validate our framework’s en-
hanced efficiency in information delivery.

5.2 Ablation Study

Table 2 presents comprehensive ablation stud-
ies analyzing three critical dimensions of our
framework: pipeline architecture (defined in Sec-
tion 3.1), router information (defined in Sec-
tion 3.2), and routing behaviors (defined in Sec-
tion 3.3). We evaluate both intermediate retrieved
passages and final generated answers, measuring
factual correctness through Exact Match (EM) and
verbosity via word count (Len).

Passage Answer
EM Len EM Len
RDR?(Ours) 573 1042 453 713
w/o router 51.7 100.0 40.9 69.2
w/o structure 498 675 413 71.0
w/o similarity 548 100.9 43.9 723
w/o content 542 939 437 70.0
w/o [EXPAND] 529 81.7 425 719
w/o [REFUSE| 61.2 1763 429 70.7

Table 2: Ablation Study on ASQA. Ablated variants
(w/o = without) are defined in Section 5.2. We report
Exact Match (EM) and word-level length (I.en) for pas-
sages and answers. Bold and Underline denote best and
second best results, respectively.

5.2.1 Pipeline Architecture

Removing the routing module (w/o router) re-
duces the RAG pipeline to standard Retrieve-and-
Read framework. Our full framework significantly
improves factual recall (+5.6 EM) while maintain-
ing comparable passage length (104.2 vs. 100.0),
demonstrating enhanced informativeness without
compromising conciseness. This improvement
carries through to answer generation (+4.4 EM),
demonstrating consistent gains across the entire
RAG pipeline.

5.2.2 Router Information

The router processes two types of information: (1)
structure from document headings, and (2) sim-

ilarity from retrieved passages. We ablate each
component:

Ablating Structure (w/o structure). We dis-
card document hierarchy and use only retrieved
passages', where the router simply accepts or re-
fuses individual passages. We observe significant
drops in both passage retrieval (-7.5 EM) and an-
swer generation (-4.0 EM) versus the full frame-
work, confirming structural cues provide critical
gains. Compared to w/o router, this ablation yields
less informative passages (-1.9 EM) but better an-
swers (+0.4 EM), showing structural awareness en-
ables more effective knowledge organization de-
spite occasional over-filtering.

Ablating Similarity (w/o similarity). We ini-
tialize the RST with content nodes under a random
heading (instead of retrieved passage siblings).
A stricter variant (w/o content) removes content
nodes entirely, despite this configuration being
completely unseen during training. w/o similarity
causes moderate performance drops (-2.5 EM pas-
sages, -1.4 EM answers), confirming that provid-
ing question-relevant content offers crucial guid-
ance for structural understanding and document
routing. The small gap between these variants (0.6
EM passages, 0.2 EM answers) demonstrates the
router’s trained structural reasoning generalizes to
unseen document formats.

5.2.3 Routing Behaviors

We validate each atomic behavior’s necessity for
document routing:

Ablating Expansion (w/o [EXPAND]). The
router can only select or refuse among currently
visible nodes, losing the ability to explore new sub-
trees. The noticeable declines versus full frame-
work (-4.4 passage EM, -2.8 answer EM) confirms
expansion is crucial for discovering content that
can hardly be recalled by similarity alone. Yet still
outperforms w/o router (+1.2 passage EM, +1.6
answer EM), showing RAG can benefit from basic
structure awareness.

Ablating Refusal (w/o [REFUSE)). The router
must either answer or expand at least one node in
each step, potentially forcing suboptimal choices.
Passage informativeness is substantially increased
(+3.9 EM), yt its length doubled, introducing noise
that ultimately harms answer quality (-2.4 EM),
proving selective rejection is vital for concise
knowledge organization.

