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Abstract

Machine learning is a vital part of many real-world systems, but concerns remain
about the lack of interpretability, explainability and robustness of black-box Al
systems. Concept Bottleneck Models (CBM) address some of these challenges by
learning interpretable concepts from high-dimensional data, e.g. images, which
are used to predict labels. An important issue in CBMs are spurious correlations
between concepts, which effectively lead to learning “wrong” concepts. Current
mitigating strategies have strong assumptions, e.g., they assume that the concepts
are statistically independent of each other, or require substantial interaction in
terms of both interventions and labels provided by annotators. In this paper, we
describe a framework that provides theoretical guarantees on the correctness of
the learned concepts and on the number of required labels, without requiring any
interventions. Our framework leverages causal representation learning (CRL)
methods to learn latent causal variables from high-dimensional observations in
a unsupervised way, and then learns to align these variables with interpretable
concepts with few concept labels. We propose a linear and a non-parametric
estimator for this mapping, providing a finite-sample high probability result in the
linear case and an asymptotic consistency result for the non-parametric estimator.
We evaluate our framework in synthetic and image benchmarks, showing that the
learned concepts have less impurities and are often more accurate than other CBMs,
even in settings with strong correlations between concepts.

1 Introduction

Machine learning is a vital part of many real-world systems, but concerns remain about the lack
of interpretability, robustness and safety of current systems [9]. These issues might be exacerbated
by the lack of guarantees in explaining the behavior of Al systems in terms of interpretable, high-
level concepts. The field of interpretable machine learning and explainable Al has developed many
techniques to interpret models and explain their predictions [44], either by extracting known concepts
from the internals of black-box models [25, 15, 16, 36], or by building the explicit use of concepts
into the internals of these systems, e.g. as in concept bottleneck models (CBM) [28, 21, 39, 57].
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Figure 1: Left: An overview of our framework: we learn the alignment function « that maps causal
representations M; learned on cheap unlabelled data by a causal representation learning (CRL)
encoder, to interpretable concepts C'; using only few concept labels. As in standard CBMs, these
concepts are used in a downstream task like regression or classification of Y. Right: Data generating
process, where GG are the latent causal variables, X is an observation, M are the representations
learned by a model g, C' are the interpretable concepts and Y is the final label.

An advantage of CBMs is that they can in many cases provide similar accuracy in terms of prediction
compared to black-box methods, while also ensuring interpretability by construction [28, 21, 57],
as opposed to post-hoc methods [8]. Users may also interact with the models by verifying and, if
necessary, correcting the detected concepts at test time [28]. However, existing methods suffer from
two important limitations. First, spurious correlations in the training data may lead to learned concepts
that do not capture the intended semantics of the concept [15, 41], or encode more information than
intended [38, 58], even with concept-level supervision. Recent works propose mitigation strategies,
but implicitly assume that the concepts are statistically independent [39, 50] or require interventions
on the data generating process with labels [40]. Secondly, in addition to labels required for the
learning task at hand, CBMs require many expensive concept labels that may not always be available.
Attempts at working around this issue have so far focused on obtaining concept labels from additional
sources like GPT-3 [45] or using multi-model information [54].

In this paper, we propose a framework that provides theoretical guarantees on the correctness of
the learned concepts and on the number of required labels without requiring any interventions. We
assume that the concepts that we want to learn correspond to latent variables in a causal system
and allow arbitrary dependences between them. As illustrated in Fig. | (left), we propose a two-
step pipeline: (i) leverage out-of-the-box causal representation learning (CRL) methods to learn
provably disentangled representations of concepts M even in case of spurious correlations; (ii) learn
an alignment map « between these representations and the interpretable concepts C' with theoretical
guarantees and as few concept labels as possible. In our setting, the map « consists of a permutation
and element-wise transformations. Unlike standard CBMs, our pipeline only uses concept labels in
the second stage to disambiguate the relation between the representations learned by CRL and the
concepts. This requires much fewer concept labels, addressing the second limitation for CBMs.

We introduce two principled estimators to learn « based on variants of the group lasso [56] and a
weighted matching procedure. The first estimator is based on a linear model with an optional feature
map, and comes with a high probability finite-sample result on its correctness (Thm. 4.2). This
result provides explicit guidance for tuning the regularization hyperparameter, and shows how the
required number of concept labels scales with problem parameters like the number of concepts and
the dimension of the feature map. Our second estimator is based on a kernelized procedure, allowing
for more flexibility, but comes only with asymptotic guarantees (Thm. 5.2).

We evaluate our framework in synthetic and image benchmarks with both real-valued and binary
concepts. The experiments show that the learned concepts have less impurities, measured in terms
of OIS and NIS [58], and are often more accurate than other CBMs. The experimental results
additionally indicate that our estimator performs well beyond the assumptions of our theorems.
For example, our estimators are able to find the correct permutation, even in settings with strong
correlations between the concepts.



2 Related Work

Extracting high-level concepts from the inner workings of machine learning models has gained
traction over the last years [3, 14, 42]. These concepts can be used to create interpretable explanations.
In concept bottleneck models, the concepts are hard-coded into the structure of the model [28, 39,
21, 57]. This approach has been quite successful, with multiple variants, e.g. probabilistic CBMs
[26] or energy-based CBMs [53]. One drawback of CBMs is that the learned concepts may not
correctly capture the intended semantics [41] and that their representations can encode impurities,
e.g. more information than intended, [38, 58]. Havasi et al. [17] address this problem by allowing
a more expressive autoregressive concept predictor that can take advantage of the correlations
between concepts. On the other hand, the issue is exacerbated when there are spurious correlations
among concepts in the training data. In this case, Marconato et al. [39] encourage disentangled
representations of the concepts by adding a regularization term in the concept predictor. Similarly,
Sheth and Kahou [50] introduce a concept orthogonal loss that encourages separation between concept
representations. Both approaches implicitly assume the concepts to be statistically independent,
which means that they can fail to learn the correct concepts in settings in which there are dependences.

We instead propose to leverage causal representation learning (CRL) [49] as the first step of our
pipeline. CRL aims at recovering potentially dependent latent variables from observations. Identifying
these latent variables is often only possible up to a permutation and element-wise transformation.
Many CRL methods exist with different assumptions on the available data, e.g. the availability of
interventional, counterfactual or temporal data, or parametric assumptions about the underlying
system and observations, e.g., [20, 24, 51, 31, 33, 2, 30, 55] and many others. Most methods focus
on the infinite sample setting, with the exception of [1], which provides sample complexity results
for the CRL task with interventions. Our framework is agnostic to the CRL method used and focuses
on the supervised learning task of aligning concepts efficiently to the causal representations.

Recent work relates identifiable representation learning, including causal representation learning, with
concept-based models, but in an unsupervised concept discovery setting, as opposed to our supervised
setting. Leemann et al. [32] propose an identifiable concept discovery method that uses classic meth-
ods like PCA and ICA for independent concepts, but also introduces novel disentanglement methods
for dependent concepts, based on disjoint mechanisms or independent mechanisms. Rajendran et al.
[46] argue that the identifiability of CRL methods often requires too many assumptions, e.g. access
to interventional data, and hence relaxes the identifiability of concepts by defining them as affine
subspaces of the latent space of the causal variables. Given a set of concept conditional datasets, they
prove they can recover these concepts up to linear transformations.

The most closely related work is by Marconato et al. [40], who describe theoretical framework that
shows how that disentangled representations can be used in CBMs to avoid concept leakage. Their
theoretical framework suggests that to align learned embeddings and concepts one might require
interventions on the data generating process and labels. Instead, we do not require interventions.
Moreover, we provide a theoretical analysis of the alignment function, proving guarantees about error
bounds on the learned concepts or the required number of labels.

3 Framework and Main Definitions

Our setting takes inspiration from causal representation learning (CRL) [49] and the connections
between CRL and CBMs described by Marconato et al. [39, 40]. We assume that the interpretable
concepts are related to causal variables in an unknown data generating process.

As illustrated in Fig. | (right), we assume a causal system with latent causal variables G =
(Gy,...,Gq) € G C R, which can potentially have causal relations between them. The ob-
servation is denoted by X € X C RP and is generated by an unobserved invertible mixing function
f: G — X as X = f(G). The goal of CRL is to recover the causal variables by learning a function
gy X — R? that approximates f~!. This requires specific assumptions and we cannot identify the
ground-truth variables exactly, but only up to an equivalence class. A common notion of identifiability
is up to a permutation, scaling and translation [19, 24, 31], which means that the learned representa-
tion satisfies gy, (X) = PAG + b for a permutation matrix P, an invertible diagonal matrix A and a



vector b. A more general notion is identifiability up to permutation and element-wise transformations
in which, instead of a diagonal matrix, we consider a diffeomorphism, which we formalize as:

Definition 3.1. Let 7: {1,...,d} — {1,...,d} be a permutation of the variable indices. Let
P € R%*4 be the permutation matrix associated with 7, meaning that Pir;y = 1 and 0 otherwise,

and T : R? — R? a map. A representation Z identifies the ground-truth causal variables up to a
permutation and element-wise transformation if:

-
PT(Z) = [Te(1)(Zet)s - - > Tn(ay(Znay)] =[G1,-..Ga] =G

There are many more notions of identifiability in the literature, e.g., in some cases the causal variables
can be multidimensional [33] or identified up to a block, i.e. a group of causal variables [2, 51, 55, 30].
In the main paper we focus mostly on the single-dimensional case in which we identify each individual
variable, but we provide extensions to the multidimensional case in App.

We denote the learned causal variables by M = (Mj, ..., My) € RZ. For simplicity of exposition, in
the main paper we will assume that the interpretable concepts C' = (C4,...,Cy) " € R? correspond
to the ground-truth causal variables G, . . . , G4 up to permutation and element-wise transformations;
in other words, gy shown in Fig. | (right) also identifies ground-truth causal variables up to the
same identifiability class. In App. A and Sec. 5 we extend this to allow each of the concepts to
be a transformation of a group of causal variables. Our goal is to learn the alignment map « that
transforms the learned representations M to the concepts C efficiently and accurately.

Note that in our theoretical results we assume that both concepts and causal variables are continuous-
valued. Our motivation for this choice is technical: most current CRL methods assume that the
underlying causal variables are continuous-valued, and only very few methods identify discrete-
valued causal variables under very specific assumptions, €.g., in cases where different causal variables
always affect different parts of an observation [29]. Since in concept-based models it is common to
work with binary concepts, we also test these cases in our experiments and show that our estimators
still provide good results, but we leave the extension of the theoretical results to discrete causal
variables and concepts for future work.

For our theoretical analysis, we assume that we are given a function g, from a CRL method that
correctly identifies the ground-truth causal variables up to some identifiability class and that the
interpretable concepts correctly identify the causal variables up to the same class.

Assumption 3.2. Let M = g, (X) be the causal representations learned by a pretrained CRL method
and let C' = gy (X)) be the interpretable concepts annotated from the observation X. We assume that
M and C identify G up to the same identifiability class. This implies that

PT(M) = [Trty(My1))s -, Toiay(Maa)] | = [Ch,...Ca)" =C. )

While this assumption is needed for our theoretical analysis, we will show that empirically our
framework works even when the CRL methods do not fully identify the causal variables. Finding
the alignment function « in Fig. | reduces to learning the permutation 7 and a separate regression
per concept C; to learn the transformation from learned causal representation M ;) to interpretable
concept C;. The main difficulty here is identifying 7 from observational data, i.e. without performing
interventions, and with few samples. In the following we introduce two estimators for this setting,
one assuming the element-wise transformation is linear, e.g. as is the case in some CRL methods like
[20, 24], for which we will be able to provide finite sample results based on a tunable parameters,
and a second, non-parametric method based on kernel methods that allows for arbitrary invertible
element-wise transformations, and can hence be applied to most CRL methods. After recovering the
interpretable concepts, we can use them as in CBMs as inputs to a label predictor for Y.

4 Linear Regression Alignment Learning with the Group Lasso

In this section, we describe a linear regression approach based on the Group Lasso to learn the
permutation 7 and transformation 7" in (1). We will prove that this method simultaneously provides
accurate regression estimates for 7' and identifies 7 correctly with high probability. To simplify the
exposition, we focus here on the case of scalar variables. Proofs are in App. A, which also contains
discussion of the assumptions, a pseudo-code description in Alg. | and a generalization to block
variables. The proof combines techniques from high-dimensional statistics [10, 35].



Method. Linear regression can describe non-linear relations by transforming covariates using a
feature map  : R — RP. In this section, we assume that 7; can be expressed as a linear function of
(M ;). The choice of  therefore gives precise control to trade off interpretability with expressive
power for T;. For instance, in the simplest and most easily interpretable case, ¢ can be the identity
function, so that p = 1 and C; and M ;) are related by scaling. In more challenging settings, richer
functional relations may be needed, e.g. splines or random Fourier features. We apply the same

feature map to all machine variables in M, for which we write (M) = [p(M)T, ..., o(My)"]T.
Then each C; is modeled as a linear function of the transformed variables:
Ci = p(M)B] + &, 2

where 37 € RP? is an unknown parameter vector, and &; ~ AN(0,02) is Gaussian noise. By
assumption, C; only depends on M ;) and not on any of the other variables, so 3 is sparse: only
the coefficients for (M (;)) are non-zero. To express this formally, let G; = {(j — 1)p, ..., jp} be
the indices that belong to variable M; and, for any 8 € RP4, define 87 = (B | k € G}) to be the

corresponding coefficients. Then (5})? is non-zero only for j = 7(3).

We assume we are given a data set D = {(CY), M(9)}7_, that contains n independent samples of
corresponding pairs C'(¥) = (Cy), e C{ge)) and M) = (Ml(e), e Mc(le)). We stack the C'(*) into
amatrix C € R™*? and the feature vectors (M () into & € R™*P?, This leads to the relation

Ci =06} + ey,

where C; is the i-th column of C and the noise vector &; consists of n independently drawn N(0, o2)
variables. To estimate 3}, we use the Group Lasso with parameter A > 0:

d
21 = 8]l 3)
j=1

The (2, 1)-mix norm ||3||2,1 in (3) encourages group-wise sparsity. It applies the Euclidean norm

[|37]| to each group j separately, and sums the results over groups, as defined below. We also define
the (2, 00)-mix norm as || 82,00 = max;=1,...q ||3?||

Bi = argmin 2[|C; — ®B|> + Ay/Bl|B.1, 18]
BERP

Theoretical Analysis. We denote the full covariance matrix by S = %@TCIX For the group of p
columns of @ that correspond to ¢(M;) we write &; = ®¢,. Also let fljj/ = %@j @’ denote the

covariance matrix between groups j and j’, and abbreviate ) ;= 5 ;- Then, w.l.o.g., we can assume
that the data within each group have been centered and decorrelated:

117¢; =0 and S, =1 forall j =1,...,d. )
This can be achieved by pre-processing: subtract the empirical mean of ®; and multiply it from
the right by the inverse square root of the empirical covariance matrix. Preprocessing is allowed in
our theoretical results, because they apply to the fixed design setting, so probabilities refer to the
randomness in C conditional on already having observed ®. If ¢(M;) and ¢ (M) are completely
correlated, then 37 is not uniquely identifiable, no matter how much data we have. To rule out this
possibility, we make the following assumption, which limits the amount of correlation. This is a
standard assumption when analyzing the Group Lasso [35, 34].

Assumption 4.1. There exists a > 1 s.t. for all j # 5/,
max |(X;;)

1
#] < —, max
te{l,...,p} 14a’ t,re{1,...,p}

ldap

(Zj5)er| <

Theorem 4.2. Suppose the data have been pre-processed to satisfy (4) and let Assump. (4.1) hold.
Take any 6 € (0,1) and set A > 4o, where

20

Ao =

8log(d/d)) = 8log(d/d)
v\t b p

and set ¢ = (1 + %) Then, any solution BZ of the Group Lasso objective (3) satisfies

1B — B ll2.00 < AP (5)




with probability at least 1 — 3. If, in addition, ||(8;)™ || > 2c\\/p, then (5) implies that J; =

argmax;_; g ||Bf || estimates 7 (i) correctly.

