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ABSTRACT

Adapting generative foundation models, in particular diffusion and flow models,
to optimize given reward functions (e.g., binding affinity) while satisfying
constraints (e.g., molecular synthesizability) is fundamental for their adoption
in real-world scientific discovery applications such as molecular design or
protein engineering. While recent works have introduced scalable methods for
reward-guided fine-tuning of such models via reinforcement learning and control
schemes, it remains an open problem how to algorithmically trade-off reward
maximization and constraint satisfaction in a reliable and predictable manner.
Motivated by this challenge, we first present a rigorous framework for Con-
strained Generative Optimization, which brings an optimization viewpoint to the
introduced adaptation problem and retrieves the relevant task of constrained gen-
eration as a sub-case. Then, we introduce Constrained Flow Optimization (CFO),
an algorithm that automatically and provably balances reward maximization and
constraint satisfaction by reducing the original problem to progressive fine-tuning
via established, scalable methods. We provide convergence guarantees for con-
strained generative optimization and constrained generation via CFO. Ultimately,
we present an experimental evaluation of CFO on both synthetic, yet illustrative,
settings, and a molecular design task optimizing quantum-mechanical properties.

1 INTRODUCTION

Recent advances in generative modeling, particularly the advent of diffusion (Ho et al., 2020; Song
et al., 2021; 2022) and flow models (Lipman et al., 2023), have led to state-of-the-art performances
in several fields such as image synthesis (Rombach et al., 2022), biology (Corso et al., 2023;
Wohlwend et al., 2024), and chemistry (Hoogeboom et al., 2022). In particular, they have been
applied for the design of protein structures (Wu et al., 2024), drug-like molecules (Dunn & Koes,
2024), and DNA sequences (Stark et al., 2024), among others. These generative models excel at
capturing complex data distributions and generating realistic samples. However, approximately
sampling from the data distribution is insufficient for most real-world discovery applications, where
one typically wishes to generate candidates maximizing task-specific rewards, a problem recently
denoted by generative optimization (De Santi et al., 2025b; Li et al., 2024). Examples of rewards of
interest include binding affinity in drug discovery (Pantsar & Poso, 2018), or drug-likeness (Bick-
erton et al., 2012). To tackle the generative optimization problem, recent works have introduced
scalable fine-tuning methods that adapt a pre-trained flow or diffusion model to maximize a given re-
ward function under KL-regularization from the pre-trained model, via reinforcement learning (RL)
or control theoretic methods (e.g., Domingo-Enrich et al., 2025; Uehara et al., 2024b; Tang, 2024).

The importance of known constraints in generative optimization. Many generative design
and scientific discovery problems require generated samples to satisfy explicit, domain-specific
constraints, e.g., bounded toxicity (Amorim et al., 2024), synthetic accessibility (Ertl & Schuf-
fenhauer, 2009; Neeser et al., 2024), or biophysical plausibility of docking poses (Buttenschoen
et al., 2024). Even though current fine-tuning schemes regularize toward a pre-trained model
(Domingo-Enrich et al., 2025; Uehara et al., 2024b; Tang, 2024), which limits the distributional
drift, they cannot certify hard constraints to be satisfied (Uehara et al., 2024a). This limitation arises
because task-specific constraints may not be encoded in the original dataset or may be learned only
imperfectly from finite training data. A naive approach to address such explicit constraints would
be to include them as rewards, i.e., as another term in a manually weighted objective function.
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However, this approach is unreliable in practice, as the appropriate weighting between rewards and
constraints varies across tasks and training phases, and needs to be determined through inefficient
trial and error. Furthermore, as optimization explores high-reward regions, the chosen weights can
unexpectedly favor reward at the expense of constraint satisfaction, yielding samples with attractive
rewards, which, however, violate the domain-specific constraints. Driven by these limitations of
current flow adaptation methods for constraint satisfaction, we pose the following question:

How can we fine-tune a pre-trained flow or diffusion model to reliably and predictably trade-off
reward optimization and constraint satisfaction?

Our approach. In this work, we aim to tackle this question by first introducing a formal framework
for Constrained Generative Optimization (Sec. 3) via flow model fine-tuning, which entails adapt-
ing a pre-trained flow model to generate samples maximizing a reward function while satisfying
arbitrary constraints. Moreover, the proposed formulation retrieves the relevant task of constrained
generative modeling as the sub-case where the reward function is constant. Next, we introduce
Constrained Flow Optimization (CFO), a dual approach based on the augmented Lagrangian scheme
(Birgin & Martı́nez, 2014) that turns the constrained objective into a sequence of ordinary genera-
tive optimization subproblems. At a high level, CFO alternates between two steps: solving a KL-
regularized fine-tuning problem (Domingo-Enrich et al., 2025; Uehara et al., 2024b) to maximize an
augmented reward function, and updating the parameters of the augmented reward using estimated
constraint violations on generated samples (see Sec. 4). This progressively tunes the penalty on
constraint violations, thereby avoiding the need for manual trade-off weight selection. CFO renders
it possible to adapt a pre-trained flow model to maximize expected rewards while enforcing satisfac-
tion of arbitrary constraints and preserving closeness to the pre-trained model. We provide guaran-
tees that ensure constraint satisfaction under the realistic assumptions of an approximate solver, and
that achieve reward maximization under a more idealized setting (Sec. 5). Finally, we evaluate CFO
for both constrained generative modeling and constrained generative optimization problems, show-
casing its performance in both visually interpretable illustrative settings and in molecular design
tasks, showing constrained optimization of quantum mechanical properties. (Sec. 6).

Our contributions. To sum up, we present the following contributions:

• We propose a framework for constrained generative optimization via flow fine-tuning, capturing
the practically relevant task of reward-guided adaptation under given constraints (Sec. 3).

• We introduce Constrained Flow Optimization (CFO), an augmented Lagrangian-based method
that provably tackles the introduced problem via progressive fine-tuning (Sec. 4).

• We provide guarantees for constrained generation and optimization via CFO under diverse oracle
assumptions, by leveraging augmented Lagrangian theory for constrained optimization (Sec. 5).

• We demonstrate CFO’s ability to trade-off reward maximization and constraint satisfaction in
both visually interpretable settings and on high-dimensional molecular design tasks (Sec. 6).

2 BACKGROUND AND NOTATION

Flow Models. Flow-based generative models constitute a prominent class of approaches for
transforming a simple base pbase distribution (e.g., pbase = N (0, I)) into a complex data distribution
pdata (Chen et al., 2018; Song et al., 2022; 2021; Lipman et al., 2023). Formally, a flow is a
time-dependent map ψ : [0, 1]×Rd → Rd, where ψt(x0) denotes the position at time t of a sample
that started at x0. The trajectory of xt (:= ψt(x0)) is governed by a time-dependent velocity field
u : [0, 1]× Rd → Rd through the ordinary differential equation (ODE):

d
dt
ψt(x0) = ut(ψt(x0)), ψ0(x0) = x0. (1)

A generative flow model defines a continuous-time Markov process {Xt}t∈[0,1], by sampling an
initial value X0 ∼ pbase and evolving it according to the flow map, Xt = ψt(X0). The terminal
state X1 = ψ1(X0) is then required to follow the target distribution, i.e., X1 ∼ pdata. Equivalently,
the flow induces a family of intermediate marginal densities pt describing the law of Xt at each
time t ∈ [0, 1]. We say that a velocity field u generates the probability path {pt}t∈[0,1] if the random
variable Xt = ψt(X0) follows distribution pt for all t < 1. In practice, choosing pbase simple (e.g.,
Gaussian) makes sampling tractable while ut provides the complexity needed to reach pdata.
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Flow Matching. Flow Matching (Lipman et al., 2023) is a simulation-free algorithm to learn a
vector field uθ, such that the induced marginal densities puθ

t coincide with a prescribed probability
path {pt}t∈[0,1] and satisfying puθ

0 = pbase and puθ
1 = pdata. Lipman et al. (2023) demonstrate that

the Flow Matching and Conditional Flow Matching objectives share identical gradients, ensuring
they converge to the same optimal vector field. In practice, this is achieved by introducing a
reference flow and regressing the learned field uθ(xt, t) against the reference velocity:

min
θ

Et,p(x0,x1)

[∥∥uθ(xt, t)− d
dtψ

ref
t (x)

∥∥2] . (2)

With an appropriate choice of the reference flow, specifically one that follows a diffusion trajectory,
the Flow Matching framework recovers diffusion models as a particular case, showing that diffusion
training objectives can be viewed as special instances of flow-based learning (Lipman et al., 2023;
Domingo-Enrich et al., 2025). This formulation enables efficient training using only samples of
(t, x0, x1) and their corresponding reference velocities, without requiring expensive numerical
integration. In practice, uθ is parameterized by a neural network and sampling from puθ

1 (≈ pdata)
is performed via simulating the ODE in Eq. 1.

