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Full Stage Learning to Rank: A Unified Framework for
Multi-Stage Systems

Anonymous Author(s)

ABSTRACT
The Probability Ranking Principle (PRP) has been considered as

the foundational standard in the design of information retrieval

(IR) systems. The principle requires an IR module’s returned list

of results to be ranked with respect to the underlying user inter-

ests, so as to maximize the results’ utility. Nevertheless, we point

out that it is inappropriate to indiscriminately apply PRP through

every stage of a contemporary IR system. Such systems contain

multiple stages (e.g., retrieval, pre-ranking, ranking, and re-ranking

stages, as examined in this paper). The selection bias inherent in
the model of each stage significantly influences the results that are

ultimately presented to users. To address this issue, we propose an

improved ranking principle for multi-stage systems, namely the

Generalized Probability Ranking Principle (GPRP), to emphasize

both the selection bias in each stage of the system pipeline as well

as the underlying interest of users. We realize GPRP via a unified

algorithmic framework named Full Stage Learning to Rank. Our

core idea is to first estimate the selection bias in the subsequent

stages and then learn a ranking model that best complies with the

downstream modules’ selection bias so as to deliver its top ranked

results to the final ranked list in the system’s output. We performed

extensive experiment evaluations of our developed Full Stage Learn-

ing to Rank solution, using both simulations and online A/B tests

in one of the leading short-video recommendation platforms. The

algorithm is proved to be effective in both retrieval and ranking

stages. Since deployed, the algorithm has brought consistent and

significant performance gain to the platform.
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Multi-stage systems, retrieval, ranking, learning to rank
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1 INTRODUCTION
Information retrieval (IR) systems widely influence numerous as-

pects of our daily lives, from information search to entertainment

choices and travel decisions. The significant impact has gathered

extensive research interest and gained substantial attention since

its inception [31]. Central to this research area is the precise infer-

ence of users’ underlying information needs, so as to present the
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most relevant information to the users, a concept that proved to be

optimal by the Probability Ranking Principle (PRP) [28].

Early year’s IR research only concerned single-stage systems, for

example using BM25 [27] or a logistic regression model [12] to rank

results against a given query or user. Propelled by the emergency of

new demands and development of technologies, modern IR systems

nowadays are equipped with multiple stages, such as retrieval and

ranking stages employed in YouTube [7], the recall, first round

ranking, and second round ranking stages in Yahoo search [36],

and the retrieval, pre-ranking, ranking and re-ranking stages in

KuaiShou [34]. No matter it is manually crafted rules, such as the

BM25 scoring function, or data-driven rankers, such as learning

to rank models [23], in each component of these multi-stage IR

systems, PRP is still the design principle, i.e., each stage is supposed

to present the most relevant results for the next stage’s further

processing.

However, the optimality of PRP strongly depends on the assump-

tion that the top-ranked result by the algorithm will eventually be

presented to the end users. This is only true in a single-stage IR

system, but no longer holds in multi-stage systems. For example, at

the retrieval stage (typically an early stage), even if we know the

underlying preferences of users on each result in the whole candi-

date set and return the most relevant ones to the later stage, there

is a possibility that some or even all of them are filtrated eventually

because the selection bias of subsequent stages can deviate from

user’s underlying interests and promote sub-optimal results along

the way until reaching the end users
1
.

The fundamental reason for the selection bias resides in the

misalignment between how the ranking models in each stage are

learned and how they are used in a multi-stage system. Typically,

the training data for each stage is constructed by treating the results

from this stage and finally preferred by the end users as positive

and the rest from this stage as negative. Sub-sampling can be de-

vised when the stage returns a large number of results (e.g., more

than thousands), but the end users can only interact with a few

(e.g., less than ten). However, relevant results from the intermediate

stage but eventually filtered by later stages cannot be differentiated

from those truly irrelevant ones, and are often mistakenly treated

as negatives. This phenomenon is analogous to position bias in

user feedback [9, 17], where non-clicked results do not suggest

irrelevance, as they could also not be examined by a user. In a multi-

stage system, the selection bias is introduced by the subsequent

components in an IR pipeline, which is more implicit and dynamic.

Hence, those well-known solutions for correcting position bias

[6, 13, 18, 30] do not apply to this problem.

Moreover, the operation and management of multi-stage systems

in industry practice further exacerbates the selection bias. Due

to the system’s high complexity, each stage or even a particular

algorithm at a single stage is often managed by a different team.

When improving an algorithm or choosing which algorithm to

1
In a commercial system, there can be tens of different ranking algorithms employed

in each stage of the pipeline, making the selection bias inevitable.

1
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deploy, each team can only access and control data at its specific

stage. However, these intermediate algorithmic decisions are only

informed by online A/B tests on the final results.

In this paper, we propose an improved version of PRP named

the Generalized Probability Ranking Principle (GPRP) for multi-

stage IR systems. GPRP extends PRP by explicitly modeling the

ranking preferences from both the end users and subsequent stages.

GPRP degrades to PRP when there only one stage is present or

it functions at the final stage of the system. At non-final stages,

the expected ranking utility achieved by GPRP is always an upper

bound of the expected utility achieved by PRP, which can also be

proved to be a max-min approximation of GPRP. However, it is

difficult to precisely fulfill GPRP in practice due to computational

complexity. Under mild assumptions about a multi-stage IR system,

we develop an efficient and effective algorithmic framework named

Full Stage Learning to Rank (FS-LTR) to realize GPRP approximately.

The core idea of FS-LTR is to define preferential treatments on the

exposure data collected in each stage of the system as well as users’

feedback for the final ranking and fit an LTR algorithm with the

preferential labels to estimate the most effective ranking for each

particular stage. FS-LTR can be seamlessly applied to any stage

in the entire pipeline. Extensive experiments on both a simulated

environment and online A/B testing in one of the world’s largest

short-video recommendation platforms validate the effectiveness

of our framework. To the best of our knowledge, we are the first

to study ranking principles for multi-stage IR systems holistically

and to design a universally efficient algorithmic framework with

theoretical foundations.

2 RELATEDWORK
Retrieval Stage: Retrieval is the first stage of the recommendation

system, which needs to recall users’ interested items from a large

candidate pool. There are various different retrieval algorithms in-

cluding basic dual-encoder model [3, 7, 21], tree-based deep models

[41, 42], and recent generative retrieval [32, 33]. In-batch softmax

loss and Bayesian Pairwise Loss (BPR) are two frequently used

losses in common retrieval algorithms, and training data mainly

contain items with positive feedback and random items sampled

from the whole candidate set.

General Ranking Stage: This part can bemore carefully divided to

three (or even more) stages, including pre-ranking [22, 34], ranking

[4, 5, 7, 25, 39, 40], and re-ranking [1, 2, 10, 16, 24]. The difference

between models in the three stages mainly lies in their model capac-

ity and training method, either in a pointwise, pairwise, or listwise

manner.

Unbiased Learning: The goal of unbiased learning is to eliminate

the exposure bias introduced by training data collected from rec-

ommendation systems and learn unbiased ground-truth interests

of users. one main idea of unbiased learning is based on the Inverse

Propensity Score (IPS) estimator [29], which is used either at the

retrieval stage [6] or re-ranking stage [18, 30].