Theorem gives us an explicit relation between the parameters n, p, d, § of the learning task, the
tuning of the hyperparameter A, and the estimation errors for 8} and 7(4). For example, if we set
0= 71w A =4)o and let n — oo, then A — 0 and J; estimates the correct index 7 (¢) with probability

tending to 1. So, regardless of the true parameter magnitude ||(3)™ (||, the estimator is consistent
given a sufficient amount of data. Another way to express this is to ask about sample complexity:
which sample size n do we need to reach accuracy £ > 0? Setting A = 4\ and solving for n large
enough that c)\\/fa < FE, we see that

- 64c?0? (p + /8plog(d/d)) + 8log(d/9))
> [

is sufficient. For estimating the permutation 7(i) correctly, the required accuracy is E <
[1(B2)™@] /2, so the larger the true parameters, the easier this task becomes.

n

The estimation is performed separately for each concept C;, and, if J; is correct for all i simultane-

ously, we can construct a valid estimate of the permutation by 7(¢) = .J;. However, this estimate is
not robust to estimation errors and may even produce functions 7 that are not permutations if some

J; are incorrect. The actual estimator of the permutation, 7, therefore optimizes a weighted matching

problem, which leads to the same estimate as 7 if the J; together produce a valid permutation, but
forces 7 to be a valid permutation even if they do not:

d
7= argmaxz ||BZF(Z)|| (6)
(S L ——

Here, II is the set of all permutations. This assignment can be solved without cycling through all
permutations, with cubic runtime in the dimension d. By a union bound over i, it follows from
Theorem that 7 estimates the true permutation 7 correctly with high probability:

Corollary 4.3. Assume the same setting as Theorem 4.2 such that for eachi = 1, ... . d, ||(8;)™ @] >
2c\\/p and consider the estimator T as defined in (6). Then T = m with probability at least 1 — 6.

5 Kernelized Alignment Learning

The previous section describes how to learn functions with finite-dimensional representations. We now
extend the estimator to use general functions from a reproducing kernel Hilbert space (RKHS) [18].
This may be interpreted as a (typically infinite-dimensional) feature map ¢ that maps to the RKHS.
However, using a representer theorem, all computations can be performed on finite-dimensional
representations. We summarize the method in Alg. 2 in Appendix

Method. Define again M = (M, ..., M), where we now allow each machine variable M; to
take values in an abstract space Z;. Let Z = Z; x ... Z;. We then generalize (2) to

where 37 € H is a function from Z to R, and ; ~ A(0,0?). The space of possible functions H
will be an RKHS containing functions of the form S(M) = 2?21 B7(M;), where each (37 is an
element of an RKHS H; that captures the effect of variable M; on C;. The assumption that Cj
depends only on M ;) means that 3} (M) = (Br)™@ (M (iy). Each H; can be freely chosen, and is
typically specified indirectly by the choice of a positive definite kernel k; : Z; x Z; — R [18]. This
kernel defines a measure of similarity between inputs: x;(M;, M}) = {p;(M;), ¢; (M;))H ., where
; + Z; — H; is the corresponding feature map. See p. 34 for examples. ’

Given data D = {(C), M)}7_ let M € Z" denote the matrix with the machine variables

(M) stacked as rows. If we further define 3(M) = [3(M™M),..., B(M)]T, then the Group
Lasso objective (3) generalizes to

d
B = argr;in%llci — B+ A 118 [, )
€

Jj=1



where || 37 ||, is the norm associated with ;. To optimize the objective in (7), we need a finite
dimensional objective to give to a Group Lasso solver. We provide a version of the Representer
Theorem showing that the solution of (7) lives in a subspace of H that can be described by finite-

dimensional parameters 637 .0 eR™
Theorem S5.1. Let ¢4, ..., pq be the feature maps associated with HL’ ooy Ha T}Azefn there exist
SO éﬁl € R™ such that the optimization problem in (7) has solution 3; with each 3} of the form

G-
Bl =" 0, (M@
/=1

Substitution of this form into (7) gives that ¢}, ..., é¢ will be the minimizers of the following
finite-dimensional optimization problem:
d d
. 1 o 2 P
TR oIS o
j= j=

where K; € R™ " with (), = r;(M.", M"), and ||/ ||, = /¢ T K;ei.
This procedure is performed for ¢ = 1,. .. d. The permutation is estimated as in the linear case:

d
N (i)
7 = arg max E [ | Foa
™ i=1

Theoretical Analysis. Using a result by Bach [4], we prove that our estimator for 7 is consistent
under suitable conditions, discussed in App. B. This holds for random design, so for the joint
randomness of D.

Theorem 5.2. Assume (A-D) in App. . Then, for any sequence of regularization parameters
An such that A, — 0 and \/n\, — +00 when n — oo, the estimated permutation T converges in
probability to .

Implementation. To use a standard Group Lasso solver we need to reparametrize the optimization
problem in (%), because of the scaled norms || - || ;. We can do this with a Cholesky decomposition:

Lemma 5.3. Foreach j =1,...,dlet L; be the Cholesky decomposition of the Gramm matrix K,
then ¢ = (LJT)_I% if the parameters 4}, . .., 4% are minimizers of
d
i 11 — A~ |2 J
oomin wlG ggLﬂH + Al 2,1 ©)

6 Experiments

We perform two types of experiments on four different datasets to evaluate our estimators. In the first
type of experiment, we evaluate how well the estimator can learn the permutations and recover the
original concepts, which can be either continuous or binary. In the second type of experiment we
assess the usefulness of our estimator to perform a downstream classification task, where the target
label is binary. For this task, concepts are binarized by setting the concept to 0, if the value is lower
than the midpoint of the range of that concept, and 1 otherwise. The label is randomly generated by
selecting a sub-selection of concepts and checking if some of those columns are 1. This creates a
random classification task for each seed. While the theoretical guarantees for our estimator do not
translate directly to a setting where the concepts are binary, we can use the logistic Group Lasso [43]
and we see empirically that this variant also performs well.

The first dataset, called “Toy dataset”, is synthetic. Here the concepts are generated using either a
linear combination of features (which we call the wellspecified case) or diffeomorphisms (which we
call the misspecified case) of the representations. The concepts are then permuted. We evaluate on
datasets common in CRL: Action and Temporal Sparsity [31] and Temporal Causal3Dident [33]. We
train several CRL methods as a first step of our pipeline: DMS-VAE [31], CITRIS-VAE [33], iVAE
[24] and TCVAE [11]. In the downstream task experiments, we compare to CBM [28], CEM [57]
and HardCBM [17]. Details are in App.
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Figure 2: Permutation error rate for spline features. From top left to bottom right we vary: (i) the
regularization parameter, (ii) the number of dimensions, (iii) the correlation of the variables and
(iv) the number of labels. The first plot of each pair shows the wellspecified and the second the
misspecified case. We average over 10 seeds and shade the 25-75th percentile.

Performance Metrics. To assess our estimator in terms of concept reconstruction capabilities we

report the mean error in the learned permutation of the variables: MPE = % Ele {7 (i) # w(i)}.
In the experiments where we test its capabilities for downstream tasks such as classification, we
report the accuracy on the final label and the Oracle Impurity Score (OIS) [58]. The OIS measures
how much information of each concept is contained in other concepts. For concept interpretability,
it is desirable that the OIS should be as small as possible. We report an extended discussion of our
results in Appendix E, with additional metrics, e.g. the NIS [57], and computation times.

Toy Dataset. The synthetic data experiments consist of 4 settings, each using a different set of
features to perform the regression: linear, splines, random Fourier features (RFF) and kernels. The M
variables are distributed according to N'(0, (1 — p)Igxq + pl), where 1 denotes a matrix filled with
only 1’s. The p € (0, 1) parameter controls the amount of correlation between the marginal variables.
We sample n data points, on which we perform a 80/20 train/test data split. In the wellspecified case,
we generate the M variables using the features from that setting. For each dimension j =1, ...,d,
we draw a random weight vector 35 € RP, such that || 37| € [16Ag, 32)¢] uniformly. A permutation
m: {1l,...,d} — {1,...,d} is sampled uniformly from all possible permutations. Finally, with
independent €; ~ N (0, 02) noise variables, we get C; = o(M ;)" B iy T €i- In the misspecified
case, the M variables are still sampled the same as before, but the C' variables are generated by
sampling a diffeomorphism for each dimension. These outcomes are then permuted using a random
permutation again. We cover a large range of values of p,d, n and \ as shown in App.

Action/Temporal Sparsity Datasets. We use the two synthetic datasets from [31] that represent
the action and temporal sparsity settings in a time series. These settings have 10 causal variables
Z1,...,210 € [—2,2] with a causal structure. The mixing function is an invertible neural network
with Gaussian random weights, after which the columns in the linear layers are orthogonalized to
ensure injectivity. To recover the ground-truth permutation, we follow Lachapelle et al. [31] and use
the test set to calculate a permutation based on Pearson correlations.

Temporal Causal3DIdent. We evaluate our methods on an image benchmark, Temporal-
Causal3DIdent [33]. The dataset consists of images of 3D objects, rendered in different positions,
rotation and lighting. The causal variables are the position (z, v, z) € [—2,2]?, the object rotation
with two dimensions [«, 8] € [0, 27)?, the hue, the background and spotlight in [0, 27). The object



Table 1: Label Accuracy and the OIS-metric on our downstream task. The (n) indicates the number
of train and test points used in each column. We averaged the results over 10 seeds and report the
mean and standard deviation. The best result for each n is written in bold.

Label Acc. 1 (n) OIS | (n)

Model Method 20 100 1000 10000 20 100 1000 10000

Action Sparsity Dataset
Linear 0.77 +0.03 0.81 £ 0.01 0.83 +0.01 0.84 +0.01 0.63 £ 0.01 0.40 £ 0.00 0.15 £ 0.00 0.12 + 0.00
DMS-VAE  Spline 0.72 +0.03 0.83 +0.02 0.85 £ 0.01 0.86 +0.01 0.63 £ 0.01 0.40 & 0.00 0.15 & 0.00 0.12 + 0.00
RFF  0.77 £0.02 0.82 +0.02 0.84 £0.01 0.85 +0.01 0.64 £0.01 0.39 £ 0.00 0.14 +0.00 0.12 £ 0.00

Linear 0.73 £0.03 0.79 £0.02 0.81 £0.01 0.83 £0.01 0.63 &+ 0.01 0.40 £ 0.00 0.29 £ 0.00 0.26 + 0.00

iVAE Spline  0.69 £ 0.02 0.76 +0.02 0.81 £0.01 0.83 £0.01 0.63 £0.01 0.40 £ 0.00 0.28 +0.00 0.26 =+ 0.00

RFF  0.59 £0.04 0.70 +0.02 0.78 £0.01 0.81 +0.01 0.64 £0.01 0.39 £ 0.00 0.28 +0.00 0.26 =+ 0.00
CBM [28] 0.60 £0.03 0.60 £+ 0.02 0.73 £0.01 0.88 £0.01 0.92 +£0.01 0.43 £0.01 0.11 +0.00 0.07 £ 0.00
CEM [57] 0.66 £0.02 0.69 £ 0.03 0.82 £0.01 0.88 £0.01 0.90 +0.03 0.47 £0.01 0.40 +0.01 0.57 £ 0.01
HardCBM [17] 0.56 £0.03 0.61 +0.01 0.68 £0.01 0.89 £0.00 0.92 +0.02 0.46 £+ 0.01 0.12 +0.00 0.06 £ 0.00

Temporal Causal3DIdent Dataset
Linear 0.74 4 0.06 0.75 £0.06 0.80 & 0.04 0.81 +0.04 0.69 £ 0.02 0.44 +0.01 0.19 £0.00 0.16 £ 0.00
CITRISVAE Spline 0.74 +0.06 0.80 + 0.04 0.82 +0.03 0.83 +0.03 0.69 £ 0.02 0.44 £ 0.01 0.13 & 0.00 0.09 =+ 0.00
RFF 0.70 +0.06 0.76 4 0.05 0.79 £ 0.04 0.81 £0.04 0.65 +0.01 0.43 +0.00 0.16 & 0.01 0.13 £ 0.01

Linear 0.74 £ 0.06 0.76 £ 0.05 0.78 £ 0.05 0.80 +0.04 0.69 £ 0.02 0.44 +0.01 0.17 £0.00 0.14 £ 0.00

iVAE Spline 0.73 £0.06 0.78 +0.04 0.79 £0.04 0.81 +£0.04 0.69 £0.02 0.43 £+ 0.04 0.17 +0.00 0.13 £ 0.00

RFF  0.69 £0.06 0.75 +0.05 0.78 £ 0.04 0.80 +0.04 0.65 +0.01 0.42 £ 0.02 0.16 +0.00 0.13 =+ 0.00
CBM [28] 0.57 £0.02 0.53 £0.03 0.68 £0.04 0.78 £0.05 1.00 £0.03 0.48 £0.02 0.25 +0.00 0.18 £ 0.00
CEM [57] 0.64 £0.04 0.67 £0.03 0.72 £0.05 0.78 £0.05 0.97 £0.05 0.51 £0.02 0.36 &+ 0.01 0.49 £ 0.01
HardCBM [17] 0.57 £0.05 0.53 £0.02 0.63 £0.03 0.77 £0.05 0.96 +0.03 0.47 £0.02 0.24 +0.00 0.16 £ 0.00

shape is a categorical variable. We use a pretrained CITRIS-VAE encoder, which outputs a 32 dimen-
sional latent space and a grouping of which dimensions relate to which causal variables. Although
CITRIS-VAE provides the correct permutation of the groups, we ignore it and perform a random
permutation on the variables. We train an MLP for each of the 32 dimensions that predicts all causal
variables. Based on the R? scores of these regressions, we learn the group assignments.

Results. We show a set of representative results in Fig. 2 for the Toy Dataset, where we compare
as baselines to the permutations one can learn with Pearson or Spearman correlation, and a linear
sum assignment. Our estimator is able to reconstruct the correct permutation perfectly with only a
small number of features. It performs well for a broad range of regularization parameters. In the
wellspecified case we calculate the \y parameter and see that the estimator performs well around
this value. The dimension dependence is almost negligible, which was predicted by the dimension
appearing only in the log factor in Thm. 4.2. The estimator works well with few data points and
even better than theory predicts, as it has a low error even with high correlation, as shown in Fig.
Spearman correlation also performs well in some simple settings, which suggests that the relation is
indeed monotonic in these settings. On the other hand, there are no theoretical guarantees for this
baseline and it cannot be used for multi-dimensional representations, for which our estimator still
provides a principled approach. We report results with similar trends for RFF and the kernelized
approach in App. E.1. To test the robustness of our estimation to the case in which CRL methods do
not provide a complete, but only partial disentanglement, we also show an ablation where we provide
mixtures of pairs of causal variables as input to our algorithm, showing that it still recovers the correct
permutation for each pair. Similar trends apply also to the image dataset, as reported in App.

A selection of results for the downstream classification task for the action sparsity dataset and
temporal Causal3DIdent dataset are in Tab. |. Our estimator consistently scores high in terms of
Label Acc. and OIS, while requiring less labels. For image data, our estimator beats the baseline for
every number of datapoints. In App. we report the complete results, which show that the baselines
perform well with regards to the mean concept accuracy in the Action/Temporal sparsity datasets,
but our estimator still performs better with the smallest number of labels and with less computation
power to calculate. Our estimators consistently achieve a perfect NIS [58] score, which measures the
impurities distributed across the concept representations.

Finally, in Fig. 3 we show the execution times of our estimator compared to several baseline
methods. We report the times in both the continuous experiments and binary classification experiments
conducted with the Temporal Causal3DIdent dataset. The baseline in the continuous setting is given
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Figure 3: Execution times for our estimators and several baseline models on the Temporal
Causal3DIdent dataset. Left: The causal variables are continuous-valued. The baseline is given by
training several neural networks and the matching is based on the R2-scores. We report the time
needed to estimate the matching and train the neural networks. Right: The causal variables are
binarized and a downstream classification task is added. We report the time needed to estimate the
matching and learn the classification task or the time needed to train the concept-based models.

by training a neural network for each causal variable. Each neural network learns how to predict the
causal variable from the learned encodings, and the R2-scores are used to construct a matching. The
time that is reported is the time that is needed to estimate the matching and the training, if needed.
In the binary classification experiments, the baselines are given by the CBM, CEM, and HardCBM
models. The time that is reported is the time needed to either estimate the matching and learn the
classification or to train one of the concept-based models. We see that all versions of our estimator
require significantly less computation time than the baselines.