'To ensure fair comparison, we reconstruct content at the
node level to avoid information loss from chunk truncation
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5.3 Test-time Scaling

Inspired by OpenAl ol (Jaech et al., 2024)’s ob-
servation, our framework enables dynamic test-
time compute scaling without model weight up-
dates. We investigate two scaling dimensions: (1)
top-k scaling where we vary the number of re-
trieved passages k € [0,5], and (2) expand-iter
scaling which controls document expansion iter-
ations iter € [0, 5], With their impacts demon-
strated in Figure 4.

Top-k Scaling. As shown in Figure 4 left, in-
creasing k consistently improves both retrieval and
answer correctness, as expanding the search space
enhances the likelihood of capturing relevant doc-
uments. While standard Retrieve-and-Read ex-
hibits similar scaling trends, our framework main-
tains a consistent performance advantage. This
suggests that structural awareness potentially en-
hances the benefits of retrieval test-time scaling.

Expand-iter Scaling. As shown in Fig-
ure 4 right, increasing expansion iterations yields
consistent improvements in both passage util-
ity and answer quality. Our controlled expan-
sion mechanism introduces a novel RAG scal-
ing paradigm, offering adjustable trade-offs be-
tween performance and computational cost - par-
ticularly valuable for applications with varying
latency-accuracy requirements.

5.4 Robustness

Figure 3 demonstrates RDR?’s robustness to di-
verse readers and held-out datasets. We fur-
ther investigate the retrievers compatibility. As
shown in Figure 5, RDR? maintains stable per-
formance with different retrievers across datasets,
confirming its plug-and-play adaptability. Oppo-
sitely, standard Retrieve-and-Read exhibits perfor-

mance fluctuations, empirically validates that ex-
plicit structure perception enhances RAG’s robust-
ness to component variations - a key advantage for
modular deployments.

ASQA

QAMPARI
Retrieve-and-read ~ RDR?  Retrieve-and-read ~ RDR?

GTR
== DPR

Hi

°

20 30 40 50
Correctness

Figure 5: Robustness experiment across different re-
trievers on ASQA and QAMPARI wrt. corresponding
correctness metrics: Exact Match for ASQA and F-5
for QAMPARI.

6 Conclusion

This work introduces RDR?, a novel framework
that enhances RAG systems’ knowledge acquisi-
tion and utilization through structure-guided iter-
ative document routing. Our approach dynami-
cally navigates document structure trees using an
LLM-based router, which jointly considers con-
tent relevance and hierarchical relationships to as-
semble optimal evidence. Comprehensive evalu-
ations across three datasets demonstrate RDR?’s
consistent outperformance of existing methods.

Limitations

We acknowledge three key limitations of this work:
(1) While our routing mechanism effectively navi-
gates intra-document hierarchies, it processes each



document independently, lacking explicit model-
ing of their relationships. The document count
is determined by the initial top-k retrieval, po-
tentially limiting inter-document knowledge inte-
gration. (2) The framework requires offline con-
struction of Document Structure Trees (DSTs) for
the entire datastore. Although dynamic DST con-
struction during inference is possible, this would
introduce latency to the routing pipeline. (3)
The iterative routing process incurs computational
overhead, though this can be partially mitigated
through controlled expansion iterations during in-
ference.

Ethical Concerns

This study focuses on improving knowledge ac-
quisition and utilization in RAG systems through
document structure awareness. All data, models,
and APIs used in our experiments are sourced
from publicly available platforms to ensure trans-
parency and reproducibility. We strictly adhere to
ethical guidelines throughout the research process,
guaranteeing that our work poses no harm to in-
dividuals or groups. Furthermore, we commit to
avoiding any form of deception or misuse of infor-
mation in both methodology and application.
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A Implementation Details

A.1 Dataset curation

As shown in Table 3, the automatically con-
structed routing dataset consists of 23,827 training
samples, including 14,822 [ANSWER] instances,
3,793 [EXPAND] instances, and 5,212 [REFUSE]
instances.

Answer Expand Refuse Total
Train 14,822 3,793 5,212 23,827
Test 287 90 123 500

Table 3: Routing Dataset.