3 PRELIMINARY OF MULTI-STAGE SYSTEMS
Without loss of generality, we consider a multi-stage system with

four stages: retrieval (stage 1, from all candidates to 𝑐1 items), pre-

ranking (stage 2, from 𝑐1 items to 𝑐2 items), ranking (stage 3, from 𝑐2

items to 𝑐3 items), and re-ranking (stage 4, from 𝑐3 items to 𝑐4 items),

where 𝑐1, 𝑐2, 𝑐3, 𝑐4 are predefined values like 10000/500/50/6 respec-

tively. Note the output of one stage is exactly the input candidate

set of the next stage. Finally, 𝑐4 items outputted by the re-ranking

stage are exposed to a user and receive corresponding user feedback.

Given a candidate item set 𝐴, a real-valued function 𝑓 (𝑢, 𝑣) and a

positive integer 𝑐 , the Topk(𝐴, 𝑓 (𝑢, 𝑣), 𝑐) operator returns the top
𝑐 items in the item set 𝐴 in the descending order of 𝑓 (𝑢, 𝑣).

Denote 𝑢 ∈ R
𝑑
as the user (or query) representation, and 𝑣 ∈ I

as the item representation, where I is the whole candidate set.

Once an item 𝑣 is exposed to a user 𝑢, we observe corresponding

Bernoulli feedback 𝑌 (𝑢, 𝑣) ∈ {0, 1}, which is sampled from the

underlying interest 𝑟 (𝑢, 𝑣) ∈ [0, 1], thus E[𝑌 (𝑢, 𝑣)] = 𝑟 (𝑢, 𝑣).
Under the above four-stage system, given a user𝑢, denote the cor-

responding candidate set and output item set of stage 𝑖 as I𝑖−1 (𝑢)
and I𝑖 (𝑢) respectively, where 𝑖 ∈ [4] := {1, 2, 3, 4} and I0 ≡ I,
|I𝑖 (𝑢) | = 𝑐𝑖 . For the clarity of our notations, we will use I𝑖

in-

stead of I𝑖 (𝑢) when there is no ambiguity. Given candidate set

I𝑖−1
at stage 𝑖 , suppose item 𝑣 ∈ I𝑖−1

is selected into the output

item setI𝑖
with probability 𝑝𝑖 (𝑢, 𝑣 |I𝑖−1), and denote𝑂𝑖 (𝑢, 𝑣 |I𝑖−1)

as the corresponding observed Bernoulli random variable. Thus

E[𝑂𝑖 (𝑢, 𝑣 |I𝑖−1)] = 𝑝𝑖 (𝑢, 𝑣 |I𝑖−1). Here, we want to emphasize that

𝑝𝑖 (𝑢, 𝑣 |I𝑖−1) depends on I𝑖−1
, which means the probability of the

same item that enters the next stage is also influenced by other

candidate items in the same stage and reveals the combinatorial

complexity of real-world systems.

4 GENERALIZED PROBABILITY RANKING
PRINCIPLE

Before we introduce Generalized Probability Ranking Principle

(GPRP), we recap the Probability Ranking Principle (PRP) in classi-

cal information retrieval [28, 35] first:

Probability Ranking Principle (PRP): If an Information Retrieval
system’s response to each request is a ranking of items in the collec-
tions in order of decreasing probability of usefulness to the user who
submitted the request, then the overall effectiveness of the system to
its users will be the best that is obtainable on the basis of the data.

The principle is intuitive and proved from the view of tradi-

tional measure of effectiveness and decision theory under certain

assumptions [28]. Suppose we know the underlying interest func-

tion 𝑟 (𝑢, 𝑣) in advance for every request and the system has only

one stage (using the same notation as previous section that the

system needs to return 𝑐4 items to each request), according to PRP,

then 𝑐4 items returned by the system should be:

argmax

{𝑣𝑘 ∈I |𝑘∈[𝑐4 ] }

𝑐4∑︁
𝑘=1

𝑟 (𝑢, 𝑣𝑘 ) (1)

Suppose we are in the 4-stage system described before, and we

need improve a particular stage 𝑖 ∈ {1, 2, 3, 4} but have no control

on other stages. If we still use PRP in stage 𝑖 , we should output:

I𝑖,𝑃𝑅𝑃
:= argmax

I𝑖⊂I𝑖−1

∑︁
𝑣∈I𝑖

𝑟 (𝑢, 𝑣) (2)

Hence, nearly all previous studies in information retrieval sys-

tems focus on how to learn the underlying interest function 𝑟 (𝑢, 𝑣)
from logged exposure data, for either retrieval stage [3, 7, 19, 21, 42]

or ranking stage [7, 23]. Furthermore, since logged exposure data

is affected by selection bias of the system which may lead to biased

2
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interest in learned models, some work further studies how to elimi-

nate selection bias of the system to learn users’ unbiased interests

[6, 13, 18, 30, 38].

However, even though we could learn 𝑟 (𝑢, 𝑣) perfectly, in a multi-

stage system, the item set I𝑖
(𝑖 < 4) cannot be exposed to users

directly and it needs to be further filtrated by subsequent stages. In

other words, even if we could find some items of high relevance to

a user, once these items are filtered by subsequent stages, it would

not bring any benefit since users can not see them. Thus, what we

really care about in stage 𝑖 is the usefulness of final returned items

after all subsequent stages, which means we should take both the

preference of subsequent stages and the true interest of users into

consideration at the same time. Hence we propose the following

Generalized Probability Ranking Principle:

Generalized Probability Ranking Principle (GPRP): In the stage 𝑖
(any 𝑖 ∈ {1, 2, 3}) of a four-stage system, if the output of stage 𝑖 to
each request is a set which considers both the preference of subsequent
stages and usefulness to the target user, as stated in the following
equation (3), then the overall effectiveness of that stage to its users
will be the best that is obtainable on the basis of the data.

I𝑖,𝐺𝑃𝑅𝑃
:= argmax

I𝑖⊂I𝑖−1

E[
∑︁

𝑣∈I4 (I𝑖 )
𝑟 (𝑢, 𝑣)] (3)

where I4 (I𝑖 ) is a random set that represents the finally exposed

item setI4
obtained from the candidate setI𝑖

after stages 𝑖+1, . . . , 4,

and the expectation is over the randomness of subsequent stages.

According to the definition of equation (3), it’s easy to see the

expected utility of PRP is always a lower bound of the expected

utility of GPRP when deployed in online systems:

E[
∑︁

𝑣∈I4 (I𝑖,𝑃𝑅𝑃 )
𝑟 (𝑢, 𝑣)] ⩽ E[

∑︁
𝑣∈I4 (I𝑖,𝐺𝑃𝑅𝑃 )

𝑟 (𝑢, 𝑣)] (4)

To certain extend, the core philosophy behind GPRP is on the

opposite to unbiased learning discussed in Section 2. Both of them

consider the selection bias of the system. However, the goal of unbi-

ased learning is to eliminate selection bias and learn the underlying

interest function of users, i.e. 𝑟 (𝑢, 𝑣), which is then used to make de-

cisions. While in GPRP of a multi-stage system, though underlying

interest function 𝑟 (𝑢, 𝑣) is important, the selection bias of subse-

quent stages is also important in determining returned items, and

we should consider both of them when making decisions, which

will lead to better final performance according to inequality (4).