Reinforcement Learning in continuous-time. Finite-horizon continuous-time reinforcement
learning (RL) (Wang et al., 2020; Treven et al., 2023; Zhao et al., 2025) provides a principled frame-
work for decision-making in dynamical systems and can be cast as an instance of optimal control.
The state space is X := Rd × [0, 1] and actions are taken from an action space A. A (deterministic)
policy π : X → A prescribes an action for each state (x, t) ∈ X , yielding the dynamics:

d
dt
ψt(x) = at(ψt(x)), at = π(Xt, t), X0 ∼ pbase. (3)

The resulting process {Xt}t∈[0,1] induces a family of marginals {pπt }t∈[0,1]. The aim is to optimize
the expected performance, typically expressed through an integral reward accumulated along the
trajectory and a terminal reward at t = 1 (Wang et al., 2020). In our setting, the reward over the
trajectory is zero, and we focus solely on the terminal reward. We use RL notation to emphasize
its generality and connection to standard practice, while noting that the setting coincides with
deterministic optimal control since both the dynamics and the objective are known.

Pre-trained Flow Models as RL Policy. A pre-trained flow can be viewed as a feedback policy:
at each time t and state x, the velocity field upre(x, t) prescribes the instantaneous action that deter-
mines how the system evolves. Defining at = πpre(Xt, t) := upre(Xt, t) for a policy πpre : X →A
(De Santi et al., 2025a), and substituting into Eq. 3, yields deterministic closed-loop dynamics.
Starting from X0 ∼ p0, rolling out πpre produces a trajectory {Xt}t∈[0,1] with induced marginals
{pπpre

t }t∈[0,1]. Intuitively, the policy selects at each moment the direction and speed that steer sam-
ples so that their distribution progressively matches the data, with the terminal marginal ppre

1 := pπ
pre

1
trained to approximate pdata. Viewing flow models through this policy lens not only unifies flow-
based generation and control theory but also enables downstream fine-tuning as policy improvement
with a terminal reward. For brevity, we refer to the pre-trained flow by its implicit policy πpre.

3 CONSTRAINED GENERATIVE OPTIMIZATION VIA FLOW FINE-TUNING

In this work, we aim to fine-tune a pre-trained flow model πpre to obtain a new model π∗ inducing
a process:

d
dt
ψt(x) = afine

t (ψt(x)), with afine
t = π∗(xt, t). (4)

such that its induced distribution p∗1 := pπ
∗

1 maximizes the expected value of a property of interest,
while satisfying arbitrary constraints and preserving prior information from πpre. We denote this
problem by constrained generative optimization via fine-tuning, illustrate in Figure 1 and defined as:

Constrained Generative Optimization via Flow Fine-Tuning

argmax
π

Ex∼pπ
1
[r(x)]− αDKL(p

π
1 ||p

pre
1 )

s.t. Ex∼pπ
1
[c(x)] ≤ B

(5)

3
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(a) Constrained generative optimization via fine-tuning prob-
lem. The red area has a high cost.

(b) Adaptation to low-cost area within black
line.

Figure 1: (1a) Pre-trained and fine-tuned policies inducing densities ppre1 and optimal density p∗1
w.r.t. reward r increasing downwards and in red a high-cost area. (1b) Pre-trained model ppre1 adapts
into p∗1 to maximize r and stay within the constraint region inside the black line.

Where r : X → R and c : X → R are a scalar reward and constraint function, α ∈ R determines
the KL-regularization strength, and B ∈ R is the upper bound on the constraint. Setting the reward
term r to be constant (e.g., r = 0) in Eq. 5, reduces the objective to a formulation of constrained
generation as minimization of a KL divergence between the fine-tuned model density pπ1 and the
pre-trained model (i.e., ppre

1 ), while satisfying the expected constraint bound in Eq. 5:

argmin
π

αDKL(p
π
1 ||p

pre
1 ) s.t. Ex∼pπ

1
[c(x)] ≤ B (6)

This problem has been studied before in (Chamon et al., 2025; Khalafi et al., 2025). A first approach
to tackle Eq. 5 is to optimize a fixed-weight Lagrangian (Chamon et al., 2025; Zhang et al., 2025):

max
π
Lµ(π) = Ex∼pπ

1
[r(x)]− αDKL(p

π
1 ||p

pre
1 )− µ

(
Ex∼pπ

1
[c(x)]−B

)
s.t. µ ≥ 0 (7)

Here, µ ∈ R≥0 denotes the Lagrange multiplier that penalizes constraint violations. However,
optimizing Lµ with a fixed µ is unreliable for enforcing the constraint. First, feasibility (i.e.,
Ex∼pπ

1
[c(x)] ≤ B) is not guaranteed for any given µ, unless it exceeds an unknown, problem-

dependent threshold. Second, µmust be tuned by hand, and there is no guaranteed or monotone map-
ping from µ to the resulting violation, so trial-and-error often leads to either infeasible or overly con-
servative solutions. Finally, if r is unbounded or approximate (e.g., a learned proxy reward function),
maximizing Lµ may shift probability mass toward high-reward regions, yielding invalid designs.

Toward overcoming such limitations, in the next section, we propose an algorithm that can prov-
ably tackle the constrained generative optimization problem introduced in Eq. 5 by progressively
fine-tuning the initial pre-trained model via established methods (e.g., Domingo-Enrich et al., 2025).

4 CONSTRAINED FLOW OPTIMIZATION (CFO)
In the following, we introduce Constrained Flow Optimization, see Alg. 1, which addresses the
constrained generative optimization problem as formulated in Eq. 5 by solving a sequence of
unconstrained entropy-regularized fine-tuning subproblems, each with a different reward function
computed via an augmented Lagrangian (AL) scheme (Rockafellar, 1976; Fortin, 1975; Birgin
& Martı́nez, 2014). Intuitively, CFO tackles the problem by embedding the given constraint into
an augmented reward via an adaptive penalty parameter, so that at each iteration, a standard
entropy-regularized fine-tuning solver steers the model toward feasibility while improving reward.

Overview of the Algorithm. CFO (Alg. 1), takes as input a pre-trained model πpre, a number of
iterations K, a minimal Lagrange multiplier λmin<0, an initial penalty parameter ρinit>0, a penalty
growth rate η≥1, and a contraction value 0<τ <1. At each iteration k, CFO performs 5 main steps:

Step 1: An augmented objective fk (Eq. 9) is formed as the difference between the reward and a
penalty term (Birgin & Martı́nez, 2014):

fk(x) = r(x)− ρk
2

[
max

(
0, c(x)−B − λk

ρk

)]2
,

where the offset λk/ρk ≤ 0 shifts the term toward the current expected constraint boundary.

4
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Algorithm 1 Constrained Flow Optimization (CFO)
1: Input: πpre: pre-trained model, K: number of iterations, λmin < 0: min. Lagrange multiplier,
ρinit > 0: initial penalty parameter, η ≥ 1: growth rate, 0 < τ < 1: contraction value

2: Init: Set initial Lagrange multiplier λ1 = 0 and penalty ρ1 = ρinit parameters
3: for k = 1, 2, . . . ,K do
4: Step 1: Update fine-tuning AL objective:

fk(x) := r(x)− ρk
2

[
max

(
0, c(x)−B − λk

ρk

)]2
(9)

5: Step 2: Compute πk via fine-tuning:
πk ← FINETUNINGSOLVER(fk, πpre) (10)

6: Step 3: Set the empirical constraint gap Gk and contraction statistic Vk

Gk = Ex∼p
πk
1
[c(x)]−B and Vk = min {Gk,−λk/ρk} (11)

7: Step 4: Compute Lagrange multiplier proposal:

λk+1 ← max {λmin,min {0, λk − ρkGk}} (12)

8: Step 5: Set the new penalty:

ρk+1 =

{
ρk, if k = 1 or Vk ≤ τVk−1,

ηρk, otherwise
(13)

9: end for
10: Return: πK

Step 2: A FINETUNINGSOLVER (e.g., Domingo-Enrich et al., 2025) computes πk by solving a stan-
dard KL-regularized control (or RL) subproblem, with the current augmented objective fk, namely:

πk ∈ argmax
π

Ex∼pπ
1
[fk(x)]− αDKL(p

π
1 ||p

pre
1 ), (8)

For completeness, we report a detailed implementation of this oracle step in Appendix A.

