Under review as a conference paper at ICLR 2026

LLONG-TERM FAIRNESS WITH SELECTIVE LABELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Long-term fairness algorithms aim to satisfy fairness beyond static and short-term
notions by accounting for the dynamics between decision-making policies and
population behavior. Most previous approaches evaluate performance and fair-
ness measures from observable features and a label, which is assumed to be fully
observed. However, in scenarios such as hiring or lending, the labels (e.g., ability
to repay the loan) are selective labels as they are only revealed based on positive
decisions (e.g., when loan is granted). In this paper, we study long-term fairness
in the selective labels setting, and analytically show that naive solutions do not
guarantee fairness. To address this gap, we then introduce a novel framework
that leverages both the observed data and a label predictor model to estimate the
true fairness measure value, by decomposing into the observed fairness and bias
from labels predictions. This allows us to derive the sufficient conditions to satisfy
true fairness from observable quantities by using the confidence on the predictor
model. Finally, we rely on our theoretical results to propose a novel reinforcement
learning algorithm for effective long-term fair decision-making with selective la-
bels. In semisynthetic environments, the proposed algorithm reached comparable
fairness and performance to an agent with oracle access to the true labels.

1 INTRODUCTION

The deployment of machine learning algorithms in critical decision-making scenarios, such as ad-
mission processes (Baker & Hawn| 2022} [Fuster et al.,2022)) and health diagnosis has motivated the
study of algorithmic fairness. One of the most common approaches has been to demand equal bene-
fit from a decision (e.g., acceptance in a process or correct prediction) among different demographic
groups of the population (defined by race or gender, for example) (Mehrabi et al.l [2021; /Angwin
et al., [2016). However, [Liu et al.| (2018) and [D’ Amour et al.| (2020) showed that ensuring fairness
at each decision round does not guarantee fairness in the long-term due to the feedback loop be-
tween policy deployment and population’s reaction. Furthermore, previous decisions determine the
available data for policy update, which might mask decisions’ unfairness.

In greater detail, long-term fairness consider that individuals are described by features (x;, z) that
relates to a classification label y;, and both (x¢,y:) are temporal features dependent on previous
actions a;<; and (z;<¢,yi<¢). However, z is sensitive attribute such as race or gender (considered
binary in this work), and while it can be used to select actions a;, the expected utility p of the
decision process should be independent of it. The disparity value |A;| = |} — p?|, where p! is the
expected utility for the group ¢ at time ¢, serves a measure of the unfairness of the decision process,
and algorithms should satisfy that |A;| a 0 for every ¢ or when ¢ — oo. Previous works have
considered dealing with this problem with reinforcement learning algorithms (Alamdari et al.,2024;
Yu et al., [2022; |Y1n et al., [2023} |Lear & Zhang] 2025 Hu et al., [2023)) and optimization approaches
when the dynamics model is known (Rateike et al., 2024; Wen et al., 2021). However, these works
did not consider a common characteristic of decision-making: label y; is partially observed.

Consider the example of a loan application. The decision-maker has a binary decision to per-
form (approval or deny) and y; (payment ability) will only be observed in the case of acceptance.
This property, called as selective labels, presents great in impact in sequential decision-making
(Bechavod et al.l [2019; |[Ensign et al., 2018). When considering fairness, the partial observation
of labels make it not trivial to obtain an unbiased estimate of disparity measures. Our first result
(Prop. [3.1) shows that evaluating disparity only on the observed population has no guarantees over
the total population.
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Motivated by this negative result, in this work, we introduce a general framework for long-term
fairness with selective labels, where a decision-maker leverages a label predictor ¢ to perform data
imputation. Under this framework, we consider the difference between the true disparity A, of the
population and the disparity that the decision-maker sees after data imputation A;. We present a
decomposition of the disparity A; (Theo. that relates to A, by the interplay of the rejection rate
of groups and the quality of predictions on the rejected population for each group. With the objective
of presenting conditions that can be evaluated from the observed data, we introduce generalization
bounds to tackle the unknown quality of predictions on the rejected population based on the data
of previous accepted individuals. Our main theoretical result (Theo present conditions on the
observed disparity A; and on the bias introduced by the predictor (obtained from generalization
bounds) to guarantee low values of true disparity |A;|. Our last contribution is a novel algorithm
that learns a policy and predictor model that satisfy fairness in the long-term with access to only
the observable quantities by satisfying the identified sufficient conditions. Our proposed algorithm
reached long-term fairness comparable with an agent with oracle access to the true disparity measure
in semisynthetic enviroments with high-dimensional features x; and different fairness notions.

1.1 RELATED WORKS

For a more comprehensive discussion on related works, see Appendix [A]

Long-Term Fairness Research in long-term algorithmic fairness has primarily leveraged rein-
forcement learning (RL) and causal modeling. RL solutions included model-based methods(Wen
et al.,2021; Rateike et al., 2024), and adaptations of algorithms such as Q-learning (Alamdari et al.,
2024; (Chi et al., [2022), RTD3 (Yin et al.l |2023) and PPO (Hu et al., [2023} [Lear & Zhang, 2025;
Yu et al., [2022)). These works define long-term fairness either as minimizing the cumulative dispar-
ity over time (Lear & Zhang| 2025; |Yu et al., 2022} Yin et al., [2023)), or the disparity at a distant
future timestep (Rateike et al., 2024} [Hu et al., |2023; Zhang et al., |2020). [Puranik et al.| (2022)
and |Raab et al.[(2024)) introduced population dynamics through time-dependent groups occurrence.
Hu & Zhang| (2022) leveraged causal modeling to express the temporal dynamics between policy
and population. However, all discussed solutions included the assumption that labels are available
during learning.

Selective Labels The partial observation of data has been largely studied as selection bias. Its
prevalence in standard fairness benchmarks has been highlighted by [Fawkes et al.| (2024). In
decision-making with selective labels, prior work (Kilbertus et al., |2020; Rateike et al.l 2022;
Keswani et al.,[2024) has considered an unknown but time-invariant data distribution that is sampled
by the agent’s policy at each iteration. To avoid exacerbating bias in this setting, (Kilbertus et al.,
2020) showed that policies must explore through stochastic actions. More related to this work,
(Creager et al.l 2020) used a causal estimator to tackle selective labels in dynamic environments.
Yet, their analysis was restricted to changes occurring over a single iteration.

2 PRELIMINARIES AND PROBLEM FORMULATION

We consider a decision-making problem where individuals are described by features x € X and a
binary sensitive attribute z € Z = {0,1}. Each individual has a latent label y € {0,1}, which
is related to their features by the conditional probability o(z,2) := P(Y =1 | X = z,Z = 2).
For each individual, the decision-maker takes a binary action @ € {0,1} sampled by 7 (x, z) :=
P(A=1| X = x,Z = z) where a = 1 represents acceptance. With an illustrative scenario of
loan application, X might represent the financial history, Z their race, Y the ability to repay the loan
and A the loan approval decision. For simplicity, we will assume that X is a discrete feature vector,
however our results are also valid for the continuous case.

The decision-maker will selection actions to maximize a reward function R(y, a) = a(y — ¢) where
¢ € RT represents the cost of acceptance (e.g., loan amount). Simultaneously, individuals obtain
utility from the process by a function, for example, U(y,a) = 1{y = a} where 1{-} is an indicator
function. The possible different definitions of R and U reflects the different interests the decision-
maker and the applicants might have.
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Static Fairness The decision-maker has the objective of maximizing E[R(Y, A)]. However, in
high-stakes domains, the employed policy should satisfy that utility is independent of the protected
attribute (Barocas et al.| 2023). A common approach to evaluate the static fairness of a policy
is based on the disparity in the expected utility between groups: A := p! — pu°, where p' :=
E[U(Y, A)|C?] is the expected utility of a group i with conditioning event C*. A fair policy m must
satisfy |A| < w, for some small tolerance w € R*. Different fairness notions can be expressed
by the choice of U and C. In this work, we consider three common formulations: 1) Qualification
Parity (Zhang et al., 2020) where p! = E[Y'|Z = i]; 2) Accuracy Parity (Berk et al., 2021) where
the utility is the “accuracy” of actions p* = E[1{Y = A}|Z = i]; and 3) Equality of Opportunity
(Hardt et al., 2016) where utility is the true positive rate ' = E[A|Y = 1, Z = i].

