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ABSTRACT

Long-term fairness algorithms aim to satisfy fairness beyond static and short-term
notions by accounting for the dynamics between decision-making policies and
population behavior. Most previous approaches evaluate performance and fair-
ness measures from observable features and a label, which is assumed to be fully
observed. However, in scenarios such as hiring or lending, the labels (e.g., ability
to repay the loan) are selective labels as they are only revealed based on positive
decisions (e.g., when loan is granted). In this paper, we study long-term fairness
in the selective labels setting, and analytically show that naive solutions do not
guarantee fairness. To address this gap, we then introduce a novel framework
that leverages both the observed data and a label predictor model to estimate the
true fairness measure value, by decomposing into the observed fairness and bias
from labels predictions. This allows us to derive the sufficient conditions to satisfy
true fairness from observable quantities by using the confidence on the predictor
model. Finally, we rely on our theoretical results to propose a novel reinforcement
learning algorithm for effective long-term fair decision-making with selective la-
bels. In semisynthetic environments, the proposed algorithm reached comparable
fairness and performance to an agent with oracle access to the true labels.

1 INTRODUCTION

The deployment of machine learning algorithms in critical decision-making scenarios, such as ad-
mission processes (Baker & Hawn, 2022; Fuster et al., 2022) and health diagnosis has motivated the
study of algorithmic fairness. One of the most common approaches has been to demand equal bene-
fit from a decision (e.g., acceptance in a process or correct prediction) among different demographic
groups of the population (defined by race or gender, for example) (Mehrabi et al., 2021; Angwin
et al., 2016). However, Liu et al. (2018) and D’Amour et al. (2020) showed that ensuring fairness
at each decision round does not guarantee fairness in the long-term due to the feedback loop be-
tween policy deployment and population’s reaction. Furthermore, previous decisions determine the
available data for policy update, which might mask decisions’ unfairness.

In greater detail, long-term fairness consider that individuals are described by features (xt, z) that
relates to a classification label yt, and both (xt, yt) are temporal features dependent on previous
actions ai<t and (xi<t, yi<t). However, z is sensitive attribute such as race or gender (considered
binary in this work), and while it can be used to select actions at, the expected utility µ of the
decision process should be independent of it. The disparity value |∆t| = |µ1

t − µ0
t |, where µi

t is the
expected utility for the group i at time t, serves a measure of the unfairness of the decision process,
and algorithms should satisfy that |∆t| ≈ 0 for every t or when t → ∞. Previous works have
considered dealing with this problem with reinforcement learning algorithms (Alamdari et al., 2024;
Yu et al., 2022; Yin et al., 2023; Lear & Zhang, 2025; Hu et al., 2023) and optimization approaches
when the dynamics model is known (Rateike et al., 2024; Wen et al., 2021). However, these works
did not consider a common characteristic of decision-making: label yt is partially observed.

Consider the example of a loan application. The decision-maker has a binary decision to per-
form (approval or deny) and yt (payment ability) will only be observed in the case of acceptance.
This property, called as selective labels, presents great in impact in sequential decision-making
(Bechavod et al., 2019; Ensign et al., 2018). When considering fairness, the partial observation
of labels make it not trivial to obtain an unbiased estimate of disparity measures. Our first result
(Prop. 3.1) shows that evaluating disparity only on the observed population has no guarantees over
the total population.
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Motivated by this negative result, in this work, we introduce a general framework for long-term
fairness with selective labels, where a decision-maker leverages a label predictor ϕ to perform data
imputation. Under this framework, we consider the difference between the true disparity ∆t of the
population and the disparity that the decision-maker sees after data imputation ∆̃t. We present a
decomposition of the disparity ∆̃t (Theo. 3.1) that relates to ∆t by the interplay of the rejection rate
of groups and the quality of predictions on the rejected population for each group. With the objective
of presenting conditions that can be evaluated from the observed data, we introduce generalization
bounds to tackle the unknown quality of predictions on the rejected population based on the data
of previous accepted individuals. Our main theoretical result (Theo 3.4) present conditions on the
observed disparity ∆̃t and on the bias introduced by the predictor (obtained from generalization
bounds) to guarantee low values of true disparity |∆t|. Our last contribution is a novel algorithm
that learns a policy and predictor model that satisfy fairness in the long-term with access to only
the observable quantities by satisfying the identified sufficient conditions. Our proposed algorithm
reached long-term fairness comparable with an agent with oracle access to the true disparity measure
in semisynthetic enviroments with high-dimensional features xt and different fairness notions.

1.1 RELATED WORKS

For a more comprehensive discussion on related works, see Appendix A.

Long-Term Fairness Research in long-term algorithmic fairness has primarily leveraged rein-
forcement learning (RL) and causal modeling. RL solutions included model-based methods(Wen
et al., 2021; Rateike et al., 2024), and adaptations of algorithms such as Q-learning (Alamdari et al.,
2024; Chi et al., 2022), RTD3 (Yin et al., 2023) and PPO (Hu et al., 2023; Lear & Zhang, 2025;
Yu et al., 2022). These works define long-term fairness either as minimizing the cumulative dispar-
ity over time (Lear & Zhang, 2025; Yu et al., 2022; Yin et al., 2023), or the disparity at a distant
future timestep (Rateike et al., 2024; Hu et al., 2023; Zhang et al., 2020). Puranik et al. (2022)
and Raab et al. (2024) introduced population dynamics through time-dependent groups occurrence.
Hu & Zhang (2022) leveraged causal modeling to express the temporal dynamics between policy
and population. However, all discussed solutions included the assumption that labels are available
during learning.

Selective Labels The partial observation of data has been largely studied as selection bias. Its
prevalence in standard fairness benchmarks has been highlighted by Fawkes et al. (2024). In
decision-making with selective labels, prior work (Kilbertus et al., 2020; Rateike et al., 2022;
Keswani et al., 2024) has considered an unknown but time-invariant data distribution that is sampled
by the agent’s policy at each iteration. To avoid exacerbating bias in this setting, (Kilbertus et al.,
2020) showed that policies must explore through stochastic actions. More related to this work,
(Creager et al., 2020) used a causal estimator to tackle selective labels in dynamic environments.
Yet, their analysis was restricted to changes occurring over a single iteration.

2 PRELIMINARIES AND PROBLEM FORMULATION

We consider a decision-making problem where individuals are described by features x ∈ X and a
binary sensitive attribute z ∈ Z = {0, 1}. Each individual has a latent label y ∈ {0, 1}, which
is related to their features by the conditional probability α(x, z) := P (Y = 1 | X = x, Z = z).
For each individual, the decision-maker takes a binary action a ∈ {0, 1} sampled by π(x, z) :=
P (A = 1 | X = x, Z = z) where a = 1 represents acceptance. With an illustrative scenario of
loan application, X might represent the financial history, Z their race, Y the ability to repay the loan
and A the loan approval decision. For simplicity, we will assume that X is a discrete feature vector,
however our results are also valid for the continuous case.

The decision-maker will selection actions to maximize a reward function R(y, a) = a(y− c) where
c ∈ R+ represents the cost of acceptance (e.g., loan amount). Simultaneously, individuals obtain
utility from the process by a function, for example, U(y, a) = 1{y = a} where 1{·} is an indicator
function. The possible different definitions of R and U reflects the different interests the decision-
maker and the applicants might have.
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Static Fairness The decision-maker has the objective of maximizing E[R(Y,A)]. However, in
high-stakes domains, the employed policy should satisfy that utility is independent of the protected
attribute (Barocas et al., 2023). A common approach to evaluate the static fairness of a policy
is based on the disparity in the expected utility between groups: ∆ := µ1 − µ0, where µi :=
E[U(Y,A)|Ci] is the expected utility of a group i with conditioning event Ci. A fair policy π must
satisfy |∆| ≤ ω, for some small tolerance ω ∈ R+. Different fairness notions can be expressed
by the choice of U and C. In this work, we consider three common formulations: 1) Qualification
Parity (Zhang et al., 2020) where µi = E[Y |Z = i]; 2) Accuracy Parity (Berk et al., 2021) where
the utility is the “accuracy” of actions µi = E[1{Y = A}|Z = i]; and 3) Equality of Opportunity
(Hardt et al., 2016) where utility is the true positive rate µi = E[A|Y = 1, Z = i].

X0

Y0 A0

X1

Y1 A1

. . .