7 Conclusions and Discussion

We propose a framework that provides theoretical guarantees on learning of concepts by leveraging
causal representation learning (CRL). We provide two estimators that are able to learn the alignment
between the learned representations and the concepts: a linear estimator with finite sample guarantees
and a non-parametric kernelized estimator with asymptotic guarantees. We test our methods on CRL
benchmarks and show they perform even better than the theory predicted.

While our work proposes a promising research direction, several limitations remain. For example, we
assume that human concepts coincide with the causal variables recovered by the CRL methods, which
limits the framework’s applicability. While our framework can also consider settings in which only
blocks of causal variables are identifiable, as opposed to each individual variable, then the alignment
can be only learned between these blocks and the corresponding blocks of concepts. To generalize our
framework to different levels of coarse-grained human concepts, it would be interesting to incorporate
ideas from causal abstraction [47, 13, 7] to extend this analysis to cases in which human concepts
are abstractions of the underlying causal system. Moreover, while in the current framework we focus
on CRL methods in order to get theoretical guarantees on the identifiability of latent variables from
high-dimensional observations, we do not use any causal semantics, so in principle our framework
could be applied also to other types of methods that provide similar theoretical guarantees.

A theoretical limitation of our analysis is the assumption of low correlation between the learned
representations. In our experiments we find that our methods still work with significantly stronger
correlations than assumed in our theoretical results, so we believe there may be room here to
strengthen the theory. This might also allow us to relax our assumption that CRL methods achieve
perfect disentanglement of the causal variables, which is not realistic in many domains. Finally,
although we consider discrete concepts in our evaluation, we do not provide a theoretical analysis for
them, because current CRL methods cannot identify discrete variables, or can only do so in specific
settings [29]. A possible way to extend our theoretical results to this setting would be to consider
previous results for the Group Lasso for logistic regression [43].
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: | Yes]

Justification: All claims made in the abstract and introduction either have formal proofs or
empirical evidence.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: | Yes]|

Justification: The limitations of the theoretical claims are discussed by pointing out which
assumptions are realistic and which assumptions do not appear to be as important through
empirical evidence. The limitations of the empirical experiments in terms of how realistic
they are is also discussed.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
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* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Answer: | Yes]
Justification: Each theoretical result has a proof and its assumptions clearly stated
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
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* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

» Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: | Yes]

Justification: For all experiments, the settings, architectures and parameters are provided in
the appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: | Yes]

Justification: The code will be uploaded with the Supplemental Materials. The data is either
generated or publicly available and instructions to access it are provided.
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* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

 The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: | Yes]|
Justification: All the specific settings are provided in the appendix.
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* The authors should answer "Yes" if the results are accompanied by error bars, confi-
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* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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of Normality of errors is not verified.
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figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources
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puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: | Yes]

Justification: The compute hardware is reported for the experiments and timing indications
are given as well.
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Guidelines:
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being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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image generators, or scraped datasets)?

Answer: [NA]
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* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
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safety filters.
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should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: | Yes]

Justification: The creators of the code and datasets used in this paper are properly credited,
and the licenses will be reported in the appendix.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.
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 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
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* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
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Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: Aside from our framework and the estimator proposed in this paper, no new
assets are introduced.
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* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:
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* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The paper doesn’t involve any LLMs.
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* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.
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L.L.M) for what should or should not be described.
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A Proofs for Linear Regression Alignment Learning

In this section we provide proof details and the algorithm for Section 4. As discussed there, we
extend Theorem 4.2 to a more general result Theorem that allows for blocks of causal variables
corresponding to a single concept. To state the general result we will redefine our model and introduce
additional notation. The variables C; € R and M; € R¥5 now live in potentially different spaces.

Let C = (C1,...,Cq)T € R7and M = (M,...,My)T € R¥, where k = Y7 k; > d. Let
K; = {Zfl:l kq +0lb € {1,...,k;}} denote the subset of indices in M that correspond to the
block M;. The permutation that we want to recover is 7. Each dimension in the M variable can be

transformed through a separate feature map ¢, : R — RP? that can be different foreacht =1, ... k.
We will denote the total feature vector by

e1(Mh)
p(M) = :
or(My)

The grouped features will be denoted by p(M)? = (p:(M;) | t € K;). Define the average feature
setsize asp = ¢ Zle p¢. The model is described by

Ci = o(M)Bf +e5, BF €R g; ~ N(0,02).
For the actual regression task, we can define data matrices again. The matrix C will be defined as in

the main text and ® now becomes an n x kP matrix, in which all feature vectors (M (5)) are stacked.
With &; denoting n independently draw A/ (0, o) variables, this results in the relation

C, = (I)ﬁl* + &;.
The 3} again has a sparse structure, because only the parameters corresponding to ¢ (M )7 should
be non-zero. Let the indices of these parameters be denoted by G;. Alternatively, this G; is defined
through ¢(M)q, = ¢(M)’. Thus, in this setting we again have d groups all denoted by G;. To ease

notation we set again 3/ = ((8;); | t € G;). The definitions of the norm || - ||2,., and covariance
matrices, 350 = 1 p(M)G, ¢(M)g, = ®] ®;, are altered in accordance with these groups. As
the groups can now be of different size, we have to change the definition of the || - ||2,1-norm to take

the different group sizes into account,

18

d
21 =Y IIFIVP,
j=1

where p/ = Do ek, Pt The loss function that we want to optimize to estimate 3 has the same form
as before

~

d
Bi = argmin 1||C; — @8> + A||B]l2,1 = argn)}in Lic;—ep)* + /\Z 1871vpi.  (10)
P BERKP

BERFP j=1

Algorithm 1 Estimating the permutation using linear regression with Group Lasso regularization

1: Input: regularization parameter A > 0
2: Data: {(C), M)},

3: fori=1,...,ddo
4

B: + arg min [Ci — @8]1> + Av/pl|Bl2.1
BERP

5: end for

d
6: T < arg maxz ||§ZT(Z)H
mell o
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The optimality conditions for any solution, Ez—, for this convex optimization problem are given by

L@T(c, - ap,) = Mgﬁngj” if B/ #0, (11)
H@WQ—@@MQSAéﬁ if 5 = 0. (12)

To ensure that our results hold even in the case where n < pd, we introduce a standard assumption
on the data from the high-dimensional statistics literature. Intuitively, this assumption ensures that
the data is “variable enough” in the directions that matter.

Assumption A.1. The Restricted Eigen Value (RE(1)) is satisfied by the data matrix ® € R"**P
if there exists a & > 0 such that for all A € R¥”\ {0} and j = 1,...,d with 3_, AT /Pi <
3||A7||\/p7 it holds that

XN

Vil AT

This property is satisfied for any A € R¥? \ {0} if S = %CDT(I) has a positive minimal eigenvalue.

|> k.

Let Apin > 0 be the minimal eigenvalue of f], then
A2 = ATOTHA = nATSA > nApinAT A = nAma| Al
Now divide by n and take the square root on both sides. This gives us

DA d MmO~ Nonin s
T 2V Amnl Al = VA | S IATE 22 ST AT 2 25,
=1 =1

The second inequality follows from an application of Jensen’s inequality. Dividing both sides by
[|A7]| gives the desired result.

The matrix 3 is the empirical covariance matrix and will be positive definite almost surely whenever
n > kp and hence RE(1) will be satisfied if n > k.

Finally, define pmin = minj_; 4 p’ and pmax = max;—1,_q4p’. The following theorems and proofs
are adapted from Chapter 8 in Bithlmann and Van De Geer [10] and sections 3 and 5 in Lounici et al.
[35].

Theorem A.2. Assume that forall{ =1,...,n, 552) ~ N(0, 0?) independently, * > 0, the RE(1)
condition is satisfied with k > 0 and consider the Group Lasso estimator

Bi = argmin 1 C; — 8|2 + A||Bll2,1,
BERKD

where X > 4\ with

2 1 1
a2 |, [8los(d/s) | slog(d/s)
\/ﬁ Pmin Pmin
Then, for any 6 € (0, 1), with probability at least 1 — %,
~ ~ 24\2p7 (D)
L1Ci = @B+ AIB = B o < —5— (13)
IE@E =) <\Wp - forallj=1,....d (14)
—~ 24 \p™(®)
1B — 6% laa < T2 —. (15)

This theorem offers us a several things. Equation 13 gives us a bound on the true prediction error.
The last two equations, (14, 15), are needed to prove that we find accurate parameter values using
the Group Lasso approach. The fact that the last equation gives a bound in the (2, 1)-norm, allows us
to use a duality argument later on to provide a bound on the (2, co)-norm of the difference between
the learned and true parameter. Knowing that only one of the groups has to be non-zero combined
with this uniform bound enables us to conclude that the correct group has been identified in the proof
of Theorem
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Proof. First let us define for every j = 1,...,d the random events A; = {1[|(®e;)’| < %ﬁ}

and their intersection A = ﬂ?zl A;. Most importantly, we see from Lemma that this event has

probability at least 1 — g. We get the 1/d factor by using 5= % in Lemma and noticing that this

only adds a factor of 2 in the log terms. The first assertion (13) is true on the event A and follows
from the proof of Theorem 8.1 in [10] and noting that in our setting their oracle parameter is given by
our 37 and that fo = ®5;.

Moving on towards (14), by the optimality condition (I 1) and (12) we have foreach j = 1,...,d
NP
Lj@(c; - 83y < V2
Let us rewrite the expression in (14) into

I(S(B; — BN = L@ (@5 — @%))7].

Substituting ¢ = C; — €, into this expression gives
IS8 = B < 2I@T(®B; — C)) | + L@ &)

ngtk‘;ﬁ:m/ﬁ

Note that this inequality only holds on A.

The final assertion is a direct consequence of the first,

= = ~ 24\2p™(0)
MBi = B 21 < 3 12(Bi = BN + 1B = B¥ll2n < —5—
~ 24 \p™(®)
18: = Bill2p < —5—-
K
O
To state and prove the general version of Theorem 4.2 we also need to generalize Assumption
Assumption A.3. There exists some constant ¢ > 1 such that for any j # 5/, it holds that
S 1 Pmin
max i < — 16
1<t<min(p/ p7") &)l < 14 Prmax (16)
and
S 1 DPmin 1
max Yo | < — . 17
iz e o IS T Vpipl ()
The previous assumption is stronger than the RE(1 ) property, as shown by the following lemma:
Lemma A.4. Let Assumption be satisfied. Then RE(1) is satisfied with k = /1 — 1/a.
Proof. This is Lemma B.3 in [35]. O

The following theorem is a modification of Theorem 5.1 by Lounici et al. [35], where some adaptations
are made to adjust the result to our setting.

Theorem A.5. Let Assumption (A.3) hold, for { = 1,...,d, ¢ ~ N(0,0?) independently, c* > 0,
and with 6 € (0, 1) set A > 4o, where

2 8log(d/d 8log(d/d
jo= 20 |, [los(d/o) | Slog(d/e).
\/ﬁ Pmin Pmin
Furthermore, set c = (1 + %) Then, for any 6 € (0, 1), with probability at least 1 — g, any
solution ,@ of (10) satisfies
18; = B; ll2.00 < AV Prnan- (18)
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If, in addition, ||(B;)™ || > 2cA\\/Pmax, then (18) implies that
J; = arg max|| /|
J=1,0d
estimates 7 (i) correctly.

Proof. Most of the proof is similar to the proof of Theorem 5.1 in Lounici et al. [35]. We supply a
full proof for completeness and because our setting is slightly different. We will need more notation
to prove this statement. Set po, = maxj<q 1’ and define the extended covariance matrices ¥ ;0 of
SIZ€ Poo X Poo AS

Ejj/[ (J)J 0}1fj7éj'and2jj{ JJ OPXP 0 ifj =7

We also define forany j = 1,...,d and A € R*P the vector AJ € RP= such that
— . [AJ
J —
A= [ : } |
Now set A = B\l — B and bound

[All2,00 = [IBA = (5 = Dipxap) All2,00 < [EAl2,00 + 15 = Lipxip) All2,00-
The first term is controlled by (14) from Lemma A.2. The latter term can be bounded by noticing that
only the off-diagonal elements will contribute to the norm. We can bound it using Cauchy-Schwarz:

|(3 = Iipxip) All2,00 = jfllaxd 1((Z = Iipwiz) A) ||

Ly

. 27 1/2
p
= Erllaxd E E Y50 tt/At'
J=L =1 jl=1t'=1
97 1/2 _ y 27 1/2
pJ p’ d p’ _ 0
Z Z J
< jgaxd § : i) ttA +jgaxd (B ) B
wod i\ D =1 \dr= =

We now bound both terms separately. The first term can be bounded using an application of
Assumption and then Minkowski’s inequality. The Minkowski’s inequality is true for LP norms
and tells us

12+ yllp < [l + l[yllp-
In our case this generalises to

97 1/2
Poo d_ d d
Yo D IAY =D A<D A < Z\/ 1A% = T
t=1 \j'=1 j=1 j=1 V/Prin j=1
Combining Assumption with the above inequality gives us
97 1/2 57 1/2
Dj d ~ . 1 Do Poo d
min
s [ (S Emadt | | <y | S (A
j=1,..., =1 \j'=1 Pmax t=1 \j'=1
1 Pmin
< — A
~ 14a \ pmax pmmH ”21
1
< — 2,1-
14a pmdx” || k)
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The second term can now be bounded by another application of Cauchy-Schwarz:

99 1/2
max Z Z Z jj tt’At/

Jj=1,...,d

t=1 \j/'=1¢'=1t'#t
. . 27 1/2
J d p] ~ !
1 Pmin 1 < |A?/
< — max | — —
14a | pmax 5=1,....d | p? tz:; ;; N
S pmm |AJ |
la \/ Pmax £~ M, v
1 Pmi 1 ~
<o 1A]l2,1
14a Pmax \/Pmin
1
< — 2,1
22\ o || |

The (2, 1)-norm term is now bounded using (15). Putting everything together we get

18; = B2 ll2.00 < |IZ(B: - ﬁ*)lla w0+ (5 = Tnaxpa) (Bi = B)l2.00

1 [/240p™®
< )‘vpmax + p (/f;)

< (1 + 2CL> A\/pmax'

To satisfy both assumptions (A.1, 4.1), we need to set ax? = (a — 1) as per Lemma

Finally, to prove the final claim, note that (18) combined with our sparsity assumption on the true
parameters implies that for all j' # m(z) it must be that ||§f/|| = ||§i/ — (B2 < cAy/Pmax- We
will show that for 7(4) it must be that ||6 || > c\\/Pmax- Hence, the estimator gets the correct
index with high probability. Indeed, if ||(3;)™®)|| > 2c\\/Pmax We get

187 = 118" = ()" — W)n
> (185 = 118 = BT )|

Z 20)\\/ pmax - C)\ \Y4 pmax
= C>‘\/ Pmax-

Let us restate the specific version of Theorem 4.2 again for clarity. This theorem is now a corollary
of Theorem

Theorem 4.2. Suppose the data have been pre-processed to satisfy (4) and let Assump. (4.1) hold.
Take any 6 € (0,1) and set X > 4o, where

_ 20 8log(d/d)) = 8log(d/d)
Ao = NG 1+ » + » )

and set ¢ = ( + 7( )> Then, any solution ﬁl of the Group Lasso objective (3) satisfies

18; - < eAVp )
with probability at least 1 — g. If, in addition, ||(B;)™ 9| > 2c\\/p, then (5) implies that J; =

arg max,_

1d ||Bf|| estimates 7 (i) correctly.
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Proof. The result follows from Theorem , where in this case k = d, and p? = p for all j =
1,...,d. O

Corollary A.6. Assume the same setting as Theorem such that for each i =
L....d, |(B5)™@|| > 2c\\/p and consider the estimator 7 as defined in (6). Then & = T with
probability at least 1 — 4.