Decision-making induces reactions by the population, where
actions have an effect in future states (Perdomo et al., [2020)).
This motivates the consideration of features (zy,y;) as time
dependent, commonly employing the Markov Decision Pro-
cess formulation (Gohar et al. [2024).

Definition 1 (Markov Decision Process (MDP) adapted from
Wen et al.| (2021)). A Markov Decision Process (MDP) is a
tuple M := (S, A, Py, Py, R) where S is a set of states, A is
a set of actions, Py : S — [0, 1] is the initial distribution of
states, Pr(s,a,s’) : S x A xS — [0, 1] is the probability of
reaching state s’ given action ¢ at state s, R : S x A — Ris
a reward function.

Figure 1: Graphical model for F-
MDP. Y; is partially observed de-

We extended the MDP definition to represent the dynamic ;
pending on A; = 1.

process of decision-making, by defining the state as the ob-
servable features of each individual and the transition and re-
ward functions as dependent on the binary label.

Definition 2 (F-MDP). An F-MDP is a tuple (S, A, Py, Pr,R,U,«) where (S, A, Py, Py, R)
follows the MDP definition with S = X x Z and A = {0,1}. Furthermore, each state has an
associated label y; that follows the distribution Y;| Xy, Z ~ Be(a(Xy, Z)). R and U are the reward
and utility functions, respectively, evaluated with tuples (yz, at).

This definition reorganizes the variables of the introductory decision-making problem into a dynamic
environment (Fig. E]) In this model, the individuals’ sensitive attribute Z and « are assumed to be
time-invariant, similarly to previous works (Rateike et al., 2024; Hu & Zhang| [2022). Furthermore,
we consider that the action A is independent of Y when X, Z is known. While there is no direct
effect of action a; in the label y;, it will influence future labels through the path A; — X; 11 — Y q1.

Long-term Fairness In a dynamic F-MDP, fairness constraints must be satisfied at each step. We
are interested in the per-step disparity A; = ui — p?, where pi = E[U(Y;, 4;) | C?]. The ex-
pectation is taken over the distribution induced by policy 7 and environment dynamics (P, Pr, @),
conditioned on C’ := {Z = i} for qualification/accuracy parity or C' := {A = 1,Z = i} for
equality of opportunity. The optimization problem is then:

T

> R(Y;, Ay

This framing considers that the decision-making can steer the population towards future states where
achieving fairness might have a lower cost to the reward objective.

max

E .t Ayl < 1
™ 0, P, Py st | t‘ — w vt ( )

Selective Labels In many practical settings, while the decision-maker sees (X;, Z) and perform
decisions based on it, the true label Y; is only revealed for accepted individuals (4; = 1 However,
as previously discussed, the information of Y; is necessary for evaluating the group-wise utilities.
The reward value of an action A; = 0 is always 0, independently of Y, however, for example, with
U(y,0) = 1{y = 0}, the utility could be either 1 or 0 if A; = 0 depending on the unknown label y.
This creates a challenge: how to evaluate fairness metrics that depend on the label Y;?

The partial observation can occur by the absence of the information of the label (e.g. health diagnosis,
where the condition still present) or by the missing realization of it (e.g. loan acceptance, payment is not
defined in case of rejection).
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3 MEASURING DISPARITY UNDER SELECTIVE LABELS

In this section, we study how we can employ a label predictor and quantities calculated from ob-
served data to constrain true disparity under the selective labels scenario. Initially, we discuss the
pitfalls of a simpler solution to calculate disparity.

Disparity in the Accepted Population Under the selective labels scenario, the decision-maker
must evaluate fairness by only using labels Y; from previously accepted individuals. A naive ap-
proach is to compute the disparity only with the accepted subset of the population as follows:

AP =E[U(Y:, A) | €1 {Ac =1} - E[U(Y:, A) | €° {A = 1}] )
However, this measure is unaware to the the disparity present within the rejected population.
Proposition 3.1 (Formal presentation in Appendix [B.1). For the three fairness notions (Sec. [2),

AA=Y = 0 is not a sufficient condition to have Ay = 0. In particular for equality of opportunity,
ALY is always 0.

Prop. shows that A'=! is a flawed objective for learning when disparity measures are dependent
on Y;. A policy can be optimized to minimize Ale and learn to mask the true disparity measure.
For instance with qualification parity, the policy can learn to accept individuals that have a similar
distribution of labels between groups without ensuring equal qualification in the total population.

Imputation Model To be able to calculate disparity from the complete population, the decision-
maker can employ a model ¢ : X x Z — [0, 1] to predict unseen labels and evaluate fairness based

on the imputated labels. We set predicted labels sampled by Y;|X,, Z ~ Be(¢(X,, Z)), and define
the imputed label as Y; = A;Y; + (1 — A;)Y;. That is, with acceptance (A; = 1) the true label is
used (Y) gnd with rejection (4; = 0), we use the Qrediction (Y:). We then compute ~the observed
disparity A, = i} — %, where ji} := E[U(Y;, A,)|C'J]is the utility calculated using Y;.

Due to the complexity of of real-world data, predictions will not correctly classify all samples and

can amplify biases due to the data availability. Following, we analyze the relation between errors
from the predictor model and the distortion of true fairness.

3.1 DECOMPOSITION OF DISPARITY WITH A LABEL PREDICTOR

As discussed by previous works, the policy influences disparity by two paths: the direct influence
from decisions at each iteration and the indirect influence from previous decisions that determined
the current state (Lear & Zhang| [2025; Hu & Zhang| 2022)). With our imputation model, the policy
7 has an extra effect on the observed disparity A,: it sets when the predictor ¢ is used for data
imputation. We formalize this effect in the following theorem.

Theorem 3.1 (Observed Disparity Decomposition). Let € := E[Y, — Y;|A, = 0,Z = i] and
ri = P(A; = 0|Z = i) be, respectively, the predictor error on the rejected population and the
rejection rate for group i at time t. Then, the observed disparity A; can be decomposed for each
fairness notion:

* Qualification parity (A, = E[Y;|Z = 1] = E[V}|Z = 0]): A, = Ay + (r}el — r0€9)
« Accuracy parity (A; = E[1{Y; = A, }|Z = 1]-E[1{Y; = A, }|Z = 0]): Ay = Ay—(r}el —10e?)

« Equality of opportunity (A, = E[A|Z = 1,Y, = 1] -E[4,|Z = OJ}NQ =1)): Ay = plr} — p0k?
where yt = E[A|Z =i,Y; = 1], ki = 1 —riei /¢t and ¢ = P(Y, = 1|Z = i).

Theo. [3.1] shows that the observed disparity A, is cofounded by the bias on rje; (or rie;/¢;) that
relates the policy rejection rate r; with the predictor error €;. When optimizing for fairness using
observed data, an algorithm might inadvertently exploit the imputation bias by reducing |A;| without
improvements in |A;|. To avoid this, the decision-maker could obtain a bounded value of true
disparity |A;| by balancing the rejection rate and group error, as we show in our next result.