For the curation of the routing dataset, we col-
lect queries from the training set of ASQA, which
are then fed into the retriever to get top-k relevant
chunks. Based on the retrieval result, we identify
the original Document Structure Tree and utilize
the Levenshtein Distance algorithm to map the re-
trieved chunk to content nodes within the structure
tree, using a sliding window with a stride of one.
Consequently, we employ the RST Derivation Al-
gorithm 1 to traverse and preserve all siblings, an-
cestors and descendants with content type of the
mapping nodes, resulting in the corresponding Re-
trieval Subtrees. Finally, we use the DeepSeek-V3
API to construct single-turn routing results given
the queries and subtrees.

A.2 Training details

We choose Llama-3.1-8B-instruct as the backbone
of the routing model and employ LoRA for effi-
cient fine-tuning. Specifically, we set lora_rank as
8, lora_alpha as 16, gradient accumulated batch
size as 8, learning rate as le-5 and epoch as 5. We
also compare different training settings, as shown
in Table 4, and finally select the model based on
instruct model with tag format prompt.

B More Experiments

B.1 Main results

As shown in Table 5 and Table 6, we report full
results of our main experiment. We can observe
that:

12

Algorithm 1 RST derivation

Require: DST, Lighted nodes
1: function LIGHTNODES(T'ree, Nodes)

2: for each node € Nodes do

3: stblings < GETSIBLINGS(T'ree,
node) > Acquiring necessary sibling nodes

4: for each sibling € siblings do

5: if sibling.type = "content" then

6: stbling.lighted <— True

7: end if

8: end for

9:

10 current < node

11 while current.parent # () do

12: current < current.parent

13: if current.type = "structure" then

14: break © Acquiring necessary

upper ancestor nodes

15: end if

16: current.lighted < True

17: end while

18:

19: for each sibling € siblings do

20: if sibling.type = "content" then

21: LIGHTDESCENDANTS(T'ree,
stbling) > Acquiring necessary lower
descendant nodes

22: end if

23: end for

24: end for

25: end function

(1) With different backbone models, regardless
of their openness or parameter scale, our frame-
work consistently outperforms baseline methods
across all evaluation metrics.

(2) Compared to state-of-the-art approaches,
our framework demonstrates superior perfor-
mance on most metrics.

(3) Our framework significantly narrows the per-
formance gap between open-source and propri-
etary models.

(4) Our framework exhibits strong generaliza-
tion ability on factual reasoning question answer-
ing tasks, by learning document routing capabili-
ties.

B.2 Ablation Study

Full results of the ablation study are shown in Ta-
ble 7. To evaluate the end-to-end ranking correct-
ness of the retrieval process, we propose the In-


https://openreview.net/forum?id=njwv9BsGHF
https://openreview.net/forum?id=njwv9BsGHF
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Prompt Post-processing Model Train Epoch | ANS-F1 EXP-PRE REF-ACC XPL-AVG COL-RATE
enclose V4 base full 7.0 86.3 46.9 82.9 0.6 0.0
enclose 4 inst full 7.0 86.1 50.3 83.7 0.6 0.0
enclose Vv inst lora 4.5 84.0 55.7 81.3 0.4 0.0
tag Vv inst lora 3.5 83.0 571 87.0 0.4 0.0
tag E inst lora 5.0 84.4 51.1 77.2 7.6 0.4

Table 4: Comparison of different training settings. We evaluate performance of fine-tuned rout-
ing models on the curated test set. ANS-F1 is the f1 score of [ANSWER] behavior, EXP-PRE
is the precision of [EXPAND] behavior, REF-ACC is the accuracy of the [REFUSE] behav-
ior, XPL-AVG is the percentage of expelled output, COL-RATE is the rate of collapsed output.
Enclose and tag prompt represent the format of "[expand]" and "<expand></expand>", respec-

tively.
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Figure 6: Training loss curve of routing model.

verse Information Rank Score Score,,,. Given
the set of retrieved passages C' = {c;}:°"* and the
set of reference short answers A, the score is de-
fined as follows.