Z

Figure 1: Graphical model for F-
MDP. Yt is partially observed de-
pending on At = 1.

Decision-making induces reactions by the population, where
actions have an effect in future states (Perdomo et al., 2020).
This motivates the consideration of features (xt, yt) as time
dependent, commonly employing the Markov Decision Pro-
cess formulation (Gohar et al., 2024).
Definition 1 (Markov Decision Process (MDP) adapted from
Wen et al. (2021)). A Markov Decision Process (MDP) is a
tupleM := ⟨S,A, P0, PT , R⟩ where S is a set of states, A is
a set of actions, P0 : S → [0, 1] is the initial distribution of
states, PT (s, a, s

′) : S ×A× S → [0, 1] is the probability of
reaching state s′ given action a at state s, R : S ×A → R is
a reward function.

We extended the MDP definition to represent the dynamic
process of decision-making, by defining the state as the ob-
servable features of each individual and the transition and re-
ward functions as dependent on the binary label.
Definition 2 (F-MDP). An F-MDP is a tuple ⟨S,A, P0, PT , R, U, α⟩ where ⟨S,A, P0, PT , R⟩
follows the MDP definition with S = X × Z and A = {0, 1}. Furthermore, each state has an
associated label yt that follows the distribution Yt|Xt, Z ∼ Be(α(Xt, Z)). R and U are the reward
and utility functions, respectively, evaluated with tuples (yt, at).

This definition reorganizes the variables of the introductory decision-making problem into a dynamic
environment (Fig. 1). In this model, the individuals’ sensitive attribute Z and α are assumed to be
time-invariant, similarly to previous works (Rateike et al., 2024; Hu & Zhang, 2022). Furthermore,
we consider that the action A is independent of Y when X,Z is known. While there is no direct
effect of action at in the label yt, it will influence future labels through the path At → Xt+1 → Yt+1.

Long-term Fairness In a dynamic F-MDP, fairness constraints must be satisfied at each step. We
are interested in the per-step disparity ∆t = µ1

t − µ0
t , where µi

t := E[U(Yt, At) | Ci]. The ex-
pectation is taken over the distribution induced by policy π and environment dynamics (P0, PT , α),
conditioned on Ci := {Z = i} for qualification/accuracy parity or Ci := {A = 1, Z = i} for
equality of opportunity. The optimization problem is then:

max
π

E
π,α,PT ,P0

[
T∑

t=1

R(Yt, At)

]
s.t. |∆t| ≤ ω ∀t (1)

This framing considers that the decision-making can steer the population towards future states where
achieving fairness might have a lower cost to the reward objective.

Selective Labels In many practical settings, while the decision-maker sees (Xt, Z) and perform
decisions based on it, the true label Yt is only revealed for accepted individuals (At = 1)1. However,
as previously discussed, the information of Yt is necessary for evaluating the group-wise utilities.
The reward value of an action At = 0 is always 0, independently of Y , however, for example, with
U(y, 0) = 1{y = 0}, the utility could be either 1 or 0 if At = 0 depending on the unknown label y.
This creates a challenge: how to evaluate fairness metrics that depend on the label Yt?

1The partial observation can occur by the absence of the information of the label (e.g. health diagnosis,
where the condition still present) or by the missing realization of it (e.g. loan acceptance, payment is not
defined in case of rejection).
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3 MEASURING DISPARITY UNDER SELECTIVE LABELS

In this section, we study how we can employ a label predictor and quantities calculated from ob-
served data to constrain true disparity under the selective labels scenario. Initially, we discuss the
pitfalls of a simpler solution to calculate disparity.

Disparity in the Accepted Population Under the selective labels scenario, the decision-maker
must evaluate fairness by only using labels Yt from previously accepted individuals. A naive ap-
proach is to compute the disparity only with the accepted subset of the population as follows:

∆A=1
t = E[U(Yt, At) | C1, {At = 1}]− E[U(Yt, At) | C0, {At = 1}] (2)

However, this measure is unaware to the the disparity present within the rejected population.
Proposition 3.1 (Formal presentation in Appendix B.1). For the three fairness notions (Sec. 2),
∆A=1

t = 0 is not a sufficient condition to have ∆t = 0. In particular for equality of opportunity,
∆A=1

t is always 0.

Prop. 3.1 shows that ∆A=1
t is a flawed objective for learning when disparity measures are dependent

on Yt. A policy can be optimized to minimize ∆A=1
t and learn to mask the true disparity measure.

For instance with qualification parity, the policy can learn to accept individuals that have a similar
distribution of labels between groups without ensuring equal qualification in the total population.

Imputation Model To be able to calculate disparity from the complete population, the decision-
maker can employ a model ϕ : X × Z → [0, 1] to predict unseen labels and evaluate fairness based
on the imputated labels. We set predicted labels sampled by Ŷt|Xt, Z ∼ Be(ϕ(Xt, Z)), and define
the imputed label as Ỹt = AtYt + (1 − At)Ŷt. That is, with acceptance (At = 1) the true label is
used (Yt) and with rejection (At = 0), we use the prediction (Ŷt). We then compute the observed
disparity ∆̃t = µ̃1

t − µ̃0
t , where µ̃i

t := E[U(Ỹt, At)|C̃i]2 is the utility calculated using Ỹt.

Due to the complexity of of real-world data, predictions will not correctly classify all samples and
can amplify biases due to the data availability. Following, we analyze the relation between errors
from the predictor model and the distortion of true fairness.

3.1 DECOMPOSITION OF DISPARITY WITH A LABEL PREDICTOR

As discussed by previous works, the policy influences disparity by two paths: the direct influence
from decisions at each iteration and the indirect influence from previous decisions that determined
the current state (Lear & Zhang, 2025; Hu & Zhang, 2022). With our imputation model, the policy
π has an extra effect on the observed disparity ∆̃t: it sets when the predictor ϕ is used for data
imputation. We formalize this effect in the following theorem.

Theorem 3.1 (Observed Disparity Decomposition). Let ϵit := E[Ŷt − Yt|At = 0, Z = i] and
rit := P (At = 0|Z = i) be, respectively, the predictor error on the rejected population and the
rejection rate for group i at time t. Then, the observed disparity ∆̃t can be decomposed for each
fairness notion:

• Qualification parity (∆̃t = E[Ỹt|Z = 1]− E[Ỹt|Z = 0]): ∆̃t = ∆t + (r1t ϵ
1
t − r0t ϵ

0
t )

• Accuracy parity (∆̃t = E[1{Ỹt = At}|Z = 1]−E[1{Ỹt = At}|Z = 0]): ∆̃t = ∆t−(r1t ϵ1t−r0t ϵ0t )

• Equality of opportunity (∆̃t = E[At|Z = 1, Ỹt = 1]−E[At|Z = 0, Ỹt = 1]): ∆̃t = µ1
tκ

1
t −µ0

tκ
0
t

where µi
t = E[At|Z = i, Yt = 1], κi

t = 1− ritϵ
i
t/ϕ̃

i
t, and ϕ̃i

t = P (Ỹt = 1|Z = i).

Theo. 3.1 shows that the observed disparity ∆̃t is cofounded by the bias on ritϵ
i
t (or ritϵ

i
t/ϕ̃

i
t) that

relates the policy rejection rate rit with the predictor error ϵit. When optimizing for fairness using
observed data, an algorithm might inadvertently exploit the imputation bias by reducing |∆̃t|without
improvements in |∆t|. To avoid this, the decision-maker could obtain a bounded value of true
disparity |∆t| by balancing the rejection rate and group error, as we show in our next result.

2With equality of opportunity, the condition Ci = {Z = i, Y = 1} is replaced by C̃i = {Z = i, Ỹ = 1}.
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Theorem 3.2 (Sufficient Conditions for Bounding True Disparity). For each fairness notion and a
constant ω ∈ R+, the following conditions are sufficient to bound the true disparity |∆t| ≤ ω:

• Qualification parity and accuracy parity: |(r1t ϵ1t − r0t ϵ
0
t )| ≤ ω/2 and |∆̃t| ≤ ω/2.

• Equality of opportunity: |(r1t ϵ1t/ϕ̃1
t − r0t ϵ

0
t/ϕ̃

0
t )| ≤ (1 − vt)ω/2 and |∆̃t| ≤ (1 − vt)ω/2 where

vt := maxi r
i
tϵ

i
t/ϕ̃

i
t.