Proof. Consider the following estimators

B; = argmin ||C; — @3> + AIBl 2,1,
BERIP

Ji = arg max || B/,
j=1,...d

7o [d = [d],i— T
We will first show that 7 estimates 7 with probability at least 1 — §. Afterwards, we will show that

the event on which 7 is correct, is contained in the event that 7 estimates 7 correctly, implying a
lower bound on the requested probability.

We apply a union bound
PFE=m)=PVi=1,....d|J; =7(i)
=1-P@Ei=1,...,d| J; # (i)

We proceed to the second step. If 7 estimates 7 correctly, then 7 is already a valid permutation and

# = 7. Indeed, if 7 is correct then that means that [|37 || = ||37")| is the maximum norm for
each i. Coincidentally, by 7 being a correct permutation, 7 describes a correct matching with largest
values, which means that 7(i) = 7(¢) foreachi = 1,...,d and

Pr=n)>P(r=m)>1-04.

B Proofs and Implementation Details for Kernelized Alignment Learning

In this section we provide proof details and the algorithm for Section 5. We will make one adjustment
to the Group Lasso regularization in the optimization problem compared to (7), which is that we
square the regularization term. This form is theoretically more appealing, but is still equivalent to the

Algorithm 2 Estimating the permutation using kernels

1: Input: reg. parameter A > 0, kernels k1, . .., kg
2: Data: {(C), M®))}p_,
3: forj=1,...,ddo
4 (K)o « k(MO M)
5: L; < CholeskyDecomposition(K )
6: end for
7: fort=1,...ddo
d
8 i argmin2[C; = > Liv'|I* + Allyll2a
YyER™P j=1

9: end for

d
~ ~7 (i)
10: T < argmax 'yﬂ
gmax 377

%
i=1
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standard formulation: as Bach [4] argues, the two versions of the optimization problem have the same
sets of solutions when varying the regularization parameters. For ;1 > 0, the objective is given by
2

d
it G = BV + S8, | - (19)
=
Let @1, e Bf be the solutions of the above optimization problem. The translation between regular-

ization parameters that give the same solutions for (7) and (19) is given by A = p (Z?:l ||Bf ll24; )

B.1 Representer Theorem

The squared version of the optimization problem allows us to prove the Representer theorem from
the main text:

Theorem 5.1. Let 1, ..., pq be the feature maps associated with 'Hl, ...y Hg. Then there exist
, ¢4 € R™ such that the optimization problem in (7) has solution 61 wzth each B] of the form

:Z%m%we
=1

~1
Ci»

Proof. First we state the following result about a variational equality for positive numbers

2
d

: HBJ
] —
SIel) = g 3020
j=1 j=1

A proof of this statement can be found in section 1.5 of [5]. Using (20) and switching to the squared
version of (7) we rewrite (19) as

2
H . (20)

2
d
inf, *IIC B>+ w1 | D181l
. =~
157112,

nj

= inf inf f||C BM)|1? + Z

UGAd B1,--5B4
j=1
= (OPTy).
We can rewrite this expression further, using the reproducmg property of the RKHSs H ;, which gives
B3 (M;) = (B?,¢;(M;)). Furthermore, defining Bi = f and p; = ,/7];p; We rewrite
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This final expression should be recognized as the feature representation of the Representer theorem
[48] applied to the kernel described by

k(1) (M, M)

M&

(85(M;), 5 (M)

=

.

|
&M&

n; (i (M;), 0;(M;))

J

Iﬂ?j(Mj,M]{).

'M&

1

J

The Representer theorem then gives us that the solution of the inner optimization problem in (OPT5)
can be described by

B9
Z% e@*—mZ% (@ = § = Z%M ()
N
with ¢ € R" and n € Ay. Alternatively 1nterpreted this says that there exist ¢!,...,c? € R"

such that 7 = Y7, @;(M j(e))(cj )e. We invoke again the equivalence between the squared and
un-squared versions of the optimization problem using the translation of regularization parameters

A=p (Z;Ll ||Ef | Kj) and conclude that the solutions of (7) are of the same form. O

To get the finite-dimensional optimization problem as stated in (8) we substitute the correct
forms of 3/ back into the original optimization problem. Define the Gramm matrices (K;)ex =

"‘j(]\/f;f)7 M) = <%(M(z)7 LpJ(Mk)> and observe

2
n d d
TP N (L S CRSTRTIEDS BRSPS S 2
1s--+5Pd —1 j=1 j=1
2
n d d
= it S-S e | Y @) Ke
cl ..., cieR" =1 j=1 j=1

d d
= inf LG =YKk,
Jj=1 j=1

cl,...,cdeRm

B.2 Estimator consistency

As stated in the main text, the assumptions in Theorem are explained in this section. The
assumptions stated in (A-D) ensure that the RKHSs that we work with are nice enough and that
the function we want to estimate is not too miss specified. For a more complete discussion on
the assumptions, we refer to Bach [4]. To remind ourselves, we are given d random variables
M = (M, ..., M), where each random variable lives in Z;, and d RKHSs H,, . .., H4 associated
with d kernels k1, ..., ;. The cross-covariance operator, 3;; for H; to H; is defined such that for
all (8%, 87) € Hi X Hyj,

(B7,587) = E[B"(M;) 5 (M;)] — E[5" (M;)|E[B (M;)]. 21
The bounded correlation operators p;; are defined through the decomposition ¥;; = El/ 2 Pij E; ]/ 2

[6].

(A) Foreach j = 1,...,d, the Hilbert space H; is a separable reproducing kernel Hilbert space
associated with kernel ; and the random variables r (-, M) are not constant and have
finite fourth-order moments.

(B) Foralli,j =1,...,d, the cross correlation operators are compact p;; and the joint correla-
tion operator is invertible.
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(C) Foreachi = 1,...,d, there exist functions Bi*l, e ,ﬂ;‘d € Hi,...,Hg, b € Rand a
function f; of M such that

d
C; = Zﬂfj(Mj) +b; + fi(M) + e,
=1

where Efg; | M] = 0and 02, < E[e? | M] < 02, with E[f;(M)?] < oo, E[f;(M)] =0

and E[f;(M)B:7 (M;) = 0] forall j = 1...,d. We define 7(i) to be the one index for
which g™ £ 0.

(D) Foralli,j =1,...,d, there exists gzj € H; such that ﬁ;‘j = E;J/»Qg{.

For each function, 3} “(i), hat is non-zero we will require the following condition

<1, (22)
Hi

max
J#m (i)

Where D is a block diagonal operator where each block consists of the operators W[’Hj.
g J

1/2 —1
‘ij Pin (i) P (iym (i) P9 (0)

Condition (B) can be seen as an analogue to the correlation assumption in Assumptions and A3,
as it ensures that the variables are not too dependent.

Before we prove Theorem 5.2, we will first prove that each individual index 7(¢) can be estimated
consistently. This follows from an asymptotic result by Bach [4].

Theorem 5.2. Assume (A-D) in App. . Then, for any sequence of regularization parameters
An such that A, — 0 and \/n\, — +o0o when n — oo, the estimated permutation T converges in
probability to .

Proof. To prove this result we first define the estimator of each individual index 7(¢) as
fi = arg max ||Bf||q.¢1 (23)
=1

Theorem 11 in [4] gives consistency for the estimated parameters B\f and estimated index i . However,
his result is stated for the squared version of the Group Lasso and has as assumption that the
regularization parameters have the property that 11, — oo and y/nu,, — +oo as the number of data

points n — co. The translation factor between regularization parameters \,, = un(Zj‘lz1 ||,§f ;)
convergence to a constant in probability, by the consistancy of the estimated parameters. This shows
that the scalings for \,, and p,, are the same asymptotically. We conclude that fz estimates 7 (¢) with
probability tending to 1.

Remember that the norms of @J and & are the same through || Bf ln, = 1|l ;- This means that
we have consistency for estimators of (4) that are based on ||/ | k; aswell. Foreachi =1,...,d

we can repeat the above argumentation to get consistency for each jl separately. To combine the
conclusions, we apply the same argument as in the finite dimensional case and a a union bound that
finishes our proof,

PE=n)>1-P@i=1,....d| J; # (i)

d
>1-Y P(J; # (i) = 1
i=1
O
B.3 Implementation
Lemma B.1. Foreach j =1,...,dlet L; be the Cholesky decomposition of the Gramm matrix K,
then ¢ = (L;»r)fl:yf if the parameters 4}, . .. | 4% are minimizers of
d
. 1 112 j
=|IC; — L~ Al 2.1 9
i I YL P Al ©)
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Proof. Applying the Cholesky decomposition K; = L; LjT for each j = 1,...,d and substituting
this into (9) gives

d d
inf G =YK+ [k,
j=1 J=1

cl,...,cdeR™ cl,...,cdeR™

d d
inf Lc; = ST L]+ AN |IL] )|
j=1 j=1

d d
inf lC»—E L»’yjz—ﬁ—)\g .
s 'deR”nH Z j=1 7 j=1 ol

O
The number of parameters now scales with the number of data samples. Computationally, this quickly

becomes unwieldy. We apply a Nystrom style approximation by sub-sampling m < n columns of
each K; Gramm matrix and using those to approximate the full Gramm matrix [52].

C Probability Results

2
Lemma C.1. Forj =1,....dand 0? > 0 let % be independent chi-square distributed random
variables with p’ degrees of freedom for j = 1,...,d. Then, with § € (0,1) and for

20 - 410g(d/5)+4log(d/5)’

Ao =
\/R Pmin Pmin
we have
P | max — <& >1-4.
1<j<d \/mpi — 2 ) T
Proof. This is Lemma 8.1 in [10] and substituting = log(1/9). O

The previous lemma is the general version of a concentration inequality that is needed in the proof of
Theorem A.5. The concentration inequality that we want to use is the following.

Lemma C.2. Let 0> > 0 and assume that €V, ... are independently N(0, o) distributed, ®
as in Appendix A, and with § € (0,1) set A > 4\ for

Ao = 20 - 4log(d/é) n 4log(d/9)
\/,ﬁ Pmin Pmin

Then, P(A) > 1 — 6, where A = ﬂ?zl Aj with the events A; = {%H(@TE)J” < )\T\/E}for all
j=1,...dande = [¢D,.. . e™]T,

Proof. By assumption, I,,; i = ij = 1(®;)" ®; and the fact that & ~ N(0, 021,,x,,), we first see

L (pe) = L]

~N(0,L20] 1))

~ N0, Ly ps).

This shows us that —3—||(® "&)7||? has a chi-squared distribution. We can now apply Lemma C.1 by
noticing that it holds also holds for A > 4)\y > )¢ and that

d
11 oy
o 11 A
jD.AJ {1@?22 npj\/ﬁ”(q)e) 2}
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Figure 4: The different types of diffeomorphisms used in the misspecified case.

D Experimental Details

All the code to reproduce the experiments and figures in this paper is
provided as a  GitHub  repository at https://github.com/HiddeFok/
sample-efficient-learning-of-concepts. We perform synthetic experiments
on a 192-core CPU node (AMD Genoa) with 336GB of RAM. We perform the image benchmark
experiments on single 18-core GPU node (NVIDIA A100 GPU and Intel XEON CPU) with 120GB
of RAM.

D.1 Toy Dataset Experiments

The synthetic experiments can be subdivided into 4 sets, based on which features mapping is used.
These features mappings are linear features, spline features , random Fourier features and kernels.
Here, we describe the data generatation and the hyperparameters of the features and kernels.

D.1.1 Data Generation

For the synthetic experiment we sample the C' € R? variables from a N(0, (1 — p)Igxa + pl)
distribution, where 1 denotes a matrix filled with only 1’s. The p € (0, 1) parameter controls the
amount of correlation between the variables. For the experiments with continuous concepts, we
sample n data points, on which we perform a 80/20 train/test data split. For the binary concept
experiments, we perform a 50/50 train/test split, to ensure that both labels of each concept appear
in the test set. We also keep the correlation coefficient in the test set at p = 0, while varying the
correlation in the train set.

We now simulate the M variables directly from the C' variables, instead of using a causal representa-
tion learning method that would learn them from the observations X . This allows us to control the
different sources of noise more carefully. There are 2 settings in which we generate the M € R¢
variables, well-specified (following all of our assumptions) and misspecified (settings in which we
consider more general mixing functions beyond our theoretical assumptions.)

Wellspecified. In the wellspecified setting we generate the M variables by applying a map con-
sisting of the features and kernels used to estimate the permutation. This setting is a sanity check to
see if our estimator works in a setting that satisfies all the required assumptions. For each dimension
j=1,...,d, arandom weight vector 3; € RP is sampled, such that || 37| € [16Ao, 32)o] uniformly.
A permutation 7: {1,...,d} — {1,...,d} is uniformly sampled from all possible permutations.
Finally, with independent ¢; ~ N(0, 0?) noise variables we get

Ci = o(Mri)) " Bray + &4

Misspecified. In the misspecified setting we generate the M variables by first sampling d diffeo-
morphisms uniformly, {f;: R — R}%_,, from a set of pre-specified diffeomorphisms. The set of
possible functions is plotted in Figure 4. Each function gets a random scaling w; uniformly in [—2, 2].
Finally, we get

Ci = Wr (i) fr (i) (Mr(iy) + €,
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with &; ~ N(0, 02) again independent noise variables.

Target Label. In the experiment where we need binary concepts, the concept labels were created
by thresholding each variable at the midpoint. The underlying continuous score was generated using
the misspecified setting from above. In this case the midpoint is at 0 and we get

C; =1[C; <0].
The M variables are kept continuous and a logistic regression is used to map M to C. To create the
target labels, a subset of size k = min(3, LgJ) is sampled from {1, ..., d}, without replacement. To

determine if the target label is O or 1, we sum the binary concepts in the % selected variables and
check if the sum is at least max(1, L%J ).

Metrics. For each of the experiments with continuous variables we report the the mean error in
the learned permutation 7 of the variables w.r.t to the true permutation 7 of the variables, defined
as MPE = 1 Z?Zl 1{7(i) # m(i)}. Moreover, we report the R? score and execution time. To
evaluate different settings of our estimator, we compare with the MPE, R? and execution time of
using only the purely linear version of our estimator on that particular data setting. We also report the
MPE and execution times of assigning the variables based on Pearson or Spearman correlations as
naive baselines. In the binary experiments, we report the MPE, the mean concept accuracy, the label
accuracy, the OIS-metric and the NIS-metric by Zarlenga et al. [58].

Parameters of the experiments. We vary the following parameters: the regularization parameter
A, the dimension d, the correlation p and the number of data points n. As stated before, in each of
the continuous experiment we look at the wellspecified and misspecified case. The settings in the
continuous case are:

* The regularization parameter varies in A € {0.001,0.005,0.01,0.05,0.1, 0.5, 1}. The other
settings are set to d € {20,60,100}, p = 0 and n = 1250.

* The dimension is varied in d € {5,30,60,80,100}. The other settings are set to A\ €
{0.001,0.01,0.1}, p = 0 and n = 1250.

* The correlation parameter varies in p € {0,0.2,0.4,0.6,0.8,0.95,0.99}. The other settings
are set to A € {0.001,0.01,0.1}, d = 60 and n = 1250.

* The total number of data points is varied in n € {65,125, 1250, 2500, 5000}. The other
settings are set to A € {0.001,0.01,0.1},d =60 and p = 0.

In the case of the binary concepts, we have fewer combinations, because we focus more on the
downstream task and comparing the estimator to baselines:

* The dimension is varied in d € {5,10,15,20,30}. The other settings are set to A €
{0.001,0.01,0.1}, p = 0.5 and n = 2000.

* The total number of data points is varied in n € {100, 200, 2000, 4000, 10000}. The other
settings are set to A € {0.001,0.01,0.1}, d = 20 and p = 0.5.

D.1.2 Feature and Kernel setting

We now describe the types of models we consider in our evaluation on the synthetic data.
Linear features In the linear case no transformation is applied to the M variables.

