
Published as a conference paper at ICLR 2022

OFFLINE REINFORCEMENT LEARNING WITH VALUE-
BASED EPISODIC MEMORY

Xiaoteng Ma1∗, Yiqin Yang1∗, Hao Hu2∗, Qihan Liu1,
Jun Yang1†, Chongjie Zhang2†, Qianchuan Zhao1, Bin Liang1
1Department of Automation, Tsinghua University
2Institute for Interdisciplinary Information Sciences, Tsinghua University
{ma-xt17,yangyiqi19,hu-h19,lqh20}@mails.tsinghua.edu.edu
{yangjun603,chongjie,zhaoqc,bliang}@tsinghua.edu.cn

ABSTRACT

Offline reinforcement learning (RL) shows promise of applying RL to real-world
problems by effectively utilizing previously collected data. Most existing offline
RL algorithms use regularization or constraints to suppress extrapolation error for
actions outside the dataset. In this paper, we adopt a different framework, which
learns the V -function instead of the Q-function to naturally keep the learning pro-
cedure within the offline dataset. To enable effective generalization while main-
taining proper conservatism in offline learning, we propose Expectile V -Learning
(EVL), which smoothly interpolates between the optimal value learning and be-
havior cloning. Further, we introduce implicit planning along offline trajectories
to enhance learned V -values and accelerate convergence. Together, we present
a new offline method called Value-based Episodic Memory (VEM). We provide
theoretical analysis for the convergence properties of our proposed VEM method,
and empirical results in the D4RL benchmark show that our method achieves su-
perior performance in most tasks, particularly in sparse-reward tasks. Our code is
public online at https://github.com/YiqinYang/VEM.

1 INTRODUCTION

Despite the great success of deep reinforcement learning (RL) in various domains, most current al-
gorithms rely on interactions with the environment to learn through trial and error. In real-world
problems, particularly in risky and safety-crucial scenarios, interactions with the environment can
be expensive and unsafe, and only offline collected datasets are available, such as the expert demon-
stration or previously logged data. This growing demand has led to the emergence of offline rein-
forcement learning (offline RL) to conduct RL in a supervised manner.

The main challenge of offline RL comes from the actions out of the dataset’s support (Kumar et al.,
2019; 2020). The evaluation of these actions that do not appear in the dataset relies on the gener-
alization of the value network, which may exhibit extrapolation error (Fujimoto et al., 2019). This
error can be magnified through bootstrapping, leading to severe estimation errors. A rapidly devel-
oping line of recent work (Fujimoto et al., 2019; Kumar et al., 2020; Ghasemipour et al., 2021; Yang
et al., 2021) utilizes various methods to constrain optimistic estimation on unseen actions, such as
restricting available actions with a learned behavior model (Fujimoto et al., 2019) or penalizing the
unseen actions with additional regularization (Kumar et al., 2020). However, confining learning
within the distribution of the dataset can be insufficient for reducing extrapolation errors.

Another line of methods, on the contrary, uses the returns of the behavior policy as the signal for
policy learning, as adopted in Wang et al. (2018); Peng et al. (2019); Chen et al. (2020). By doing
so, they keep the value learning procedure completely within the dataset. However, the behavior
policy of the dataset can be imperfect and insufficient to guide policy learning. To achieve a trade-
off between imitation learning and optimal value learning while confines learning within the dataset,

*Equal contribution. Listing order is random.
†Equal advising.

1

https://github.com/YiqinYang/VEM

Published as a conference paper at ICLR 2022

Trajs 0 1 2 3 … T-1 TTrans Value

Memory Episodic Memory

Regularization/
Constraint

Q-based Offline RL V-based Episodic Memory

Improvement Improvement

Expectile V-Learning

Update Memory
Evaluation

Update Target

Figure 1: The diagram of algorithms. The left side denotes the general Q-based offline RL methods.
The right side is the framework of our proposed approach (VEM). Q-based methods learns boot-
strapped Q-values, but requires additional constraint or penalty for actions out of the dataset. Our
method, on the contrary, learns bootstrapped V -values while being completely confined within the
dataset without any regularization.

we propose Expectile V -learning (EVL), which is based on a new expectile operator that smoothly
interpolates between the Bellman expectation operator and optimality operator.

To better solve long-horizon and sparse-reward tasks, we further propose using value-based plan-
ning to improve the advantage estimation for policy learning. We adopt an implicit memory-based
planning scheme that strictly plans within offline trajectories to compute the advantages effectively,
as proposed in recent advances in episodic memory-based methods (Hu et al., 2021). Together, we
present our novel framework for offline RL, Value-based Episodic Memory (VEM), which uses ex-
pectile V -learning to approximate the optimal value with offline data and conduct implicit memory-
based planning to further enhance advantage estimation. With the properly learned advantage func-
tion, VEM trains the policy network in a simple regression manner. We demonstrate our algorithm
in Figure 1, and a formal description of our algorithm is provided in Algorithm 1.