However, it is hard to formulate random set I4 (I𝑖 ) given the

fact that subsequent stages after stage 𝑖 may contain both black-

box algorithmic models and manual filtering strategies in practical

systems, let alone solving equation (3). Hence, we should consider

a simplified approximation of equation (3) which allows efficient

algorithms. We find that PRP can be viewed as a max-min or con-

servative approximation of equation (3) as stated in the following

proposition, which suggests we can completely ignore the complex

process of subsequent stages and optimize its minimal utility in the

worst case scenario:

Proposition 1. I𝑖,𝑃𝑅𝑃 defined in equation (2) is also the solution
to the following optimization problem:

argmax

I𝑖⊂I𝑖−1

min

{𝑣𝑘 ∈I𝑖 |𝑘∈[𝑐4 ] }

𝑐4∑︁
𝑘=1

𝑟 (𝑢, 𝑣𝑘 ) (5)

Because of space limitations, all the proof details are presented

in the appendix.

We are interested in studying the gap between the final utility

from PRP and GPRP, which is defined as

E[
∑︁

𝑣∈I4 (I𝑖,𝐺𝑃𝑅𝑃 )
𝑟 (𝑢, 𝑣)] − E[

∑︁
𝑣∈I4 (I𝑖,𝑃𝑅𝑃 )

𝑟 (𝑢, 𝑣)] (6)

Apparently, when the system has only one stage or in the last

stage of a multi-stage system, there are no subsequent stages, and

the returned item set can be exposed to uses, hence GPRP degrades

to PRP and the performance gap (6) is 0. But we find the gap can be

large in a non-final stage of a multi-stage system in the worst case

without any assumption, as stated in the following proposition:

Proposition 2. The performance gap (6) between PRP and GPRP
can be 𝑐4 in the worst case.

Note the upper bound of equation (6) is exactly 𝑐4, which means

PRP is not a good approximation of GPRP in the worst case of a

multi-stage system and thus we have to find some other proxy for

the objective function in equation (3).

Since I4 (I𝑖 ) is a random set depending on the input candidate

set, and the probability of each item 𝑝𝑖 (𝑢, 𝑣 |I𝑖−1) being selected

into the next stage 𝑖 + 1 is also influenced by other candidates,

which causes the computational complexity of solving equation (3)

exactly. We then make the following assumption to allow efficient

approximate solution to equation (3):

Assumption 1. Assume the selection probability 𝑝𝑖 (𝑢, 𝑣 |I𝑖−1)
depends only on the user and item itself, i.e. 𝑝𝑖 (𝑢, 𝑣 |I𝑖−1) = 𝑝𝑖 (𝑢, 𝑣).

This is a rather strong assumption in practical systems at first

glance, since general ranking stages need to compare all input

candidates together, hence we cannot ignore the influence of other

candidate items in each request. We will discuss the validity of this

assumption in detail in Section 6.

Under Assumption 1, we can rewrite the objective function (3)

of GPRP into the following:

¯I𝑖,𝐺𝑃𝑅𝑃
:= argmax

I𝑖⊂I𝑖−1

∑︁
𝑣∈I𝑖

𝑝𝑖+1,4 (𝑢, 𝑣)𝑟 (𝑢, 𝑣) (7)

where𝑝𝑖, 𝑗 (𝑢, 𝑣) := 𝑝𝑖 (𝑢, 𝑣)𝑝𝑖+1 (𝑢, 𝑣) · · · 𝑝 𝑗 (𝑢, 𝑣). Herewe use ¯I𝑖,𝐺𝑃𝑅𝑃

to distinguish I𝑖,𝐺𝑃𝑅𝑃
in equation (3). When Assumption 1 holds,

they are the same, otherwise they are different.

Compared with the original objective function (3), the new ob-

jective function looks more like the objective function (2) of PRP,

which gets rid of the annoying combinatorial form of subsequent

stages and allows efficient learning like many previous algorithms

under PRP. However, different from the objective function (2) of

PRP which only considers the interest of users, the new objective

function (7) still considers both the selection bias of subsequent

stages (i.e. 𝑝𝑖+1,4 (𝑢, 𝑣) term) and the interest of users (i.e. 𝑟 (𝑢, 𝑣)
term), which inherits the merit of GPRP.

Without Assumption (1), though it is hard to compare
¯I𝑖,𝐺𝑃𝑅𝑃

in (7) and I𝑖,𝑃𝑅𝑃
in (2) in general, we give two observations in

some special cases of the system, which may help us understand

the relation between them.

Observation 1. If the selection bias of subsequent stages𝑝𝑖+1,4 (𝑢, 𝑣)
is independent of items (or say without selection bias), then ¯I𝑖,𝐺𝑃𝑅𝑃 =

I𝑖,𝑃𝑅𝑃 .
3
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The observation is obvious. For example, when subsequent stages’

output candidate items to the next stage are completely random,

then the optimal candidate set should be chosen according to the

underlying interest of users. However, the completely random strat-

egy is very dangerous in an online environment which can hurt

users’ experience on the platform, and the strategy in each stage is

often some learned models from logged data.

Observation 2. If the selection bias of subsequent stages𝑝𝑖+1,4 (𝑢, 𝑣)
is monotonically increasing with respect to the underlying interest
𝑟 (𝑢, 𝑣) , then ¯I𝑖,𝐺𝑃𝑅𝑃 = I𝑖,𝑃𝑅𝑃 .

Above observation is also straightforward, since 𝑝𝑖+1,4 (𝑢, 𝑣) is
monotonically increasing with 𝑟 (𝑢, 𝑣), which implies the ranking

of items in terms of 𝑝𝑖+1,4 (𝑢, 𝑣)𝑟 (𝑢, 𝑣) is the same as the ranking

by 𝑟 (𝑢, 𝑣), thus ¯I𝑖,𝐺𝑃𝑅𝑃
equals I𝑖,𝑃𝑅𝑃

. However, the assumption

in observation 2 is too strict, as it requires the preference of each

stage to exactly coincide with the interest of users in every request,

which is impractical considering the existence of learning error of

any algorithm in any stage.

Now, given the difference between objective functions (7) and

(2), the key question is then how to solve equation (7) efficiently. A

straightforwardmethod is to learn 𝑝𝑖+1,4 (𝑢, 𝑣) and 𝑟 (𝑢, 𝑣) separately,
where each term in 𝑝𝑖+1,4 (𝑢, 𝑣) can be learned by any supervised

algorithm on corresponding data and 𝑟 (𝑢, 𝑣) term can be learned

by any existing algorithm especially unbiased learning algorithms

[6, 13, 18, 30, 38]. Having learned 𝑝𝑖+1,4 (𝑢, 𝑣) and 𝑟 (𝑢, 𝑣), we can
sort items in I𝑖−1

according to 𝑝𝑖+1,4 (𝑢, 𝑣)𝑟 (𝑢, 𝑣) and output the

top 𝑐𝑖 items as
¯I𝑖,𝐺𝑃𝑅𝑃

. However, this method is also inefficient and

may be ineffective, as we need to learn several models which causes

additional computational burden and accumulated learning error.

Besides, in the retrieval stage, usually we use Approximate Nearest

Neighbor (ANN) for fast inference, which does not support the

operation in equation (7). To address the above issue, we propose a

unified algorithmic framework named Full Stage Learning to Rank.