This theorem shows that to be able to constrain the true disparity with an upper bound of ω, the
uncertainty induced by the predictor error demands that the observed disparity satisfy an even lower
upper bound ω/2. Similarly, the imputation bias should also be constrained by ω/2. The conditions
for equality of opportunity are stricter when vt gets closer to 1.

However, conditions from Theo. 3.2 are not actionable, as they depends on the error on the rejected
population, which have unobserved labels. To make these conditions practical, in the following
section we leverage the theory of domain adaptation to bound the error on the rejected population.

3.2 BOUNDING TRUE DISPARITY FROM OBSERVABLE QUANTITIES

In an iterative learning process, the decision-maker will employ a sequence of policies
π[1], . . . , π[K] for K iterations to perform actions and select clients. Thus, this (labeled) collected
data from previous iterations can be used to estimate the error of the (unlabeled) rejected population
using the theory of domain adaptation. For simplicity, we will omit the subscript t in this section.

Let A[k] ∼ π[k] be the decision at iteration k. The feature distribution for individuals in group
i rejected by the current policy π[K] is Di

R(x) := P (X = x|A[K] = 0, Z = i), and for those
accepted in any iteration up to K is Di

A(x) := P (X = x|
∨K

k=1 A[k] = 1, Z = i). By defining
the error function ϵ(x, i) = E[Ŷ − Y |X = x, Z = i], the error over the rejected population is
ϵi = EX∼Di

R
[ϵ(X, i)]. We can estimate this error using the accepted data via Inverse Propensity

Weighting (IPW), in which from a random set of N i samples collected with Di
A we can estimate ϵi

by ϵ̂iA,w =
∑Ni

j=1 ϵ(xj , i)w(xj , i) where a[1 : K]i = P
(∨K

k=1 A[k] = 1|Z = i
)

is the acceptance
rate up to iteration K and:

w(x, i) =
Di

R(x)

Di
A(x)

=
a[1 : K]i

ri
· 1− π[K](x, i)

1−
∏K

k=1(1− π[k](x, i))
(3)

The weight w(x, i) quantifies how much more likely the features x for group i are to be found
in the rejected population relatively to the accepted population, and are fully determined by the
known policies π[k]. However, IPW suffers from high variance whenever the denominator Di

A
approximates 0 (Rateike et al., 2022). To tackle this issue, we leverage generalization bounds on the
IPW estimator from Cortes et al. (2010) to provide a high-probability upper bound on the error.
Assumption 1 (Overlap). For each group i, Di

R is absolutely continuous with respect to Di
A.

Theorem 3.3 (Adapted from (Cortes et al., 2010)). Let d < ∞ by the pseudo-dimension of the
hypothesis space of predictor models ϕ and N i be the number of accepted samples for group i, the
error on the rejected population ϵi for group i is bounded by ϵi with hight probability:

ϵi ≤ ϵ̂iA,w +O
(√

d2(Di
R||Di

A)/
√
N i

)
:= ϵi (4)

where d2(D
i
R||Di

A) = EDi
A

[
w(x, i)2

]
is the Renyi divergence with factor 2.

This bound permit us to be explicit about the quality of the IPW estimator of the error, which
depends on the distance between distributions of rejected and accepted individuals and the number
of samples N i. The bound will get tighter when more data is collected and when the policy is less
strict in the separation between rejected and accepted individuals. By substituting this error bound
ϵi in our framework, we arrive at our main practical result: a set of fully observable and enforceable
conditions for guaranteeing long-term fairness.
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Theorem 3.4. For each fairness notion and a given constant ω ∈ R+, the following conditions are
sufficient to have |∆| ≤ ω with high probability:

• Qualification parity and accuracy parity:
∑

i r
i|ϵi| ≤ ω/2, and |∆̃| ≤ ω/2.

• Equality of opportunity:
∑

i r
i|ϵi|/ϕ̃i ≤ (1 − v)ω/2 and |∆̃| ≤ (1 − v)ω/2, where v =

max(ri|ϵi|/ϕ̃i).

This final theorem presents practical conditions to satisfy true fairness. It shows that an algorithm
that reaches observed fairness in ∆̃ can ensure true fairness ∆ by two paths: 1) reduce the error
bound ϵi (by reducing ϵ̂iA,w or reducing the separation between accepted and rejected distributions)
or 2) reduce the rejection rate ri of the policy π for groups with high error bound, therefore reducing
the reliance on imperfect predictions for that group.

4 METHOD

We present an algorithm for SElective Labes in Long-term Fairness (SELLF) that optimizes the
policy π with regularization based on estimates of a predictor ϕ and promotes actions that ensure
higher confidence on its estimates. We introduce a new loss term in the PPO algorithm (Schulman
et al., 2017) and utilize the advantage regularization approach in (Yu et al., 2022) to constrain the
policy. Simultaneously, the predictor model is learned with the data collected by PPO using IPW.

PPO is a policy gradient method for reinforcement learning capable of handling continuous state
spaces. Defining the value of a state V (s) = E[

∑T
t R(Yt, At)|S0 = s] and the q-value of a state,

action pair Q(s, a) = E[
∑T

t=1 R(Yt, At)|S0 = s,A0 = a], with both quantities reflecting the long-
term returns, the advantage function is A(st, at) = Q(st, at)−V (st). One of the main contributions
of PPO is the clipping of the advantage to impede gradient steps to move the policy further away
from the one from which data was collected. It uses the objective:

LPPO = E[min(rt(θπ)A(st, at), clip(rt(θπ), 1− ϵ, 1 + ϵ)A(st, at)] (5)

where rt(θπ) = π(st)/πold(st) sets the importance of each sample and ϵ is a clipping parameter.
Furthermore, a neural network is used to approximate the value function V . We use the approach
of advantage regularization introduced by Yu et al. (2022) to satisfy |∆̃| ≤ ω/2. The advantage
function is penalized as Âβ(st, at) = Â(st, at)− β1 max{|∆̃t| − ω/2, 0} with β1 as a penalization
weight. In particular, with qualification parity, we alter the penalization procedure to be based on
|∆̃t+1| (replacing ∆̃t by ∆̃t+1) as an action has no influence on the disparity of the current iteration.
The advantage will be reduced whenever |∆̃t| ≥ ω/2.However, as Theo. 3.4 shows, we should also
reduce rit|ϵit| (or rit|ϵit|/ϕ̃i

t) to ensure that |∆t| is also bounded. In practice, the bound from Theo. 3.3
will be dominated by the divergence term. For that reason, we focus our attention in controlling it
by reducing the Renyi divergence. Let cit = rit/ϕ̃

i
t for equality of opportunity and cit = rit otherwise.

We create the combined learning objective J(θπ) = LPPO + β2L
Renyi where:

LRenyi = c1t Ê[w(xt, 1)
2|Z = 1] + c0t Ê[w(xt, 0)

2|Z = 0] (6)

Morever, we leverage data collected by PPO to train the predictor ϕ with binary cross-entropy loss.
We employ inverse propensity weighting to adjust the distribution of samples which were collected
under a selection bias imposed by π. That is, the predictor ϕ is optimized to minimize:

LClassif =
∑

i∈{0,1} EDi
A
[w(xt, i)ℓ(yt, ϕ(xt, i))/w(i)] (7)

where ℓ is the binary cross entropy evaluated at each sample and the weights w(xt, i) (Eq. 3) shift
the distribution to the overall distribution of individuals. To tackle the variance of IPW, we include
the normalization term w(i) =

∑
z=i w(xt, z) that is used in self-normalized IPW (Swaminathan &

Joachims, 2015). The pseudocode for SELLF is presented in Appendix C.
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5 EXPERIMENTS

We evaluated SELLF in semisynthetic environments, performing an ablation study of our solution
and a comparison to baselines. To simulate real-world scenarios, we used a loan application environ-
ment based on FICO scores initially introduced by Liu et al. (2018) and a new proposed environment
that simulates school admission based on ENEM (INEP, 2025) (Brazilian high school exam).

Simulation To simulate the F-MDP, we define the distributions PZ , P0, PYt|Xt,Z , PT , and create
a pool of individuals that follow the joint distribution. At each iteration, given a sampled individual
(z, xt, yt) from the pool, the decision at is sampled from π(xt, z). With (yt, at) we calculate the
reward and update the feature xt+1 according to the modeled transition PT and return this individual
to the pool. This procedure induces the update of PXt|Z to PXt+1|Z . For a detailed description of
how probabilities were defined based on real datasets for each setting, we refer to Appendix D. Each
agent starts with a resource of 1,000 which is updated based on obtained rewards.