Yicuier 7 EM(ci, A)
1C|

Scorepsg = (6)

This metric models the gain of correctness infor-
mation with a position-based decay, which aligns
with the tendency of both retrieval and generation
modules to favor top-ranked results.

B.3 Test-time Scaling

We report statistics of test-time scaling in Table 8
and Table 9, including top-k and expand-iter scal-
ing.
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ASQA

Methods EM(HIT) D-F, ROUGE MAUVE LEN
Reader based on text-davinci-003
No-retrieval 33.8 24.2 333 - -
Retrieve-and-Read 40.0 27.1 34.0 - -
FLARE 41.3 28.2 343 - -
Reader based on ChatGPT
No-retrieval 34.1(9.7) 27.4 35.7 18.2 57.5
Retrieve-and-Read 42.8(16.1) 344 38.0 57.0 51.1
ASC-F 45.0 31.9 - 41.3 106.7
ASC 44.1 32.2 - 47.0 101.2
RDR?(Ours) 46.1(18.6) 37.1 38.5 70.6 49.1
Reader based on GPT-40
No-retrieval 41.4(13.7) 33.9 36.2 23.3 58.8
Retrieve-and-Read 47.0(19.1) 36.5 384 39.9 68.4
RDR?(Ours) 48.2(21.0) 39.0 384 48.3 63.8
Reader based on DeepSeek-V3
No-retrieval 43.0(16.7) 33.1 36.3 21.9 69.2
Retrieve-and-Read 48.8(21.9) 374 37.5 36.7 74.2
RDR?(Ours) 50.8(23.2) 39.8 37.8 373 68.9
Reader based on Llama-2-13b
No-retrieval 24.7(6.5) 19.3 35.1 13.4 65.9
Retrieve-and-Read 36.5(13.5) 26.9 39.2 314 61.2
SELF-RAG(FT) 31.7(8.4) 26.4 37.0 71.6 27.0
SELF-REASONING(FT) 35.2 - - - -
OPEN-RAG(FT) 36.3 - 38.1 80.0 -
FRONT 41.5 - - - -
RDR?(Ours) 41.7(16.9) 31.6 39.2 61.2 69.6
Reader based on Llama-3.1-8b
No-retrieval 28.7(7.5) 22.0 34.7 40.7 65.2
Retrieve-and-Read 40.9(15.9) 30.9 37.9 73.6 69.2
RDR?(Ours) 45.3(18.7) 34.9 38.2 79.2 71.3

Table 5: Main results of RDR*(ASQA). We report full results of different API and open-sources
models, together with results of no-retrieval and retrieve-and-read baselines.
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QAMPARI ELIS

Methods F1-5(F1) REC-5(REC) PRE CLAIM MAUVE LEN
Reader based on ChatGPT
No-retrieval 17.7(12.5) 18.5(10.6) 20.8 23.6 14.4 145.3
Retrieve-and-Read  22.2(15.7) 22.1(13.4) 27.9 22.3 12.2 141.5
ASC-F 18.8(15.7) 45.0(29.8) 13.4 22.2 22.7 172.7
ASC 26.2(19.5) 33.0(20.5) 23.0 21.4 21.3 163.6
RDR2(Ours) 26.4(19.8) 29.0(18.7) 309 23.3 14.4 155.2
Reader based on GPT-40
No-retrieval 26.0(19.3) 28.7(17.6) 30.5 26.5 20.2 158.4
Retrieve-and-Read  23.7(17.0) 23.2(14.7) 31.0 24.5 17.9 154.7
RDR2(Ours) 28.4(21.4) 30.8(20.3) 34.8 25.3 16.9 165.3
Reader based on DeepSeek-V3
No-retrieval 23.4(18.4) 28.7(18.8) 23.3 26.3 15.6 137.4
Retrieve-and-Read  23.2(17.1) 24.6(15.7) 27.3 26.6 14.9 132.4
RDR2(Ours) 27.8(21.7) 32.1(21.6) 31.1 274 13.2 152.3
Reader based on Llama-2-13b
No-retrieval 14.9(10.3) 16.4(9.0) 14.3 14.7 21.9 140.2
Retrieve-and-Read  21.0(14.7) 22.0(12.9) 21.6 14.9 20.8 141.2
SELF-RAG - 1.9 1.3 6.1 - -
FRONT - 11.9 22.6 9.3 - -
RDR2(Ours) 23.2(16.7) 24.3(14.9) 25.0 15.4 239 148.3
Reader based on Llama-3.1-8b
No-retrieval 13.8(10.3) 19.3(11.1) 13.1 16.0 18.8 139.5
Retrieve-and-Read  20.9(15.1) 23.6(14.3) 22.9 16.3 21.6 141.9
RDR?(Ours) 25.3(19.5) 32.3(21.1) 25.7 16.9 20.3 141.6