5 FULL STAGE LEARNING TO RANK
According to objective function (7), we need to sort items according

to 𝑝𝑖+1,4 (𝑢, 𝑣)𝑟 (𝑢, 𝑣). Instead of learning each term independently,

we directly learn the product 𝑤𝑖+1,4 (𝑢, 𝑣) := 𝑝𝑖+1,4 (𝑢, 𝑣)𝑟 (𝑢, 𝑣) to
avoid issuesmentioned in previous section. Apparently𝑂𝑖+1,4 (𝑢, 𝑣)𝑌 (𝑢, 𝑣)
is a realization which can be observed as 𝑤𝑖+1,4 (𝑢, 𝑣) in practical

systems. As E[𝑂𝑖+1,4 (𝑢, 𝑣)𝑌 (𝑢, 𝑣)] = 𝑤𝑖+1,4 (𝑢, 𝑣), we obtain our

first efficient unbiased algorithm for learning objective function

(7) of GPRP under Assumption 1: we collect data after stages 𝑖 − 1

with label 0, except the exposed and clicked data with label 1, then

learning a supervised model with such labeled data which is then

used online at stage 𝑖 .

Though this algorithm is simple and easy to implement, it treats

all non-exposed items equally, which may omit the abundant infor-

mation of the data. Intuitively, items which enter stage 𝑖 + 1 may

be better than items filtrated by stage 𝑖 , thus we hope to make full

use of the information of collected data to learn the selection bias

and user’s interest better.

Before introducing our new algorithmic framework, we make

another assumption about the multi-stage system that is essential

for later analysis:

Assumption 2. For two observed items 𝑣𝑖 , 𝑣𝑖+1 in two subsequent
stages 𝑖 and 𝑖 + 1 (i.e. 𝑣𝑖 ∈ I𝑖 , 𝑣𝑖 ∉ I𝑖+1, 𝑣𝑖+1 ∈ I𝑖+1), where 𝑖 ∈ [3],

the ratio between user’s interests of these two items is bounded in a
constant interval, which is less than the ratio of selecting probability
between them, that is

1

𝑎
⩽

𝑟 (𝑢, 𝑣𝑖+1)
𝑟 (𝑢, 𝑣𝑖 )

⩽ 𝑎 ⩽
𝑝𝑖+1:4 (𝑢, 𝑣𝑖+1)
𝑝𝑖+1:4 (𝑢, 𝑣𝑖 )

(8)

where 𝑎 ⩾ 1 is a constant.

The intuition behind Assumption 2 is that each stage of the

system can be seen as a cluster of items depending on the degree

of user’s interest in some sense. Apparently, for an information

retrieval system with good performance, user’s interest for items

in higher stages may be stronger than interest for items in lower

stages with high probability. What’s more, the interest of users

with respect to two items in subsequent stages are close to each

other (i.e.
𝑟 (𝑢,𝑣𝑖+1 )
𝑟 (𝑢,𝑣𝑖 ) ∈ [ 1

𝑎 , 𝑎]). Note this condition does not require

the selection bias of the system is exactly the same with user’s

underlying interest, and allows the learning error of system to some

degree, which is much weaker than the monotone assumption of

multi-stage systems used in Observation 2 and in line with practical

situation. Seemore discussion about this assumption in next section,

where we collect real-world online data from one of largest short-

video platforms to verify it in an approximate way and the result

implies Assumption 2 is relatively mild in practical multi-stage

recommendation systems.

For 𝑡-th request of the system, we collect a series of data at

all stages {(𝑢𝑡 , 𝑣𝑡
𝑘
, 𝑆𝑡

𝑘
, 𝑌 𝑡

𝑘
) |𝑘 ∈ [𝑀]}, where 𝑀 is the number of

collected data in each request and 𝑆𝑡
𝑘
∈ [4] is an observed random

variable representing the stage of item 𝑣𝑡
𝑘
. 𝑌𝑘 ∈ {0, 1, 𝑁𝐴} here

represents the feedback of (𝑢, 𝑣𝑘 ) pair, where 𝑌𝑘 = 𝑌𝑘 when 𝑆𝑘 = 4,

otherwise 𝑌𝑘 = 𝑁𝐴, since we can only observe the true feedback

𝑌𝑘 (𝑢, 𝑣𝑘 ) when the item is exposed to the user.

With these data collected from full stages of different requests,

the main technique of our method is to relabel each user-item pair

(𝑢, 𝑣, 𝑆, 𝑌 ) in collected data set by the following rule:

𝐿(𝑢, 𝑣) =


𝑧0 if 𝑆 (𝑢, 𝑣) = 0

𝑧𝑖 if 𝑆 (𝑢, 𝑣) = 𝑖, for 𝑖 < 4

𝑧4 if 𝑆 (𝑢, 𝑣) = 4, and 𝑌 (𝑢, 𝑣) = 0

𝑧5 if 𝑆 (𝑢, 𝑣) = 4, and 𝑌 (𝑢, 𝑣) = 1

(9)

where 𝑧0 ≤ 𝑧1 ≤ · · · ≤ 𝑧5 are six non-negative numbers.

The core idea behind this relabeling technique is intuitive, which

distinguish the difference among non-exposed items and makes full

use of them. Items which are returned to users and receive positive

feedback apparently are the most important ones, since they have

passes the examination of selection bias of subsequent stages and

enjoys users interest. For those items that have been retrieved

but not shown to users, entering into next stage of the system is

more difficult compared with being liked by users. Therefore, if an

item enters into a higher stage of the system, it is more important

compared with items in lower stages. In fact, under Assumption

1 and 2, one can prove above relabeling technique coincides with

GPRP as stated in the following theorem, which give us a theoretical

support of our simple relabeling technique.

Theorem 1. Suppose Assumption 1 and 2 hold in multi-stage
systems, for any collected request data {(𝑢, 𝑣𝑘 , 𝑆𝑘 , 𝑌𝑘 ) |𝑘 ∈ [𝑀]},
after relabeling via equation (9), we obtain new labels 𝐿(𝑢, 𝑣𝑘 ) for
each data respectively, the a ranking of items in decreasing order
of 𝐿(𝑢, 𝑣𝑘 ) implies the ranking by term 𝑤𝑖+1,4 (𝑢, 𝑣𝑘 ) for items in

4
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Algorithm 1: Full Stage Learning to Rank

1 Training:
Input: Initialized model parameter \ , manually defined

labels {𝑧𝑖 |𝑖 ∈ [0, 5]} and original data-set

{{(𝑢𝑡 , 𝑣𝑡
𝑘
, 𝑆𝑡

𝑘
, 𝑌 𝑡

𝑘
) |𝑘 ∈ [𝑀], 𝑆𝑡

𝑘
≥ 𝑗}|𝑡 ∈ [𝑁 ]}, where

𝑗 ∈ [0, 𝑖 + 1] is a hyper-parameter.