Baselines We compare the proposed algorithm SELLF with a standard PPO implementation de-
signed to maximize reward. We also compare it against POCAR, introduced by Yu et al. (2022). As
POCAR does not consider the partial observation of features Y , we perform advantage regulariza-
tion based on ∆A=1 (Eq. 2). We also implemented a variation of POCAR which has oracle access to
the true disparity ∆, and thus serves as a reference of the attainable fairness without selective labels.

Experimental Settings Algorithms were trained for 500,000 environment steps. Hyperparameters
from PPO, which are common to all tested methods, were adopted from Yu et al. (2022). The
disparity constraint was set to ω = 0.05, and fairness specific hyperparameters were tuned for each
algorithm. We report results from the hyperparameter configuration that achieved the highest reward
while satisfying disparity constraints. If no configuration satisfied the constraints, we report the one
with lowest disparity. Appendix F presents a complete description of the experimental procedure.

5.1 LENDING ENVIRONMENT

We consider a simulated lending environment where each individual is described by a credit score
xt ∈ {1, 2, . . . , 10}, with higher scores having higher probability of repayment. At each timestep,
the decision-maker can either approve or reject a loan application. If rejected, the individual’s score
remains unchanged. If approved, the score increases by one upon repayment (yt = 1) or decreases
by one upon default (yt = 0). We set the cost of acceptance as c = 0.8, motivated by the high cost of
false positives (defaults) in lending applications. Despite being simple, this environment illustrates
the inability of solutions based in static fairness to obtain fairness in the long-term (Liu et al., 2018;
D’Amour et al., 2020).
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Figure 2: SELLF algorithm executed in the lending en-
vironment with β1 = 5 and varying values of β2. We
display measures during learning and the disparity of
the final policy. Results are averaged with 25 repeti-
tions.

Ablation Study We analyze the effect
of the Renyi loss (Eq. 6) on SELLF by
varying the weight β2. Using the accuracy
parity fairness notion, we fixed β1 = 5
(weight of |∆̃t| penalization) and evalu-
ated β2 ∈ {0, 0.01, 0.05, 0.1, 0.2}. Fig.
2 displays the behavior during learning of
the gap between true and observed dispar-
ity, the Renyi loss and the final true dis-
parity achieved by the trained agent. For
values of β2 < 0.1, the disparity gap in-
creased during the initial training phase,
ending with values higher than 0.01. Sim-
ilarly, the Renyi loss drastically increases
over time for these values of β2. In con-
trast, with β2 = 0.1 and β2 = 0.2 the
disparity gap is minimized, going to 0 as
training progress. β2 = 0.1 also presented the lowest true disparity value among all configurations.
An excessively large weight, such as β2 = 0.2, can guide the policy for over-accepting, which
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can present hight disparity with accuracy parity fairness notion whenever groups are not equally
qualified. For that reason, β2 = 0.2 presented the highest true disparity. This study confirmed
the importance of the Renyi loss and demonstrated that with a tuned hyperparameter, we can reach
improvements in long-term fairness with selective labels.

0 5000 10000
Timestep

1000

1200

1400

1600

Cumulative Reward

0 5000 10000
Timestep

0.0

0.1

0.2

0.3

0.4

Disparity (| t|)

SELLF POCAR (Oracle) POCAR PPO

0.15 0.20
P(A = 1|Z = 0)

0.3

0.4

0.5

0.6

P(
A

=
1|Z

=
1)

Accept rate

Figure 3: Reward and true disparity (equality of opportu-
nity) over time obtained by optimized agents in the lend-
ing environment. Results are obtained with 10 repetitions.
SELLF is able to ensure the same fairness as the baseline
with oracle access and higher reward.

Comparative Results In our fol-
lowing experiment, we compare
SELLF with baseline algorithms with
equality of opportunity. Fig. 3 dis-
play the behavior of trained agents for
10,000 iterations in the environment,
with results summarized in Tab. 1.
The highest cumulative reward is ob-
tained by PPO with high unfairness
during all observed period. SELLF
and POCAR (Oracle) obtained the
same disparity of 0.05 during the ob-
served period. However, SELLF was
able to obtain a higher cumulative re-
ward. This occurs as SELLF pre-
sented a higher acceptance rate than
POCAR (Oracle), willing to accept
individuals with higher risk to reduce
the separation between accepted and
rejected population. As we showed in Prop. 3.1, ∆A=1 is a flawed objective and always 0 for
equality of opportunity. For that reason, POCAR behaves as PPO, unaware of the true disparity.

5.2 SCHOOL ADMISSION ENVIRONMENT
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1100
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Figure 4: Reward and true disparity (qualification) obtained
in the school admission environment. Results are obtained
with 10 repetitions. None algorithm was able to reach dis-
parity below 0.05, yet SELLF obtained the lowest values.

Our school admission environment is
inspired by the ENEM, a Brazilian
national exam. At each timestep t,
the decision-maker selects individu-
als for a preparatory program and can
assess the performance on the exam
yt (pass/not pass) of accepted ones,
while the remaining labels are unob-
served. The environment dynamics
are as follows: a student’s probability
of passing the next exam (yt+1 = 1)
increases if they are selected (at = 1)
or pass the current exam (yt = 1).
Furthermore, there is a decrease in
the probability of passing the exam
between timesteps due to effect of
age, which is present independently
of the decision. The conditioned dis-
tribution Yt | Xt, Z is a logistic regression learned from data, with Xt having 126 dimensions. The
cost is set as c = 0.5. In this study, we perform experiments using the qualification parity fairness
notion.

Comparative Results Fig. 4 displays the result of the trained agents. Similarly, PPO and POCAR
obtained the highest rewards, followed by SELLF and POCAR (Oracle). However, both PPO and
POCAR ended with disparity higher than the initial value of 0.125. This shows that by optimizing
∆A=1 an agent can even cause harm in the long-term. SELLF and POCAR (Oracle) presented
a reduction in disparity, however not being able to reach values lower than ω = 0.05. As the
qualification of individuals is highly influenced by the initial state and transition dynamics, agents
have less effect on it. Yet, all algorithms resulted in a increase of the qualification of the unprivileged
group over time, which the highest increase obtained by SELLF.
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Model Lending (Equal. of Opp.) School admis. (Quali. Parity)
Disparity(↓) Reward(↑) Disparity(↓) Reward(↑)

PPO 0.38 (± 0.01) 1624.64 (± 14.0) 0.15 (± 0.01) 1219.68 (± 23.0)
POCAR 0.37 (± 0.01) 1626.68 (± 12.9) 0.14 (± 0.01) 1203.02 (± 25.4)
POCAR (Oracle) 0.05 (± 0.01) 1156.82 (± 12.4) 0.12 (± 0.01) 1069.16 (± 20.5)
SELLF (ours) 0.04 (± 0.01) 1263.96 (± 17.3) 0.12 (± 0.01) 1131.58 (± 26.7)

Table 1: Performance and true disparity averaged over time of agents at the lending (with equality of
opportunity) and school admission (with qualification parity) environments. Results are an average
of 10 deployment repetitions.

Tab. 1 displays the average disparity and accumulated reward for agents. Additional results with
varying fairness notions are present in Appendix F. In summary, SELLF was able to obtain positive
rewards while reaching fairness levels similar to an oracle in the selective labels setting.

6 DISCUSSION

Assumptions Our theoretical analysis relies on two simplifying assumptions. First, the F-MDP
assumes stationary group dynamics. While this may not hold over extended periods, on practice
the model could periodically retrained to adapt to new dynamics. Second, our error bounds assume
overlap between the distribution of rejected and accepted individuals. That is, every individual that
has a non-zero probability of being rejected also has a non-zero probability of being previously
accepted. This requirement is consistent with the need for active exploration; the decision-maker
must sometimes accept uncertain applicants to gather data and prevent convergence to a suboptimal
policy, a principle argued by Kilbertus et al. (2020).

Dependence on IPW As previously discussed, the IPW can introduce high variance and learn-
ing instability if action probabilities become too small (Swaminathan & Joachims, 2015). While
SELLF uses the importance weight in the Renyi and classification losses, our solution present two
safeguards to obtain reduced variance. First, the importance weights are calculated by the aggregated
probability of actions from all previous policies. This cumulative probability provides a more stable
denominator, preventing it from approaching zero. Second, the Renyi loss objective itself incentives
the policy to reduce the magnitudes of weights. See Appendix F.1 for an empirical evaluation of
weights.