2With equality of opportunity, the condition C* = {Z =4,Y = 1} isreplaced by C' = {Z =i, Y = 1}.
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Theorem 3.2 (Sufficient Conditions for Bounding True Disparity). For each fairness notion and a
constant w € R™, the following conditions are sufficient to bound the true disparity |A¢| < w:

* Qualification parity and accuracy parity: |(riel —r2e))| < w/2 and |A;| < w/2.

* Equality of opportunity: |(rlel /gt — r0€9 /0| < (1 — vy)w/2 and |Ay| < (1 — v)w/2 where
vy 1= max; riel /oL,

This theorem shows that to be able to constrain the true disparity with an upper bound of w, the
uncertainty induced by the predictor error demands that the observed disparity satisfy an even lower
upper bound w/2. Similarly, the imputation bias should also be constrained by w/2. The conditions
for equality of opportunity are stricter when v, gets closer to 1.

However, conditions from Theo. [3.2]are not actionable, as they depends on the error on the rejected
population, which have unobserved labels. To make these conditions practical, in the following
section we leverage the theory of domain adaptation to bound the error on the rejected population.

3.2 BOUNDING TRUE DISPARITY FROM OBSERVABLE QUANTITIES

In an iterative learning process, the decision-maker will employ a sequence of policies
m[1],...,n[K] for K iterations to perform actions and select clients. Thus, this (labeled) collected
data from previous iterations can be used to estimate the error of the (unlabeled) rejected population
using the theory of domain adaptation. For simplicity, we will omit the subscript ¢ in this section.

Let A[k] ~ [k] be the decision at iteration k. The feature distribution for individuals in group
i rejected by the current policy 7[K] is D% (x) := P(X = z|A[K] = 0,Z = 1), and for those
accepted in any iteration up to K is D% (z) := P(X = z \/2;1 A[k] = 1,Z = i). By defining
the error function €(z,i) = E[Y — Y|X = x,Z = i], the error over the rejected population is
¢ =Ex.pi, [e(X,7)]. We can estimate this error using the accepted data via Inverse Propensity
Weighting (IPW), in which from a random set of N samples collected with D%, we can estimate €’
by € = Ejvzl €(xj,i)w(zj,i) where a[l : K| = (\/k:1 Akl =11Z = z) is the acceptance
rate up to iteration K and:

w(x,i) = D}:%(x) = a1 :‘K]i . 1 — m[K](, i) 3)

Dy (x) L e | T L CX)

The weight w(x, ) quantifies how much more likely the features x for group 4 are to be found
in the rejected population relatively to the accepted population, and are fully determined by the
known policies 7[k]. However, IPW suffers from high variance whenever the denominator D%
approximates 0 (Rateike et al., 2022). To tackle this issue, we leverage generalization bounds on the
IPW estimator from |Cortes et al.|(2010) to provide a high-probability upper bound on the error.

Assumption 1 (Overlap). For each group i, D% is absolutely continuous with respect to D%.

Theorem 3.3 (Adapted from (Cortes et al.l 2010)). Let d < oo by the pseudo-dimension of the
hypothesis space of predictor models ¢ and N * be the number of accepted samples for group i, the
error on the rejected population € for group i is bounded by € with hight probability:

¢ <€f47W+(9( dz(D}éHD%)/\/Ni) =¢ 4)
where do(D%|| DY) = Ep:, [w(z,i)?] is the Renyi divergence with factor 2.

This bound permit us to be explicit about the quality of the IPW estimator of the error, which
depends on the distance between distributions of rejected and accepted individuals and the number
of samples N*. The bound will get tighter when more data is collected and when the policy is less
strict in the separation between rejected and accepted individuals. By substituting this error bound
€' in our framework, we arrive at our main practical result: a set of fully observable and enforceable
conditions for guaranteeing long-term fairness.
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Theorem 3.4. For each fairness notion and a given constant w € R, the following conditions are
sufficient to have |A| < w with high probability:

* Qualification parity and accuracy parity: 3, 7' |€'| < w/2, and |A| < w/2.

* Equality of opportunity: . rie] /¢t < (1 — v)w/2 and |A| < (1 — v)w/2, where v =
max (rt[e’] /o).

This final theorem presents practical conditions to satisfy true fairness. It shows that an algorithm
that reaches observed fairness in A can ensure true fairness A by two paths: 1) reduce the error
bound € (by reducing €/, ,, or reducing the separation between accepted and rejected distributions)
or 2) reduce the rejection rate r* of the policy 7 for groups with high error bound, therefore reducing
the reliance on imperfect predictions for that group.

4 METHOD

We present an algorithm for SElective Labes in Long-term Fairness (SELLF) that optimizes the
policy 7 with regularization based on estimates of a predictor ¢ and promotes actions that ensure
higher confidence on its estimates. We introduce a new loss term in the PPO algorithm (Schulman
et al., 2017)) and utilize the advantage regularization approach in (Yu et al.,2022) to constrain the
policy. Simultaneously, the predictor model is learned with the data collected by PPO using IPW.

PPO is a policy gradient method for reinforcement learning capable of handling continuous state
spaces. Defining the value of a state V' (s) = E[ZfT R(Y;, At)|So = s] and the g-value of a state,
action pair Q(s,a) = E[Zz;l R(Y:, At)|So = s, Ag = a], with both quantities reflecting the long-
term returns, the advantage function is A(s¢, a;) = Q(st, at) —V (s¢). One of the main contributions
of PPO is the clipping of the advantage to impede gradient steps to move the policy further away
from the one from which data was collected. It uses the objective:

LPPO = E[min(ry(0x) A(st, ar), clip(re(0), 1 — €, 1 + €) A(s¢, ay)] ®)

where r4(0,) = 7(s¢)/moa(st) sets the importance of each sample and ¢ is a clipping parameter.
Furthermore, a neural network is used to approximate the value function V. We use the approach
of advantage regularization introduced by |Yu et al.[ (2022) to satisfy |A| < w/2. The advantage
function is penalized as Ag(s, a;) = A(s¢,a;) — f1 max{|A,| — w/2,0} with 3 as a penalization
weight. In particular, with qualification parity, we alter the penalization procedure to be based on
|At+ 1| (replacing A by A, ;1) as an action has no influence on the disparity of the current iteration.
The advantage will be reduced whenever \At| > w/2.However, as Theo. shows, we should also
reduce ri[e?| (or |€}| /$!) to ensure that |A] is also bounded. In practice, the bound from Theo.
will be dominated by the divergence term. For that reason, we focus our attention in controlling it
by reducing the Renyi divergence. Let ¢; = 7! /¢! for equality of opportunity and ¢ = r! otherwise.
We create the combined learning objective .J(6,) = LT + By LT where:

LRt — Rlw(x, 1) Z = 1] + QB [w(24,0)%|Z = 0] (6)

Morever, we leverage data collected by PPO to train the predictor ¢ with binary cross-entropy loss.
We employ inverse propensity weighting to adjust the distribution of samples which were collected
under a selection bias imposed by 7. That is, the predictor ¢ is optimized to minimize:

L = 37 oy B [W(e, ) E(ye, d(4,4)) [ w(i)] (7

where / is the binary cross entropy evaluated at each sample and the weights w(x;,?) (Eq. [3) shift
the distribution to the overall distribution of individuals. To tackle the variance of IPW, we include
the normalization term w(i) = ). _. w(ay, z) that is used in self-normalized IPW (Swaminathan &
Joachims, 2015)). The pseudocode for SELLF is presented in Appendix [C]
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5 EXPERIMENTS

We evaluated SELLF in semisynthetic environments, performing an ablation study of our solution
and a comparison to baselines. To simulate real-world scenarios, we used a loan application environ-
ment based on FICO scores initially introduced by |Liu et al.|(2018]) and a new proposed environment
that simulates school admission based on ENEM (INEP, 2025)) (Brazilian high school exam).