Spline features In the spline features case we perform the regression using a spline basis trans-
formation, either piecewise linear or cubic splines. We expect this method to work especially well,
because the cubic splines form a dense subset in the space of twice-differentiable functions, of which
the diffeomorphisms are a subset. To calculate these features we use the SplineTransformer
class of the scikit—-learn package. The total number of feature parameters is calculated as
p = ni + ng — 1, where ny, is the number of knots and ng is the degree of each spline. In each of the
toy dataset experiments the number of knots was n; € {4, 8} and the degrees were nq € {1, 3}.

Random Fourier features For the random Fourier features we use a varying number of random
features. We sample random features that approximate the RBF kernel. To sample these features
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we use the RBFSampler class of the scikit-learn package. The total number of feature
parameters in this case is the number of random Fourier features. The number of features in the toy
dataset experiments is p € {2,4, 6, 8}.

Kernels For the kernel experiments we perform the experiments for several kernels: the polynomial
kernel, the RBF kernel, the Brownian kernel and a Sobolev kernel. These kernels are given by

Hpol(xay) = (1 + <.’L‘,y>)3

krBr(T,y) = e_(w_y)Z
KLap(xv y) = eila:iyl
Keos(2,y) = cos({(z,y))

D.2 Action/Temporal Datasets Experiments

We consider a synthetic data benchmark from the causal representation learning literature [31]. The
data generation settings, model architectures and training hyperparameters are taken from the origi-
nal paper [31]. The implementation can be found at ht tps://github.com/slachapelle/
disentanglement_via mechanism_sparsity/tree/main, and is available under the
Apache License 2.0.

D.2.1 Dataset Generation Details

The benchmark consists of temporal data sequences, {(X?, 2%, a?)}Z_ |, where X! € R?" is the
observed data, at € R0 is an action, which is seen as an auxiliary variable in the ICA framework
developed in [24], and z¢ € R!Y is the latent causal variable. The ground-truth mixing function
f is a random neural network with three hidden layers of 20 units with Leaky-ReLU activations
with negative slope of 0.2. The weight matrices are sampled independently according to N (0, 1)
and the weight matrices are then orthogonalized to ensure invertability of the mixing function. The
observational noise ¢ in each dimension is sampled according to A/(0,10~%) and is added to f(z").
The transitions from (z/=% a’~1) to 2' are sampled according to N (u(z~1, a=1), 104119 10).
The mean function p will be different between the Action Sparsity dataset and the Temporal Sparsity
datasets.

Action Sparsity Dataset In this case, the sequences have length 7" = 1 and the mean function is
given by

p(zt a1, = sin(%affl +(@—-1))+ sin(%aﬁj + (i —1)),
where the index ¢ = —1 is periodically identified with ¢ = 10.

Temporal Sparsity Dataset In this case, the sequences have length 7' = 2 and the mean function
is given by

), 0 )
j=1

Target Labels We employ the same tactic as before to create the target labels. The true latent vari-
ables z! are binarized by looking at the empirical range over the whole dataset, and then thresholded
at the midpoint. The target label is then determined by sampling 3 dimensions in {1,...,10} and
setting the label to 1 if at least 2 of the 3 latent variables labels are 1.

In both datasets we sample 106 points and split the data 80/20 for the train/test split.

D.2.2 Model Architectures

As the first step of our pipeline we compare three models: TCVAE [11], iVAE [24] and DMS-VAE
[31]. The same encoder and decoder architecture is used for all models: an MLP with 6 layers of
512 units with LeakyReLU activations with negative slope 0.2. The encoder fenc(z;6) outputs the
mean and standard deviation of gy (2! | '), which are the densities of normal distributions. The

.. . . . A~ ’ p— ’ — .
latent transition distribution py (2! | 2<%, a<?), where 2<* = (2*'),, and a<* = (a")!;}}, is also
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Table 2: Architecture details for the encoder and decoder used in the temporal and action sparsity
dataset experiments.

Layer Hidden Size Activation Function
Linear 512 LeakyReL.U(0.2)
Linear 512 LeakyReLU(0.2)
Linear 512 LeakyReL.U(0.2)
Encoder Linear 512 LeakyReLU(0.2)
Linear 512 LeakyReL.U(0.2)
Linear 512 LeakyReLU(0.2)
Linear 2-10 -
Linear 512 LeakyReLU(0.2)
Linear 512 LeakyReLU(0.2)
Linear 512 LeakyReLU(0.2)
Decoder Linear 512 LeakyReLU(0.2)
Linear 512 LeakyReLU(0.2)
Linear 512 LeakyReLU(0.2)
Linear 20 -

learned by a fully connected neural network. The decoder fuec(2; 1) tries to reconstruct the original
data from the learned encodings. A minibatch size of 1024 is used for training. See Table 2 for a
detailed description.

The differences between the three methods come from the loss function that is optimized. The
common term in each of the optimizations is the Evidence Lower Bound (ELBO) objective, which is
given by

T

ELBO(0,1),\) = >

t=1
- E [KL(go(2" | 2") || pa(2" | 2=, a<"))], (25)

2<tgo (<)

where KL(- || -) is the Kullback-Leibler divergence.

logp¢(xt | zt)] (24)

zt~qg (I ‘)

TCVAE We use the implementation of TCVAE [11] by Lachapelle et al. [31]. The loss function
consists of the same components as the ELBO objective, but they decompose it into 3 terms and add

a weight parameter to each of the terms. The hyperparameters for the training procedure can be found
in Table

iVAE We use the implementation iVAE [24] by Lachapelle et al. [31]. The loss function here is
similar to the ELBO objective, but it adds one parameter 3 to the KL-term in the objective. The
hyperparameters for the training procedure can be found in Table

DMS-VAE Lachapelle et al. [31] introduce a sparsity regularization in the ELBO objective to prove
the identifiability in temporal and action settings. The new objective is given by

ELBO(6, 1, A) + o2 || G ||o + aa|Gallo-

The variable G, is a learned matrix, representing the relations between the latent variables between

two time steps. The variable G, is a learned matrix representing the relations between the actions
and the latent variables. The norm || - ||o counts the number of non-zero terms. This is a discrete
objective and can transformed into a continuous objective using the Gumbel-Softmax trick [37, 22].

Instead of using the regularized objective, the authors also propose a constraint-based optimization
procedure on the ELBO objective, where the constraint is determined by the number of edges in
the learned graph. We use their constrained optimization method, which provides an optimization
schedule that we set by enabling the ——constraint_schedule flag. The other hyperparameters
for the training procedure can be found in Table
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(a) (b) (c) (d) (e) ® (®

Figure 5: Examples of the 7 shapes in the Temporal Causal3DIdent dataset. From left to right: teapot,
armadillow, bunny, cow, dragon, head and horse.

D.3 Temporal Causal3DIdent

We consider an image data benchmark from the causal representation learning literature [33]. The
dataset, model architectures and training hyper parameters are taken from [33]. The implementation
can be found at https://github.com/phlippe/CITRIS/tree/main, which is available
under the BSD 3-Clause Clear License.

D.3.1 Dataset Details

The data comes from a setting which is referred to as Temporal Intervened Sequences. The assumption
is that there are d causal variables (G, . .., G4) and a corresponding causal graph G = (V, E') where
each node i € V represents a causal variable G;. The variables can be real-valued or vector-valued,
and each edge (i,j) € E represents a relation between G; and G;. We assume that there are T
time steps and for every ¢t = 1, ..., T the causal variables follow a stochastic process. We therefore
have a sequence {(GY,...,G%)}E |, where only the causal variables in ¢ — 1 are the parents of the
causal variables in time step ¢. The observations X* at each time step are created through a mixing
function X* = f(GY,...GY, "), where ' is an i.i.d. noise variable. Additionally, we have access to
a d-dimensional binary vector at each time step I* € {0, 1} that tells us which causal variables have
been intervened on, but not with which value.

The causal variables that are used in the data generating process are the following:

* The object position (pos_o) is modelled in 3 dimensions (z,y, z) € [~2, 2]3. The values
are forced to be in this interval to ensure that the object does not disappear from the image,
becomes too small or covers the whole image.

* The object rotation (rot_o) is modelled in 2 dimensions («, 3) € [0, 27)?2. Distances for
angles are calculated in a periodic fashion, ensuring that angles close to 0 and 27 are close
together.

* The spotlight rotation (rot_s) is the positioning of the spotlight that shines on the object.
The value range is [0, 27), where distances are again calculated in a periodic fashion.

* The spotlight hue (hue_s) is the color of the spotlight. The range of the value is [0, 27),
where 0 corresponds to red.

* The background hue (hue_b) is the color of the background. The value range is [0, 27)
with O corresponding to red again.

Table 3: The hyperparameters used for the training of the DMS-VAE, TCVAE and iVAE for the
action and temporal sparsity datasets

Hyperparameter Value
Batch Size 1024
.. Adam [27] and
Optimizer Cooper [12]
Learning rate 5e-4 (DMS-VAE), le-4 (iVAE), 1e-3 (TCVAE)
KL divergence factor 1.0
Number of latents 20
Number of epochs 500
Gumbel Softmax temperature 1.0
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* The object hue (hue_o) is the color of the object, with value range is [0, 27) and again
with 0 representing red.

Lippe et al. [33] generate the data using Blender, a setup inspired by von Kiigelgen et al. [51] and
using code provided by Zimmermann et al. [59]. They generate the dataset by starting with an initial
random set of causal variables. They then sample the causal variables in each subsequent time step
by following a specific conditional distribution, which is given by the set of equations in (26).

flabe) =57 e

pos_x'T! = f(1.5 - sin(rot_p3"), pos_x*, &)

pos_y' Tt = f(1.5- sin(rot_at),pos_yt,szt/)

pos_z't1 = f(1.5 - sin(rot_at), pos_z', &)

rot_a!tl = f (hue_b",rot_a', t)) (26)
rot_p" = f(hue_of,rot_g?, 5%)

rot_s'™! = f(atan2(pos_x’, pos_y*,rot_s’, £.,)

hue_s'™" = f(27 — hue_b’, hue_s', ! )

hue_b'™ = hue_b’ 4 ¢}
hue_b"™ = f(g(i), hue_o, &},,)

All the noise variables, ¢, are independently A/ (0, 10~2) distributed for the position and A/(0, (0.15)?)
distributed for the angles. The g function in the final line maps the object shapes to specific values
detailed in Table 4.

The object shape is changed in each time step with a probability of 0.05. If it is changed, a new shape
is sampled uniformly over the 7 shapes.

They then sample for each time step the intervention targets [ f“ ~ Bernoulli(0.1). If a causal
variable is intervened on, it is replaced with a random sample from U (—2, 2) for the position values
or U(0, 27) for the angles. For the object shape a uniform distribution over the 7 shapes is used.
They run this simulation for 250, 000 steps, which is the full dataset.

We use the already generated dataset downloaded from https://zenodo.org/records/
66377494 .YgcWCnVBxCA, which is available under the Creative Commons Attribution 4.0 Inter-
national license.

Target Labels We employ the same tactic as before to create the target labels. The true latent
variables (;, are binarized by looking at the empirical range over the whole dataset, and then
thresholded at the midpoint. The target label is then determined by sampling three dimensions in
{1,...,7} and setting the label to 1 if at least two of the three latent variables labels are 1.

Table 4: Output of the g function for each object shape. The avg function for angles is defined as
avg(a, 8) = atan2 (sin(oz);sin(/@)7 COS(O()—Q&-COS(B))

Object shape Object hue goal

Teapot Size 0

Armadillo Z

Hare avg(hue_s’, hue_b")
Cow 4

Dragon 7 + avg(hue_s’, hue_b")
Head &

Horse &n

5
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Table 5: Architecture details for the encoder and decoder used in the Temporal Causal3DIdent

experiments.
Layer Feature Dimension Kernel Stride  Activation Function
(Hx W x C)

Conv 32 x 32 x 64 3 2 BatchNorm+SiLU
Conv 32 x 32 x 64 3 1 BatchNorm+SiLU
Conv 16 x 16 x 64 3 2 BatchNorm+SiLU
Conv 16 x 16 x 64 3 1 BatchNorm+SiLU
Conv 8 x 8 x 64 3 2 BatchNorm+SiLU

Encoder Conv 8§ x 8 x 64 3 1 BatchNorm+SiLLU
Conv 4 x4 x64 3 2 BatchNorm+SiLU
Conv 4 x4 x 64 3 1 BatchNorm+SiLU
Reshape 1x1x 1024 - - -
Linear 1 x1x256 - - LayerNorm+SiLU
Linear 1x1x2-num_latents - -
Linear 1x1x256 - - LayerNorm+SiLU
Linear 1 x1x 1024 - - -
Reshape 4 x4 x 1024 - - -
Upsample 8 x 8 x 64 - - -
ResidualBlock 8 x 8 x 64 3 1 -
Upsample 16 x 16 x 64 - - -

Decoder ResidualBlock 16 x 16 x 64 3 1 -
Upsample 32 x 32 x 64 - - -
ResidualBlock 32 x 32 x 64 3 1 -
Upsample 64 x 64 x 64 - - -
ResidualBlock 64 x 64 x 64 3 1 -
Pre-Activations 64 X 64 x 64 - - BatchNorm+SiLU
Conv 64 x 64 x 64 1 1 BatchNorm+SiLU
Conv 64 x 64 x 3 1 1 Tanh

D.3.2 Model Architectures

In this setting we use as the first part of our pipeline both CITRIS [33], in particular CITRIS-VAE,
and iVAE [24]. In both models, the encoder and decoder architecture are set to be the same. The
encoder is a convolutional neural network, which outputs two parameters per latent variable. These
will be the mean and the log of the standard deviation for the normal distribution that models the
latent variable. The decoder uses bilinear upsampling and residual blocks to reconstruct the image.
The full architecture is described in Table

As an additional optimization step, an autoencoder is pre-trained to map the high-dimensional images
to lower-dimensional feature vectors, but without enforcing disentanglement. This is done separately
from the main training procedure, as Lippe et al. [33] mention that this improves performance. During
training a small amount of Gaussian noise is added to the encodings to prevent a collapse of the
encoding distribution. No prior is enforced for this encoder. This autoencoder has 2 ResidualBlocks
instead of 1 per resolution in the decoder part. The training hyperparameters are described in Table
and the autoencoder is trained using the MSE reconstruction loss.

CITRIS-VAE CITRIS [33] allows for multidimensional causal variables. The number of latent
variables is allowed to be bigger than the number of causal variables d , but the model subdivides the
latent variables into d possibly uneven blocks that get mapped to the causal variables. This means that
an assignment ¢: {1,...,k} — {1,...,d} is learned between the learned latent variables and the
learned causal variables, so that multiple latent variables can represent one causal variables. This is
done by assuming that each (i) follows a Gumbel-Softmax distribution and we learn the continuous
parameters that govern these distributions. CITRIS-VAE optimizes the following objective:
ELBO(6, ¢,7) = — [log pe(«' ™ | 2]

E
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Table 7: The hyperparameters used for the

Table 6: The hyperparameters used for the training of both the CITRIS-VAE and iVAE

training of autoencoder used as preprocessing models.
by both the CITRIS-VAE and iVAE. Hyperparameter Value
Hyperparameter Value Batch Size 512
- Optimizer Adam [27]
Batch Size 512 .
. Learning rate le-3
Optimizer Adam [27] .
. . Cosine Warmup
Learning rate le-3 Learning rate scheduler
Cosine  Warmu (100 steps)
Learning rate scheduler P KL divergence factor 5 1.0
(100 steps) .
KL divergence factor 1o (\) 0.01
Number of latents 32
) . Number of latents 32
Gaussian noise o 0.05
Number of epochs 1000 Number of epochs 600
Target classifier weight 2.0
Gumbe Softmax temperature 2.0

Here py models the encoder, gy the decoder, p,, (2" | 2¢, I'*1) the transition prior and GS is the
Gumbel-Softmax distribution of the causal variables between time steps given the intervention targets.
Finally, 7 is the target assignment between learned encoding variables and the causal variables.
During training a latent-to-causal variable assignment is sampled, while during testing the argmax
is used. The transition prior p,, is learned by an autoregressive model, which for each zf/)'*('zl) takes

24T f *land 2'*! as inputs and outputs a Gaussian random variable. The autoregressive model
follows a MADE architecture [23], with 16 neurons per layer for each encoding, and the input to
these neurons are the features of all previous encodings. The prior is 2 layers deep, and uses SiL.U
activation functions. Finally, a small network is trained to predict the intervention targets, given z*

and z;'*('ll) foreachi =1,...k.

iVAE To adapt the iVAE model [24] for this setting, the auxiliary variable u is given by the previous
observation x* and intervention targets I'*1. Another alteration that is made, is that the prior with the
iVAE model only conditions on (z°, I'*1). The main difference between iVAE and the CITRIS-VAE
is the structure of the prior p(2**! | 2%, I'*1). Another difference is that no target assignment is
learned during the training, but only after. For iVAE a 2-layer MLP with hidden dimensionality of
128 is used for the transition prior.