7 CONCLUSION

We studied the problem of long-term fairness under selective labels. In this scenario, the decision-
maker must maximize reward while satisfying fairness in regard to labels, which are only observed
in the case of acceptance. We present a modeling framework based on MDP where a predictor
model is used to infer unseen labels. Under this new configuration, we presented a theoretical
analysis of the relation between true and observed disparity, which was then used to motivate our
proposed algorithm. By leveraging the estimates of unfairness obtained by the predictor model and
a confidence bound on these estimates, we introduce an simple and flexible reinforcement-learning
algorithm. In two semisynthetic environments, our algorithm presented the highest improvements
in fairness, reaching similar results to an agent with oracle access to labels. Future works includes
the adaptation of our theoretical results to an offline algorithm that leverages historical data, as in
highly consequential settings, deploying a policy for learning might be unfeasible. Furthermore,
future directions also include the study of the setting in which the decision-maker select an action
among multiple possibilities (non-binary) with different effects each.
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A EXTENDED RELATED WORKS

In this section we discuss in greater details related works of long-term fairness and selective labels
and other related areas. For a comprehensive review of long-term fairness, we refer to the survey by
Gohar et al. (2024).

Long-term fairness has gained significant attention since the seminal work by Liu et al. (2018),
which presented an analysis of fairness policies in a credit scenario with one step feedback. Fol-
lowing, D’Amour et al. (2020) employed simulations to evaluate effect of fair policies over a larger
period. Both works showed that ensuring fairness at each iteration might cause harm in the long-term
when dynamics are introduced.

Algorithmic solutions commonly leveraged reinforcement learning solutions or causal modeling.
Considering that feedback dynamics are known, Wen et al. (2021) introduced fairness metrics to the
MDP setting by formulating individuals’ rewards as a second objective and Rateike et al. (2024)
studied settings where a fixed-threshold policy can converge to a fair equilibrium. A set of works
have studied the PPO algorithm to ensure fairness. Yu et al. (2022) and Hu et al. (2023) included
a penalization term on the advantage estimate used for policy optimization, while Lear & Zhang
(2025) used an expansion of the disparity in qualification as a value function. Q-learning was
adapted for long-term fairness by Chi et al. (2022) and Alamdari et al. (2024). The relation be-
tween short-term fairness and long-term fairness has also been studied by previous works (Hu et al.,
2023; Alamdari et al., 2024; Lear & Zhang, 2025). Yin et al. (2023) used a different framework
where states were the joint distribution of the population. To support continuous state and actions, it
employed a modification of least-squares value iteration algorithm. A subset of works for long-term
fairness considered a different dynamics between decisions and population distributions, where the
participation of groups was not fixed over time and depends on the quality of predictions (accu-
racy) or on the acceptance rates Puranik et al. (2022); Raab et al. (2024). All of these approaches
considered only measuring fairness from fully observable features X (no use of labels Y ).

In the stochastic K-out-of-N bandit model, the decision-maker at each iteration must select K arms
over N total possibilities and observes rewards only for those arms. Long-term fairness has already
been discussed in this setting by considering that each arm belong to a group, and that each group
should be selected (any arm of the group) with a frequency higher than a threshold Chen et al.
(2020); Li & Varakantham (2022); Wang et al. (2024). While these works handle partial feedback,
the classical bandit assumption that actions do not influence future contexts eliminates long-term
feedback loops that motivate our work.

Partial-label scenarios have been analyzed in simpler decision-theoretic models or in settings with
time-invariant data distributions. Zhang et al. (2020) presented a theoretical study of threshold
policies that satisfy fairness in the short-term, but not necessarily in the long-term. While a partial
observation MDP was used in the analysis, it did not consider learning in such a setting. Fawkes
et al. (2024) audit benchmark fairness datasets and reported that selection bias (a class of bias that
includes partial feedback) was identified in 85% of them. In static environments, previous works
considered the problem of sequentially employing a policy which is used to learn the unseen data
distribution with selective labels. Kilbertus et al. (2020) showed showed policies should be able to
“explore” so that a learning algorithm does not end in a suboptimal utility and fairness. Following,
Rateike et al. (2022) considered using the unlabeled data to learn an unbiased representation of
individuals features, which were then used to train the policy. Lastly, Keswani et al. (2024) presented
an algorithm to learn the optimal policy with suboptimal estimates of labels.

Causal modeling provides a language for defining the feedback loops that induce long-term disparity.
Creager et al. (2020) discussed the benefits of representing assumptions within the causal diagrams’
framework, providing various examples where an undesired effect occurs when the causal structure
of the system is misspecified. One of such analysis was of off-policy evaluation in the setting of
partial feedback, yet, their work do not included an theoretical analysis. Hu & Zhang (2022) con-
nected causality and performative predictions in long-term fairness by transforming an optimization
problem defined by a causal model to a problem of performative prediction.
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B PROOFS

In this section, we will omit the subscript t whenever it is not relevant. Furthermore, we simplify
the notation P i(E|C) := P (E|C,Z = i) for any event E and condition C. We will also write
Ei[E|C] := Ei[E|C,Z = i].

B.1 PROOF OF PROP. 3.1

We first write the proposition presented using a formal notation.
Proposition B.1 (Restatement of Prop. 3.1). Let ait = P (At = 1|Z = i) be the acceptance rate of
group i. For each fairness principle, the disparity calculated from accepted population ∆A=1

t has
the decomposition ∆A=1

t = (µ1
t c

1 − µ0
t c

0) + (d1 − d0) where the terms ci, di are:

• Qualification parity: ci = P (At = 1|Yt = 1, Z = i)/ait, di = 0.

• Accuracy parity: ci = 1/ait, di = −P 1(Yt = 0, At = 0|Z = i)/ait.

• Equality of opportunity: ci = di = 0 (that is, ∆A=1
t = 0 always).

And |∆A=1
t | = 0 is not a sufficient condition for |∆t| = 0.

Proof. First, we consider each fairness principle and identify an expression for ∆A=1
t :

1) Qualification parity

By considering each term of ∆A=1:

µi = P i(Y = 1|A = 1) = P i(Y = 1)
P i(A = 1|Y = 1)

ai
(8)

And by joining both terms we have:

∆A=1 = P 1(Y = 1|A = 1)− P 1(Y = 1|A = 1) (9)

= P 1(Y = 1)
P 1(A = 1|Y = 1)

a1
− P 0(Y = 1)

P 0(A = 1|Y = 1)

a0
(10)

2) Accuracy parity

Similarly, considering each side ∆A=1:

P i(Y = A) = P i(Y = 1, A = 1) + P i(Y = 0, A = 0) (11)

= P i(Y = A|A = 1)ai + P i(Y = 0, A = 0) =⇒ (12)

P i(Y = A|A = 1) =
P i(Y = A)

ai
− P i(Y = 0, A = 0)

ai
(13)

And by joining both terms:

∆A=1 = P 1(A = Y |A = 1)− P 0(A = Y |A = 1) (14)

= µ1/a1 − µ0/a0 −
(
P 1(Y = 0, A = 0)

a1
− P 0(Y = 0, A = 0)

a0

)
(15)

3) Equality of opportunity

It is direct to see that P i(A = 1|Y = 1 ∧ A = 1) = 1, concluding that ∆A=1 = 1 − 1 = 0
independently of the real disparity ∆.

Conclusion

Now, if |∆A=1
t | = 0 we can have |∆t| > 0 by setting:

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

• Qualification parity: c1 ̸= c0 and µ1
t = (c1/c0)µ0

t which implies µ1 ̸= µ0 =⇒ |∆t| > 0.

• Accuracy parity: d1 = d0, c1 ̸= c0 and µ1
t = (c1/c0)µ0

t which implies µ1 ̸= µ0 =⇒ |∆t| > 0.

• Equality of opportunity is direct, as ∆A=1
t = 0 always.

B.2 PROOF OF THEO. 3.1

Proof. We will define the random variable ϵ = Ŷ − Y , ϵ ∈ {−1, 0, 1} and use the relation Ỹ =
Y + (1−A)ϵ. Based on this, we can conclude:

Ei[(1−A)ϵ] = Ei[(1−A)ϵ | A = 1]︸ ︷︷ ︸
=0

ai + Ei[(1−A)ϵ | A = 0]ri (16)

= Ei[ϵ | A = 0]ri = ϵiri (17)

With ϵi as defined in the section. Then, we consider each fairness principle.