Table 6: Main results of RDR*(QAMPARI & ELI5). We report full results of different API and
open-sources models, together with results of no-retrieval and retrieve-and-read baselines.

Method P-EM(P-HIT) P-SCORE P-LEN EM(HIT) D-F, LEN
RDR2(Ours) 57.3(34.2) 12.7 104.2 45.3(18.7) 38.2 71.3
w0 router 51.7(28.3) 10.2 100.0 40.9(15.9) 30.9 69.2
w/o structure 49.8(28.0) 10.6 67.5 41.3(15.0) 325 71.0
w/o similarity 54.8(32.7) 11.8 100.9 43.9(17.8) 33.2 72.3
w/o content 54.2(31.3) 11.7 93.9 43.7(18.0) 34.0 70.0

w/o [expand] 52.9(30.8) 115 81.7 42.5(16.1) 325 71.9
w/o [refuse] 61.2(37.0) 13.4 176.3 42.9(16.4) 32.8 70.7

Table 7: Ablation results of RDR*(ASQA).
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Methods EMMHIT) D-F; ROUGE MAUVE LEN
Retrieve-and-Read
top-0 28.7(7.5) 22.0 34.7 40.7 65.2
top-1 33.2(11.8) 254 35.1 68.1 65.2
top-2 36.7(13.2) 28.2 36.8 70.2 66.6
top-3 38.2(14.0) 29.5 37.3 75.8 69.7
top-4 40.1(14.6) 30.7 37.77 74.0 70.5
top-5 40.9(15.9) 30.9 37.9 73.6 69.2
RDR?(Ours)
top-0 28.7(7.5) 22.0 34.7 40.7 65.2
top-1 39.4(15.1) 30.2 36.0 69.1 70.5
top-2 41.6(16.5) 32.6 37.77 71.8 69.6
top-3 42.0(16.5) 32.9 37.8 77.7 68.6
top-4 44.0(17.1) 339 38.2 76.2 69.4
top-5 45.3(18.7) 349 38.2 79.2 71.3
Table 8: Statistics of top-k scaling.
Methods P-EM(P-HIT) P-SCORE P-LEN | EM(HIT) D-F; ROUGE MAUVE LEN
RDR?(Ours)
~ qter-0 52.9(30.8) 11.5 81.7 | 42.5(16.1) 325 37.7 76.7 71.9
iter-1 55.1(32.7) 12.1 955 | 43.3(17.1) 33.3 37.9 75.9 72.0
iter-2 56.4(33.2) 12.5 95.4 | 44.3(18.9) 345 38.1 78.7 69.3
iter-3 56.7(33.5) 12.6 98.9 | 44.9(19.6) 35.1 38.2 78.9 68.9
iter-4 56.9(33.7) 12.6 100.1 | 45.0(18.6) 34.8 38.2 76.0 71.1
iter-5 57.3(34.2) 12.7 1042 | 45.3(18.7) 34.9 38.2 79.2 71.3

Table 9: Statistics of expand-iter scaling.
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C Prompts

We show the detailed prompt of data curation, rout-
ing and inference as follows:

Prompt C.1: Train data curation prompt

You are an expert in reading comprehension tasked with identifying relevant paragraphs from a
document tree to answer a question. Follow these steps carefully:

1. Strict Relevance Assessment:

* First determine if the document’s root heading is fundamentally relevant to the question.
* If the document is clearly about a different topic, immediately return "Cannot answer”.