Step 3: CFO computes a Monte Carlo estimate of the constraint c under the current policy πk (see
Eq. 11), and subtracts the user-defined bound B, thus obtaining the empirical constraint gap Gk.
Then, it computes a contraction statistic Vk, which measures the current progress toward feasibility
by comparing the recent estimate Gk of the constraint gap with the λk/ρk ≤ 0 offset term.

Step 4: Then, CFO uses the empirical constraint gap Gk to apply a projected dual update to the
Lagrange multiplier (see Eq. 12). If Gk>0 (i.e., the constraint is violated), and the multiplier λk+1

is decreased. This shifts the penalty toward the new current expected constraint boundary (i.e.,
Gk − λk/ρk). Instead, if Gk< 0 (i.e., the constraint is fulfilled), then the Lagrange multiplier λk is
increased toward 0.

Step 5: The contraction statistic VK (see Eq. 11) assesses progress toward feasibility. If Vk does not
contract sufficiently, i.e., Vk > τVk−1, where τ is a user-defined contraction rate, then CFO infers
that the penalty is not sufficiently high and thus increases it by a multiplicative factor η. Instead, if Vk
is contracting, ρ is kept fixed, as shown in Eq. 13. Ultimately, CFO returns the fine-tuned policy πK .

A discussion on hyperparameters can be found in Appendix D. Nevertheless, it is a priori unclear
whether CFO is guaranteed to solve the constrained generative optimization problem in Eq. 5. In
the next section, we provide an affirmative answer by showing that under oracle assumptions, CFO
achieves reward optimality and arbitrary constraint satisfaction.

5 CONSTRAINED GENERATIVE OPTIMIZATION GUARANTEES

Before presenting the convergence properties of CFO, we first establish a mild and realistic
assumption on the FINETUNINGSOLVER used in Alg. 1, which formalizes the approximate nature of
its optimization steps and serves as the foundation for the theoretical guarantees that follow.
Assumption 5.1 (Approx. Solver). At every iteration k, the solver outputs a policy πk satisfying:

Lρk
(πk, λk) ≥ Lρk

(π, λk)− εk, ∀π (14)

5
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where Lρk
(πk, λk)=Ex∼pπ

1
[fk(x)]−αDKL(p

π
1 ||p

pre
1 ) and the sequence {εk} ⊆ R+ is bounded.

This assumption captures the approximate nature of practical fine-tuning or optimization oracles, it
is standard in augmented Lagrangian (AL) frameworks and has been adopted in recent works (e.g.,
De Santi et al., 2025a). The key requirement is that the approximation error remains bounded.

To keep the notation simple, we will define the infeasibility of a policy π as:

G(π) = Ex∼pπ
1
[c(x)]−B. (15)

If the infeasibility G(π) of a given policy is positive, the policy is infeasible, i.e., its average con-
straint is larger than the permissible bound. IfG(π) is negative, the policy is feasible and thus fulfills
the constraint. Using Assumption 5.1 and Eq. 15, we state our main convergence results for CFO.
The proofs are in Appendix E and draw on the analysis developed by Birgin & Martı́nez (2014).

Theorem 5.2 (Feasibility of CFO). Let {πk} be a sequence generated by Alg. 1 under Assumption
5.1 on the FINETUNINGSOLVER. Let π̄ be a limit of the sequence {πk}. Then, we have:

⟨G(π̄)⟩+ ≤ ⟨G(π)⟩+ ∀π (16)

where G(π) is defined in Eq. 15 and ⟨·⟩+ := max{0, ·}

Concretely, Theorem 5.2 states that CFO returns a policy that minimizes the introduced infeasibility
measure (Eq. 15). Thus, finding either a feasible policy or a policy that minimizes the constraint
violations as far as possible.

Corollary 5.3 (Feasibility of the Limiting Policy). Under the same conditions as Theorem 5.2, if
the underlying problem admits a feasible policy, then the limiting policy π̄ is feasible, i.e., it satisfies
the constraint (i.e., G(π̄) ≤ 0).

Theorem 5.2 and Corollary 5.3 establish constraint satisfiability of CFO but do not yet show op-
timality of the returned policy. To achieve optimality, CFO requires a stronger assumption on the
FINETUNINGSOLVER, namely that the approximation error vanishes asymptotically, i.e., εk → 0.

Theorem 5.4 (Optimality of CFO). Let {πk} be the sequence generated by Alg. 1 under Assump-
tion 5.1 with limk→∞ εk = 0 (in Eq. 14). Let π̄ be a limit of the sequence {πk}. Suppose that the
problem in Eq. 5 is feasible, i.e., ⟨G(π̄)⟩+ = 0. Then, the limiting policy π̄ is a global maximizer.

Although having access to a FINETUNINGSOLVER achieving εk → 0 exactly is rarely possible in
practice, for our experiments (Sec. 6), we use Adjoint Matching (Domingo-Enrich et al., 2025).
If the FINETUNINGSOLVER archives such a tight bound highly depends on the application and the
complexity of the reward function. Our experiments demonstrate that CFO can achieve near-optimal
reward performance while consistently respecting the constraint, even with bounded error.

The convergence guarantees of CFO do not rely on r or c being differentiable. Any further assump-
tions stem from the FINETUNINGSOLVER. Hence, using a gradient-free FINETUNINGSOLVER extends
the applicability of CFO to problems where r and c are accessed purely through function evaluations.

6 EXPERIMENTAL EVALUATION

We demonstrate the ability of Constrained Flow Optimization (Alg. 1) to solve the constrained
generative optimization problem (see Eq. 5) on both low-dimensional illustrative settings, and on
molecular design tasks. In particular, we evaluate: (i) the performance of CFO to solve Problem 5
given visually interpretable reward and constraint functions, also for (ii) the sub-case of constrained
generation, recovered via a constant reward (see Eq. 6). We further show that (iii) CFO scales to
high-dimensional molecular design tasks, and that (iv) it shows promising performances even with
an approximate FINETUNINGSOLVER, or when run with a limited number of iterations K.

CFO reliably solves constrained generative optimization low-dimensional tasks. We first evalu-
ate CFO’s ability to solve the constrained generative optimization problem (see Eq. 5) on a visually
interpretable setting, where ppre

1 is a mixture of two non-overlapping Gaussians as shown in Fig-
ure 2a, enabling direct visualization of constraint satisfaction during fine-tuning. In this setting,
the reward r is the negative squared distance to the white cross in Figures 2a-2c (see color-coding

6
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PRE 0.57 -
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B=1 0.48± 0.3 6.1± 1.5%

(h) Evaluation

Figure 2: 2a and 2e: Samples from the pre-trained models ppre
1 and the constraint-free area is inside

the red triangles. (top) Constrained Generative Optimization: Samples from fine-tuned models
via CFO (2b) and Adjoint Matching (AM) (Domingo-Enrich et al., 2025) (2c). (bottom) Con-
strained generation: Samples from the fine-tuned model via CFO with B=0 (2f) and B=1 (2g).
Tables showing numerical results for the respective rows (2d and 2h).

in Figure 2b and 2c.) The constraint c is zero within the red triangles in Figures 2a-2c, and in-
creases linearly outside (see color-coding in Figure 2a). As shown in Figure 2b, CFO, run with
K = 20, and ρinit = 0.5, steers the pre-trained flow model such that its induced density p∗ is located
predominantly within the valid regions (i.e., red triangles) where the constraint is fulfilled, while
simultaneously optimizing the reward by moving samples toward the inner boundaries of both tri-
angles. CFO increases the mean reward from −7.62 to −4.75 compared to the base model, while
it reduces estimated constraint violations from 0.58 to 0.12, as reported in Table 2d. The minor
residual violations of CFO, which one can notice e.g., in Figure 2b, are likely due to Monte Carlo
approximation errors during finetuning. In contrast to CFO, Adjoint Matching (Domingo-Enrich
et al., 2025), a well-established reward-guided fine-tuning scheme, which does not take into account
any constraint, raises the expected reward to −2.93, but significantly degrades the models ability to
satisfy the given constraints, increasing constraint violations from 0.58 to 2.47 (see Figure 2c).