1) Equality of qualification

Considering each term of ∆̃, we have that:

Ei[Ỹ ] = Ei[Y + (1−A)ϵ] = Ei[Y ] + Ei[(1−A)ϵ] (18)

We combined both terms to rewrite ∆̃:

∆̃ = (E1[Y ] + ϵ1r1)− (E0[Y ] + ϵ0r0) (19)

= (E1[Y ]− E0[Y ]) + (ϵ1r1 − ϵ0r0) = ∆+ (ϵ1r1 − ϵ0r0) (20)

2) Equality of accuracy

Considering each term of ∆̃, we have that:

Ei[1{A = Ỹ }] = (21)

= P i(A = 1, Ỹ = 1) + P i(A = 0, Ỹ = 0) (22)

= P i(A = 1, Y = 1) + P i(A = 0, Y + ϵ = 0) (23)
(24)

Let’s work on the term P i(A = 0, Y + ϵ = 0):

P i(A = 0, Y + ϵ = 0) = riP (Y + ϵ = 0 | A = 0) (25)

= riEi[1− (Y + ϵ) | A = 0] (26)

= ri(1− Ei[Y | A = 0]− ϵi) (27)

= ri − Ei[Y | A = 0]ri − ϵiri (28)

= ri − P i(Y = 1, A = 0)︸ ︷︷ ︸
P i(Y=0,A=0)

−ϵiri (29)

= P i(Y = 0, A = 0)− riϵi (30)
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Replacing it in Ei[1{A = Ỹ }]:

E[1{A = Ỹ } | Z = z•] = P i(A = 1, Y = 1) + P i(Y = 0, A = 0)− riϵi (31)

= E[1{A = Y } | Z = z•]− riϵi (32)

Then, we have that by replacing both terms of ∆̃.

∆̃ = E1[1{A = Ỹ }]− E0[1{A = Ỹ }] = (33)

=
(
E1[1{A = Y }]− r1ϵ1

)
−

(
E0[1{A = Y }]− r0ϵ0

)
= (34)

= ∆− (ϵ1r1 − ϵ0r0) (35)

3) Equality of opportunity

We first open one term of ∆̃:

Ei[A = 1 | Ỹ = 1] = P i(A = 1 | Ỹ = 1) =
P i(A = 1, Ỹ = 1)

P i(Ỹ = 1)
(36)

Notice that P i(A = 1, Ỹ = 1) = P i(A = 1, Y = 1) as Ỹ = Y when the action is positive. We are
now interested in relating the replacing the denominator P i(Ỹ = 1) to P i(Y = 1). To do so, we

can define κi =
P i(Y = 1)

P i(Ỹ = 1)
with the assumption that P i(Ỹ = 1) ̸= 0 and obtain:

Ei[A = 1 | Ỹ = 1] =
P i(A = 1, Y = 1)

P i(Y = 1)
κi = Ei[A = 1 | Y = 1]κi (37)

Which shows that the true positive rate calculate from the observed labels is equal to the true positive
rate with the multiplying factor κi that is the ratio of real positive labels and observed positive labels.
Then, joining both terms in the expression of ∆̃, we obtain:

∆̃ = E1[A = 1 | Y = 1]κ1 − E0[A = 1 | Y = 1]κ0 (38)

We are also interested in rewriting κi to remove the direct dependence on Y , a value that is partially
observed. We have that:

Ei[Ỹ ] =Ei[Y ] + Ei[(1−A)ϵ] (39)

=⇒ P i(Y = 1) =Ei[Ỹ ]− Ei[(1−A)ϵ] (40)

=P i(Ỹ = 1)− ϵiri (41)

And then:

κi =
P i(Ỹ = 1)− ϵiri

P i(Ỹ = 1)
= 1− ϵiri

ϕ̃i
(42)

With ϕ̃i defined as in the section.
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B.3 PROOF OF THEO. 3.2

Proof. We first consider the scenario of qualification parity and accuracy parity. From Theo. 3.1,
we have that:

∆̃ = ∆± (r1ϵ1 − r0ϵ0) =⇒ (43)

|∆| = |∆̃± (r1ϵ1 − r0ϵ0)| (44)

≤ |∆̃|+ |r1ϵ1 − r0ϵ0| (45)
≤ ω/2 + ω/2 = ω (46)

Where the first two lines uses± due to the different expressions obtained for qualification parity and
accuracy parity.

Now with the equality of opportunity fairness principle, we have from Theo. 3.1:

∆̃ = µ1κ1 − µ0κ0 (47)

= κ1∆+ µ0(κ1 − κ0) =⇒ (48)

κ1|∆| = |∆̃− µ0((1− r1ϵ1/ϕ̃1)− (1− r0ϵ0/ϕ̃0))| (49)

= |∆̃− µ0(−r1ϵ1/ϕ̃1 + r0ϵ0/ϕ̃0)| (50)

≤ |∆̃|+ µ0|r1ϵ1/ϕ̃1 − r0ϵ0/ϕ̃0| (51)

≤ |∆̃|+ |r1ϵ1/ϕ̃1 − r0ϵ0/ϕ̃0| (52)

≤ (1− v)ω

2
+

(1− v)ω

2
= (1− v)ω =⇒ (53)

|∆| ≤ (1− v)ω

κ1
≤ (1− v)ω

1− v
= ω (54)

Where line 52 uses the fact that µ0 ≤ 1.

B.4 PROOF OF THEO. 3.3

Theo. 3.3 was initially presented by Cortes et al. (2010). Here we present the original statement
and describe the adaptation to our scenario. First we define models h, which are evaluated from
a bounded loss L(h(x), f(x)) (abbreviated by Lh(x)), the risk R(h) = Ex∼P [Lh(x)] and the
weighted empirical loss R̂w(h) =

∑m
i=1 w(xi)Lh(x

i) calculate from m i.i.d. samples (xi, yi)
obtained by distribution Q.
Theorem B.1 (Theo. 3 from Cortes et al. (2010)). Let H be a hypothesis set such that
Pdim({Lh(x) : h ∈ H}) = p < ∞. Assume that d2(P ||Q) < ∞ and w(x) = P (x)/Q(x) ̸= 0 for
all x. Then, for any δ > 0, with probability of at least 1− δ, the following holds:

R(h) ≤ R̂w(h) + 25/4
√

d2(P ||Q)

3
8

√√√√p log
2me

p
+ log

4

δ

m
(55)

In our setting, we evaluated the models ϕ using data collected from previously accepted individuals,
that is, Q := Di

A and:

Di
A(x) =

(
1−

∏K
k=1(1− π[k](x, i))

)
g(x, i)

a[1 : K]i
(56)

where g(x, i) := P (X = x|Z = i). However, we wish to know the error from the distribution of
rejected individuals, which is P := Di

R:

Di
R(x) =

(1− π[K](x, i))g(x, i)

ri
(57)
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and w(x, i) = P (X)/Q(x) = Di
R(x)/D

i
A(x) has the expression presented at Sec. 3. Lastly, our

loss measure is ϵ(x, i) = E[Ŷ − Y |X = x, Z = i], which is also bounded, but has support in
[−1, 1]. With this configuration, R(h) := ϵi and R̂w(h) = ϵ̂iA,w. While the larger support changes
the formulation of the bound in Eq. 55, only thhe constants are different, and big-O is kept the same.