* Only proceed if the document is relevant or potentially relevant to the question.

2. Comprehensive Answer Extraction:
* For expanded paragraphs (visible content):
- Tag as "answer” ONLY if the paragraph DIRECTLY and COMPLETELY answers the question.
- If multiple paragraphs together provide a complete answer, tag ALL relevant ones.
- When paragraphs contain conflicting or supplementary information, include all that are relevant.

3. Collapsed Heading Expansion:
* If any unexpanded nodes might contain information that can answer the question? Tag as "expand”
when ANY of these are true:

- The heading contains synonyms or standard terminology related to the question.

- The section appears in the expected position within a standardized document structure.

- Expanded sibling sections under the same parent contain answers.

4. Output Requirements:
* Strictly use this JSON format:

L
"id": [integer],
"tag": "answer"|"expand”,
"explanation”: "[concise rationale]”
}
]

OR "Cannot answer"”.
* Never include irrelevant paragraphs just because they mention similar keywords.
* For multi-part answers, include ALL relevant paragraphs.
* If no paragraphs meet the strict criteria, return "Cannot answer”.

## Question
{question}

## Document
{context}

J

Prompt C.2: Routing module prompt

You are asked to identify relevant nodes in a document tree that can answer the given question. Use
[ANSWER] if a paragraph directly contributes to answering the question. Use [EXPAND] if a collapsed
heading might contain information that can answer the question. If neither exists, reply exactly
"Cannot answer"”.

## Question

{question}

## Document
{context}

## Response
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Prompt C.3: Reader prompt

Instruction: Write an accurate, engaging, and concise answer for the given question. Use an unbiased
and journalistic tone.

## Paragraph

{paragraph}

## Question
{question}

## Response

D Case Study

We show a complete demonstration of our RDR;
as follows, including comparison of generation
and retrieval stage and detailed routing behaviors.
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User question
Short answers

Stand long answer

What is the tallest ride at six flags over texas?

The Titan, The New Texas Giant, The Texas Giant, Texas
SkyScreamer, Superman: Tower of Power

The Six Flags Over Texas theme park has a number of different
rides and roller coasters. The park’s tallest swing ride is the Texas
SkyScreamer at 400 feet and tallest triple drop tower ride is Super-
man: Tower of Power at 325 feet. The tallest roller coaster at the
park in 2001 was The Titan at 245 feet. The park’s tallest wooden
roller coaster in 2011 was The New Texas Giant at 153 feet, while its
tallest one in 1990 was The Texas Giant at 143 feet.

No-Retrieval output

At Six Flags Over Texas, thrill-seekers can experience the park’s

tallest ride, the ’ . However, more re-
cently, it has been surpassed by the ’ > in the *Thrill

Zone’ area of the park, but that is no longer there.

RAG output

According to the information provided, Six Flags Over Texas has
had several record-breaking attractions over the years. In 2003, the
park opened the Superman Tower of Power , which was the tallest
ride of its kind in the world at the time of its opening. However, it
does not specify if it is still the tallest ride in the park.

RDR? output

According to the information provided, the tallest ride at Six Flags
Over Texas is the Texas SkyScreamer , which stands at a height of

400 feet. In 2003, the park opened the Superman Tower of Power ,
which was the tallest ride of its kind in the world at the time. It’s
also worth noting that the park has had several record-breaking
roller coasters, including the Titan , which is the tallest, fastest, and
longest coaster in Texas.