Simulation To simulate the /-MDP, we define the distributions Pz, Fy, Py, X, 25 Py, and create
a pool of individuals that follow the joint distribution. At each iteration, given a sampled individual
(2, ¢, y¢) from the pool, the decision a; is sampled from 7 (x, z). With (y;, a;) we calculate the
reward and update the feature x, 1 according to the modeled transition P and return this individual
to the pool. This procedure induces the update of Px,|z to Px,_ ,|z. For a detailed description of
how probabilities were defined based on real datasets for each setting, we refer to Appendix D] Each
agent starts with a resource of 1,000 which is updated based on obtained rewards.

Baselines We compare the proposed algorithm SELLF with a standard PPO implementation de-
signed to maximize reward. We also compare it against POCAR, introduced by Yu et al.[(2022). As
POCAR does not consider the partial observation of features Y, we perform advantage regulariza-
tion based on A4=! (Eq. . We also implemented a variation of POCAR which has oracle access to
the true disparity A, and thus serves as a reference of the attainable fairness without selective labels.

Experimental Settings Algorithms were trained for 500,000 environment steps. Hyperparameters
from PPO, which are common to all tested methods, were adopted from Yu et al.| (2022). The
disparity constraint was set to w = 0.05, and fairness specific hyperparameters were tuned for each
algorithm. We report results from the hyperparameter configuration that achieved the highest reward
while satisfying disparity constraints. If no configuration satisfied the constraints, we report the one
with lowest disparity. Appendix [ presents a complete description of the experimental procedure.

5.1 LENDING ENVIRONMENT

We consider a simulated lending environment where each individual is described by a credit score
x¢ € {1,2,...,10}, with higher scores having higher probability of repayment. At each timestep,
the decision-maker can either approve or reject a loan application. If rejected, the individual’s score
remains unchanged. If approved, the score increases by one upon repayment (y; = 1) or decreases
by one upon default (y; = 0). We set the cost of acceptance as ¢ = 0.8, motivated by the high cost of
false positives (defaults) in lending applications. Despite being simple, this environment illustrates
the inability of solutions based in static fairness to obtain fairness in the long-term (Liu et al., 2018;
D’ Amour et al., [2020).

Ablation Study We analyze the effect
of the Renyi loss (Eq. [6) on SELLF by
varying the weight 8. Using the accuracy
parity fairness notion, we fixed §; = 5
(weight of |A;| penalization) and evalu-
ated 3, € {0,0.01,0.05,0.1,0.2}. Fig.
displays the behavior during learning of
the gap between true and observed dispar- o Learning iteraton . Learning iteration 3
ity, the Renyi loss and the final true dis-

parity achieved by the trained agent. For
values of 82 < 0.1, the disparity gap in-
creased during the initial training phase, Figure2: SELLF algorithm executed in the lending en-
ending with values higher than 0.01. Sim- vironment with 8; = 5 and varying values of 5. We
ilarly, the Renyi loss drastically increases ~display measures during learning and the disparity of
over time for these values of 35. In con- the final policy. Results are averaged with 25 repeti-
trast, with B2 = 0.1 and B = 0.2 the tions.

disparity gap is minimized, going to 0 as

training progress. 32 = 0.1 also presented the lowest true disparity value among all configurations.
An excessively large weight, such as f; = 0.2, can guide the policy for over-accepting, which

A —A, SrtE[w(x, i) 1Al
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can present hight disparity with accuracy parity fairness notion whenever groups are not equally
qualified. For that reason, 2 = 0.2 presented the highest true disparity. This study confirmed
the importance of the Renyi loss and demonstrated that with a tuned hyperparameter, we can reach
improvements in long-term fairness with selective labels.

Comparative Results In our fol-
lowing experiment, we compare

SELLF with baseline algorithms with Cumulative Reward Disparity (1A,l) Accept rate
equality of opportunity. Fig. [B]dis- ***° 04 06 _
play the behavior of trained agents for ;44 03 0.5 1
10,000 iterations in the environment, 0.2 04T
with results summarized in Tab. [l 1200 o1 ' 3
The highest cumulative reward is ob- 03
tained by PPO with high unfairness o0 5000 10000 0 5000 10000  0.15 0.20
during all observed period. SELLF Timestep Timestep P(A=11Z=0)

and POCAR (Oracle) obtained the SELLF POCAR (Oracle) POCAR PPO

same disparity of 0.05 during the ob-
served period. However, SELLF was

able to obtain a higher cumulative re- Figure 3: Reward and true disparity (equality of opportu-

ward. This occurs as SELLF pre- nity) over time obtained by optimized agents in the lend-
s entea a higher acceptance rate than ing environment. Results are obtained with 10 repetitions.
POCAR (Oracle), willing to accept SELLF is able to ensure the same fairness as the baseline

individuals with higher risk to reduce With oracle access and higher reward.

the separation between accepted and
rejected population. As we showed in Prop. AA4=1is a flawed objective and always 0 for
equality of opportunity. For that reason, POCAR behaves as PPO, unaware of the true disparity.

5.2 ScHOOL ADMISSION ENVIRONMENT

Our school admission environment is
inspired by the ENEM, a Brazilian

national exam. At each timestep ¢, Cumulative Reward Disparity (1) F(r=1iz=unprivileged)
the decision-maker selects individu- 1200 0.175 05

als for a preparatory program and can 0.150

assess the performance on the exam 1100 0.4

y; (pass/not pass) of accepted ones, 0125 05

while the remaining labels are unob- 1000 0.100 '

served. The environment dynamics 0 1000 2000 0 1000 2000 O 1000 2000
are as follows: a student’s probability Timestep Timestep Timestep

of passing the next exam (y;4+1 = 1) SELLF POCAR (Oracle) POCAR PPO
increases if they are selected (a; = 1)

or pass the current exam (y; = 1). Figure 4: Reward and true disparity (qualification) obtained

Furthermore, there is a decrease in jp the school admission environment. Results are obtained
the probability of passing the exam v 10 repetitions. None algorithm was able to reach dis-

between timesteps due to effect of ,arity below 0.05, yet SELLF obtained the lowest values.
age, which is present independently

of the decision. The conditioned dis-

tribution Y; | X, Z is a logistic regression learned from data, with X; having 126 dimensions. The
cost is set as ¢ = 0.5. In this study, we perform experiments using the qualification parity fairness
notion.

Comparative Results Fig.[]displays the result of the trained agents. Similarly, PPO and POCAR
obtained the highest rewards, followed by SELLF and POCAR (Oracle). However, both PPO and
POCAR ended with disparity higher than the initial value of 0.125. This shows that by optimizing
AA=1 an agent can even cause harm in the long-term. SELLF and POCAR (Oracle) presented
a reduction in disparity, however not being able to reach values lower than w = 0.05. As the
qualification of individuals is highly influenced by the initial state and transition dynamics, agents
have less effect on it. Yet, all algorithms resulted in a increase of the qualification of the unprivileged
group over time, which the highest increase obtained by SELLF.
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Model Lending (Equal. of Opp.) School admis. (Quali. Parity)
Disparity(]) Reward(T) Disparity(]) Reward(T)
PPO 0.38 (£ 0.01) 1624.64 (= 14.0) 0.15(£0.01) 1219.68 (= 23.0)
POCAR 0.37 (£ 0.01) 1626.68 (+12.9) 0.14 (£ 0.01) 1203.02 (+25.4)

POCAR (Oracle) 0.05 (+ 0.01) 1156.82 (& 12.4) 0.12 (& 0.01) 1069.16 (& 20.5)
SELLF (ours) 0.04 (£ 0.01) 1263.96 (+ 17.3) 0.12 (£ 0.01) 1131.58 (& 26.7)

Table 1: Performance and true disparity averaged over time of agents at the lending (with equality of
opportunity) and school admission (with qualification parity) environments. Results are an average
of 10 deployment repetitions.