Constant reward recovers Constrained Generation. To illustrate the constrained generation (see
Eq. 6) capabilities, we consider a correlated Gaussian base density ppre

1 , visualized in Figure 2e, and
a constraint c penalizing samples outside the red central triangle (see Figure 2e). In the following, we
vary the boundB∈{0.0, 1.0} (see Eq. 5) to obtain diverse flow models inducing fine-tuned distribu-
tions p∗. As shown in Figures 2f–2g, by increasing B, the resulting densities visibly expand beyond
the zero constraint region, illustrating the relaxation of constraint enforcement. Quantitatively, the
selected degree of permissible violation (i.e., the value of B), is reflected in the mean constraint
violations incurred by the respective flow models, obtained by running CFO with K = 20, and
ρinit = 0.5. As shown in Table 2h, while setting B = 1 leads to expected constraint value of 0.01,
choosing B = 1.0 renders CFO less restrictive, inducing a policy π∗ with a mean constraint of 0.48.
While the base model exhibits Eppre

1
[c(x)] = 0.57, the violation decreases to 0.48 under B = 1.0

and further to 0.01 under B = 0.0. These results illustrate how the choice of B controls tolerance
to constraint violations, offering a mechanism to adapt CFO to domain-specific requirements.

CFO scales to high-dimensional molecular design tasks. To demonstrate the practical relevance
of CFO in high-dimensional settings, we apply CFO to a molecular design, where satisfying
constraints is critical. Specifically, we adapt FlowMol (Dunn & Koes, 2024), a flow model
pre-trained on GEOM Drugs (Axelrod & Gómez-Bombarelli, 2022), and maximize the dipole
moment (Minkin et al., 1970) as reward while ensuring constraint fulfillment. As constraints, we
impose an upper bound on the total xTB energy (i.e., −80 Ha), to be used as a proxy for chemical
stability. Further details on the constraint and reward functions employed are provided in Appendix
B. Both functions are computed via GNN-based predictors (see Appendix B) trained on GFN2-xTB
(Bannwarth et al., 2019). While we employ differentiable rewards and constraints, this is rather
a requirement of the specific FINETUNINGSOLVER we use in our implementation, namely Adjoint
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E[r(x)] ↑ E[c(x)] ↓
PRE 6.55± 0.07 −77.86± 0.22

CFO 8.33 ± 0.10 −82.28 ± 0.41

AM 8.30 ± 0.07 −78.31± 0.38

(c) Evaluation

Figure 3: Energy-constrained dipole moment maximization of FlowMol (Dunn & Koes, 2024) on
GEOM Drugs (Axelrod & Gómez-Bombarelli, 2022). (3a-3b): Evolution of the constraint and
reward during CFO fine-tuning with (K = 6, N = 10) in comparison to AM (Domingo-Enrich
et al., 2025), which is run for N = 60 steps, and we show the final iterate. 3c: Numeric Evaluation
of CFO (K = 6, N = 10) and AM (N = 60) on the molecular design task (best are bold). For all
figures, report the mean and 95% CI (32 seeds); vertical lines indicate parameter updates.

Matching (Domingo-Enrich et al., 2025), rather than a need of our method, which is compatible
with non-differentiable reward and constraint functions (see Sec. 5).

(a) 15.7 D / −86.9 Ha (b) 8.0 D / −90.7 Ha

(c) 9.1 D / −83.4 Ha (d) 12.5 D / −93.8 Ha

Figure 4: Drug-like molecules sampled from
the fine-tuned model, together with ground-
truth dipole moments (D) and energies (Ha).

In Figure 3, we show the performance of CFO
for the energy-constrained dipole moment max-
imization molecular design task. The optimal
policy π∗ computed by CFO (K = 6, N = 10)
increases the dipole moment from 6.55 Debye of
the pre-trained model to 8.33 Debye (see Figure 3a).
Simultaneously, π∗ shifts the flow model density
to generate predominantly low-energy samples,
effectively achieving an expected energy of −82.28
Ha, thus satisfying the upper bound B of −80 Ha.
In Figure 4, we present drug-like samples from the
fine-tuned model, together with their ground-truth
reward and constraint values. For reference, running
Adjoint Matching (N =60) (Domingo-Enrich et al.,
2025) purely for reward maximization, without
enforcing the constraint, achieves a similar reward
of 8.30 Debye, yet results in an expected constraint
of −78.31 Ha, thus not fulfilling the constraint (see
Table 3c). Appendix B shows that GNN predictors
are accurate throughout the optimization, with
ground truth values of reward and constraint being optimized to the same extent.

We observe that optimization of the molecular properties leads to a decrease in the fraction of valid
generated molecules (from 35% to 9% for CFO and 4% for AM). This is expected, as validity is not
directly enforced but only implicitly learned from the training distribution. The fine-tuning shifts
the model toward less represented regions of chemical space, where this implicit notion of validity
becomes less reliable. In Appendix B, we discuss how base model improvements and differentiable
geometry relaxation could increase the validity of generated molecules for downstream applications.

To contextualize the effects of reward-guided fine-tuning, we report standard molecular statistics
for models fine-tuned with CFO and AM. Although these graph-based metrics are not optimization
targets, they show how molecular properties shift when the model is steered toward high dipole
moments under energy constraints. As reported in Table 5c, both CFO and AM perform similarly,
e.g., the QED score, where CFO achieves 0.38 and AM 0.37, coming from 0.45 by the base model.

Moreover, to illustrate CFO’s versatility across different constraint formulations, we replace the
energetic constraint with a molecular validity criterion based on PoseBusters (Buttenschoen
et al., 2024), the results of which are presented in Appendix C. Beyond GNN-based surrogates, we
also show the performance of CFO on ground-truth rewards and constraints from a differentiable
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E[r(x)] ↑ E[c(x)] ↓
PRE 6.55± 0.07 −77.86± 0.22

CFO 8.33 ± 0.10 −82.28± 0.41

µ = 0.01 8.34 ± 0.10 −78.94± 0.38

µ = 0.1 8.33 ± 0.13 −80.99± 0.43

µ = 1.0 8.01± 0.10 −84.75 ± 0.66

µ = 10.0 6.91± 0.09 −81.05± 0.38

µ = 100.0 6.73± 0.09 −82.29± 0.46

(b) Evaluation

Feature PRE CFO AM
Validity (in %, ↑) 34 9 4

QED (↑) 0.45 0.38 0.37

Lipinski (in %, ↑) 90 76 76

logP (↑) 0.9 −0.89 −0.55
Murcko scaffolds 344 84 34

(c) Molecular Statistic

Figure 5: (5a): Pareto plot of the molecular design task, comparing CFO (K = 6, N = 10) against
multiple fixed-µ baselines (see Eq. 7) ran with AM (N = 60). 5b: Numeric Evaluation of (5a)(best
are bold, 32 seeds). (5c): Molecular statistics. Validity: RDKit-based validity checker (Landrum,
2025), QED (Ertl & Schuffenhauer, 2009), Lipinski: percentage of valid molecules that fulfill all cri-
teria of Lipinski’s rule of 5 (Lipinski, 2004), logP: average logP values of valid molecules, Murcko
scaffolds: number of Murcko scaffolds in valid molecules (out of 1000 molecules)

simulator, namely dxTB (Friede et al., 2024). Similar to previous experiments, we find that CFO
increases the reward while fulfilling the given constraints (Appendix C).