B.5 PROOF OF THEO.3.4

Proof. Initially, as ϵi ≥ ϵi and ri > 0,∀i, we have that
∑

i r
i|ϵi| ≤

∑
i r

i|ϵi|. By leveraging results
from Theo. 3.1 we have that for qualification parity and accuracy parity:

∆̃ = ∆± (r1ϵ1 − r0ϵ0) =⇒ (58)

|∆| = |∆̃± (r1ϵ1 − r0ϵ0)| (59)

≤ |∆̃|+ |r1ϵ1 − r0ϵ0| (60)

≤ |∆̃|+ |r1ϵ1|+ |r0ϵ0| (61)

≤ |∆̃|+ |r1ϵ1|+ |r0ϵ0| (62)
≤ ω/2 + 2ω/4 = ω (63)

And for equality of opportunity:

∆̃ = µ1κ1 − µ0κ0 = κ1∆+ µ0(κ1 − κ0) =⇒ (64)

κ1|∆| = |∆̃− µ0(κ1 − κ0)| (65)

≤ |∆̃|+ µ0|κ1 − κ0| (66)

≤ |∆̃|+ |κ1 − κ0| = |∆̃|+
∣∣∣r1ϵ1/ϕ̃1 − r0ϵ0/ϕ̃0

∣∣∣ (67)

≤ |∆̃|+
∑
i

riϵi/ϕ̃i (68)

≤ |∆̃|+
∑
i

riϵi/ϕ̃i (69)

≤ (1− v)ω

2
+

(1− v)ω

2
= (1− v)ω (70)

|∆| ≤ (1− v)ω

κ1
≤ (1− v)ω

(1− v)
= ω (71)
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C ALGORITHM

Algorithm 1: SELLF
Initialize neural networks π, ϕ, V with respective weights θ0π, θ

0
ϕ, θ

0
V and memory buffer

M = {};
for k = 1, 2, . . . ,K do

Initialize replay buffer B = {};
for episode = 1, . . . , E do

for t = 1, 2, . . . , T do
Sample at ∼ π(xt, z), yt ∼ α(xt, z), xt+1 ∼ PT (x

t, z, at, yt), ŷt ∼ ϕ(xt, z)
Run data imputation ỹt ← atyt + (1− at)ŷt

B ← B ∪ {z, xt, ỹt, at, rt, xt+1, ∆̃t}
M ←M ∪ {xt, z, ỹt} if at = 1

end
end
for each predictor gradient step do

Sample mini-batch from M

θkϕ ← θkϕ − γ∇θϕ

∑
i∈{0,1} ÊDi

A
[w(xt, i)ℓ(ỹt, ϕ(xt, i))/w(i)]

end
for each policy gradient step do

Âβ(st, at)← Â(st, at)− β1 max{|∆̃t| − ω/2, 0}
d(θπ)← π(xt, z)/πθt

π
(xt, z)

JCLIP(θπ)← Ê[min(d(θπ)Â(st, at), clip(d(θπ), 1− ϵ, 1 + ϵ)Âβ)]

LRenyi(θπ)← (r1t Ê[w2
t |Z = 1] + r0t Ê[w2

t |Z = 0])/2
θt+1
π ← θtπ + γ(∇θπJ

CLIP(θπ)−∇θπL
Renyi(θπ))

θt+1
V ← θtV − α∇θV E[(V (st)−G(st))2] ; ▷ G(st)←

∑T
i=0 γ

irt+i

end
end

D DATASETS AND ENVIRONMENTS

This work considers the effects of algorithms on the distribution of population attributes. This char-
acteristic impedes the evaluation of algorithms in historical (and static) data, as they will not present
the effects from the intervention of algorithms. For that reason, we employ semisynthetic datasets
to evaluate the proposed algorithms, which is commonly done in studies of long-term fairness. To
do so, a real-world dataset is utilized to set the initial data distribution. Then, the dynamics of the
environment are designed and utilized to simulate the following timestamps. These dynamics must
be plausible for the system modeled, which we considered two: loan applications based on FICO
and school admission based on ENEM.

Lending FICO (Reserve, 2007) is a common open-source dataset utilized in fairness studies. It
consists of anonymized profiles of clients of a banking institution with a credit score that was calcu-
lated from these attributes. Using the data available from Barocas et al. (2023), race was defined as
the sensitive attribute Z, using two classes (“Black” and “white”). For simplicity, we set each group
with probability 0.5. Then, for each group, we calculate the probability of observing each score
(from 10 possible discretized score values). This was then used as P (X0|Z). Following, we calcu-
late the probability of payment given each score for each group, that is α(X,Z) = P (Y = 1|Z,X).
Both distributions are present in Fig. 5. It is possible to see that while the white population is al-
most uniformly spread among scores, almost 50% of the Black individuals have a score class of 0 or
1. When considering the probability of payment, we can see that both groups present very similar
behavior, yet, a small difference is present. We observe that the probability of payment of a Black
individual of the same score class of a white one is smaller. This might be caused by external social
aspects that were not fully captured by the credit score.
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Figure 5: Probability distributions calculated from the FICO dataset to define the environment.

In the FICO environment, we used the dynamics first presented by Liu et al. (2018). If an individual
is rejected, the credit score is kept the same. If an individual is accepted, its credit score will increase
by one unit if Y = 1 and decrease by one unit if Y = −1.

School Admission The ENEM is a national exam applied in Brazil that serves as a scoring for
public universities’ admission process. Yearly, the data collected from applicants is shared with
suited anonymization procedures. This dataset has recently been used in fairness studies (Pereira
et al., 2025; Alghamdi et al., 2022). We use this dataset to model a decision-making process where a
decision-maker must accept/reject applicants based on attributes X for a preparatory program. The
label Y represents reaching a grade higher than a threshold on the exam, which is only known for
individuals that were participants of the program. The decision-maker has the cost of 0.4 for an
accept, and is rewarded by accepting applicants with Yt = 1 (applications with Yt increases the
reputation of the preparatory program). We use socioeconomic indicators as the attributes X . Using
a random sample of 10,000 from applicants from the state of São Paulo, we define Y = 1 if the score
is higher than 575 and 0 otherwise, which resulted in a probability of positive label of 37% . The
sensitive attribute Z is defined as the race attribute with two classes (“white” and “Black/brown”)
with 62% and 38% of occurrence, respectively. X is composed of 38 categorical features which are
one-hot encoded to a 126 dimensional vector.

The dynamics of this environment are defined to simulate the effect of age and of the preparatory
program on Y . X contains multiple features, one of them being a categorical age attribute with
three categories (see Fig. 6 for the distribution of age categories). We consider that each iteration,
the age of the applicant will increase (and other features will be kept the same), and this will affect its
qualification, as displayed on the figure. We also add an extra indicator feature on the individual, that
will be 1 if it has already been previously accepted or if it has previously had the label Y = 1 which
increases the probability of the positive label by 0.5 on following iterations. To simulate α(X,Z)
we fit a logistic regression from features X,Z to the label Y . Then, whenever we updated a feature
of a candidate, we use to an inference with the logistic regression to obtain the probability of it
having a positive label. In Fig. 6 we display the distribution of qualification among the two groups,
the average qualification for each age category and the average predicted qualification learned with
the logistic model.

E EXPERIMENTAL SETTING

Implementation details All algorithms and experiments were implemented using Python and Py-
Torch. We follow the implementation of PPO from Stable Baselines 33. The environment follows
the implementation of D’Amour et al. (2020) and is based on Gym4. The algorithm POCAR was
also used from the original implementation by Yu et al. (2022). The learning hyperparameters for
all algorithms were as follows:

3https://stable-baselines3.readthedocs.io/en/master/
4https://github.com/openai/gym

21

https://stable-baselines3.readthedocs.io/en/master/
https://github.com/openai/gym


1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

0 1 2
Age group

0.2

0.4

0.6

0.8
P(

Ag
e|

 Z
)

Distribution of age groups
Black/Pardo
White

0 1 2
Age group

0.20

0.25

0.30

0.35

0.40

0.45

P(
Y 

= 
1 

| A
ge

, Z
)

Distribution of Y based on the dataset

Black/Pardo
White

0 1 2
Age group

0.20

0.25

0.30

0.35

0.40

0.45

P(
Y

=
1|

ex
tA

ge
,Z

)

Distribution of Y based on the model

Black/Pardo
White

Distribution of age and score based on (ENEM)

Figure 6: Estimated distributions from ENEM dataset.

• Number of steps in data collection: 2048.
• Mini-batch size: 64.
• Epochs of policy update: 10.
• Gradient steps of predictor after data collection: 25.
• Learning rate: 10−5 for policy network and 10−2 for predictor network with exponential

decay of 0.95.
• Policy π architecture: linear layer dim(X,Z) × 64, Tanh activation, linear layer 64 × 64,

Tanh activation, linear layer 64× 1. The value network has the same architecture.
• Predictor ϕ architecture: Linear layer dim(X,Z) × 1. Sigmoid activation is used in in the

output to obtain probabilities.

To ensure better computation, we randomly select 10 previous policies π[k] to calculate the proba-
bility of acceptance at previous iterations.

Each algorithm was trained only once, and evaluated at the environment with 10 different random
seeds. Results are an average of the 10 repetitions.