Tab. (1] displays the average disparity and accumulated reward for agents. Additional results with
varying fairness notions are present in Appendix [F} In summary, SELLF was able to obtain positive
rewards while reaching fairness levels similar to an oracle in the selective labels setting.

6 DISCUSSION

Assumptions Our theoretical analysis relies on two simplifying assumptions. First, the F-MDP
assumes stationary group dynamics. While this may not hold over extended periods, on practice
the model could periodically retrained to adapt to new dynamics. Second, our error bounds assume
overlap between the distribution of rejected and accepted individuals. That is, every individual that
has a non-zero probability of being rejected also has a non-zero probability of being previously
accepted. This requirement is consistent with the need for active exploration; the decision-maker
must sometimes accept uncertain applicants to gather data and prevent convergence to a suboptimal
policy, a principle argued by [Kilbertus et al.[(2020).

Dependence on IPW  As previously discussed, the IPW can introduce high variance and learn-
ing instability if action probabilities become too small (Swaminathan & Joachims| 2015). While
SELLF uses the importance weight in the Renyi and classification losses, our solution present two
safeguards to obtain reduced variance. First, the importance weights are calculated by the aggregated
probability of actions from all previous policies. This cumulative probability provides a more stable
denominator, preventing it from approaching zero. Second, the Renyi loss objective itself incentives
the policy to reduce the magnitudes of weights. See Appendix [F.1] for an empirical evaluation of
weights.

7 CONCLUSION

We studied the problem of long-term fairness under selective labels. In this scenario, the decision-
maker must maximize reward while satisfying fairness in regard to labels, which are only observed
in the case of acceptance. We present a modeling framework based on MDP where a predictor
model is used to infer unseen labels. Under this new configuration, we presented a theoretical
analysis of the relation between true and observed disparity, which was then used to motivate our
proposed algorithm. By leveraging the estimates of unfairness obtained by the predictor model and
a confidence bound on these estimates, we introduce an simple and flexible reinforcement-learning
algorithm. In two semisynthetic environments, our algorithm presented the highest improvements
in fairness, reaching similar results to an agent with oracle access to labels. Future works includes
the adaptation of our theoretical results to an offline algorithm that leverages historical data, as in
highly consequential settings, deploying a policy for learning might be unfeasible. Furthermore,
future directions also include the study of the setting in which the decision-maker select an action
among multiple possibilities (non-binary) with different effects each.
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A EXTENDED RELATED WORKS

In this section we discuss in greater details related works of long-term fairness and selective labels
and other related areas. For a comprehensive review of long-term fairness, we refer to the survey by
Gohar et al.| (2024).

Long-term fairness has gained significant attention since the seminal work by [Liu et al.| (2018),
which presented an analysis of fairness policies in a credit scenario with one step feedback. Fol-
lowing, D’ Amour et al.|(2020) employed simulations to evaluate effect of fair policies over a larger
period. Both works showed that ensuring fairness at each iteration might cause harm in the long-term
when dynamics are introduced.

Algorithmic solutions commonly leveraged reinforcement learning solutions or causal modeling.
Considering that feedback dynamics are known, [Wen et al.|(2021) introduced fairness metrics to the
MDP setting by formulating individuals’ rewards as a second objective and |Rateike et al.| (2024)
studied settings where a fixed-threshold policy can converge to a fair equilibrium. A set of works
have studied the PPO algorithm to ensure fairness. |Yu et al.| (2022) and [Hu et al.| (2023)) included
a penalization term on the advantage estimate used for policy optimization, while [Lear & Zhang
(2025)) used an expansion of the disparity in qualification as a value function. Q-learning was
adapted for long-term fairness by |Chi et al.| (2022) and |Alamdari et al.| (2024). The relation be-
tween short-term fairness and long-term fairness has also been studied by previous works (Hu et al.,
2023; |Alamdari et al.| [2024; |Lear & Zhang, 2025). Yin et al. (2023) used a different framework
where states were the joint distribution of the population. To support continuous state and actions, it
employed a modification of least-squares value iteration algorithm. A subset of works for long-term
fairness considered a different dynamics between decisions and population distributions, where the
participation of groups was not fixed over time and depends on the quality of predictions (accu-
racy) or on the acceptance rates [Puranik et al|(2022); Raab et al.| (2024). All of these approaches
considered only measuring fairness from fully observable features X (no use of labels Y").

In the stochastic K -out-of-/N bandit model, the decision-maker at each iteration must select X arms
over NN total possibilities and observes rewards only for those arms. Long-term fairness has already
been discussed in this setting by considering that each arm belong to a group, and that each group
should be selected (any arm of the group) with a frequency higher than a threshold |Chen et al.
(2020); |L1 & Varakantham| (2022); Wang et al.| (2024)). While these works handle partial feedback,
the classical bandit assumption that actions do not influence future contexts eliminates long-term
feedback loops that motivate our work.

Partial-label scenarios have been analyzed in simpler decision-theoretic models or in settings with
time-invariant data distributions. |Zhang et al.| (2020) presented a theoretical study of threshold
policies that satisfy fairness in the short-term, but not necessarily in the long-term. While a partial
observation MDP was used in the analysis, it did not consider learning in such a setting. [Fawkes
et al.| (2024) audit benchmark fairness datasets and reported that selection bias (a class of bias that
includes partial feedback) was identified in 85% of them. In static environments, previous works
considered the problem of sequentially employing a policy which is used to learn the unseen data
distribution with selective labels. [Kilbertus et al.[(2020) showed showed policies should be able to
“explore” so that a learning algorithm does not end in a suboptimal utility and fairness. Following,
Rateike et al.| (2022) considered using the unlabeled data to learn an unbiased representation of
individuals features, which were then used to train the policy. Lastly, [Keswani et al.| (2024) presented
an algorithm to learn the optimal policy with suboptimal estimates of labels.

Causal modeling provides a language for defining the feedback loops that induce long-term disparity.
Creager et al.|(2020) discussed the benefits of representing assumptions within the causal diagrams’
framework, providing various examples where an undesired effect occurs when the causal structure
of the system is misspecified. One of such analysis was of off-policy evaluation in the setting of
partial feedback, yet, their work do not included an theoretical analysis. [Hu & Zhang| (2022) con-
nected causality and performative predictions in long-term fairness by transforming an optimization
problem defined by a causal model to a problem of performative prediction.
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B PROOFS

In this section, we will omit the subscript ¢ whenever it is not relevant. Furthermore, we simplify
the notation P*(E|C) := P(E|C,Z = i) for any event E and condition C. We will also write
E'[E|C] :=E'[E|C, Z = i].

B.1 PRrROOF oF Propr.[3.1]

We first write the proposition presented using a formal notation.

Proposition B.1 (Restatement of Prop. [3.1). Let ai = P(A; = 1|Z = i) be the acceptance rate of
group i. For each fairness principle, the disparity calculated from accepted population A{‘:l has
the decomposition A{=1 = (utet — pdc®) + (d* — d°) where the terms ¢, d" are:

e Qualification parity: ¢ = P(A; = 1Y, =1,Z =i)/al, d'=0.

e Accuracy parity: ¢t = 1/at, d' = —PYY, =0,A4; =0|Z =1)/al.

* Equality of opportunity: ¢ = d* = 0 (that is, A{=' = 0 always).

And |A#=1| = 0 is not a sufficient condition for |A;| = 0.