CFO outperforms a fixed-µ baseline. Comparing CFO against a fixed-µ baseline (Eq. 7) empir-
ically validates the observation outlined in Sec. 3: manually tuning µ is unreliable (see Figure 5a
and Table 5b). When µ is set too small (e.g., µ = 0.01), the baseline attains a high reward (8.34
Debye) but exhibits substantial constraint violation (−78.94 Ha). Conversely, when µ is large (e.g.,
µ ≥ 1.0), the constraint is satisfied, but the reward drops significantly (8.01 Debye for µ = 1.0),
falling short of the performance achieved by CFO. These findings show that the online parameter
adaptation in CFO provides a more robust mechanism for balancing reward maximization and con-
straint satisfaction. We further find that CFO remains robust across a range of parameter choices.
An ablation study is provided in Appendix D.
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Figure 6: Reward and constraint for
different values of (K/N)

CFO can run with approximate fine-tuning oracles and a
limited number of iterationsK. While CFO hasK outer it-
erations, typical fine-tuning solvers (Domingo-Enrich et al.,
2025; Uehara et al., 2024c; Tang, 2024) require N steps to
compute the optimal iterates. This makes CFO a double loop
algorithm. But in practice, we run CFO under a fixed solver-
step budget of M = K · N for all experiments, thus keep-
ing the total compute constant. This leads to a trade-off be-
tween the exactness of the inner solver and the outer dual
updates. Increasing K reallocates budget from a more ex-
act inner solver to more frequent updates of the Lagrange
parameters, effectively making the FINETUNINGSOLVER less
precise at every outer step.

To show that CFO can effectively work with an approximate
fine-tuning oracle, we probe the setting shown in Figures 2a–
2c. Empirically, under a fixed budget of M = 6000, varying
K reveals a clear trade-off between constraint satisfaction
and reward. When using very few dual updates (K = 3),
the inner solver remains highly accurate (N = 2000), result-
ing in high reward but also high expected constraint viola-
tions (0.40). Conversely, using K = 100 produces very fre-
quent dual updates, but makes the inner solver approximate
(N = 60), which almost eliminates the expected constraint violations (0.10) but substantially de-
creases the reward (−5.91). An intermediate configuration (K = 20) achieves a favorable balance,
yielding both low constraint violation (0.12) and high reward (2.47), as shown in Figure 6. Thus
CFO effectively acts as a fixed-budget allocator, balancing solver precision and update frequency,
where moderately inexact inner solvers allow more dual updates, and thus better constraint satisfac-
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tion. This implies that from a practical standpoint, the computational cost of CFO is comparable to
that of standard fine-tuning schemes such as AM (Domingo-Enrich et al., 2025).

Importantly, this observation also holds for the molecular design task in Figure 3. CFO (K = 6,
N =10) and AM (N =60) have comparable computational cost, as both perform 60 gradient steps.
Concretely, CFO. has a total runtime of 37.18 min and compares well to the runtime of AM with
35.35 min. This 5% increase arises from the extra sampling and constraint evaluation performed in
Step 3 of Alg. 1. Thus demonstrating that CFO can operate effectively in high-dimensional domains
even with an approximate oracle.

7 RELATED WORK

Control-based fine-tuning of flow and diffusion models. Recent works have tackled fine-tuning of
diffusion and flow models to maximize rewards under KL regularization as an entropy-regularized
optimal control problem (e.g., Uehara et al., 2024b; Tang, 2024; Uehara et al., 2024c; Domingo-
Enrich et al., 2025). Such methods have been successfully applied to real-world domains such as
image generation (Domingo-Enrich et al., 2025), molecular design (Uehara et al., 2024c), or protein
engineering (Uehara et al., 2024c). These methods have also been adopted as subroutines to tackle
settings beyond reward maximization, such as manifold exploration (De Santi et al., 2025a) or
optimization of distributional objectives (De Santi et al., 2025b). CFO extends fine-tuning methods
for reward maximization to leverage known constraint functions and can be straightforwardly used
as a plug-in oracle in more complex settings (e.g.,, exploration and distributional fine-tuning).

Constrained Generative Modeling and Optimization. Most prior work addresses constraint-
aware generative modeling, developing tools for handling linear (Graikos et al., 2025), differen-
tiable (Khalafi et al., 2024), and black-box (Kong et al., 2024) constraints. Enforcement spans
training-time dual/penalty formulations (Khalafi et al., 2024) and inference-time strategies such as
reward-weighted denoising for non-differentiable objectives (Kong et al., 2024) and classifier or
classifier-free guidance for differentiable surrogates (Dhariwal & Nichol, 2021; Ho & Salimans,
2022). These techniques have been applied in domains such as molecular design (Kong et al.,
2024) and constrained planning (Ma et al., 2025). The closest work to ours is arguably (Khalafi
et al., 2024), with the main difference that our setting is for post-training, i.e., at fine-tuning time,
constrained generative optimization rather than a training-time scheme enforcing given constraints.

Augmented Lagrangian and Dual Methods in Constrained Sampling. Augmented Lagrangian
and dual formulations turn equality and inequality constraints into auxiliary updates that run with
the sampler, enabling draws from unnormalized targets while enforcing feasibility either per-sample
or in expectation (Khalafi et al., 2025; Blanke et al., 2025; Chamon et al., 2025). For example, in
planning and control, Zhang et al. (2025) employ an augmented Lagrangian method to steer diffu-
sion rollouts toward time-varying safety sets without requiring retraining of the base model. Dual
schemes similarly maintain physical invariants during sampling or data assimilation while still re-
taining sufficient exploration of feasible states (Blanke et al., 2025). In addition to constraint gener-
ation or sampling, CFO also performs reward-driven optimization under the augmented formulation.

8 CONCLUSION

This work tackles the problem of constrained generative optimization via fine-tuning of pre-trained
flow and diffusion models, a relevant and challenging task in discovery applications such as drug
discovery. After proposing a constrained optimization formulation of the problem, we introduced
Constrained Flow Optimization, a method that transforms the constrained objective into a sequence
of fine-tuning steps, and provides feasibility and optimality guarantees. Empirical results on both
illustrative settings and molecular design tasks demonstrate the ability of CFO to steer pre-trained
flow models toward high-reward regions while satisfying the given constraints. Promising direc-
tions include adding zero-order oracles to CFO beyond the current first-order choice, developing
inference-time constraint handling rather than fine-tuning, and testing on protein engineering tasks.
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9 REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our results. To facilitate replication,
we provide a complete description and pseudocode of the algorithm in the main text 4, along with
pseudocode of the FINETUNINGSOLVER in Appendix A. All experimental settings, hyperparameters,
and implementation details necessary to reproduce our results are documented in Appendix B. For
the data and models, we use publicly available weights and code. For the 2D experiments, we
describe the data-generating process and models in the Appendix B-C. For theoretical components,
we clearly state all assumptions and provide complete derivations of key results in Section 5 and
Appendix E.
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A IMPLEMENTATION OF FINETUNINGSOLVER- ADJOINT MATCHING
(DOMINGO-ENRICH ET AL., 2025)

To ensure completeness, below we provide pseudocode for one concrete realization of a FINETUN-
INGSOLVER as in Eq. 10. We describe exactly the version employed in Sec. 6, which builds on the
Adjoint Matching framework (Domingo-Enrich et al., 2025), casting linear fine-tuning as a stochas-
tic optimal control problem and tackling it via regression.

Let upre be the initial, pre-trained vector field, and ufinetuned its fine-tuned counterpart. We also use
ᾱ to refer to the accumulated noise schedule from Ho et al. (2020), effectively following the flow
models notation introduced by Adjoint Matching (Domingo-Enrich et al., 2025, Sec. 5.2). The full
procedure is in Alg. 2.