Table 10: End-to-end comparison between three frameworks.
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Top-3 Retrieval Chunks

Six Flags Over Texas

Six Flags Over Texas

Titan (roller coaster)

bringing back the past when they reopened Casa Mag-
netica. In 2003 Six Flags Over Texas opened the
Superman Tower of Power . This was the tallest ride of its kind
in the world at the time of its opening. [...] For 2007 and 2008,
Six Flags Over Texas was home to "Cirque’,

end of the decade, Six Flags Over Texas had added ten roller
coasters to its list of attractions. During the first decade of the
21st century, Looney Tunes USA was restructured. In 2001, the
park introduced its tallest, fastest, longest roller coaster, Titan .
[...] The park has also made steps toward

Titan 1is a steel hyper coaster located at Six Flags Over Texas
in Arlington, Texas. Unlike most hypercoasters, Titan is a com-
bination of an out and back roller coaster and a twister roller
coaster. It stands at 245 feet and contains a 255 drop at 85 miles
per hour. It is the tallest, fastest, and longest coaster in Texas.
[...] In August 2000, Six

Routing Passages

Six Flags Over Texas

Titan (roller coaster)

During the first decade of the 21st century, Looney Tunes USA
was restructured. In 2001, the park introduced its tallest, fastest,
longest roller coaster, Titan. [...] In 2003 Six Flags Over Texas
opened the Superman Tower of Power . This was the tallest ride
of its kind in the world at the time of its opening. [...]

* Tallest Roller Coaster in Texas - Titan (245ft)

* Tallest swing ride in the world Texas Skyscreamer (400ft)
(2013)

Titan 1is a steel hyper coaster located at Six Flags Over Texas
in Arlington, Texas. Unlike most hypercoasters, Titan is a com-
bination of an out and back roller coaster and a twister roller
coaster. It stands at 245 feet and contains a 255 drop at 85 miles
per hour. It is the tallest, fastest, and longest coaster in Texas.

Table 11: Comparison between retrieval chunks and routing passages.
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Document Structure Tree

-1: Six Flags Over Texas
0: ==Introduction==
1: Six Flags Over Texas is a 212-acre (86 ha) theme park located in Arlington,
Texas, east of Fort Worth and about 15 miles (24km) west of Dallas. [...]
2: The park is managed by the Six Flags Entertainment Corp., which also owns
53.1% interest of the Texas Limited Partnership that owns the park. [...]
3: ==History==
4: ===Initial planning and construction===
[...]
16: ===1990s===
17: The 1990s was a rather rough decade in comparison from decades past. The
decade started off with a bang when Six Flags Over Texas introduced the Texas Giant
roller coaster. [...]
18: ===2000s===
19: During the first decade of the 21st century, Looney Tunes USA was restruc-
tured. In 2001, the park introduced its tallest, fastest, longest roller coaster, Titan . [...]
In 2003 Six Flags Over Texas opened the Superman Tower of Power . This was the
tallest ride of its kind in the world at the time of its opening. [...]

20: ===2010s===

29: ==Firsts, bests, and other records==
30: ===Firsts and ones of a kind===
40: ===Records===

41: * Tallest Roller Coaster in Texas - Titan (245ft)
42: * Fastest Roller Coaster in Texas - Titan (85mph)
43: * Largest Land Based Oil Derrick - ' Oil Derrick (300ft)
44: * Tallest swing ride in the world Texas Skyscreamer (400ft) (2013)
45: ===Awards===
48: ==HEvents==
54: ==Areas and attractions==
56: ===Star Mall===
[...]
157: ===Tower===
168: ==Former Attractions==

Routing Behaviors

Light content node /7 from retrieved passages.
[EXPAND] 0

Light content node /, 2 from expand behavior.
[REFUSE]

Light content node /9 from retrieved passages.
[ANSWER] 79 [EXPAND] 40

Light content node 41, 42, 43, 44 from expand behavior.
[ANSWER] 41, 44

Routing Passages: 19,41, 44

Table 12: Demonstration of routing behaviors.
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