Proof. First, we consider each fairness principle and identify an expression for A#=":

1) Qualification parity

By considering each term of A4=1:

Pi(A=1]Y =1)

pt=P(Y =1A=1)=P{(Y =1) = ®)
And by joining both terms we have:
AL =P Y =1|A=1)-P (Y =1]A=1) )
PlA=1y =1 Pl(A=1y =1
2) Accuracy parity
Similarly, considering each side A4=":
P(Y=A)=P(Y=1,A=1)+P(Y =0,A=0) an
=P(Y =AlA=1)d"+P(Y =0,A=0) = (12)
Py A=) = D=4 PY=04=0) (13)
a' a’
And by joining both terms:
AT =Pl A=Y|A=1)-P'(A=Y|A=1) (14)
P(Y=0,A=0) PY(Y=0,A=0
ul/QIMO/aO( ( ~ )7 ( — )> (15)

3) Equality of opportunity

It is direct to see that P?(A = 1Y = 1 A A = 1) = 1, concluding that A4=! =1 -1 = 0
independently of the real disparity A.

Conclusion

Now, if |[A7=!| = 0 we can have |A;| > 0 by setting:
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¢ Qualification parity: ¢! # c® and pf = (c'/c%)u? which implies p! # p® = |A;| > 0.

e Accuracy parity: d* = d°, ¢! # ® and p} = (c'/c)p? which implies b # 1% = |A;] > 0.

* Equality of opportunity is direct, as AA=! = 0 always.

B.2 PROOF OF THEO.[3.1I

Proof. We will define the random variable ¢ = ¥ — Y, ¢ € {—1,0, 1} and use the relation ¥ =

Y + (1 — A)e. Based on this, we can conclude:

E(1— A)e] = E[(1 — A)e | A=1]a’ + E[(1 — A)e | A = 0]r*
=0
=FEe| A=0)r = €r’

With ¢! as defined in the section. Then, we consider each fairness principle.
1) Equality of qualification
Considering each term of A, we have that:

EY] =E(Y + (1 — A)e] = E[Y] + E[(1 — A)¢]

We combined both terms to rewrite A:

A — (El[Y] + 61’/’1) _ (EO Y]+ EO’I”O)
= (EY] - E[Y]) + (e'r! — 279 = A + (e'rt — %)
2) Equality of accuracy

Considering each term of A, we have that:

E1{A=Y}] =
=P(A=1Y =1)+P(A=0,Y =0)
=P(A=1,Y=1)+P(A=0,Y +e=0)

Let’s work on the term PY(A = 0,Y + ¢ = 0):

P(A=0,Y +e=0)=7"P(Y +e=0| A=0)
=Bl - (Y 4¢)| A= 0]
=r'(1-EY | A=0]—¢)
=r" —E'Y | A=0r" — e’
=r' - P(Y =1,A=0) —€7r’

Pi(Y=0,A=0)
=P(Y =0,4A=0)—r'¢
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Replacing it in Ef[1{A = Y'}]:

E[{A=Y}|Z=2]=P(A=1Y =1)+ P{(Y =0,A =0) — rié’ (31)
=E[{A=Y}|Z =27 (32)

Then, we have that by replacing both terms of A.

A=E'[1{A=Y}-E[1{4=Y}] = (33)
= (E'1{A=Y} —r'e") = (E'1{A =Y}] —r0€) = (34)
= A — (el'r! —%0) (35)

3) Equality of opportunity

We first open one term of A:

B[A=1|V=1]=Pi(A=1|7 =1)= LA=LY

(36)

Notice that P/(A =1,Y =1) = P{(A=1,Y = 1) as Y =Y when the action is positive. We are

now interested in relating the replacing the denominator P*(Y = 1) to P{(Y = 1). To do so, we

. Py =1 o
can define k' = ¥ with the assumption that P*(Y" = 1) # 0 and obtain:
Pi(Y =1)
; - Pi(A=1,Y=1) , , .
v = 1 = 1 = - t— g = = v
E‘[A |Y =1] Py = 1) K=E[A=1|Y =1]x (37

Which shows that the true positive rate calculate from the observed labels is equal to the true positive
rate with the multiplying factor x* that is the ratio of real positive labels and observed positive labels.
Then, joining both terms in the expression of A, we obtain:

A=E'A=1|Y =1 —E[A=1]Y = 1]x° (38)

We are also interested in rewriting x° to remove the direct dependence on Y, a value that is partially
observed. We have that:

E Y] =E{Y] + E[(1 — A)¢] (39)
— PYY =1)=E[Y] - E[(1 - A)¢ (40)
=P(Y =1)— ¢’ (4D
And then:
po P =l er (42)
PV = 1) 7
With ¢ defined as in the section.
O
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B.3 PROOF OF THEO.[3.2]

Proof. We first consider the scenario of qualification parity and accuracy parity. From Theo. [3.1]
we have that:

A=A=+ (et —r00) = (43)
A=A+ (et =) (44)
< |A| +|rtet — 0 (45)
<w/24w/2=w (46)

Where the first two lines uses + due to the different expressions obtained for qualification parity and
accuracy parity.

Now with the equality of opportunity fairness principle, we have from Theo. 3.1}

A= ptet — pOk° 47)

_ HIA—I—MO(Kl _ HO) — (48)
KA = |A = p0((1=rte' /gh) — (1 =10 /0))] (49)
= A — O (=re [ 4100 /30) 50)
<|A|+ pOlrtet /¢t =10 /3" (51)
<|A|+[rte! o =0 /6] (52)

< _QU)W L _2”)“’ —(1-v)w = (53)
|A|S(1—1v)w§(1—v)w:w (54)

K 1—w

Where line[52] uses the fact that z° < 1.

B.4 PROOF OF THEO. 3.3

Theo. [3.3] was initially presented by Cortes et al.| (2010). Here we present the original statement
and describe the adaptation to our scenario. First we define models h, which are evaluated from
a bounded loss L(h(z), f(x)) (abbreviated by Lj(x)), the risk R(h) = E,.p[Ln(x)] and the

weighted empirical loss Ry (h) = > i w(x;)Ly(2") calculate from m iid. samples (z;,y;)
obtained by distribution Q).
Theorem B.1 (Theo. 3 from |Cortes et al. (2010)). Let H be a hypothesis set such that
Pdim({Lp(z) : h € H}) = p < oo. Assume that d2(P||Q) < oo and w(x) = P(x)/Q(z) # 0 for
all x. Then, for any § > 0, with probability of at least 1 — 6, the following holds:

2me 4
R 2| plog — +log 5
R(h) < Ry(h) + 2°/*\/dy(P[|Q) L (55)

In our setting, we evaluated the models ¢ using data collected from previously accepted individuals,
that is, ) := D? and:
K . .
(1= I, (= 7l (. 1)) g, )
all : KJ?

where g(x,i) := P(X = x|Z = i). However, we wish to know the error from the distribution of
rejected individuals, which is P := D%:

Diy(x) =

(56)

(1 — W[K](.%‘, Z))g($7z)

rrl

Di(z) = (57)
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and w(z,i) = P(X)/Q(x) = D% (z)/D% () has the expression presented at Sec. [3| Lastly, our
loss measure is e(z,i) = E[Y — Y|X = #,Z = i], which is also bounded, but has support in
[—1,1]. With this configuration, R(h) := ¢’ and Ry, (h) = &, ,,. While the larger support changes
the formulation of the bound in Eq. [53] only thhe constants are different, and big-O is kept the same.