Algorithm 2 FINETUNINGSOLVER- Adjoint Matching (Domingo-Enrich et al., 2025)

1: Input: N : number of iterations, uk : current finetuned flow vector field, upre : pre-trained flow
vector field, α regularization coefficient (Eq. 5), ∇f : objective function gradient, m batch size,
h step size

2: Init: ufinetuned := uk with parameter θ
3: for n = 0, 1, 2, . . . , N − 1 do
4: Sample m trajectories {Xt}0≤t≤1 via a memoryless noise schedule σ(t) (Domingo-Enrich

et al., 2025), e.g.,
sample εt ∼ N (0, I), X0 ∼ N (0, I), then: (17)

Xt+h = Xt + h

(
2ufinetuned

θ (Xt, t)−
ᾱt

αt
Xt

)
+
√
hσ(t)εt (18)

5: Use objective function gradient:

ã1 = − 1

α
∇X1f(X1)

6: For each trajectory, solve the lean adjoint ODE, (Domingo-Enrich et al., 2025, Eq. 38-39),
from t = 1 to 0:

ãt−h = ãt + hã⊤t ∇Xt

(
2upre(Xt, t)−

ᾱt

αt
Xt

)
(19)

7: Where Xt and ãt are computed without gradients, i.e., Xt = stopgrad(Xt), ãt =
stopgrad(ãt). For each trajectory, compute the Adjoint Matching objective (Domingo-Enrich
et al., 2025, Eq. 37):

Lθ =
∑

t∈{0,h,...,1−h}

∥∥∥∥ 2

σ(t)

(
ufinetuned
θ (Xt, t)− upre(Xt, t)

)
+ σ(t)ãt

∥∥∥∥2 (20)

8: Compute the gradient∇θL(θ) and update θ.
9: end for

10: Output: Fine-tuned flow vector field ufinetuned
θ

For further implementation details, we refer to Domingo-Enrich et al. (2025, Appendix G).
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B FURTHER EXPERIMENTS AND DETAILS - ILLUSTRATIVE EXAMPLES

Reward-only rejection sampling. We also compare against a simple rejection-sampling baseline,
complementary to the fixed-µ baseline in Eq. 7. We fine-tune a policy purely on the reward signal
using Adjoint Matching and then enforce feasibility only by rejecting samples that violate the con-
straint. On the example in Figure 2c, this reward-only policy attains a constraint satisfaction rate of
13.40%, compared to 84.40% for the policy fine-tuned with CFO, e.g., accounting for the constraint
during fine-tuning. Inspecting the samples further reveals that (1) violations under CFO occur pre-
dominantly near the constraint boundary, and (2) rejection sampling is ineffective when the reward
optimum and the constraint region are poorly aligned.

Details for visually interpretable settings (Figure 2). The Mixture of Gaussians (Figure 2a) is
generated by

p(x) =
1

2

(
N

(
x |

[
−7
−2

]
,Σ

)
+N

(
x |

[
2
7

]
,Σ

))
, with Σ =

[
3 0
0 3

]
,

We sample 20k points (80/20 train/validation split) and train a MLP with 3 hidden layers, each
with 256 nodes, for the vector field v. The same setting is used for the experiment on the correlated
Gaussian (Figure 2e), with:

p(x) = N
(
x |

[
0.5
0.5

]
,

[
1 0.5
0.5 1

])
The constraint triangles have the following vertices:

1. MoG:

△I :

([
−10
−4

]
,

[
−5
−4

] [
−5
2

])
and △II :

([
4
−1

]
,

[
10
2

]
,

[
5
4

])
2. Correlated Gaussian:

△ :

([
−1
−0.5

]
,

[
1
−0.5

]
,

[
0
1

])
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MD E[r(x)] ↑ E[c(x)] ↓
True PRE 6.68± 0.28 −77.71± 0.55

CFO 8.37± 0.26 −81.68± 0.71

xtb 10.31± 0.46 −81.42± 0.88

(c) Evaluation
Figure 7: Energy-Constrained Dipole Moment Maximization for Molecular Design (MD) (7a-7b):
Evolution of the constraint and reward during CFO compared to the true xtb Value. 7c: Numeric
Comparison between of CFO and xtb.

C FURTHER RESULTS ON MOLECULAR DESIGN EXPERIMENTS

Molecular Design. For the molecular design task, we fine-tune FlowMol (Dunn & Koes, 2024).
FlowMol models the molecules as graphs g = (X,A,C,E), where X = {xi}Ni=1 ∈ RN×3 is the
atom position matrix,A = {ai}Ni=1 ∈ RN×na are the atom types,C = {ci}Ni=1 ∈ RN×nc denote the
formal charges, and E = {eij | ∀i, j ∈ [N ]|i ̸= j} ∈ RN2−N×ne the bond order matrix. Where na,
nc, and ne are the number of possible atom types, charges, and bond orders, these are categorical
variables represented by one-hot vectors. We refer to (Dunn & Koes, 2024) for the sampling of
categorical and initial values. We use Gaussian sampling for the experiments in the main text on
GEOM-Drugs and CTMC for the experiments on QM9.

GNN Details and Generalization. To verify that optimization targets the intended physical objec-
tive rather than exploiting the surrogate, we evaluate the ground-truth xTB values for every molecule
sampled during the execution of CFO and compare their properties to the GNN predictions. For the
energy (used as a constraint), surrogate predictions are essentially indistinguishable from xTB, indi-
cating faithful approximation within the explored region. For the dipole moment (the maximization
target), the surrogate systematically underestimates the true xTB values by 10%, yet the two remain
strongly correlated and move in lockstep throughout the fine-tuning. Consequently, improvements
under the surrogate translate to larger gains under xTB. Overall, these checks indicate that CFO does
not exploit model artifacts and remains within the training distribution.

0 60 120 180
Step

0

5

10

De
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e

|Dipole|

(a) Dipole Moment (in D)

0 60 120 180
Step

40

30

20

Ha
rtr
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(b) Energy (in Ha)
Figure 8: Energy-constrained
dipole moment maximization on
QM9 (Ramakrishnan et al., 2014)
and using dxtb (Friede et al.,
2024) as reward and constraint
functions, with exact gradients of
the simulation.

Additional Results with Exact Rewards and Constraints
using dxtb. In a complementary experiment, we employ
dxtb (Friede et al., 2024) instead of neural approximators
to obtain rewards and constraints, which offers exact gradi-
ents over atomic positions. For this experiment, we fine-tune
FlowMol pre-trained on QM9 (Ramakrishnan et al., 2014). We
again maximize the dipole moment while constraining the total
energy to remain below −18 Ha, a value that differs from the
constraint in the main paper due to the different atomic num-
ber distribution. As shown in Table 1, the pre-trained model
πpre violates such a constraint with 65 % of samples. In con-
trast, the model fine-tuned via CFO can successfully achieve
zero constraint violation (30 Monte Carlo samples, all below
the threshold) while increasing the average norm of the dipole
moment from 3.43± 3.45 to 8.66± 4.50, as shown in Fig. 8a.
As a baseline comparison, we compare to just using Adjoint
Matching (Domingo-Enrich et al., 2025), which increases the
dipole to 9.04D but also the energy to −15.5Ha.

Results using posebuster validity score function. To
further highlight CFO’s flexibility, we replace the en-
ergy constraint with a molecular-validity criterion based on
posebuster (Buttenschoen et al., 2024), while keeping the
dipole moment as reward. We train a GNN on a custom val-
idation score that equals zero when a molecule is connected
and passes the basic posebuster checks, and 1 otherwise,
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Table 1: Numeric results for CFO on QM9 using dxtb for dipole and energy.

Property Stage Value

Dipole moment Pre 3.43± 3.45D
CFO 8.66± 4.50D

Energy Pre −16.72± 2.48 Ha
CFO −39.40± 4.01 Ha

Violations Pre 65 %
CFO 0 %

running CFO with K = 2, N = 50, and B = 0.3. The pre-trained model attains a dipole moment
of 6.92 D but has a 53% constraint-violation rate. In contrast, CFO increases the reward to 9.60 D
while reducing the predicted violation rate to 39%. In contrast to the energy constraints presented
in the main text, the predicted violation rate also differs from the ground truth violation rate, which
might be circumvented by an online learning of the constraint function.

Additional Discussion on Validity of Molecules. For the molecular design experiments on drug-
like molecules presented in the main text, we further apply an RDKit validation step, including
stereochemistry reassignment, hydrogen count correction, and full sanitization (valences, kekuliza-
tion, bond orders). Approximately 7% of final molecules pass, which can be attributed to several
reasons: Already in the base FlowMol model, only 34% of molecules fulfill the RDKit validation
step, highlighting the need for more diverse pre-training datasets and further base model improve-
ments. Furthermore, the FlowMol-generated geometries used during optimization are not geomet-
rically relaxed, which can lead to invalid bond lengths or angles (see examples in Figure 9). This
motivates the development of fully differentiable geometry relaxation methods for molecular design
or the extension of CFO to different solvers.