POCAR Algorithm Yu et al. (2022) proposed advantage regularization for fairness considering
the unfairness of each (state, action) pair and the decrease of unfairness over transitions, using the
following expression:

Âβ(st, at) = Â(st, at)− β1 max{|∆t| − ω, 0} − β2

{
max{|∆t+1| − |∆t|, 0} if |∆t| > ω

0 otherwise
(72)

The first term is similar to the approach used in SELLF, but it also includes a secondary term with
weight β2 that is activated whenever the disparity |∆t| is higher the threshold ω. This secondary
term penalize the advantage whenever the action increases the disparity from t to t+1. This second
term could also be incorporated in SELLF, but we opt to remove it for simplicity.

Hyperparameters Optimization For POCAR and SELLF, we evaluated 12 different combina-
tions of values of β1, β2. In both algorithms, β1 sets the weight of the penalization of the disparity
measure in the advantage and was evaluated in {1, 2, 5, 10}. For POCAR, β2 was evaluated in
{1, 2, 5} and for SELLF β2 ∈ {0.01, 0.05, 0.1}. Hyperparameters of POCAR with and without
oracle were tuned separately.

The selected hyperparameter configuration was the one with highest reward that reached disparity
below ω (0.05) or, if none solution reached such disparity, the one that had minimal disparity. To
avoid contamination, algorithms were not given access to the true disparity measure, that is, PPO
and POCAR had their hyperparameters tuned based on ∆A=1, POCAR (Oracle) with ∆ and SELLF
with ∆̃. In more details, we set |∆| = 1

T

∑T
i=1 |∆t| (with the respective variation of the disparity

measure) which was clipped |∆|clip = min{∆− ω, 0}. Then, for each algorithm, hyperparameters
were selected following Alg. 2

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Algorithm 2: Hyperparameter selection

L∆ ← list of values |∆|clip for each hyperparameter configuration;
LR ← list of values RT for each hyperparameter configuration;
L← [ ];
for |∆|clip, RT in L∆, LR do

if |∆|clip = minL∆ then
L.append(RT )

else
L.append(0)

end
return Hyperparameter configuration with highest value in L

end

Model Lending (Acc. Parity) Lending (Quali. Parity)
Disparity(↓) Reward(↑) Disparity(↓) Reward(↑)

PPO 0.04 (± 0.01) 1624.64 (± 14.0) 0.42 (± 0.01) 1607.42 (± 15.7)
POCAR 0.06 (± 0.00) 1611.60 (± 15.2) 0.42 (± 0.01) 1529.86 (± 13.3)
POCAR (Oracle) 0.08 (± 0.00) 1417.88 (± 21.7) 0.42 (± 0.01) 1556.70 (± 13.5)
SELLF (ours) 0.07 (± 0.01) 1617.54 (± 20.5) 0.42 (± 0.01) 1611.66 (± 29.2)

Model Schol admis. (Eq. Opp.) School admis. (Acc. Parity)
Disparity(↓) Reward(↑) Disparity(↓) Reward(↑)

PPO 0.27 (± 0.02) 1211.26 (± 13.9) 0.06 (± 0.01) 1211.26 (± 13.9)
POCAR 0.27 (± 0.02) 1210.78 (± 14.3) 0.07 (± 0.01) 1117.5 (± 15.4)
POCAR (Oracle) 0.05 (± 0.02) 1139.36 (± 13.6) 0.05 (± 0.01) 1179.5 (± 15.4)
SELLF (ours) 0.04 (± 0.01) 1161.36 (± 26.3) 0.05 (± 0.01) 1193.28 (± 18.6)

Table 2: Performance of agents at the lending and school admission environments. Results are an
average of 10 deployment repetitions.

F ADDITIONAL RESULTS

In this section we present an analysis of IPW stability during learning and results for different
configurations of environments. Summarized results are present in Tab. 2.

F.1 LEARNING STABILITY

We performed a simple ablation experiment to analyze the importance weights w(x, i) =
Di

R(x)/D
i
A(x) employed by SELLF, as small values of Di

A can lead to instable learning. To
do so, we evaluated the maximum value w(x, i) and the minimal value of P (A[1 : K] =

1|x, i) := P (
∨K

k=1 A[k] = 1|X = x, Z = i) during learning for different configurations of
β2 ∈ {0, 0.01, 0.05, 0.1, 0.2} with fixed β1 = 5. We used the lending environment with the ac-
curacy parity fairness principle (the same one used by the ablation study in Sec. 5).

Fig. 7 presents the results of 25 random repetitions of training, with results displayed separately
for each group, where 0 represents the underprivileged group. When β2 = 0, the maximum weight
of group 0 increases during learning, reaching values higher than 150 at the end. This effect is
also present on the group 1, however, reaching values of 10. This difference in weights between
groups occurs as they will have different acceptance rates, and the group with lowest accept rate will
lead to high values of importance weight. However, as we increase the value of the hyperparameter
β2, the value of maxx w(x, i) decreases for both groups, reaching really low values when β2 = 2.
This shows how the Renyi loss can reduce the maximum value of maxw w(x, i) and consequently
increasing learning stability. SELLF calculates P (A[1 : K] = 1|x, i) at each round by sampling
10 policies and calculated the aggregated probability of acceptance by them. With values of β2 ∈
{0, 0.01}, this probability gets closer to 0 at the final of learning, as policies are more specialized
and tend to only accepted a subset of the population. When the weight of the Renyi loss increases,
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Figure 7: Behavior of importance weights w(x, z) during learning and probability of acceptance at
previous iterations with the lending environment with accuracy parity fairness principle.

this effect is reduced. While β2 = 0.1, the probability for the unprivileged group reaches 0.2, and
with β2 = 0.2, it stays fixed at 1 after few initial iterations.

F.2 ENVIRONMENTS WITH OTHERS FAIRNESS NOTIONS

Lending with Accuracy Parity Fig. 8 presents the results for accuracy parity in the lending en-
vironment. In this scenario, POCAR (without oracle access) and PPO were able to reach the best
results in disparity. This occurs as the decision-maker utility and the individual utility are aligned
(both are positively rewarded by setting At = Yt). The accumulated reward was similar for PPO,
POCAR and SELLF, with only POCAR (Oracle) presented lower results. However, SELLF pre-
sented increasing disparity over time, starting from 0.05 up to 0.08. This might occur as SELLF
increases the acceptance rate of the policy to obtain better confidence bounds on ϕ, leading to ac-
cepting individuals with Yt = 0.

Lending with Qualification Parity This environment presents a high initial unfairness of 0.43,
and considering the model α(x, z) as presented in Sec. D, accepting individuals with lower scores
will lead to decreasing their qualification, as individuals with credit score lower or equal than 2 have
more than 50% of having Yt = 0. For that reason, no agent was able to present improvements in
term of disparity, including POCAR with oracle access. Interestingly, SELLF obtained the highest
reward than all algorithms. This might occur due to the incentive for acceptance introduced by the
Renyi loss.

School Admission with Equality of Opportunity Fig. 10 presents the results for the school
admission environment with equality of opportunity. Both POCAR (Oracle) and SELLF were able
to reach disparity values lower than 0.05, while PPO and POCAR presented 0.27. When considering
the cumulative reward, SELLF presented slighter higher results than POCAR (Oracle).

School Admission with Accuracy Parity Fig. 11 presents the results for the school admission
environment with accuracy parity. In this setting, PPO, POCAR (Oracle) and SELLF reached similar
results in terms of cumulative reward, with PPO having the higher value. As previously discussed,
the accuracy parity notion is an utility measure that behaves similarly to the reward of the decision-
maker. For that reason, PPO reached disparity measure of 0.06. POCAR (Oracle) and SELLF
presented similar results, having disparity values equal to 0.05.
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Figure 8: Reward and true disparity (accuracy parity) over time obtained by optimized agents in the
lending environment. Results are obtained with 10 repetitions.
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Figure 9: Reward and true disparity (qualification parity) over time obtained by optimized agents in
the lending environment. Results are obtained with 10 repetitions.
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Figure 10: Reward and true disparity (equality of opportunity) over time obtained by optimized
agents in the school admission environment. Results are obtained with 10 repetitions.
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Figure 11: Reward and true disparity (accuracy parity) over time obtained by optimized agents in
the school admission environment. Results are obtained with 10 repetitions.
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