B.5 PROOF OF THEO[3.4]

Proof. Initially, as € > €’ and r* > 0, Vi, we have that ), r|e’| < >°. ri[é’|. By leveraging results
from Theo. 31| we have that for qualification parity and accuracy parity:

And for equality of opportunity:

A=A+ (7‘161 — 7’060) E—

IA| = |A £ (rte! — r00)]

< \A\ + [rtet — 00
<JA|+ [rte! | + [P0
< |A|+ |rE + [P0
<w/242w/d=w

A=ptet — 060 = KA 4+ 4Ok — K0) =
RHA[ = |A = p(k! = 1)

< A+ p0lrt — K|

< A+ |} = &% = |A| 4 |rlet /ot —

<|Al+) rie /e’
<A+ 3 /g

1-vw (1A-v)w
= 2 + 2
A < l-v)w  (1—-vw

< =
N ) v

=(1-v)w
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C ALGORITHM

Algorithm 1: SELLF
0

Initialize neural networks 7, ¢, V' with respective weights 6, (‘)g, 69, and memory buffer
M ={};
fork=1,2,..., K do
Initialize replay buffer B = {};
for episode = 1,...  E do
fort=1,2,...,7T do
Sample a’ ~ 7(at, 2), ' ~ a(at, 2), a1 ~ Pr(at,z,at,yt), it ~ o(at, 2)
Run data imputation §° < a‘y" + (1 — a*)3*
B+ BU{z,z', gt at, rt, 2t At}
M+ MU{zt z,g'}ifal =1
end
end
for each predictor gradient step do
Sample mini-batch from M
0 — 0% —YVo, ¥ic oy Eps [w(we, ) (5, o, 8)) /(i)
end
for each policy gradient step do 3
Ag(se,ar) « A(se,ar) — B1 max{|A| — w/2,0}
d(0y) + m(zt, z)/mge (2%, 2)
JUP(0,) < E[min(d(0:)A(ss, ar), clip(d(0x), 1 — €, 1+ €) Ag)]
LB (0) « (ryE[w}|Z = 1]+ r{E[w}|Z = 0])/2
9;—}-1 — 9; + V(VOW JCLIP(QW) _ vewLRenyz(Qﬂ_))
0Lt 0t — aVe, E[(V(st) — G(s%))?] > G(st) « Z?:o Voreis

end
end

D DATASETS AND ENVIRONMENTS

This work considers the effects of algorithms on the distribution of population attributes. This char-
acteristic impedes the evaluation of algorithms in historical (and static) data, as they will not present
the effects from the intervention of algorithms. For that reason, we employ semisynthetic datasets
to evaluate the proposed algorithms, which is commonly done in studies of long-term fairness. To
do so, a real-world dataset is utilized to set the initial data distribution. Then, the dynamics of the
environment are designed and utilized to simulate the following timestamps. These dynamics must
be plausible for the system modeled, which we considered two: loan applications based on FICO
and school admission based on ENEM.

Lending FICO (Reserve, 2007) is a common open-source dataset utilized in fairness studies. It
consists of anonymized profiles of clients of a banking institution with a credit score that was calcu-
lated from these attributes. Using the data available from [Barocas et al.| (2023), race was defined as
the sensitive attribute Z, using two classes (“Black™ and “white”). For simplicity, we set each group
with probability 0.5. Then, for each group, we calculate the probability of observing each score
(from 10 possible discretized score values). This was then used as P(X°|Z). Following, we calcu-
late the probability of payment given each score for each group, thatis «(X, Z) = P(Y = 1|7, X).
Both distributions are present in Fig.[5] It is possible to see that while the white population is al-
most uniformly spread among scores, almost 50% of the Black individuals have a score class of O or
1. When considering the probability of payment, we can see that both groups present very similar
behavior, yet, a small difference is present. We observe that the probability of payment of a Black
individual of the same score class of a white one is smaller. This might be caused by external social
aspects that were not fully captured by the credit score.
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FICO dataset
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Figure 5: Probability distributions calculated from the FICO dataset to define the environment.

In the FICO environment, we used the dynamics first presented by [Liu et al.[(2018)). If an individual
is rejected, the credit score is kept the same. If an individual is accepted, its credit score will increase
by one unit if Y = 1 and decrease by one unitif Y = —1.

School Admission The ENEM is a national exam applied in Brazil that serves as a scoring for
public universities’ admission process. Yearly, the data collected from applicants is shared with
suited anonymization procedures. This dataset has recently been used in fairness studies (Pereira
et al., 2025 |Alghamdi et al.,|2022). We use this dataset to model a decision-making process where a
decision-maker must accept/reject applicants based on attributes X for a preparatory program. The
label Y represents reaching a grade higher than a threshold on the exam, which is only known for
individuals that were participants of the program. The decision-maker has the cost of 0.4 for an
accept, and is rewarded by accepting applicants with Y; = 1 (applications with Y; increases the
reputation of the preparatory program). We use socioeconomic indicators as the attributes X . Using
arandom sample of 10,000 from applicants from the state of Sdo Paulo, we define Y = 1 if the score
is higher than 575 and 0 otherwise, which resulted in a probability of positive label of 37% . The
sensitive attribute Z is defined as the race attribute with two classes (“white” and “Black/brown’)
with 62% and 38% of occurrence, respectively. X is composed of 38 categorical features which are
one-hot encoded to a 126 dimensional vector.

The dynamics of this environment are defined to simulate the effect of age and of the preparatory
program on Y. X contains multiple features, one of them being a categorical age attribute with
three categories (see Fig. [6] for the distribution of age categories). We consider that each iteration,
the age of the applicant will increase (and other features will be kept the same), and this will affect its
qualification, as displayed on the figure. We also add an extra indicator feature on the individual, that
will be 1 if it has already been previously accepted or if it has previously had the label Y = 1 which
increases the probability of the positive label by 0.5 on following iterations. To simulate a(X, Z)
we fit a logistic regression from features X, Z to the label Y. Then, whenever we updated a feature
of a candidate, we use to an inference with the logistic regression to obtain the probability of it
having a positive label. In Fig. [f] we display the distribution of qualification among the two groups,
the average qualification for each age category and the average predicted qualification learned with
the logistic model.

E EXPERIMENTAL SETTING

Implementation details All algorithms and experiments were implemented using Python and Py-
Torch. We follow the implementation of PPO from Stable Baselines 3@ The environment follows
the implementation of D’ Amour et al.| (2020) and is based on Gy The algorithm POCAR was
also used from the original implementation by |Yu et al.|(2022). The learning hyperparameters for
all algorithms were as follows:

*https://stable-baselines3.readthedocs.io/en/master/
*nttps://github.com/openai/gym
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Distribution of age and score based on (ENEM)
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Figure 6: Estimated distributions from ENEM dataset.

e Number of steps in data collection: 2048.

*  Mini-batch size: 64.

*  Epochs of policy update: 10.

*  Gradient steps of predictor after data collection: 25.

»  Learning rate: 10~° for policy network and 10~2 for predictor network with exponential
decay of 0.95.

*  Policy 7 architecture: linear layer dim(X, Z) x 64, Tanh activation, linear layer 64 x 64,
Tanh activation, linear layer 64 x 1. The value network has the same architecture.

*  Predictor ¢ architecture: Linear layer dim(X, Z) x 1. Sigmoid activation is used in in the
output to obtain probabilities.

To ensure better computation, we randomly select 10 previous policies 7[k] to calculate the proba-
bility of acceptance at previous iterations.

Each algorithm was trained only once, and evaluated at the environment with 10 different random
seeds. Results are an average of the 10 repetitions.

POCAR Algorithm |Yu et al.| (2022)) proposed advantage regularization for fairness considering
the unfairness of each (state, action) pair and the decrease of unfairness over transitions, using the
following expression:

~ i maX{|At+1|—|At|,0} ]f‘At| > w
Ap(se,ar) = A(se, ar) — f1 max{|A;] —w,0} — B2 {O otherwise

(72)

The first term is similar to the approach used in SELLF, but it also includes a secondary term with
weight [ that is activated whenever the disparity |A;| is higher the threshold w. This secondary
term penalize the advantage whenever the action increases the disparity from ¢ to £ + 1. This second
term could also be incorporated in SELLF, but we opt to remove it for simplicity.