All the hyperparameters for training CITRIS-VAE and iVAE are reported in Table

D.4 Concept-Based Models

Concept-bottleneck models were introduced and popularized by Koh et al. [28]. They offer a deep
learning architecture that is inherently interpretable, by letting the input go through a concept layer.
Each node in that layer indicates either the value of a predefined concept when using continuous
concepts if the concept is present or not when the concepts are binary. Then, a linear layer from these
concepts to the final target layer is applied. Formally, given the observational data {(z;, ¢;, i) }71,
where z; € X, ¢; € G;, y; € R, a concept encoder pg(c | x) and a label predictor p,(y | ¢) are
learned. The total prediction is then performed by combining these 2 probabilities. Different choices
are possible for this combination, which lead to different concept-based models. We will discuss
the Concept-Bottleneck Model (CBM) [28], the Concept-Embedding Model (CEM) [57] and the
HardCBM [17], which are all three used in the binary versions of our experiments. For all three
models, we use the same encoders as in the VAE models, to make the comparison fair.

The linear layer allows the user to construct explanations for each prediction. When a prediction is
made, we can look at the concept activations, ¢;, and the corresponding weights in the final layer .
An explanation is given by the set

The interpretation is that v; tells us how important that concept is in general, and ¢; tells us how
active that concept is for this particular prediction.
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CBM In the Concept-Bottleneck Model (CBM) [28] the output of the concept layer will be denoted
by g and the function from the concepts to the labels will be f. The output of g are the logits of
that concept being 1, meaning o(g(z);) = pg(c; = 1| x) fori = 1,...,d, where o is the sigmoid
function. The function f is a linear combination of the probabilities for all the concepts so together

fog(2))) =¥ To(g(x)) = po.u(y | ).

CEM Concept-Embedding Model (CEM) [57] show that the performance of CBMs can be improved
by letting the concepts be encoded in a higher dimensional space, i.e., ¢; € R¥ instead of ¢; € R.
These embeddings are then concatenated and fed to the label predictor. For each concept, a function
s; 1s learned that predicts the concept label from these embeddings. These predictions can then be
used for explanations, but the embeddings are passed to the label predictor.

HardCBM CBMs can also be susceptible to concept leakage, when unrelated information is
encoded in each concept. HardCBM [17] propose a way to address this issue. In particular, to
discourage information from other sources leaking through the concepts, the HardCBM label predictor
only takes binary values from the concept layer as input. To make a prediction, we have to marginalize
over the possible concepts, pg (¥ | ) = Ecwpy(clz) [Po(y | ¢)]. To model possible dependencies
between the concepts in the distribution of X | C, the conditional distribution is decomposed as

d
polc|x) = Hp(ci | z,e15. 0. ¢m1).
i=1

In the HardCBM such a decomposition can be achieved by using an autoregressive architecture.

In all the experiments, each model is trained for 100 epochs, with batch sizes of 256 and optimised
by Adam with a learning rate of le-3.

D.5 Performance metrics

To assess the performance of our estimator we report the mean permutation error of the estimated
permutation (MPE), together with the execution time. Whenever the concepts are continuous, we
also report the R2-score. Some of the alignment learning baselines are created by regressing every
input variable onto every output variable and using the individual R2-scores to extract an alignment.
In those cases, we first match the encodings and ground truth causal variables according to the
highest R2-scores. The R?-score that is reported is the average of the R2-scores that are chosen to be
matched. This is also referred to as the R?-score on the diagonal. This gives

BN IC; — i (M=) ||2> c_ 1y o0
R? = - (1— — , Ci==) .
d; [C: — Cill? ”;
Here, o and 7 are the estimated alignment map and estimated permutation. The alignment map is
applied to the whole vector M;. As in the main text, C and M are matrices where the rows are the
data samples and the columns the concepts and encodings respectively.

In the downstream classification experiments we also report various other metrics. The mean accuracy
of all the concepts and the accuracy of the downstream label prediction is reported. Furthermore,
two additional metrics for concept-based models are reported, the OIS and NIS metric. The exact
definitions can be found in Zarlenga et al. [58]. The OIS metric measures how well concept ¢ can be
used to reconstruct concept j. The NIS metric measures how much information about concept 7 is
contained in the other concepts jointly. A low OIS metric, but high NIS metric indicates that it is not
possible to reconstruct one concept from any of the others individually, but combining the concept
embeddings would allow to reconstruct the concept from the others.

Estimator settings We use various settings of our estimator, to assess if there are particular
advantages for certain versions. The versions that we use are

* Linear, no feature map is applied.
* Random Fourier Features, we sample 8 random Fourier features from the RBF kernel.

* Spline, we calculate cubic spline features with 4 knots.
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* Laplacian, we use the Laplacian kernel with min{n, 20} components. If the number of
components is less than the number of datapoints a Nystrom sampling procedure is used.

» Two stage we apply a two stage approach, where we use 20% of the data to estimate the
permutation using no additional features and then use the rest of the data to perform ridge
regression with cubic spline features using 4 knots.

We define an array of regularization parameters and report the results of the best choice for each n.
The parameters that we consider are A € {0.0001,0.0005, 0.001, 0.005,0.01,0.05,0.1,0.2}.

Alignment Learning Baselines. We estimate the permutations using the Pearson and Spearman
correlations. We also add another baseline for the experiments with the encodings learned by a VAE.
This baseline is given by training multiple neural networks. Each neural network takes an individual
encoding as input and tries to predict all the causal variables. The individual R2-scores are used to
construct a matching again. This neural network is a 2-layer MLP with 128 hidden nodes in each
layer and tanh is used as an activation function. The network is trained for 100 epochs with Adam
and a learning rate of 4e-3. We considered using 32 and 64 hidden nodes per layer, but concluded
that 128 nodes per layer offers the best baseline.

In the Temporal Causal3DIdent dataset experiments, both VAE models learn groups of latent variables
that are matched with a causal variable. To use the Pearson and Spearman correlations in this case,
we first sum the latent variables in the groups and then calculate the correlation coefficients.

The baselines in the binary versions of the experiment in the two DL datasets are given by the three
concept-based models discussed in Section

E Additional Results

In this section, we show all the results obtained in the experiments with the Toy Dataset, Ac-
tion/Temporal Sparsity datasets and Temporal Causal3DIdent dataset.

E.1 Toy Dataset

Continuous Concepts. We provide plots for experiments performed with linear features, spline
features, random Fourier features and kernels. The concepts are continuous in these plots. All results
are depicted in Figures 6—

In each version of our estimator we see that the MPEs are good, especially in the misspecified setting.
It is interesting to note that the estimator does not perform well in the wellspecified case, when the
regularization parameter is not tuned correctly. This can be explained by the non-invertability of the
functions in this setting. This makes the identification of each matching more noisy and difficult,
which can also be noted by the fact that the Pearson and Spearman correlation approaches are not
able to find the correct permutation, while our estimator is able to do it correctly.

The non-invertibility of the functions in the wellspecified setting also explains why the R? scores
in that setting are worse than the R2?-scores in the misspecified setting. Another reason for that
observation is that the norms of the true parameters have to be quite large, to strictly adhere to the
assumptions of our theoretical results. This increases the variability of the output data by a large
amount and makes regression more difficult.

Finally, we also see that our estimator does work well, even when the correlation is high, but the
regularization parameter has to be tuned correctly. This does come at the cost of an increased
computation time.

Binary Concepts Ablation. We also perform an ablation study, with binary concepts. How the
continuous scores are binarized is explained in Appendix and sampling the diffeomorphisms
from the functions depicted in Figure 4. In these experiments we added the CBM [28], CEM [57]
and HardCBM [17] as baselines. We report the concept accuracy, label accuracy, OIS and NIS scores
[58] and execution times. The results are depicted in Figures 15—19. The ablation comes from the
fact that the correlation in the training set differs from the correlation in the test set; in the former it
is p = 0.5 and in the latter it is p = 0. This is done to mimic the situation where a classifier could
pick up on spurious correlations in the train set that are not present in the test set. We see that our
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estimator performs well in this case in terms of concept accuracy and label accuracy, and better
than the concept based-models whenever the regularization parameter is set to be not too large. Our
estimator performs similarly as the concept-based models in terms of OIS, but consistently scores
better when considering the NIS metric.

It is interesting to note that CEM [57] performs the worst in terms of the NIS and OIS metrics. An
explanation for this is that it has the capacity to store more information about the other concepts in
the embeddings. CBM [28] and HardCBM [17] suffer less from this problem, as the concepts are
stored as one-dimensional objects. All concept-based models perform similarly in terms of label and
concept accuracy.

One caveat is that the training times of our estimator do increase faster than the training times of the
concept-based models for increasing number of dimensions. We think this can be attributed to the
fact that to perform the logistic alignment learning procedure, a loop over all dimensions has to be
done. In each step one logistic Group Lasso regression is performed. In the continuous case, this was
not necessary, as we could see the output as multi-dimensional, and all regressions could be done in
parallel. In principle this should be possible for the logistic Group Lasso as well, but implementing
this parallel computation was beyond the scope of this paper. The implementation of the logistic
Group Lasso we use, does not have this feature for multiple labels.

Mixtures of Causal Variables. We conducted an ablation with the synthetic toy dataset to evaluate
performance when we have mixtures of causal variables as inputs to the alignment, which simulates
the case in which CRL methods might not provide complete disentanglement, but only partial
disentanglement. In these experiments, we set the dimension d to an even number and then randomly
created d/2 pairs of M variables. For each pair (M;, M), we then created a new mixture variable
M ]’ = (1 —a)M; + aM;, where a represents the mixing parameter. We then used these M J’ variables
as input to the alignment estimation step. We ran 10 random repetitions for each setting and show
the permutation error for the original variables in Figure 20. We additionally show a paired mean
permutation error, where we consider the estimated permutation correct if the matching identifies the
pairs correctly. These results are shown in Figure

What we see is that our estimator keeps performing perfectly up until slightly below a = 1/2, but
afterwards does not get the permutation right. However, we do see that the pairs are matched correctly
for almost all values of a.

E.2 Action/Temporal Sparsity Datasets and Temporal Causal3DIdent Dataset

Continuous Concepts. Here, we report all results obtained in the Action/Temporal Sparsity datasets
and Temporal Causal3DIdent dataset. The MPEs are reported in Table &, the R2-scores in Table
and the execution times are plotted in Figure

In terms of MPEs, we always see that a version of our estimator performs the best or as good as the
best in each of the datasets for each number of training data samples considered. For the R2scores, we
see that we perform well in some cases in the low data regime, but when using all the data available,
the neural network often performs the best. This does come at a computational cost, where the neural
network approach requires two to three orders of magnitude more computation time.

It is interesting to note that the estimator typically works better for the more advanced models
developed. This can be explained by the fact that these models achieve a better disentanglement,
which should make it easier to find the correct matching between the encodings and the causal
variables.

Binary Concepts. We create binary concepts and labels in a similar fashion as detailed in Ap-
pendix . The number of active columns selected is now fixed at k = 3 and at least two of them
have to be non-zero for the label to be one. The permutation errors are also reported in this case and
can be found in Table 10. The baselines are CBM [28], CEM [57] and HardCBM [17]. The concept
accuracy and label accuracy are reported in Table | 1, and the OIS- and NIS-metrics in Table 12. The
execution times are plotted in Figure

We see that the standard concept-based models perform worse with respect to all metrics with only
a few labels. However, in the action and temporal datasets, they quickly perform well in terms of
concept accuracy and OIS. Our estimator performs especially well when using non-tabular data, such
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as in the Temporal Causal3Dident dataset. This shows the added benefit of the CRL phase of our
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Figure 6: Permutation Error using Spline Features for all parameters considered in the experiments.
Each plot is paired, where the left is wellspecified case and the right is the misspecified case.
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Figure 7: R2-score on the diagonal using Spline Features for all parameters considered in the
experiments. Each plot is paired, where the left is wellspecified case and the right is the misspecified

case.
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Figure 8: Execution times using Spline Features for all parameters considered in the experiments.
Each plot is paired, where the left is wellspecified case and the right is the misspecified case.
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Figure 9: Permutation Errors using Random Fourier Features for all parameters considered in the
experiments. Each plot is paired, where the left is wellspecified case and the right is the misspecified

case.
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Figure 10: R2-score on the diagonal using Random Fourier Features for all parameters considered
in the experiments. Each plot is paired, where the left is wellspecified case and the right is the
misspecified case.
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Figure 11: Execution times using Random Fourier Features for all parameters considered in the
experiments. Each plot is paired, where the left is wellspecified case and the right is the misspecified

case.
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Figure 12: Permutation Errors using Kernels
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Figure 13: R2-score on the diagonal using Kernels for all parameters considered in the experiments.
Each plot is paired, where the left is wellspecified case and the right is the misspecified case.
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Figure 14: Execution times using kernels for all parameters considered in the experiments. Each plot
is paired, where the left is wellspecified case and the right is the misspecified case.
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Figure 15: Concept accuracy on the Toy Dataset when the training correlation is 0.5 and the test
correlation is 0. Several versions of our estimator are compared to the performance of several

concept-based models.
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Figure 16: Label accuracy on the Toy Dataset when the training correlation is 0.5 and the test
correlation is 0. Several versions of our estimator are compared to the performance of several

concept-based models.
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Figure 17: OIS metric on the Toy Dataset when the training correlation is 0.5 and the test correlation
is 0. Several versions of our estimator are compared to the performance of several concept-based
models.
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Figure 18: NIS metric on the Toy Dataset when the training correlation is 0.5 and the test correlation
is 0. Several versions of our estimator are compared to the performance of several concept-based
models.
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Figure 19: Execution times on the Toy Dataset when the training correlation is 0.5 and the test
correlation is 0. Several versions of our estimator are compared to the performance of several

concept-based models.
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Figure 20: Mean permutation errors on the Toy Dataset when the causal variables are mixed according
to a parameter a.
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Figure 21: Mean paired permutation errors on the Toy Dataset when the causal variables are mixed
according to a parameter a.
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Table 8: Permutation Errors for the encodings learned in the Action/Temporal sparsity datasets and
the Temporal Causal3DIdent datasets. The (n) indicates the number of train and test points used in
each column. We report the mean and standard deviation over 50 random seeds and in each column
we indicate the best method by bold.