Output: Model
ˆ𝑙 (𝑢, 𝑣 |\ )

2 While \ not converged do
3 sample a batch of requests from [𝑁 ]
4 relabel each user-item pair by the equation (9)

5 update model parameters by chosen LTR algorithm

6 return \

7 Serving in stage 𝑖:
Input: Candidate set I𝑖−1

in a request of user 𝑢, learned

model parameters \

Output: I𝑖

8 I𝑖
:= Topk(I𝑖−1, ˆ𝑙 (𝑢, 𝑣 |\ ), 𝑐𝑖 )

9 return I𝑖

different stages. As a special case, when 𝑧0 = 𝑧1 = · · · = 𝑧4 = 0 and
𝑧5 = 1, the conclusion still holds even without Assumption 2.

According to Theorem 1, now we can use the new label 𝐿(𝑢, 𝑣) as
an approximate substitution of𝑤𝑖+1,4 (𝑢, 𝑣), and this new relabeling

also allows efficient learning. Once we can estimate 𝐿(𝑢, 𝑣) or has
the ability of ranking items which is the same as ranking by 𝐿(𝑢, 𝑣),
then it nearly matches GPRP, since I𝑖,𝐺𝑃𝑅𝑃

is obtained by ranking

𝑤𝑖+1,4 (𝑢, 𝑣) in decreasing order according to equation (7) under

Assumption 1. Thus, we can use any supervised or general rank-

ing algorithm to reach an efficiently learned model that coincides

with GPRP. In detail, having obtained the collected relabeled data

{{(𝑢𝑡 , 𝑣𝑡
𝑘
, 𝐿𝑡

𝑘
) |𝑘 ∈ [𝑀]}|𝑡 ∈ [𝑁 ]}, where 𝑁 is the total number of

collected requests, we can use any supervised learning or Learning

to Rank (LTR) algorithm to learn a model with the goal of correctly

ranking items {(𝑢𝑡 , 𝑣𝑡
𝑘
, 𝐿𝑡

𝑘
) |𝑘 ∈ [𝑀]} in each request, for example

Lambda Rank [1, 2].

At stage 𝑖 , since we only care about the selection bias of stages

after 𝑖 and users’ underlying interest, the collected data at stage

𝑖 and before stage 𝑖 seems useless. However, from the view of

consistency between training and serving, it will be better to use

them duration training. For example when serving at retrieval stage,

we use the learned model to predict scores for all items. Therefore, it

will help a lot to add some random samples from the candidate pool

during training. The same reasoning applies at other stages. What’s

more, we can also add the collected data at any other previous

stage duration training, which can be regarded as an auxiliary

training task and may help learn the model better. Note using data

in previous stages doesn’t influence the near consistency between

our algorithm and GPRP.

The final algorithmic framework including training and infer-

ence is given in Algorithm 1. Since we need collect data from full

stages of a system and use LTR algorithm as our backbone, we

name our algorithmic framework as Full Stage Learning to Rank,

FS-LTR in short. When 𝑆𝑡
𝑘
= 0 in Algorithm 1, it means the item 𝑣𝑡

𝑘
is randomly sampled from I.

As discussed above, by choosing different 𝑗 and appropriate mod-

els, Algorithm 1 can be used either in retrieval, pre-ranking, ranking

or re-ranking. For example, in retrieval stage, we can choose 𝑗 = 0

which includes random negative items from the whole candidate

set and dual-encoder models which represents users and items

as vectors and supports ANN for fast inference. Similarly in pre-

ranking/ranking stage, we can choose suitable 𝑗 and dual-encoder

model or complex dnn models. In re-ranking stage, Algorithm 1

degrades to backbone LTR algorithm if only using exposed data,

and becomes a new LTR algorithm with auxiliary tasks which uses

data in previous stages.

6 DISCUSSION ABOUT ASSUMPTIONS
As mentioned in Section 4, Assumption 1 is too strong to be true

in real complex multi-stage systems, but it is acceptable if this

assumption could be satisfied in some degrees, and we explain its

reasonableness from four viewpoints:

1 The simplification from a combinatorial system into point-

wise system is quite common method in similar situation,

like in re-ranking [14].

2 Most of previous work about unbiased learning [6] are

based on estimating point-wise exposure probability to

selection exposure bias of the system and then learn the

underlying interests, which also rely on Assumption 1 im-

plicitly.

3 Though the probability 𝑝𝑖 (𝑢, 𝑣 |I𝑖−1) varies with input can-

didate set I𝑖−1
, we may consider the general performance

of each user-item pair, i.e. 𝑝𝑖 (𝑢, 𝑣) = E[𝑝𝑖 (𝑢, 𝑣 |I𝑖−1)] as an
approximation to 𝑝𝑖 (𝑢, 𝑣 |I𝑖−1), where the expectation is

over some distribution ofI𝑖−1
(for example the distribution

of I𝑖−1
of current system).

4 We only use Assumption 1 to induce efficient and practical

algorithm. In experimental section, we find our algorithm

still works when this assumption does not hold either in

simulated experiments or online A/B testing.

Assumption 2 is also critical for FS-LTR. However, it is impossible

to collect real 𝑟 (𝑢, 𝑣) and 𝑝𝑖 (𝑢, 𝑣) in real systems, as we cannot

present the same item twice for a user in short-video platformwhich

implies we can only observe one realization 𝑌 (𝑢, 𝑣) of underlying
Bernoulli distribution with probability 𝑟 (𝑢, 𝑣). What’s more, items

at non-final stages of the system are not exposed to users, so we

cannot even observe their realizations of users’ underlying interest.

Besides, practical system is very complex, there does not exist any

true 𝑝𝑖 (𝑢, 𝑣) in real situation.

One possible approach to solving above difficulty is to learn ap-

proximate models about 𝑟 (𝑢, 𝑣) and {𝑝𝑖 (𝑢, 𝑣) |𝑖 ∈ [4]} respectively.
However, this approach highly depends on the learning perfor-

mance which is also hard to have some guarantee, because of the

discrepancy between learning space and inference space. Therefore,

we adopt an approximate verification approach.

In detail, we collect items at different stages in previous request

(there are 5 stages in our system), and then force these items to

be exposed to corresponding users directly, which don’t need to

enter the multi-stage system to avoid its selection bias. Now we can

receive ground-truth feedback of items at different stages. Table

1 shows the average performance of CTR (Click Through Rate) at

different stages of such collected data. We can see average poste-

rior CTR is very close between consecutive stages, and the ratio
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Table 1: Posterior CTR of Items at Different Stages.

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Posterior CTR 0.29 0.33 0.34 0.49 0.56

between them is also in a small interval [ 1

2
, 2]. Thus we know users’

interest for all items which have entered the system are close at

least on average, which implies the inequality
1

𝑎 ⩽
𝑟 (𝑢,𝑣𝑖+1 )
𝑟 (𝑢,𝑣𝑖 ) ⩽ 𝑎

of equation (8) may be true in real-world and 𝑎 may be 2 in our

case. Besides, the inequality about term
𝑝𝑖+1:4 (𝑢,𝑣𝑖+1 )
𝑝𝑖+1:4 (𝑢,𝑣𝑖 ) in equation

(8) means an item that could be selected to the next stage is rela-

tively more difficult than user whether likes it compared with other

candidate items in subsequent stages. In practical system where

𝑐1/𝑐2/𝑐3/𝑐4/𝑐5 = 6000/3000/500/120/10, the selecting probability

from stage 2 to 3 is roughly
500

3000
= 1

6
on average, which means

the ratio of selecting probabilities between positive (i.e. select by

stage 2 into stage 3) and negative item (i.e. filtrated by stage 2)

in this stage is roughly 6 on average, hence the ratio of exposure

probability between these two items after subsequent stages could

be even larger than 6, which may be greater than
𝑟 (𝑢,𝑣𝑖+1 )
𝑟 (𝑢,𝑣𝑖 ) with

high probability. Therefore, Assumption 2 may be mild enough to

be satisfied in a real environment, at least in a short-video platform.

