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Abstract:  This work presents a novel local image descriptor baseden th
concept of pointwise signal regularity. Local image regi@me extracted
using either an interest point or an interest region deteatal discrimina-
tive feature vectors are constructed by uniformly samptimg pointwise
Holderian regularity around each region center. Regulaggmation is
performed using local image oscillations, the most strtédgivard method
directly derived from the definition of the dfder exponent. Furthermore,
estimating the ldlder exponent in this manner has proven to be superior,
in most cases, when compared to wavelet based estimatioaashown

in previous work. Our detector shows invariance to illuniima change,
JPEG compression, image rotation and scale change. Rehulte that
the proposed descriptor is stable with respect to variationimaging
conditions, and reliable performance metrics prove it te@®parable and

in some instances better than SIFT, the state-of-the-éotal descriptors.
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1. Introduction

The feature extraction problem, in the domain of image aiglyystems, poses two main re-
search questions. How calistinctiveareas within an image ka#etected And, how can dis-
tinctive areas bdescribedin such a way as to facilitate their identification? The maneepts

to be taken from those questions are: detection and ddscrigfoncerning the former, the
detection problem, a mainstay in vision systems are int@aat or interest region extraction
algorithms. These techniques search for image pixels, agémegions, that exhibit high sig-
nal variations with respect to a particular local measuotuttbns have been designed based on
studying intrinsic properties of 2D-signals [1], and mageently a novel methodology has been
proposed that solves a properly framed optimization prolded automatically synthesizes in-
terest point operators with Genetic Programming [2, 3].dsponse to the second question,
dealing with the concept of description, different teclugg have been proposed that encode
the information within these so called interesting regiddsnce, discriminative feature are
constructed that uniquely characterize each interesbmegiThis in turn allows for efficient
feature matching in a wide range of imaging problems. Citilyethe SIFT [4] descriptor has
proven to be the most discriminative local descriptor in hiiae vision literature, and shows
the highest performance with respect to the current setrudtomark tests [5].

This paper presents a novel region descriptor based on tieepbof Hilderian regularity.
By approximating the pointwise dider exponent, also known as the Lipschitz exponent, us-
ing local signal oscillations around each image point, weable to construct discriminative
feature vectors. Our proposed descriptor is invariant tersé types of changes in viewing
conditions, exhibiting high and stable performance. Adistlte main contribution of this work
is that it introduces novel concepts to the field of featuraetion algorithms, using formal
mathematical tools and corroborated by high performancsamdard tests.

The remainder of this paper is organized as follows. SeQ@igives a brief overview of
related work. Section 3 presents the concept ofddrian regularity and how to estimate it.
Section 4 introduces our local descriptor based on poietiigder exponents. Later in Section
5, experimental results are provided. Section 6 presemtsusions and outline future work.

2. Related work

It is not our intention to give a comprehensive summary onsthigect of local descriptors,
such a discussion can be found in Ref. [5]. Hence, we will dotys on presenting the basic
strategies followed by the most common type of region detsctlistribution based descriptors,
and discuss the SIFT strategy.

Currently, most state-of-the-art local descriptors uses&ridution based approach. These
techniques characterize image information using locabgiams of a particular measure re-
lated to shape or appearance. The most simple would be ussitogytams of pixel intensities,
while more complex representations could be based on reqtiag texture characteristics. The
most successful descriptor currently available in compuiton literature is SIFT, developed
by David Lowe in [4], which builds an histogram of gradienstributions within an interest re-
gion. The descriptor builds a 3D histogram of gradient lmcet and orientations, weighted by
the gradient magnitudes. Although SIFT combines both aesoaariant detector with the gra-
dient distribution descriptor, only the latter has proveottperform other types of techniques,
and it is possible to replace the former with a more reliabtgan detector.
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3. Holder regularity

One of the most popular ways to measure the regularity ofraakide it pointwise or local, is
to consider Hlder spaces. Hence, we will present the concept of regukexjpressed through
the Holder exponent.

DEFINITION 1.Let f : 0 — O,se O™\ N andxg € 0. Then,f € C5(xg) & In € 0, a
polynomP of degree< sand a constart such that

VX € B(x0,1), | f(X) = P(x—X0)| < c|x—Xo|*. 1)

The pointwise Hlder exponent of atXg is ap = sup { f € C3(xo)} (see Fig. 1).