Permutation Error | (n)

Model Method 5 10 20 100 1000 10000
Action Sparsity Dataset
NN 0.18 + 002 0.03 001 0.01 o001 0.00 £0.00 0.00 £o000 0.00 +0.00
Pearson 0.31 +002 0.04 £001 0.00 000 0.00 +0.00 0.00 £0.00 0.00 +0.00
Spearman 0.28 £003 0.04 £001 0.00 £000 0.00 £0.00 0.00 +£0.00 0.00 =+ 0.00
DMS-VAE Linear 0.25 +003 0.03 £001 0.00 000 0.00 +0.00 0.00 £0.00 0.00 +0.00
Spline 0.36 £002 0.28 £003 0.02 £001 0.00 £0.00 0.00 +£0.00 0.00 + 0.00
RFF 047 +002 0.11 £002 0.02 001 0.00 000 0.00 £0.00 0.00 +0.00
Laplacian 0.64 £003 0.28 £003 0.03 £001 0.00 £0.00 0.00 +£0.00 0.00 =+ 0.00
Two Stage 0.46 £003 0.06 £002 0.02 £001 0.00 +0.00 0.00 +0.00 0.00 + 0.00
NN 0.82 +002 0.72 £002 0.53 +002 0.38 £002 0.24 +001 0.20 +0.00
Pearson 0.76 £002 0.56 £002 0.39 +002 0.35 +002 0.16 002 0.14 £ o001
Spearman 0.75 £ 002 0.64 £002 0.50 £002 0.31 £003 0.18 003 0.10 +0.02
iVAE Linear 0.78 £002 0.56 002 0.41 002 0.20 +0.03 0.02 +0.01 0.00 + 0.00
Spline 0.84 +002 0.77 £002 0.61 £002 0.32 002 0.12 £002 0.00 + 0.00
RFF 0.83 +002 0.76 £002 0.63 002 0.37 003 0.19 002 0.18 +0.02
Laplacian 0.84 £002 0.78 £002 0.65 £002 0.34 £002 0.03 001 0.00 + 0.00
Two Stage 0.78 002 0.65 £002 0.54 +002 0.32 003 0.21 £002 0.22 +0.03
Temporal Sparsity Dataset
NN 0.78 £002 0.70 £002 0.48 £002 0.46 +001 0.20 +000 0.00 + 0.00
Pearson 0.68 +002 0.40 002 0.23 £003 0.20 £003 0.03 002 0.00 +0.00
Spearman 0.72 £002 0.53 £002 0.40 £002 0.11 £002 0.00 +0.00 0.00 + 0.00
DMS-VAE Linear 0.67 +002 0.41 £003 0.20 +003 0.07 £0.02 0.00 £000 0.00 +0.00
Spline 0.72 £002 0.70 £002 047 £003 0.17 £003 0.03 £ 001 0.00 + 0.00
RFF 0.76 002 0.59 002 0.37 +003 0.10 £002 0.03 002 0.01 +o0.01
Laplacian 0.80 £002 0.67 £002 0.45 +002 0.15 003 0.01 £001 0.00 + 0.00
Two Stage 0.78 £002 0.59 003 0.44 002 0.15 £002 0.01 £001 0.00 + 0.00
NN 0.83 £002 0.81 £002 0.65 £002 0.33 +001 0.25 +002 0.60 +0.00
Pearson 0.74 + 002 0.54 £003 0.30 003 0.36 £003 0.24 +003 0.23 +0.02
Spearman 0.77 £002 0.61 £003 0.47 £003 0.28 £003 0.14 £0.03 0.01 +o0.01
TCVAE Linear 0.76 £002 0.50 £002 0.36 £003 0.26 +0.03 0.18 +002 0.19 +0.03
Spline 0.79 002 0.72 £002 048 +002 0.32 003 0.24 003 0.15 +0.02
RFF 0.81 +002 0.60 £002 0.44 +003 0.30 £003 0.29 +003 0.23 +0.03
Laplacian 0.83 £002 0.70 £002 0.53 £003 0.32 £003 0.22 +003 0.12 +0.03
Two Stage 0.80 £002 0.64 £002 0.52 £002 0.32 £003 0.22 +003 0.08 +0.03
Temporal Causal3DIdent Dataset
NN 0.72 £002 0.37 £003 0.11 £002 0.00 +0.00 0.00 +0.00 0.00 + 0.00
Pearson 0.78 003 0.64 £003 0.39 +002 0.30 £002 0.14 +000 0.01 +0.01
Spearman 0.73 £003 0.63 £003 0.56 004 0.25 £004 0.09 £003 0.00 + 0.00
Linear 0.56 003 0.41 +003 0.27 £002 0.01 £000 0.00 +0.00 0.00 + 0.00
CITRIS-VAE ¢ line 0.69 002 0.59 <005 0.33 +005 0.00 =000 0.00 =000 0.00 = 0.00
RFF 0.79 002 0.63 £002 0.42 002 0.10 £002 0.01 +001 0.00 + 0.00
Laplacian 0.71 £002 0.56 002 0.35 £002 0.11 £001 0.00 £0.00 0.00 + 0.00
Two Stage 0.79 002 0.66 £003 0.59 004 0.25 +005 0.09 +003 0.00 + 0.00
NN 0.73 +003 0.46 £003 0.29 +002 0.00 000 0.00 £0.00 0.00 +0.00
Pearson 0.63 +0.04 0.47 £003 0.26 003 0.24 £003 0.00 £o.00 0.00 +0.00
Spearman 0.71 £003 0.50 £003 0.39 £002 0.11 £002 0.00 +0.00 0.00 + 0.00
iVAE Linear 0.70 £ 003 0.45 £003 0.24 +003 0.00 000 0.00 £o000 0.00 +0.00
Spline 0.69 £003 0.62 003 0.41 £003 0.02 £001 0.00 +0.00 0.00 +0.00
RFF 0.73 003 0.54 £003 0.39 £003 0.02 001 0.00 £o0.00 0.00 +0.00

Laplacian 0.69 £003 0.49 £003 0.32 £003 0.01 £001 0.00 +0.00 0.00 + 0.00
Two Stage 0.75 £003 0.55 003 0.36 £002 0.08 £002 0.00 £0.00 0.00 =+ 0.00
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Table 9: R? scores on the diagonal for the encodings learned in the Action/Temporal sparsity datasets
and the Temporal Causal3DIdent datasets. The (n) indicates the number of train and test points used
in each column. We report the mean and standard deviation over 50 random seeds and in each column
we indicate the best method by bold. If a score was below —100, we indicate this with {.

R?-score on the diagonal 1 (n)

Model Method 5 10 20 100 1000 10000
Action Sparsity Dataset
NN 0.21 +003 0.56 +001 0.68 000 0.78 +0.00 0.79 +0.00 0.79 =+ 0.00
Pearson - - - - - -
Spearman - - - - - -
DMS-VAE Linear -0.29 013 0.56 +0.02 0.72 +000 0.77 000 0.77 £0.00 0.77 +0.00
Spline 0.08 002 0.53 £001 0.78 £000 0.78 £0.00 0.79 £ 0.00
RFF -0.69 o012 0.24 002 0.59 +001 0.77 000 0.78 £0.00 0.78 +0.00
Laplacian -0.72 £ 008 -0.03 £002 0.33 £001 0.64 £001 0.70 £0.00 0.70 + 0.00
Two Stage T -1.25 + 141 0.53 £008 0.77 000 0.79 +0.00 0.79 +0.00
NN -0.36 003 -0.14 £003 0.10 £001 0.29 £000 0.31 +0.00 0.31 + 0.00
Pearson - - - - - -
Spearman - - - - - -
iVAE Linear -0.86 0.1 -0.10 £0.02 0.14 £001 0.25 £000 0.27 +0.00 0.28 + 0.00
Spline -19.24 +1332 -0.18 £ 002 0.05 001 0.24 000 0.27 £0.00 0.27 +0.00
RFF -0.93 £0.10 -0.22 £0.02 -0.02 001 0.19 £000 0.25 +0.00 0.25 +0.00
Laplacian -0.83 006 -0.23 +0.02 -0.05 £001 0.12 £000 0.17 £0.00 0.17 + 0.00
Two Stage T -1.49 £0.19 -0.28 +003 0.19 £001 0.30 000 0.31 +0.00
Temporal Sparsity Dataset
NN -2.78 £030 -0.26 £003 0.17 +001 0.38 £000 0.42 +0.00 0.43 +0.00
Pearson - - - - - -
Spearman - - - - - -
DMS-VAE Linear -0.94 1011 0.11 £002 0.32 001 0.41 £000 0.43 +000 0.43 +0.00
Spline -6.88 +4.87 -0.16 £0.03 0.17 £001 0.40 +000 0.42 +0.00 0.43 +0.00
RFF -1.00 £ 011 -0.10 £003 0.21 001 0.39 £000 0.41 +0.00 0.42 +0.00
Laplacian -1.11 +012 -0.22 £0.03 0.04 £001 0.24 +001 0.30 000 0.31 +0.00
Two Stage i -1.24 £ 0.9 -0.11 +005 0.32 001 0.43 +0.00 0.43 + 0.00
NN -3.02 £024 -0.44 £004 0.05 001 0.28 £000 0.33 +0.00 0.34 +0.00
Pearson - - - - - -
Spearman - - - - - -
TCVAE Linear -1.00 015  0.00 £0.03 0.23 +0.01 0.32 £000 0.33 +0.00 0.33 +0.00
Spline T -0.18 £ 002 0.10 001 0.30 000 0.33 +000 0.34 +0.00
RFF -0.84 £ 008 -0.13 £003 0.15 £001 0.31 £000 0.33 £0.00 0.33 +0.00
Laplacian -0.92 +010 -0.21 +£0.03 -0.01 +001 0.17 £ 001 0.23 +0.00 0.23 +0.00
Two Stage i -1.54 + 021 -0.25 +007 0.21 + 001 0.33 +0.00 0.34 + 0.00
Temporal Causal3DIdent Dataset
NN -4.11 032 -0.17 004 0.22 002 0.42 £001 0.59 +0.00 0.65 + 0.00
Pearson - - - - - -
Spearman - - - - - -
Linear -0.82 015 -0.17 £0.04 0.20 £001 0.44 £0.00 0.49 +000 0.50 + 0.00
CITRIS-VAE Spline ] -0.21 +003 0.12 +001 0.44 + 001 0.60 +0.00 0.62 +0.00
RFF -0.86 £0.15 -0.26 £0.03 -0.02 001 0.27 £001 0.46 +0.01 0.50 +0.01
Laplacian -0.80 +0.14 -0.24 £0.03 -0.02 +001 0.36 +000 0.54 +000 0.57 +0.00
Two Stage T -3.59 + 113 -0.81 +0.12 -0.60 £ 0.05 0.52 +0.01 0.62 +0.00
NN -4.29 +036 -0.23 £005 0.13 £002 0.62 £0.00 0.71 +0.00 0.74 + 0.00
Pearson - - - - - -
Spearman - - - - - -
(VAE Linear -0.88 £0.16 =-0.20 £0.03 0.14 +0.01 0.43 £000 0.47 +0.00 0.48 +0.00
Spline T -0.41 £ 015 0.01 001 0.43 000 0.55 +0.00 0.56 +0.00
RFF -0.84 £0.14 -0.26 £003 -0.01 £001 0.36 £001 0.52 +0.00 0.54 +0.00
Laplacian -0.81 + 014 -0.24 £003 0.00 001 0.34 +001 0.49 +000 0.51 +0.00
Two Stage T T -0.74 £ 0.1 -0.50 +0.06 0.54 +0.00 0.56 +0.00
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Table 10: Permutation errors when using binary concepts created based on the ground truth latent
variables in the Action/Temporal sparsity datasets and the Temporal Causal3DIdent datasets. The (n)
indicates the number of train and test points used in each column. We report the mean and standard
deviation over 10 random seeds in each column and we indicate the best method by bold.

Permutation Errors | (n)

Model Method 20 100 1000 10000
Action Sparsity Dataset
Linear 0.08 £ 0.03 0.00 = 0.00 0.00 - 0.00 0.00 + 0.00
Spline 0.08 £0.03 0.00 £ 0.00 0.00 =+ 0.00 0.00 + 0.00
DMS-VAE RFF 0.08 £ 0.03 0.00 £ 0.00 0.00 =+ 0.00 0.00 + 0.00

Laplacian  0.08 £ 0.03 0.00 £ 0.00 0.00 =+ 0.00 0.00 + 0.00
Two Stage 0.08 +0.03 0.04 £ 0.03 0.00 £ 0.00 0.00 =+ 0.00

Linear 0.65 +£0.07 0.38 +0.06 0.10 £0.05 0.00 + 0.00
Spline 0.73 £0.04 0.41 £0.05 0.14 £0.05 0.00 + 0.00
iVAE RFF 0.75 £0.03 0.45 +0.04 0.27 £0.04 0.09 +0.05

Laplacian  0.73 £0.02 0.52 £ 0.04 0.25 £0.05 0.06 & 0.04
Two Stage 0.65 £0.06 0.65 £0.04 0.31 £0.04 0.00 + 0.00

Temporal Sparsity Dataset

Linear 0.37 +£0.04 0.13 £ 0.05 0.00 £ 0.00 0.00 + 0.00
Spline 0.58 £0.04 0.16 +0.07 0.00 + 0.00 0.00 £ 0.00
DMS-VAE RFF 0.56 £0.05 0.20 +0.06 0.02 £0.02 0.00 + 0.00

Laplacian  0.60 +0.05 0.30 £ 0.07 0.02 +0.02 0.00 + 0.00
Two Stage 0.46 £0.04 0.47 £0.06 0.06 £0.03 0.00 + 0.00

Linear 0.54 £0.05 0.38 £0.06 0.32 £0.04 0.20 + 0.00
Spline 0.66 4+ 0.05 0.36 +0.07 0.21 +0.04 0.18 +0.05
TCVAE RFF 0.63 £0.04 0.36 £0.04 0.21 £0.07 0.12 +0.08

Laplacian  0.69 +0.05 0.43 +0.06 0.18 £ 0.07 0.26 4 0.08
Two Stage 0.63 £0.03 0.51 £0.03 0.31 £0.06 0.36 +0.08

Temporal Causal3DIdent Dataset

Linear 0.10 £0.05 0.06 % 0.04 0.00 + 0.00 0.00 =+ 0.00
Spline 0.07 4 0.03 0.00 + 0.00 0.00 + 0.00 0.00 + 0.00
CITRISVAE  RFF 0.33 £0.06 0.10 & 0.04 0.00 + 0.00 0.00 =+ 0.00

Laplacian  0.17 £0.04 0.00 & 0.00 0.00 £ 0.00 0.00 =+ 0.00
Two Stage 0.27 £0.05 0.34 £0.05 0.09 +£0.02 0.10 +0.02

Linear 0.06 £ 0.04 0.00 = 0.00 0.00 - 0.00 0.00 + 0.00
Spline 0.07 £0.05 0.03 £0.03 0.00 =+ 0.00 0.00 -+ 0.00
iVAE RFF 0.17 £ 0.06 0.03 £ 0.03 0.00 + 0.00 0.00 + 0.00

Laplacian  0.10 £0.05 0.03 £0.03 0.00 £ 0.00 0.00 + 0.00
Two Stage 0.11 +£0.04 0.14 £ 0.05 0.00 £ 0.00 0.00 =+ 0.00
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Table 11: Concept Accuracy and Label accuracy when using binary concepts and binary downstream
labels created based on the ground truth latent variables in the Action/Temporal sparsity datasets and
the Temporal Causal3DIdent datasets. The (n) indicates the number of train and test points used in
each column. We report the mean and standard deviation over 10 random seeds in each column and
we indicate the best method by bold.