7 PRACTICAL IMPLEMENTATION
In this section, we present our implementation details of FS-LTR in

real-world online multi-stage recommendation systems, including

data collection, training, and serving.

Data Collection: Collecting data in full stages of a recommenda-

tion system online is a very challenging engineering task, since the

number of these data far exceeds the magnitude of the exposure

data in each request. For example, it could be 10000 versus 6 in real

system, hence it is impractical to collect all of them considering

the cost of storage and communication bandwidth. In practice, for

each requst, we randomly sample 40 negative items in retrieval and

pre-ranking stage respectively, and record all items (around 400)

in ranking stage with corresponding labels representing the final

stage of items.

Training: We use lambda rank to train our model in retrieval

stage with 𝑧𝑖 := 𝑖 . To reduce training cost, we only use a subset of

collected data in each request. The higher stage the data belongs to,

the more we use it, since data in higher stages is more important

and hard to be learned. We also substitute the cross-entropy loss in

lambda rank with margin loss, as well as trying different labels (for

example, 0, 1, 2, 3, 4, 6) to enhance the learning of hard samples.

Though having some improvements in offline evaluation, it doesn’t

lead to online gain. What’s more, to speed up training, one could

use pairwise LTR instead of lambda rank, which avoids expensive

sort operation during training but with only mild damage in online

performance. Finally, it is also possible to use softmax loss with

soft labels 𝑙 (𝑢, 𝑣) to further speed up training.

Serving: At retrieval stage, to enhance the diversity of returned

results in each request, we add some noise to the top representation

vector of users, which also fulfills some mild exploration. The same

trick could be used in other stages too.

8 EXPERIMENTS
In this section, we conduct both offline experiments and online A/B

testing to answer the following research questions:

RQ1 How can we simulate a multi-stage system with an offline

dataset for evaluating our proposed method? (Sec 8.1)

RQ2 What is the effectiveness of FS-LTR on the offline simulated

multi-stage recommendation system? (Sec 8.2)

RQ3 How does each component or hyperparameter in Full Stage

Learning to Rank affect the performance? (Sec 8.3.2)

RQ4 How does FS-LTR perform in online environment? (Sec 8.4)

8.1 Offline Simulation of Multi-Stage Pipeline
In this section, we introduce our offline simulation of the multi-

stage recommendation systems from three perspectives: dataset,

multi-stage simulation, and training data.

8.1.1 Dataset. Different stages of a multi-stage recommendation

have an exponential magnitude difference in the number of candi-

dates, thereby the first stage needs an enormous amount of candi-

dates. However, most of the datasets in recommendation systems

are highly sparse, which leads to a limited number of available

reasonable candidates. Even if we can train a model to capture the

latent preference of the user, without the ground truth of user-item

interaction, we still cannot determine whether the user prefers the

item. The original sparse ground truth may be more sparse after

passing the multi-stage pipeline.

Table 3: Statistics of KuaiRec dataset.

#User #Item #Interaction Density

small matrix 1,411 3,327 4,676,570 99.6%

big matrix 7,176 10,728 12,530,806 16.3%

To build a convincing simulation on the multi-stage recommen-

dation pipeline, we utilize the fully-observed dataset KuaiRec[11]
as our base dataset. KuaiRec is a real-world dataset collected from

the recommendation logs of a video-sharing platform. "Fully Ob-

served" means that there are almost no missing values in the user-

item interaction matrix, allowing an enormous amount of available

candidates with ground truth for simulating the multi-stage recom-

mendation pipeline. There are two user-item interaction matrices

in KuaiRec, named small matrix and big matrix. The statistics of the
two matrices are listed in Table 3. Both of these two matrix are more

dense than most of the recommendation datasets. Moreover, rich

side features are provided for each user and item in the KuaiRec

dataset, enabling training a good ranking model for simulating the

multi-stage pipeline. All of the user and item in small matrix also

occur in the big matrix, but interactions in small matrix and big
matrix are excluded from each other.

8.1.2 Multi-Stage Simulation. We consider building a multi-stage

pipeline containing three parts: retrieval, prerank, and rank. Each

item must pass all these three stages to be exposed to the user. In

each stage, a learned model will score each candidate item, and

items with relatively high scores can be passed to the next stage.

We assume that

• Retrieval candidate pool contains all of the items in big
matrix( ~11000).
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Table 2: Performance comparison on our simulated multi-stage pipeline. Bold numbers represent the best results. All the
numbers in the table are percentage numbers with ‘%’ omitted. All experiments are repeated 5 times to calculate the mean and
standard deviation. We conduct an unpaired t-test of Full Stage Learning to Rank and the best baseline and the improvement of
Full Stage Learning to Rank is significant with 𝑝 ≤ 0.05 for all values with ‘*’.

Stage Method HR@20 NDCG@20 R@20 P@20 HR@50 NDCG@50 R@50 P@50

Retr

BPR 15.77(±0.97) 5.50(±0.53) 0.55(±0.03) 0.88(±0.05) 35.59(±1.85) 9.46(±0.62) 1.41(±0.07) 0.91(±0.04)
SSM 17.32(±1.34) 6.02(±0.50) 0.59(±0.05) 0.96(±0.08) 37.88(±0.86) 10.16(±0.42) 1.53(±0.05) 0.99(±0.03)
FS-RN 18.14(±0.49) 6.41(±0.25) 0.63(±0.03) 1.03(±0.03) 38.60(±0.73) 10.52(±0.19) 1.61(±0.05) 1.04(±0.03)
FS-LR 18.83(±0.58) 6.69(±0.12)* 0.66(±0.02) 1.06(±0.03) 40.75(±0.33)* 11.07(±0.08)* 1.72(±0.02)* 1.10(±0.01)*

PR

BCE 14.40(±1.10) 4.93 (±0.35) 0.48(±0.04) 0.76(±0.06) 32.57(±1.68) 8.54(±0.50) 1.24 (±0.09) 0.79(±0.06)
FS-LR 19.56(±1.18)* 6.74(±0.48)* 0.70(±0.05)* 1.13(±0.07)* 40.16(±0.72)* 10.95(±0.39)* 1.79(±0.04)* 1.15(±0.02)*

• Prerank candidate pool of each user contains all of the items

exposed to the user in both big matrix and small matrix(~3500).

Since we hope the learned models have a relatively strong ability

to predict users’ interests, we do not mind using more data to train

the prerank / rank model. We use the big matrix with user features

and item features to train the prerank / rank model. We select the

two-tower DNN for the prerank model and the single-tower DNN

for the rank model. Details can be viewed in Appendix A.4. All of

the prerank candidates can be scored with the prerank model and

the rank model, enabling us to simulate the multi-stage pipeline.

For the convenience of later training and evaluation, we model

the wholemulti-stage pipeline as a static request. In a static request,
the following steps are executed in sequence:

Step 1 For each user, 1,000 items are randomly selected from the

prerank candidate pools as the simulated prerank candi-
dates.