Fig. 1. Hilderian envelope of signdlat pointxg.

The concept of signal regularity, characterized by tliédidr exponent, has been widely used
in fractal analysis [6]. With regards to image analysis Hiddder exponent provides a great deal
of information related to the local structure around eacimtpdience, it has been applied to
such tasks as edge detection [7] and image interpolatior-[8thermore, because most local
image descriptors are fundamentally attempting to desddbal image variations and overall
structure, it is a natural conclusion to expect thatdérian regularity will prove to be a useful
tool in this task.

3.1. Estimating the Blder exponent with oscillations

The most natural way to estimate thélber exponent, because it follows from its definition,
consists in studying the oscillations around each points Tiethod gives accurate results,
better than those obtained using wavelet analysis in mestd8], hence it will be the technique
of choice to compute our proposed descriptor. A brief desion of this technique will now
be given, for a more detailed analysis please see Ref. [L3.dointed out that the &lder
exponent of functiorf (t) att is ap € [0, 1], if a constant exists such that t’ in a vicinity oft,

[f(t) — f(t))] < clt—t']. )

In terms of signal oscillations, this condition can be veritias: a functiorf (t) is Holderian
with exponentorp € [0,1] att if 3¢ V1 such thabsg (t) < ct, with

osg(t)= sup f(t')— inf ft')= sup [f(t')—f(t")|. (3)
[t—t|<t t—t'|<t t t Eft—T t+1]

An estimation of the regularity will be built at each point bgmputing the slope of the
regression between the logarithm of the oscillation anddbarithm of the dimension of the
neighborhood at which one calculates the oscillation. Faonalgorithmic point of view, it is
preferable not to use all sizes of neighborhoods betweernval@styin and Tmax. Hence, we
calculate the oscillation at poitbnly on intervals of the fornt — 7, : t 4 1;], wheret, = basé.
Here, we use least squares regression, Withke= 2 andr = 1,2,...,7. For a 2D signalf
defines a point in 2D space amda radius around, such that the Euclidian distanced’,t)
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Fig. 2. Estimating the Blder exponent with oscillationd.eft: the region of interesa,
and three of the seven neighborhoods around poimthenr = 1,2,---,7. Center: the
neighborhood of radiuss = 32 pixels, withbase= 2. Right: computing the supremum of
the differences within radius;, whered denotes the Euclidian distance.

andd(t” t) are< 1;. We can visualize this process in Fig. 2. The method is ridiabder three
conditions: thatrp < 1, the regression converges, and it converges towardscaslafie.

4. Holder descriptor

Now that we have described a method to accurately charaetiw pointwise signal regularity,
we can now move on to describe how we use this informationitd bur local descriptors. The
process, described in Fig. 3, is as follows. First, a'set regions of interest are extracted from

REGION
DETECTOR
A &>
Regions
] |
¥ Region ) I
18, =129 Rings of radii:

1 | 3
Z'SME'SA»Z'SMSL

Fig. 3. Descriptor building process. First, a region detector extrats A séinteresting
regions. ThenyA € A we compute a decriptad, . A descriptor contains the dider ex-
ponent at the region centéx, .y, ), and of 32 points on the perimeter of four concentric
rings, each ring with radii of -5y, 3 -s3, 2 -5, ands; respectively.

an image. Second, the dominant gradient orientagipiis computed, this preserves rotation
invariance. Finally, our feature vectd contains the llder exponentr, of the region center
and of 128 concentric points, ordered accordingjto

Region extraction: The first step in the process requires stable detection @nsaimage
regions. The type of regions to be extracted will depend errélquirement of the higher level
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application with respect to invariance. For instance, s&erést point detector will suffice when
the scale of the imaged scene is not modified. In our work, veeaudetector optimized for
geometric stability and global point separability, the FFZdetector which is the determinant
of the Hessian matrix smoothed by a 2D Gaussian kernel [AlBlegions extracted with an
interest point detector are assigned the same smegle, 2.5 pixels. For images where scale is a
factor, we use the Hessian-Laplace detector presentedfifilRg which searches for extrema
in a linear scale space generated with a Gaussian kernel. thfs step we are left with a sat

of circular regions, the scale is setgp= 5-w,, andw, is the scale given by the detector.