Hyperparameters Optimization For POCAR and SELLF, we evaluated 12 different combina-
tions of values of 31, B2. In both algorithms, 3; sets the weight of the penalization of the disparity
measure in the advantage and was evaluated in {1,2,5,10}. For POCAR, (5 was evaluated in
{1,2,5} and for SELLF 82 € {0.01,0.05,0.1}. Hyperparameters of POCAR with and without
oracle were tuned separately.

The selected hyperparameter configuration was the one with highest reward that reached disparity
below w (0.05) or, if none solution reached such disparity, the one that had minimal disparity. To
avoid contamination, algorithms were not given access to the true disparity measure, that is, PPO
and POCAR had their hyperparameters tuned based on A4=!, POCAR (Oracle) with A and SELLF
with A. In more details, we set |[A| = % 23:1 |A¢| (with the respective variation of the disparity
measure) which was clipped |A|**? = min{A — w,0}. Then, for each algorithm, hyperparameters
were selected following Alg.
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Algorithm 2: Hyperparameter selection

L < list of values |A|°!P for each hyperparameter configuration;
Lp < list of values R for each hyperparameter configuration;
L+[1;
for |A|"P Ry in La, Lr do

if |A|"P = min L then

| L.append(R7)
else

| L.append(0)
end
return Hyperparameter configuration with highest value in L

end
Model Lending (Acc. Parity) Lending (Quali. Parity)
Disparity(]) Reward(T) Disparity(]) Reward(T)

PPO 0.04 (£0.01) 1624.64 (+14.0) 0.42 (£ 0.01) 1607.42 (+ 15.7)
POCAR 0.06 (£0.00) 1611.60 (£ 15.2) 0.42(£0.01) 1529.86 (4 13.3)

POCAR (Oracle) 0.08 (& 0.00) 1417.88 (+21.7) 0.42 (% 0.01) 1556.70 (& 13.5)
SELLF (ours) 0.07 (£ 0.01) 1617.54 (£20.5) 0.42 (£ 0.01) 1611.66 (& 29.2)

Model Schol admis. (Eq. Opp.) School admis. (Acc. Parity)
Disparity(]) Reward(T) Disparity(]) Reward(T)
PPO 0.27 (£ 0.02) 1211.26 (=13.9) 0.06 (£0.01) 1211.26 (£ 13.9)
POCAR 0.27 (£0.02) 1210.78 (+14.3) 0.07(£0.01) 1117.5(£154)

POCAR (Oracle) 0.05(£0.02) 1139.36 (£ 13.6) 0.05(£0.01) 1179.5 (£ 15.4)
SELLF (ours) 0.04 (= 0.01) 1161.36 (+26.3) 0.05 (£ 0.01) 1193.28 (£ 18.6)

Table 2: Performance of agents at the lending and school admission environments. Results are an
average of 10 deployment repetitions.

F ADDITIONAL RESULTS

In this section we present an analysis of IPW stability during learning and results for different
configurations of environments. Summarized results are present in Tab. 2]

F.1 LEARNING STABILITY

We performed a simple ablation experiment to analyze the importance weights w(z,i) =
D' (x)/ D (z) employed by SELLF, as small values of D% can lead to instable learning. To
do so, we evaluated the maximum value w(x,i) and the minimal value of P(A[l : K] =
lx,i) = P(\/k],(:1 Alk] = 11X = x,Z = 1) during learning for different configurations of
B2 € {0,0.01,0.05,0.1,0.2} with fixed 8; = 5. We used the lending environment with the ac-
curacy parity fairness principle (the same one used by the ablation study in Sec. [5).

Fig. [/| presents the results of 25 random repetitions of training, with results displayed separately
for each group, where 0 represents the underprivileged group. When 85 = 0, the maximum weight
of group 0O increases during learning, reaching values higher than 150 at the end. This effect is
also present on the group 1, however, reaching values of 10. This difference in weights between
groups occurs as they will have different acceptance rates, and the group with lowest accept rate will
lead to high values of importance weight. However, as we increase the value of the hyperparameter
Ba, the value of max, w(z, i) decreases for both groups, reaching really low values when 5y = 2.
This shows how the Renyi loss can reduce the maximum value of max,, w(z, ) and consequently
increasing learning stability. SELLF calculates P(A[l : K| = 1|z,4) at each round by sampling
10 policies and calculated the aggregated probability of acceptance by them. With values of 82 €
{0,0.01}, this probability gets closer to 0 at the final of learning, as policies are more specialized
and tend to only accepted a subset of the population. When the weight of the Renyi loss increases,
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Figure 7: Behavior of importance weights w(x, z) during learning and probability of acceptance at
previous iterations with the lending environment with accuracy parity fairness principle.

this effect is reduced. While 5, = 0.1, the probability for the unprivileged group reaches 0.2, and
with B = 0.2, it stays fixed at 1 after few initial iterations.

F.2 ENVIRONMENTS WITH OTHERS FAIRNESS NOTIONS

Lending with Accuracy Parity Fig. [§ presents the results for accuracy parity in the lending en-
vironment. In this scenario, POCAR (without oracle access) and PPO were able to reach the best
results in disparity. This occurs as the decision-maker utility and the individual utility are aligned
(both are positively rewarded by setting A; = Y;). The accumulated reward was similar for PPO,
POCAR and SELLF, with only POCAR (Oracle) presented lower results. However, SELLF pre-
sented increasing disparity over time, starting from 0.05 up to 0.08. This might occur as SELLF
increases the acceptance rate of the policy to obtain better confidence bounds on ¢, leading to ac-
cepting individuals with Y; = 0.

Lending with Qualification Parity This environment presents a high initial unfairness of 0.43,
and considering the model «(z, z) as presented in Sec. @ accepting individuals with lower scores
will lead to decreasing their qualification, as individuals with credit score lower or equal than 2 have
more than 50% of having Y; = 0. For that reason, no agent was able to present improvements in
term of disparity, including POCAR with oracle access. Interestingly, SELLF obtained the highest
reward than all algorithms. This might occur due to the incentive for acceptance introduced by the
Renyi loss.

School Admission with Equality of Opportunity Fig. presents the results for the school
admission environment with equality of opportunity. Both POCAR (Oracle) and SELLF were able
to reach disparity values lower than 0.05, while PPO and POCAR presented 0.27. When considering
the cumulative reward, SELLF presented slighter higher results than POCAR (Oracle).

School Admission with Accuracy Parity Fig. presents the results for the school admission
environment with accuracy parity. In this setting, PPO, POCAR (Oracle) and SELLF reached similar
results in terms of cumulative reward, with PPO having the higher value. As previously discussed,
the accuracy parity notion is an utility measure that behaves similarly to the reward of the decision-
maker. For that reason, PPO reached disparity measure of 0.06. POCAR (Oracle) and SELLF
presented similar results, having disparity values equal to 0.05.
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Figure 8: Reward and true disparity (accuracy parity) over time obtained by optimized agents in the
lending environment. Results are obtained with 10 repetitions.

Cumulative Reward Disparity (1A,l)
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Figure 9: Reward and true disparity (qualification parity) over time obtained by optimized agents in
the lending environment. Results are obtained with 10 repetitions.
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Figure 10: Reward and true disparity (equality of opportunity) over time obtained by optimized
agents in the school admission environment. Results are obtained with 10 repetitions.
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Figure 11: Reward and true disparity (accuracy parity) over time obtained by optimized agents in
the school admission environment. Results are obtained with 10 repetitions.
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