Step 2 For each user, the top 200 items with highest prerank scores

in simulated prerank candidates are selected as the simu-
lated rank candidates, while the bottom 200 items with

lowest scores in simulated prerank candidates are regarded

as the simulated prerank negative samples.
Step 3 For each user, the top 50 items with highest rank scores in

simulated rank candidates are selected as the simulated
exposed candidates, while the bottom 50 items with low-

est scores in simulated rank candidates are regarded as the

simulated rank negative samples.
Step 4 For each user, items with positive labels are regarded as the

simulated exposed positive samples, while items with

negative labels are regarded as the simulated exposed
negative samples.

Multiple request procedures can be repeatedly simulated to gen-

erate different multi-stage recommendation training samples. For

evaluation, requests for validation or tests are separated in advance

in order to avoid label leakage.

8.1.3 Data Preparation for Training and Evaluation. Most of the rec-

ommendation models are training on the exposed samples, e.g., the

retrieval models are trained on the exposed positive samples with

randomly sampled negative samples, the rank models are trained

on the exposed samples. In our simulated multi-stage recommenda-

tion pipeline, models should be trained on the simulated exposed

samples. From this perspective, the prerank / rank model in the

simulated multi-stage pipeline is not aligned with the real settings.

However, it is acceptable since we do not mind the simulated rank

model is more powerful in the simulated multi-stage pipeline. The

simulated exposed samples are partially randomly generated from

the simulated multi-stage pipeline, which may cause difficulty in

splitting the dataset for training, validation, and testing. In order

to avoid label leakage, we follow the following steps to generate

simulated training data:

Step 1 Generate a static request based on the simulated prerank /

rank model and the original prerank candidate pool. The

simulated exposed positive samples are reserved as posi-

tive samples in the test set, and removed from the original

prerank candidate pool.

Step 2 Generate a static request based on the simulated prerank

/ rank model and the prerank candidate pool without the

positive samples in the test set. The newly simulated ex-

posed positive samples are reserved as positive samples in

the validation set, and removed from the prerank candidate

pool.

Step 3 Generate multiple static requests based on the simulated

prerank / rank model and the prerank candidate pool with-

out the positive samples in the validation and test set. Sam-

ples of each request can be utilized as training samples.

Complete separation of the train, validation, and test set is accom-

plished by the steps above. In our request-based training setting,

the training request is set to a random request. Exposed samples

and multi-stage samples are randomly sampled from the randomly

selected request to build multiple pair-wise or single list-wise opti-

mization objectives.

8.2 Performance Comparison
8.2.1 Implementation Details. We utilize the MF[20] as the model

structure for all methods. We implement all of the offline experi-

ments with Pytorch 1.13 in Python 3.8. We set the same value for

basic hyperparameters. The size of the embedding is set to 64, the

batch size is set to 128. L2 normalization is applied to the embedding

during training and inference. We use the Adam optimizer with a

learning rate of 0.001 for training for all methods.

8.2.2 Baseline Methods. We select multiple widely used optimiza-

tion objectives as baseline methods for our experiments:

• BPR[26] (Beyesian Personalized Ranking). An objective

models the posterior preference probability of a user-item

pair based on a single sampling negative user-item pair.

The default number of negative samples is 5.
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Table 4: Online A/B testing results.

App Usage Time Per User Real-show Click Like Follow Forward Comment Watch Time

+0.12% +0.50% +0.69% +0.40% 0.74% +0.94% 1.08% +0.18%

• SSM[8, 15] (Sampled-SoftMax). An objective models the

preference probability of user-item pairs based on multiple

sampling negative negative user-item pairs. The default

number of negative samples is 5.

• BCE (Binary Cross Entropy). An objective directly opti-

mizes the preference probability of the user-item pair.

BPR and SSM are common baseline methods for retrieval, and

negative user-item pairs for them are sampled from the global

candidate pool. BCE is adopted as the baseline method for our

offline experiment on prerank stage.

8.2.3 Evaluation Metrics. We adopt four widely used metrics for

evaluation of our methods, i.e., R (Recall), P (Precision), HR (Hi-

tRate), and NDCG (Normalized Discounted Cumulative Gain). The

metrics are computed on the top 20/50 matched items. As men-

tioned above, the different stage has a different candidate pool for

evaluation. The prerank stage has a relatively smaller candidate

pool than retrieval. However, metrics only have a very limited dif-

ference between the retrieval and prerank stage for our imperfect

simulation on a multi-stage recommendation system.

Table 5: Study on the number of different stage examples. The
‘x,y,z’ in the Negative Sampling column denotes the number
of rank negative samples, prerank negative samples, and
global negative samples in one training instance, respectively.
Exposed negative sample size is set to 1 for all methods.

Negative Sampling HR@50 NDCG@50 R@50 P@50

1,1,1 39.12 10.45 1.68 1.07

1,2,1 40.71 10.73 1.73 1.10
2,1,1 39.67 10.71 1.68 1.07

1,1,2 40.75 11.07 1.72 1.10

1,1,3 39.24 10.73 1.63 1.05

1,2,3 39.71 11.00 1.69 1.09

8.2.4 Overall Performance. Performance comparison is listed in

Table 2. For baseline methods and our FS-LTR methods in retrieval,

the negative sample size for each training instance is set to 5 to

eliminate the effect of the negative sample size. Two variants of

our FS-LTR, FS-RN(RankNet) and FS-LR(LambdaRank) outperform

significantly to the baseline methods in the retrieval stage. Our

FS-LR method also shows an advantage over the commonly used

BCE in the prerank stage.

8.3 Ablation Study
Now we conduct experiments to further understand the effect of

multi-stage negative samples and negative sample size in FS-LTR.

8.3.1 Effectiveness of multi-stage samples. The complete FS-LTR

in retrieval requires user-item pairs from full stages in recommen-

dation systems. We remove user-item pairs from different stages to

verify the effectiveness of each stage sample. Results are shown in

Table 6. The re-labeled label is also adapted to the number of stages

left in the training samples. Removing the stage-negative samples

causes the most degradation in model performance, showing that

negative samples in a multi-stage recommendation system play a

key role in FS-LTR.

8.3.2 The number of samples from different stages. We show the

performance of FS-LR on the number of samples from different

stages in Table 5. Results show that more negative sample sizes may

have a positive effect on model performance. The ratio of different

stage negative sample sizes is also critical for model performance.

Table 6: Ablation study on different stage examples.

HR@50 NDCG@50 R@50 P@50

w/o exposed neg 37.29 10.03 1.52 0.98

w/o stage neg 35.52 9.72 1.44 0.93

w/o rank neg 39.40 10.74 1.63 1.04

w/o prerank neg 38.31 10.16 1.56 1.01

FS-LR 40.75 11.07 1.72 1.10

8.4 Online A/B Testing
We used our Algorithm 1 at the retrieval stage on one of the largest

short-video platforms with implementation details described in

Section 7. The A/B test lasted for six days and had influenced over

20 million users in the experiment group, reaching a significant

improvement compared with the base group which already had

some strong baselines like TDM [42], Multi-Interest Retrieval [37],

Comi-Rec Retrieval [3] etc. As shown in Table 4, our approach

achieves significant gains in many engagement metrics. What’s

more, our retrieval algorithm has the highest reveal ratio (16%,

where the second highest reveal ratio is 6%) of any other retrieval

algorithm online, which coincides with the GPRP.