Concept Acc 1 (n) Label Acct(n)
Model Method 20 100 1000 10000 20 100 1000 10000
Action Sparsity Dataset
Linear 0.83 +0.01 0.86 +0.00 0.85 +0.00 0.86 + 0.00 0.77 £ 0.03 0.81 £ 0.01 0.83 +0.01 0.84 +0.01
Spline 0.83 £0.01 0.86 £ 0.00 0.85 &+ 0.00 0.86 % 0.00 0.72 £ 0.03 0.83 £ 0.02 0.85 4+ 0.01 0.86 % 0.01
DMS-VAE RFF 0.82 +0.00 0.85 4 0.00 0.85 £ 0.00 0.86 =+ 0.00 0.77 £0.02 0.82 +0.02 0.84 £ 0.01 0.85 £ 0.01
Laplacian ~ 0.81 +0.01 0.85 4 0.00 0.85 & 0.00 0.86 =+ 0.00 0.75 £0.03 0.82 +0.02 0.84 +0.01 0.85 %+ 0.01
Two Stage  0.83 +0.01 0.85 4-0.00 0.86 & 0.00 0.86 - 0.00 0.72 £ 0.03 0.80 £ 0.02 0.80 £ 0.01 0.82 4 0.02
Linear 0.66 + 0.01 0.68 & 0.00 0.70 £ 0.00 0.70 =+ 0.00 0.73 £0.03 0.79 +£0.02 0.81 £ 0.01 0.83 £ 0.01
Spline 0.63 +0.01 0.68 +0.00 0.70 £ 0.00 0.70 +£ 0.00 0.69 £0.02 0.76 +0.02 0.81 &+ 0.01 0.83 £ 0.01
iVAE RFF 0.59 +£0.01 0.66 +0.01 0.68 +0.00 0.69 + 0.00 0.59 +0.04 0.70 £ 0.02 0.78 +0.01 0.81 & 0.01
Laplacian 0.59 +0.01 0.65 +0.01 0.68 £ 0.00 0.68 + 0.00 0.60 +0.04 0.70 +0.02 0.78 4 0.01 0.79 £ 0.01
Two Stage 0.64 £+ 0.01 0.65 +0.00 0.69 £ 0.00 0.70 + 0.00 0.67 +0.03 0.70 +0.02 0.79 £ 0.01 0.82 £ 0.01
CBM [28] 0.64 £0.01 0.73 £0.01 0.85 +0.00 0.91 +0.00 0.60 £ 0.03 0.60 +0.02 0.73 +0.01 0.88 + 0.01
CEM [57] 0.64 +£0.02 0.72 £ 0.01 0.86 +0.00 0.91 4 0.00 0.66 +0.02 0.69 +0.03 0.82 +0.01 0.88 + 0.01
HardCBM [17] 0.66 +0.01 0.73 +0.01 0.85 £ 0.00 0.91 + 0.00 0.56 +0.03 0.61 +0.01 0.68 £ 0.01 0.89 + 0.00
Temporal Sparsity Dataset
Linear 0.69 + 0.01 0.73 £ 0.00 0.74 +0.00 0.74 +0.00 0.75 £ 0.03 0.79 +0.01 0.84 +0.02 0.85 +0.02
Spline 0.64 +0.01 0.73 +£0.01 0.74 £ 0.00 0.74 £ 0.00 0.69 +0.03 0.79 +0.02 0.84 £+ 0.01 0.85 £ 0.01
DMS-VAE RFF 0.66 £ 0.01 0.72 +0.00 0.74 £ 0.00 0.74 + 0.00 0.74 +£0.02 0.79 £ 0.01 0.82 £ 0.01 0.84 £ 0.01
Laplacian ~ 0.64 +0.01 0.71 +0.00 0.73 & 0.00 0.73 4 0.00 0.69 +0.02 0.75 £ 0.02 0.80 +0.01 0.83 +0.01
Two Stage 0.67 £ 0.01 0.69 &+ 0.00 0.74 £ 0.00 0.74 + 0.00 0.66 +0.03 0.71 +0.02 0.80 £ 0.02 0.84 + 0.02
Linear 0.67 £0.01 0.70 +0.01 0.71 £ 0.00 0.71 £ 0.00 0.72 £0.03 0.78 +0.02 0.84 £+ 0.01 0.84 £ 0.01
Spline 0.63 £0.01 0.70 £0.01 0.71 £ 0.00 0.71 % 0.00 0.67 £0.03 0.77 £0.01 0.83 +0.02 0.84 + 0.01
TCVAE RFF 0.63 £0.01 0.69 +0.01 0.71 £ 0.00 0.71 4 0.00 0.68 +0.03 0.79 £ 0.02 0.82 +0.01 0.84 4+ 0.01
Laplacian 0.61 £0.01 0.69 &+ 0.01 0.70 £ 0.00 0.70 + 0.00 0.65 +0.03 0.74 +0.01 0.80 £ 0.01 0.82 £ 0.01
Two Stage  0.63 +0.01 0.67 +0.01 0.71 & 0.00 0.71 £ 0.00 0.71 £0.03 0.72 +0.02 0.80 +0.02 0.84 + 0.01
CBM [28] 0.64 £0.01 0.74 £0.01 0.86 +0.00 0.92 +0.00 0.53 £0.03 0.60 +0.02 0.75 +0.01 0.89 + 0.01
CEM [57] 0.66 £ 0.01 0.75 £ 0.01 0.87 & 0.00 0.92 4 0.00 0.62 £ 0.04 0.68 £ 0.02 0.82 +0.01 0.89 4 0.01
HardCBM [17] 0.64 +0.01 0.72 +0.01 0.86 £ 0.00 0.92 + 0.00 0.50 £+ 0.04 0.58 +0.02 0.71 £ 0.02 0.90 + 0.01
Temporal Causal3DIdent Dataset
Linear 0.81 + 0.01 0.85 £ 0.00 0.85 +0.00 0.85 +0.00 0.74 £0.06 0.75 £ 0.06 0.80 + 0.04 0.81 +0.04
Spline 0.80 £ 0.01 0.87 £ 0.00 0.88 & 0.00 0.89 + 0.00 0.74 £ 0.06 0.80 £ 0.04 0.82 + 0.03 0.83 + 0.03
CITRISVAE RFF 0.71 £0.01 0.81 £0.01 0.84 +0.01 0.85 % 0.01 0.70 £ 0.06 0.76 £ 0.05 0.79 £ 0.04 0.81 +0.04
Laplacian 0.76 +0.01 0.84 +0.01 0.87 £ 0.00 0.88 + 0.00 0.72 +0.06 0.78 +0.04 0.80 +0.03 0.82 + 0.03
Two Stage 0.76 £+ 0.01 0.77 +0.02 0.86 £ 0.01 0.86 + 0.00 0.72 £ 0.05 0.72 +0.06 0.77 & 0.04 0.79 + 0.04
Linear 0.81 = 0.01 0.84 £ 0.00 0.85 £ 0.00 0.85 % 0.00 0.74 £ 0.06 0.76 £ 0.05 0.78 £ 0.05 0.80 &+ 0.04
Spline 0.77 £0.01 0.84 £ 0.00 0.86 + 0.00 0.87 % 0.00 0.73 £0.06 0.78 £ 0.04 0.79 +0.04 0.81 +0.04
iVAE RFF 0.75 +0.01 0.81 +0.01 0.85 +0.00 0.86 + 0.00 0.69 +0.06 0.75 +0.05 0.78 £ 0.04 0.80 + 0.04
Laplacian 0.74 £0.01 0.81 0.00 0.85 £ 0.00 0.86 + 0.00 0.69 +0.07 0.76 +0.05 0.78 £ 0.04 0.80 £ 0.04
Two Stage  0.78 +0.01 0.82 4+ 0.01 0.86 4 0.00 0.87 4 0.00 0.77 £ 0.06 0.75 +0.05 0.75 +0.05 0.78 +0.05
CBM [28] 0.58 £0.01 0.65 +£0.01 0.73 +0.00 0.82 + 0.00 0.57 £0.02 0.53 £0.03 0.68 +0.04 0.78 +0.05
CEM [57] 0.61 +£0.01 0.64 +0.01 0.73 £ 0.00 0.82 + 0.00 0.64 +0.04 0.67 +0.03 0.72 £+ 0.05 0.78 £ 0.05
HardCBM [17] 0.60 +0.01 0.65 +0.01 0.74 £ 0.00 0.83 + 0.00 0.57 £0.05 0.53 £0.02 0.63 +£0.03 0.77 £ 0.05
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Table 12: NIS and OIS scores when using binary concepts created based on the ground truth latent
variables in the Action/Temporal sparsity datasets and the Temporal Causal3DIdent datasets. The (n)
indicates the number of train and test points used in each column. We report the mean and standard
deviation over 10 random seeds in each column and we indicate the best method by bold.

OIS-score | (n)

NIS-score | (n)

Model Method 20 100 1000 10000 20 100 1000 10000
Action Sparsity Dataset
Linear 0.63 4 0.01 0.40 4 0.00 0.15 4 0.00 0.12 4 0.00 0.50 4 0.00 0.50 4 0.00 0.50 + 0.00 0.50 + 0.00
Spline 0.63 £0.01 0.40 4 0.00 0.15 £0.00 0.12 4 0.00 0.46 £ 0.02 0.50 4 0.00 0.50 £ 0.00 0.50 = 0.00
DMS-VAE RFF 0.64 +0.01 0.39 & 0.00 0.14 £ 0.00 0.12 £ 0.00 0.47 +0.03 0.50 +0.00 0.50 £ 0.00 0.50 + 0.00
Laplacian 0.64 4 0.01 0.40 4-0.00 0.14 4 0.00 0.11 4 0.00 0.47 4 0.02 0.50 4 0.00 0.50 4 0.00 0.50 + 0.00
Two Stage 0.84 +0.02 0.42 +0.01 0.15 £ 0.00 0.13 £ 0.00 0.47 +0.03 0.57 +0.02 0.64 £ 0.00 0.65 + 0.00
Linear 0.63 +0.01 0.40 4 0.00 0.29 #+0.00 0.26 + 0.00 0.50 4+ 0.00 0.50 4 0.00 0.50 £ 0.00 0.50 + 0.00
Spline 0.63 4 0.01 0.40 4 0.00 0.28 4+ 0.00 0.26 + 0.00 0.50 £ 0.00 0.50 & 0.00 0.50 £ 0.00 0.50 =+ 0.00
iVAE RFF 0.64 4 0.01 0.39 4 0.00 0.28 4 0.00 0.26 + 0.00 0.45 4 0.02 0.50 4 0.00 0.50 4 0.00 0.50 + 0.00
Laplacian 0.64 +0.01 0.40 4+ 0.00 0.27 £ 0.00 0.25 + 0.00 0.47 +0.02 0.50 4+ 0.00 0.50 £ 0.00 0.50 + 0.00
Two Stage  0.92 +0.02 0.47 £ 0.01 0.29 +0.00 0.27 £ 0.00 0.49 4+ 0.02 0.63 +0.01 0.78 +0.01 0.81 +0.00
CBM [28] 0.92 4+ 0.01 0.43 4+0.01 0.11 4 0.00 0.07 & 0.00 0.56 4 0.03 0.63 4+ 0.01 0.63 +0.00 0.59 + 0.00
CEM [57] 0.90 +0.03 0.47 +0.01 0.40 £ 0.01 0.57 £ 0.01 0.59 +0.02 0.64 +0.01 0.71 £0.01 0.81 £ 0.01
HardCBM [17] 0.92 +£0.02 0.46 +0.01 0.12 £ 0.00 0.06 =+ 0.00 0.57 £0.02 0.63 +0.01 0.64 £ 0.00 0.59 + 0.00
Temporal Sparsity Dataset
Linear 0.62 4 0.01 0.39 4 0.00 0.26 4 0.00 0.23 4 0.00 0.50 4 0.00 0.50 4 0.00 0.50 % 0.00 0.50 + 0.00
Spline 0.62 £ 0.01 0.39 4 0.00 0.26 £ 0.00 0.23 4 0.00 0.47 £ 0.03 0.50 4 0.00 0.50 £ 0.00 0.50 = 0.00
DMS-VAE RFF 0.63 4+ 0.01 0.38 4 0.00 0.25 4+ 0.00 0.23 + 0.00 0.50 4 0.00 0.47 4+ 0.01 0.50 + 0.00 0.50 + 0.00
Laplacian 0.64 4 0.01 0.39 4 0.00 0.26 4 0.00 0.22 4 0.00 0.49 4 0.03 0.50 4 0.00 0.50 % 0.00 0.50 + 0.00
Two Stage 0.88 +0.02 0.45 4+ 0.02 0.26 £ 0.00 0.23 + 0.00 0.52 +0.03 0.62 +0.01 0.76 £ 0.01 0.80 =+ 0.00
Linear 0.62 +0.01 0.39 +0.00 0.27 £ 0.00 0.25 + 0.00 0.50 4+ 0.00 0.50 4+ 0.00 0.50 £ 0.00 0.50 + 0.00
Spline 0.62 4 0.01 0.39 4 0.00 0.27 4 0.00 0.25 4 0.00 0.50 £ 0.00 0.50 4 0.00 0.50 +0.00 0.50 =+ 0.00
TCVAE RFF 0.63 £ 0.01 0.38 4 0.00 0.27 £ 0.00 0.25 =+ 0.00 0.50 £ 0.00 0.50 4 0.00 0.50 +0.00 0.50 = 0.00
Laplacian 0.64 +0.01 0.39 +0.00 0.27 £ 0.00 0.24 + 0.00 0.50 +0.00 0.50 +0.00 0.50 £ 0.00 0.50 +£ 0.00
Two Stage ~ 0.91 +0.02 0.47 £0.01 0.28 £0.00 0.24 £ 0.00 0.49 4+ 0.02 0.63 4+ 0.01 0.79 4+ 0.01 0.82 4+ 0.01
CBM [28] 0.96 4+ 0.01 0.44 4 0.02 0.11 4 0.00 0.05 + 0.00 0.55 £0.02 0.63 +0.01 0.61 £0.00 0.57 & 0.00
CEM [57] 0.95 +0.02 0.46 +0.01 0.38 £0.01 0.54 £ 0.01 0.53 +0.02 0.65 +0.00 0.71 £ 0.01 0.81 £ 0.01
HardCBM [17] 0.93 +0.01 0.44 4+0.01 0.12 +0.00 0.05 + 0.00 0.54 4+ 0.03 0.62 4+ 0.01 0.62 +0.00 0.57 + 0.00
Temporal Causal3DIdent Dataset
Linear 0.69 4 0.02 0.44 4 0.01 0.19 +0.00 0.16 % 0.00 0.46 4 0.02 0.50 4 0.00 0.50 % 0.00 0.50 + 0.00
Spline 0.69 +0.02 0.44 +0.01 0.13 £ 0.00 0.09 + 0.00 0.41 4 0.03 0.50 4 0.00 0.50 £ 0.00 0.50 + 0.00
CITRISVAE RFF 0.65 4 0.01 0.43 +0.00 0.16 +0.01 0.13 £ 0.01 0.41 4 0.03 0.50 4 0.00 0.50 4 0.00 0.50 + 0.00
Laplacian 0.64 + 0.01 0.40 4 0.02 0.13 +0.00 0.09 =+ 0.00 0.44 £ 0.03 0.50 4 0.00 0.50 +0.00 0.50 = 0.00
Two Stage 0.88 £0.03 0.46 +0.02 0.16 & 0.01 0.14 £ 0.01 0.46 +0.03 0.52 +0.01 0.56 £ 0.01 0.59 + 0.00
Linear 0.69 +0.02 0.44 +0.01 0.17 £ 0.00 0.14 £ 0.00 0.47 +0.03 0.50 +0.00 0.50 £ 0.00 0.50 +£ 0.00
Spline 0.69 4 0.02 0.43 4 0.04 0.17 +0.00 0.13 4 0.00 0.42 4 0.03 0.50 4 0.00 0.50 4 0.00 0.50 + 0.00
iVAE RFF 0.65 +0.01 0.42 +0.02 0.16 £ 0.00 0.13 + 0.00 0.47 +0.03 0.50 4+ 0.00 0.50 £ 0.00 0.50 =+ 0.00
Laplacian 0.64 +0.01 0.43 4+0.02 0.16 +0.00 0.13 + 0.00 0.45 4+ 0.02 0.50 4 0.00 0.50 + 0.00 0.50 + 0.00
Two Stage ~ 0.89 +0.02 0.46 £0.03 0.17 £0.00 0.13 £ 0.00 0.46 4 0.04 0.52 4+ 0.01 0.55 4+ 0.01 0.58 +0.01
CBM [28] 1.00 £ 0.03 0.48 4-0.02 0.25 4 0.00 0.18 + 0.00 0.50 £+ 0.05 0.55 4+ 0.01 0.58 +0.00 0.57 4 0.00
CEM [57] 0.97 +0.05 0.51 +0.02 0.36 £ 0.01 0.49 +0.01 0.50 +0.03 0.59 +0.01 0.62 £ 0.01 0.68 £ 0.01
HardCBM [17] 0.96 4 0.03 0.47 4 0.02 0.24 4+ 0.00 0.16 + 0.00 0.51 4+ 0.02 0.55 4+ 0.01 0.58 +0.00 0.57 + 0.00
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Figure 22: Execution times of the baseline and multiple versions of our estimator on the causal
variables and encodings learned based on the Action/Temporal Sparsity Dataset and the Temporal
Causal3DIdent dataset
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Figure 23: Execution times of the concept-based models and multiple versions of our estimator on
the classification downstream tasks based on the Action/Temporal Sparsity Dataset and the Temporal
Causal3DIdent dataset
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