Figure 9: Generated drug-like molecules failing the validity test and showing unreasonable bond
lengths and angles, highlighted with red circles.
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Figure 10: Unconstrained Dipole maximization of AM (Domingo-Enrich et al., 2025), i.e., µ = 0
in Eq. 7, for different N .

D PARAMETER DETAILS AND ABLATION STUDIES FOR CONSTRAINED
FLOW OPTIMIZATION AND ADJOINT MATCHING

Discussion of the most important Hyperparameter of CFO and FINETUNINGSOLVER:

• Initial penalty ρinit. Larger ρinit penalizes constraint violations more strongly, thus effectively
reducing early exploration inside the base distribution. Smaller ρinit does the opposite.

• Penalty growth rate η≥1. Controls the penalty growth across updates. Larger η accelerates en-
forcement and thus can reduce exploration of high-reward regions. Smaller η tightens feasibility
more gradually, allowing for early reward progress, but potentially slower constraint satisfaction.

• Contraction rate τ ∈ (0, 1). Determines when the penalty parameter ρ is updated. Smaller τ
triggers more frequent updates, values near one update conservatively.

• Multiplier lower bound λmin < 0. Safeguards the Lagrange multiplier via clipping. Smaller
λmin permits larger corrective signals of the offset, see Sec. 4. If set to a large negative value, its
influence on the final output is typically small, since λmin is not achieved.

• FINETUNINGSOLVER regularization α. Trade-off between staying close to the base distribution
and reallocating mass. Larger α enforces stronger KL-regularization of the policy. A smaller α
allows greater deviation from the base policy.

• Sampling for constraint estimation (sample count/batch size). Larger samples reduce estima-
tor variance, stabilizing updates and improving feasibility. If the sample size is too small, this
yields volatile or biased estimates that can steer CFO to off-target solutions.

Table 2: Hyperparameters for CFO and Adjoint Matching

SG(2e-2g) MoG(2a-2c) MD-QM9(8a-8b) MD-GEOM(3a-3b)

CFO

Lagrangian Updates K 20 20 20 6
ρinit 0.5 0.5 2 1.0
η 1.25 1.25 1.1 1.25
τ 0.99 0.99 0.99 0.99
λmin -50.0 -50.0 -50.0 -50.0

Adjoint Matching
(1/α) 1e5 1e5 1e2 50
Number of Iterations N 300 300 10 10
Effective Batch Size 256 256 40 20
Clip Grad Norm 0.7 0.7 0.5 0.4
Learning Rate 5e-6 5e-6 1e-4 5e-6
Integration Steps 40 40 50 40

Total Steps 6000 6000 200 60
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Ablation study for ρinit, η, τ, and λmin.. In the following, we provide an ablation study for the
molecular design task (Figure 3a-3b) as well as the MoG task (Figure 2b).

Table 3: Ablation Study for MoG (2b) and Molecular Design Tasks (3a-3b)

value MoG Task Molecular Design Task
E[r(x)] ↑ E[c(x)] ↓ E[r(x)] ↑ E[c(x)] ↓

PRE
– −7.32± 0.08 0.58± 0.02 6.55± 0.07 −77.86± 0.22

ρinit

0.1 −4.49± 0.06 0.24± 0.02 8.43± 0.12 −82.21± 0.33
1.0 −4.88± 0.07 0.10± 0.01 8.36± 0.11 −81.99± 0.45

10.0 −5.62± 0.09 0.10± 0.01 8.22± 0.08 −81.91± 0.37

η

1.0 −4.56± 0.05 0.17± 0.01 8.33± 0.11 −82.22± 0.39
1.25 −4.75± 0.06 0.12± 0.01 8.30± 0.12 −81.99± 0.34
2.0 −5.34± 0.15 0.10± 0.01 8.39± 0.27 −81.98± 0.46

λmin

0.0 −4.84± 0.04 0.16± 0.01 8.39± 0.10 −81.85± 0.31
-1.0 −4.40± 0.76 0.26± 0.02 8.30± 0.12 −81.80± 0.42
-10.0 −4.75± 0.06 0.12± 0.01 8.26± 0.11 −82.13± 0.39
-50.0 −4.75± 0.06 0.12± 0.01 8.35± 0.13 −82.16± 0.48

τ

0.5 −5.02± 0.05 0.10± 0.01 8.34± 0.11 −82.06± 0.32
0.75 −4.98± 0.05 0.10± 0.01 8.31± 0.13 −82.05± 0.40
0.9 −4.82± 0.07 0.11± 0.01 8.31± 0.12 −81.93± 0.40

0.99 −4.75± 0.06 0.12± 0.01 8.39± 0.13 −82.27± 0.33

Across tasks, CFO’s sensitivity to hyperparameters varies: while the MoG task exhibits clear shifts
in reward and constraint satisfaction across settings, the molecular design task remains highly ro-
bust, with only minor fluctuations. Larger initial ρinit and higher η consistently tighten constraint
satisfaction at the cost of modestly reduced reward, whereas λmin and τ have a lower effect. The
effect is lower effect of λmin likely stems from λ rarely reaching its lower bound, and the smoothing
parameter barely impacts updates. A separate batch-size ablation on MoG shows that larger batches
significantly improve constraint satisfaction and reward maximization.

Table 4: Ablation Study for the MoG task with different batch sizes
value E[r(x)] ↑ E[c(x)] ↓

Batch Size

8 −5.16± 0.11 0.36± 0.04
32 −4.93± 0.08 0.27± 0.05
128 −4.74± 0.06 0.14± 0.02
512 −4.68± 0.05 0.11± 0.01
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E PROOFS

Before we present a proof of the theorems in Section 5. We will transform the main problem in Eq.
5 to a simpler form. First, we recall that the policy π is a vector field. It has been shown before that
the ODE in Eq. 1 and a stochastic differential equation (SDE) of the form

dXt = b(Xt, t)dt+ σ(t)dBt, X0 ∼ p0, (21)

with drift b : Rd × [0, 1] → Rd, diffusion coefficient σ : [0, 1] → R≥0 and Brownian motion
Bt induce the same marginals {pt}. For an exact definition of b and a proof of this statement, we
refer to (Domingo-Enrich et al., 2025). Controlling this SDE can be done by adjusting the drift as
follows (Tang, 2024; Domingo-Enrich et al., 2025):

dXt = (b(Xt, t) + σ(t)u(Xt, t)) dt+ σ(t)dBt, X0 ∼ p0,
where u : Rd× [0, 1]→ Rd is a control vector field, this means the pre-trained model is a controlled
model with u ≡ 0. With these notational changes, we reformulate the optimization problem in Eq.
5 in terms of the controlled diffusion process Xu ∼ pu:

max
u∈U

EXu∼pu [r(X1)]− αDKL(p
u
1 (·)||p

pre
1 (·))

s.t. EXu∼pu [c(X1)] ≤ B
(22)

Eq. 22 may seem the same as Eq. 5, but it is in terms of a diffusion process. This way we can
calculate the KL efficiently, see (Eq. 18, Domingo-Enrich et al., 2025), by using Girsanov’s theorem,
which gives the relationship between the control process u and the KL-Divergence:

DKL(p
u(X|X0) || ppre(X|X0)) = EXu∼pu

[∫ 1

0

1

2
∥u(Xt, t)∥2 dBt

]
Meaning if both processes have the same initial value X0, the KL divergence between the con-
trolled and uncontrolled process is equal to the expected value of the squared norm of the control
u (Domingo-Enrich et al., 2025; Uehara et al., 2024b; Tang, 2024). This dependence on the initial
value can be dropped when using a specific noise schedule (Domingo-Enrich et al., 2025). Recalling
that marginals at time t are pt(x), i.e. Xt ∼ pt(x), then we can equivalently write the optimization
problem as:

max
u∈U

EXu∼pu [r(X1)]− αE
[∫ 1

0

1

2
∥u(Xu

t , t)∥2dt
]

s.t. EXu∼pu [c(X1)] ≤ B
Where the expectation is taken over the controlled process Xu. For numerical optimization, we now
assume that the control u is a parametric model, typically a neural network, with parameters θ. The
resulting optimization problem is then:

max
θ∈Rm

F (θ) := Fr(θ)− αFKL(θ)

= Ex∼p
uθ
1
[r(x)]− αE

[∫ 1

0

1

2
∥uθ(Xt, t)∥2dt

]
s.t. G(θ) := Ex∼p

uθ
1
[c(x)]−B ≤ 0

(23)

For some function F : Rm → R and function G : Rm → R. This is finite-dimensional optimization
over θ.