9 CONCLUSIONS AND FUTUREWORK
We believe our work opens a new direction of research in multi-

stage IR systems, which needs to take both the selection bias in

multiple stages of the system and users’ underlying interest into

consideration. We proved the effectiveness of this solution frame-

work in both offline experiments and online A/B test. There are sev-

eral important future directions which worth indepth exploration.

First, we have taken initial efforts aim to decipher the behavior

of multi-stage systems, and a more comprehensive understanding

will help us design more efficient and effective ranking algorithms.

Second, our focus has been primarily on the alignment between

our learning objective and GPRP, thus calling for the need to exam-

ine the generalization performance throughout the entire learning

processes. Third, it is worthwhile to further customize the general

framework for specific stages of the system for better performance.

Lastly, exploring optimal solutions to handle multiple or all system

stages, rather than just one, remains imperative.
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A APPENDIX
A.1 Proof of Proposition 1

Proof. SupposeI𝑖−1 = {𝑣1, 𝑣2, . . . , 𝑣𝑐𝑖−1
} and 𝑟 (𝑢, 𝑣1) ≥ 𝑟 (𝑢, 𝑣2) ≥

· · · ≥ 𝑟 (𝑢, 𝑣𝑐𝑖−1
) without loss of generality. According to equation

(2), it is easy to see I𝑖,𝑃𝑅𝑃 = Topk(I𝑖−1, 𝑟 (𝑢, 𝑣), 𝑐𝑖 ) = {𝑣𝑖 |𝑖 ∈ [𝑐𝑖 ]}.
Denote a general I𝑖

as {𝑣 𝑗1 , 𝑣 𝑗2 , . . . , 𝑣 𝑗𝑐𝑖 }, where 𝑗1 < 𝑗2 < · · · <
𝑗𝑐𝑖 and { 𝑗𝑘 |𝑘 ∈ [𝑐𝑖 ]} ⊂ [𝑐𝑖−1]. Then for equation (5), it is easy to

see:

argmax

I𝑖⊂I𝑖−1

min

{𝑣𝑘 ∈I𝑖 |𝑘∈[𝑐4 ] }

𝑐4∑︁
𝑘=1

𝑟 (𝑢, 𝑣𝑘 ) (10)

= argmax

I𝑖⊂I𝑖−1

𝑐4∑︁
𝑘=1

𝑟 (𝑢, 𝑣 𝑗𝑐𝑖+1−𝑘 ) (11)

={𝑣𝑖 |𝑖 ∈ [𝑐𝑖 ]} (12)

=I𝑖,𝑃𝑅𝑃
(13)

□

A.2 Proof of Proposition 2
Proof. We construct a concrete example to prove this propo-

sition. Without loss of generality, suppose we are at stage 3, and

the final stage is 4. Let 𝑐2 = 4, 𝑐3 = 3, 𝑐4 = 1. Suppose candidate

items are (𝑣1, 𝑝
4

1
= 0.1, 𝑟1 = 1.0), (𝑣2, 𝑝

4

2
= 0.2, 𝑟2 = 1.0), (𝑣3, 𝑝

4

3
=

0.5, 𝑟3 = 𝜖), (𝑣4, 𝑝
4

4
= 0.0, 𝑟4 = 0.0), where 𝜖 is a very small constant.

Suppose the strategy at stage 𝑖 is to output the item with highest 𝑝4
.

Then according to PRP, we should choose {𝑣1, 𝑣2, 𝑣3} as the output
of stage 3 and it is easy to see corresponding utility is 𝜖 . While

according to GPRP, we should choose {𝑣1, 𝑣2, 𝑣4} as the output with
utility 1. Thus the gap between them is 1 − 𝜖 . When 𝜖 approaches

0, the gap approaches 𝑐4 = 1. □

A.3 Proof of Theorem 1
Proof. Without loss of generality, suppose 𝐿(𝑢, 𝑣1) ≤ 𝐿(𝑢, 𝑣2),

nowwe only need to prove the inequality𝑤𝑖+1,4 (𝑢, 𝑣1) ≤ 𝑤𝑖+1,4 (𝑢, 𝑣2)
holds. Since 𝐿(𝑢, 𝑣1) < 𝐿(𝑢, 𝑣2), there are two possibilities:

1 In the case 𝑆1 = 𝑆2 = 4 and𝑌1 = 0 < 𝑌2 = 1, since these two

items are in the same stage and have been exposed, we know

𝑟 (𝑢, 𝑣1) < 𝑟 (𝑢, 𝑣2) and 𝑝𝑖+1,4 (𝑢, 𝑣1) = 𝑝𝑖+1,4 (𝑢, 𝑣2), which
are obtained after taking expectation over equations 𝑌1 <

𝑌2 and 𝑂
𝑖+1,4
1

= 𝑂
𝑖+1,4
2

. Therefore, we have𝑤𝑖+1,4 (𝑢, 𝑣1) <
𝑤𝑖+1,4 (𝑢, 𝑣2).

2 In the case 𝑆1 < 𝑆2. According to Assumption 2, we have

𝑝𝑖+1,4 (𝑢,𝑣2 )
𝑝𝑖+1,4 (𝑢,𝑣1 ) ≥ 𝑎 ≥ max{ 𝑟 (𝑢,𝑣1 )

𝑟 (𝑢,𝑣2 ) ,
𝑟 (𝑢,𝑣2 )
𝑟 (𝑢,𝑣1 ) } ≥ 𝑟 (𝑢,𝑣1 )

𝑟 (𝑢,𝑣2 ) ≥ 1

𝑎 .

Therefore, 𝑝𝑖+1,4 (𝑢, 𝑣1)𝑟 (𝑢, 𝑣1) ≤ 𝑝𝑖+1,4 (𝑢, 𝑣2)𝑟 (𝑢, 𝑣2), which
is exactly𝑤𝑖+1,4 (𝑢, 𝑣1) ≤ 𝑤𝑖+1,4 (𝑢, 𝑣2).

Thus we prove the first part of this theorem.

When 𝑧0 = 𝑧1 = · · · = 𝑧4 = 0 and 𝑧5 = 1, this is the algorithm we

mentioned at the beginning of Section 5, and the conclusion holds

because E[𝐿(𝑢, 𝑣)] = E[𝑂𝑖+1,4 (𝑢, 𝑣)𝑌 (𝑢, 𝑣)] = 𝑤𝑖+1,4 (𝑢, 𝑣).
Now we finish the whole proof.

□

A.4 Implementation Details of Prerank / Rank
Model in Simulated Multi-Stage Pipeline

The settings of prerank / rank model in simulated multi-stage

pipeline is listed in Table 7. The label in the multi-stage pipeline

equals 1 when: play_duration >= video_duration if video_duration

<= 7,000, or play_duration > 7,000 if video_duration > 7,000,

Table 7: Settings of prerank / rank in simulated pipeline.

prerank rank

model User DNN & Item DNN DNN

hidden layers [256, 128] [1024, 512, 256]

optimizer Adam

learning rate 0.001

batch size 8192
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