Dominant orientation: In order to preserve rotation invariance, the dominantigrecbri-
entation is computed and used as a reference for the sulvdesgumepling process. For the scale
invariant detector, all image regions are normalized to441kit size using bicubic interpo-
lation. An orientation histogram is constructed using gatlorientations within the interest
region, similar to what is described in Ref. [4]. The hisengrpeak is obtained and thda € A
a corresponding dominant orientatigp is assigned. In this way, each region is described by a
setA = {X;,¥x,S, @ }, the region center, scale and orientation of the region.

Descriptor: Now that regions are appropriately detected and descriliddAwwe can now
continue to construct our region descripdgrvA € A. Our sampling process is simple, see Fig.
3, the first element 0, is the Hilder exponentr, computed at the region centéx, .y, ).
Next, the Holder exponent of points on the perimeter of four concenminigs are sampled, with
radii of }1 Sy, %s;\, %SA ands, respectively. A total of 32 points on each ring are sampled,
starting from the position given by , uniformly spaced and ordered counterclockwise. Hence,
our feature vectod, has 129 dimensions, compared to the 128 of SIFT. The choitkeof
parameters, such as the size of the rings and the number piesaaints, is related with the
challenge of building a discriminative descriptor whiletla¢ same time maintaining a com-
pact representation. A problem faced by any attempt to deseceal-world information. The
final values were selected empirically, guided by experitaemnins, however an optimization
process could be advantageous, i.e. evolutionary comiputat

5. Experimental results

In order to effectively evaluate and compare our resultsysesstandard image sequences pro-
vided by the Visual Geometry Group [12]. From each sequelneeetis one reference image
and a set of test images. Due to prior knowledge of the tramsftion between the reference
and test images, we can quantify a matching score. Samplgesrand experimental results
using the following performance metrics are shown in Fig\é.evaluate with threshold based
matching, where two image regioig and A, are matched if the following relation holds:
d(dy,,9,) < 4. The value ofd is varied to obtain two types of performance curves: onesplot
Recallversusl-Precision characterizing the matching between one test image ancktee
ence image (row 3) [5]; the other, is a douglaxisplot, one axis for averag@ecalland the
other for averagd-Precision that characterizes the performance of the descriptor ana c
plete sequence (rows 4 & Frecall/1-Precisiorgives the number of correct and false matches
between two imagesRkecallis the number of correctly matched regions with respect o th
number of corresponding regions between two images of time sgene. The number of false
matches relative to the total number of matches is repreddnt 1-Precision A perfect de-
scriptor would give &Recallequal to 1 for anyPrecision Recalland1-precisionare defined as

in Ref. [5]: Recall= %mgsand 1 Precision= g_-asemaiches ___ Note that
the second type of plot, includes errorbars to visualizesthbility of the descriptor. The per-
formance of our descriptor is compared against SIFT. To edenSIFT descriptors, the Harris
and Harris-Laplace detectors were used to extract imagenggexecutables obtained from
Ref. [12]). Figure 4 exhibits the following patterrRotation: the Holder descriptor outper-
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Fig. 4.Columns, left to right: 1) Rotation (36 images in sequence), 2) lllumination change
(10 images), 3) JPEG compression (6 images), and 4) Scale chfasgé (mages of se-
guence)Rows top to bottom: 1) Reference image, 2) Test Image, 3) Performagtaebn
test and reference withdtder in green and SIFT in red, plottifRecallvs. 1-Precision 4)

& 5) Average performance on the complete image sequence for SiEHalder respec-
tively (y-axiswith Recallin blue andl-Precisionin green and threshold oraxig.

forms SIFT, with higheRecalland bettePrecision lllumination & JPEG : very comparable
overall performanceScale both exhibit the same performance patterns with SIFT cbeisily
better.

6. Conclusions and future work

Results show very promising experimental results, in g@nee can appreciate how the regu-
larity and SIFT descriptors exhibit comparable perforngarr image rotation and illumina-
tion change, our BElder descriptor is consistently better, with the oppdséang true for JPEG
compression and scale change. In the case of scale chaagmrtbrmance of our descriptor
is expected to be directly related to the method ofdér exponent estimation. For this reason,
an appropriate modification of the oscillations method isassary. For image compression, it
is a consequence of the intrinsic change in image reguliawdiyced by this transformation.
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