Next, we present a proof that Alg. 1 can find a parameterized policy πθ, with θ ∈ Rm that minimizes
the infeasibility while maximizing the reward. The proof is adapted from “Practical Augmented
Lagrangian Methods for Constrained Optimization” (Birgin & Martı́nez, 2014, Chapter 5).

The augmented Lagrangian objective in Eq. 8 becomes:

Lρ(θ, λ) = F (θ)− ρ

2

[
max

(
0, G(θ)− λ

ρ

)]2
(24)

where λ ∈ R≤0 is the Lagrange multiplier, ρ > 0 is a penalty parameter.

With this notation, the assumption on the solver becomes:
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Assumption E.1 (Solver). For all k ∈ N, we obtain u such that:

Lρk
(θk, λk) ≥ Lρk

(θ, λk)− εk ∀ θ ∈ Rm (25)

where the sequence {εk} ⊆ R+ is bounded.

This corresponds to Assumption 5.1 from (Birgin & Martı́nez, 2014). Assumption E.1 states that
the solver can find an approximate maximizer of the subproblem.

Next we state and prove the main result for the algorithm. Namely, in the limit, we obtain a mini-
mizer of the infeasibility measure.
Theorem E.2 (Feasibility of Constrained Flow Optimization). Let {θk} be a sequence generated
by Alg. 1 under the solver Assumption E.1. Let θ̄ be a limit of the sequence {θk}. Then, we have:〈

G(θ̄)
〉
+
≤ ⟨G(θ)⟩+ ∀θ ∈ Rm, (26)

where G(θ) := Ex∼p
uθ
1
[c(x)]−B ≤ 0 and ⟨·⟩+ := max{0, ·}.

Proof. By definition Rm is closed and θk ∈ Rm thus θ̄ ∈ Rm. We consider two cases: {ρk}
bounded and ρk →∞. First we assume {ρk} is bounded, there exists k0 such that ρk = ρk0

for all
k ≥ k0. Therefore, for all k ≥ k0, the upper bracket of Eq. 13 holds. This implies that |Vk| → 0, so
⟨G(θk)⟩+ → 0. Thus, the limit point is feasible.

Now, assume that ρk →∞. Let K ⊆ N be such that:

θk → θ̄ for k ∈ K and k →∞
Assume by contradiction that there exists θ ∈ Rd such that〈

G(θ̄)
〉2
+
> ⟨G(θ)⟩2+

By the continuity of G, the boundedness of {λk}, and the fact that ρk →∞, there exists c > 0 and
k0 ∈ N such that for all k ∈ K, k ≥ k0:〈

G(θk)−
λk
ρk

〉2

+

>

〈
G(θ)− λk

ρk

〉2

+

+ c

Therefore, for all k ∈ K, k ≥ k0:

F (θk)−
ρk
2

[〈
G(θk)−

λk
ρk

〉2

+

]
< F (θ)− ρk

2

[〈
G(θ)− λk

ρk

〉2

+

]
− ρkc

2
+ F (θk)− F (θ)

Since limk∈K θk = θ̄, the continuity of F , and the boundedness of {εk}, there exists k1 ≥ k0 such
that, for k ∈ K k ≥ k1:

ρkc

2
− F (θk) + F (θ) > εk

Therefore,

F (θk)−
ρk
2

[〈
G(θk)−

λk
ρk

〉2

+

]
< F (θ)− ρk

2

[〈
G(θ)− λk

ρk

〉2

+

]
− εk

for k ∈ K, k ≥ k1. This contradicts Assumption E.1.

Theorem E.2 and its proof correspond to (Birgin & Martı́nez, 2014, Sec. 5.1). Theorem E.2 estab-
lishes that Alg. 1, under the iterates given in Assumption E.1, identifies minimizers of the infeasi-
bility, i.e.,

⟨G(θ)⟩+ :=
〈
Ex∼p

uθ
1
[c(x)]−B ≤ 0

〉
+
.

Consequently, if the original optimization problem is feasible, then every limit point of the sequence
produced by the algorithm is also feasible.

Next, we will see that, assuming that εk tends to zero, it is possible to prove that, in the feasible
case, the algorithm asymptotically finds a global maximizer of the problem in Eq. 5.
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Theorem E.3 (Optimality of Constrained Flow Optimization). Let {θk} ⊂ Rd be a sequence gen-
erated by Alg. 1 under Assumption E.1 and limk→∞ εk = 0. Let θ̄ ∈ Rm be a limit of the sequence
{θk}. Suppose that ⟨G(θ)⟩+ = 0, then θ̄ is a global maximizer of Eq. 5.

Proof. Let K ⊆ N be such that.

θk → θ̄ for k ∈ K and k →∞
By assumption, the problem is feasible, thus, by Theorem E.2, we have that θ̄ is feasible. Let θ ∈ Rm

be such that G(θ) ≤ 0. By the definition of the algorithm, we have that

F (θk)−
ρk
2

[〈
G(θk)−

λk
ρk

〉2

+

]
≥ F (θ)− ρk

2

[〈
G(θ)− λk

ρk

〉2

+

]
− εk (27)

for all k ∈ N, as well as by assumption G(θ) ≤ 0, we have that〈
G(θ)− λk

ρk

〉2

+

≤
(
λk
ρk

)2

. (28)

We again consider the two cases: ρk →∞ and {ρk} bounded.

In the first case, we assume ρk →∞. By Eq. 27 and Eq. 28, we have

F (θk) ≥ F (θk)−
ρk
2

[〈
G(θk)−

λk
ρk

〉2

+

]
≥ F (θ)− (λk)

2

2ρk
− εk.

Taking limits for k ∈ K, and using that θk → θ̄, we have that limk∈K(λk)
2/ρk = 0 and

limk∈K εk = 0, by the continuity of F and the convergence of θk, we get

F (θ̄) ≥ F (θ).
Since θ is an arbitrary feasible element of Rm, θ̄ is a global optimizer.

For the second case, we assume {ρk} is bounded, there exists k0 ∈ N such that ρk = ρk0
for all

k ≥ k0. Therefore, by Assumption E.1, Eq. 27 holds for all k ≥ k0, and Eq. 28 holds with ρ = ρk0
.

Thus,

F (θk)−
ρk0

2

[〈
G(θk)−

λk
ρk0

〉2

+

]
≥ F (θ)− (λk)

2

2ρk0

− εk.

for all k ≥ k0. Let K1 ⊆ N and λ∗ ∈ R≤0 be such that: limk∈K1 λk = λ∗. By the feasibility of θ̄,
taking limits in the inequality above for k ∈ K1, we get

F (θ̄)− ρk0

2

[〈
G(θ̄)− λ∗

ρk0

〉2

+

]
≥ F (θ)− (λ∗)2

2ρk0

− εk. (29)

Now, if G(θ̄) = 0, since λ∗/ρk0 ≥ 0, we have that〈
G(θ̄)− λ∗

ρk0

〉2

+

=

(
λ∗

ρk0

)2

Therefore, by Eq. 29,

F (θ̄)− ρk0

2

[〈
G(θ̄)− λ∗

ρk0

〉2

+

]
≥ F (θ)− (λ∗)2

2ρk0

. (30)

But, by Eq. 11, limk→∞ min{G(θk),−λ∗/ρk0} = 0. Therefore, if G(θ̄) < 0, we necessarily have
that λ∗ = 0. Therefore, Eq. 30 implies that F (θ̄) ≥ F (θ). Since θ is an arbitrary feasible element
of Rm, θ̄ is a global optimizer.

We want to make two remarks about Theorem E.3: first, as mentioned in Sec. 5, having access to
such a solver is difficult and, in practice, rarely the case. Secondly, we refer the reader to (Birgin &
Martı́nez, 2014, Sec. 5.2) for a discussion about the sets K and K1, how they are connected to the
convexity of F and G, and the corresponding theorem and proof.
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