The contributions of this paper are threefold. First, we present a new offline V -learning method,
EVL, and a novel offline RL framework, VEM. EVL learns the value function through the trade-offs
between imitation learning and optimal value learning. VEM uses a memory-based planning scheme
to enhance advantage estimation and conduct policy learning in a regression manner. Second, we
theoretically analyze our proposed algorithm’s convergence properties and the trade-off between
contraction rate, fixed-point bias, and variance. Specifically, we show that VEM is provably con-
vergent and enjoys a low concentration rate with a small fixed-point bias. Finally, we evaluate our
method in the offline RL benchmark D4RL (Fu et al., 2020). Comparing with other baselines, VEM
achieves superior performance, especially in the sparse reward tasks like AntMaze and Adroit. The
ablation study shows that VEM yields accurate value estimates and is robust to extrapolation errors.

2 BACKGROUND

Preliminaries. We consider a Markov Decision Process (MDP)M defined by a tuple (S,A, P, r, γ),
where S is the state space, A is the action space, P (· | s, a) : S × A × S → R is the transition
distribution function, r(s, a) : S×A → R is the reward function and γ ∈ [0, 1) is the discount factor.
We say an environment is deterministic if P (s′ | s, a) = δ(s′ = f(s, a)) for some deterministic
transition function f , where δ(·) is the Dirac function. The goal of an RL agent is to learn a policy
π : S × A → R, which maximizes the expectation of a discounted cumulative reward: J (π) =
Es0∼ρ0,at∼π(·|st),st+1∼P (·|st,at) [

∑∞
t=0 γ

tr(st, at)], where ρ0 is the distribution of the initial states.

Value-based Offline Reinforcement Learning Methods. Current offline RL methods can be
roughly divided into two categories according to types of learned value function: Q-based and
V -based methods. Q-based methods, such as BCQ (Fujimoto et al., 2019), learn Q-function for
policy learning and avoid selecting unfamiliar actions via constraints or penalty. On the contrary,
V -based methods (Peng et al., 2019; Siegel et al., 2020; Chen et al., 2020) learns the value of be-
havior policy V µ(s) with the trajectories in the offline dataset D and update policy as a regression
problem. Based on the learned V -function, V -based methods like AWR (Peng et al., 2019) updates
the policy using advantage-weighted regression, where each state-action pair is weighted according

2

Published as a conference paper at ICLR 2022

to the exponentiated advantage:

max
φ
Jπ(φ) = E(st,at)∼D [log πφ(at | st) exp (Rt − V µ(st))] . (1)

Episodic Memory-Based Methods. Inspired by psychobiology, episodic memory-based methods
store experiences in a non-parametric table to fast retrieve past successful strategies when encoun-
tering similar states. Model-free episodic control (Blundell et al., 2016a) updates the memory table
by taking the maximum return R(s, a) among all rollouts starting from same state-action pair (s, a).
Hu et al. (2021) proposes Generalizable Episodic Memory, which extends this idea to the continuous
domain, and proposes updating formula with a parametric memory QEMθ .

3 METHOD

In this section, we describe our novel offline method, value-based episodic memory, as depicted in
Figure 1. VEM uses expectile V -learning (EVL) to learn V -functions while confines value learning
within the dataset to reduce extrapolation error. EVL uses an expectile operator that interpolates
between Bellman expectation operator and optimality operator to balance behavior cloning and op-
timal value learning. Further, VEM integrates memory-based planning to improve the advantage
estimation and accelerate the convergence of EVL. Finally, generalized advantage-weighted learn-
ing is used for policy learning with enhanced advantage estimation. A formal description for the
VEM algorithm is shown in Algorithm 1 in Appendix A.1.

3.1 EXPECTILE V-LEARNING

To achieve a balance between behavior cloning and optimal value learning, we consider the Bellman
expectile operator defined as follows:

((T µτ)V)(s) := arg min
v

Ea∼µ(·|s)
[
τ [δ(s, a)]2+ + (1− τ)[δ(s, a)]2−

]
(2)

where µ is the behavior policy, δ(s, a) = Es′∼P (·|s,a)[r(s, a) + γV (s′)− v] is the expected one-
step TD error, [·]+ = max(·, 0) and [·]− = min(·, 0). This operator resembles the expectile statis-
tics (Newey & Powell, 1987; Rowland et al., 2019) and hence its name. We can see that when
τ = 1/2, this operator is reduced to Bellman expectation operator, while when τ → 1, this operator
approaches Bellman optimality operator, as depicted in Lemma 3.

0.3 0.4 0.5 0.6 0.7 0.8 0.9

τ

−100

0

100

200

300

M
ea

n
S

ta
te

V
al

u
e

noise

0.0

0.1

0.2

0.3

0.4

Figure 2: Trade-offs of EVL between gen-
eralization and conservatism in a random
MDP. The green line shows the optimal
value and the blue line shows the value of
behavior policy. The curve is averaged over
20 MDPs.

We use the following toy example to further illustrate
the trade-offs achieved by EVL. Consider a random
generated MDP. When the operator can be applied
exactly, the Bellman optimality operator is sufficient
to learn the optimal value V ∗. However, applying
operators with an offline dataset raises a noise on the
actual operator due to the estimation error with finite
and biased data. We simulate this effect by adding
random Gaussian noise to the operator. Applying the
optimality operator on offline datasets can lead to se-
vere overestimation due to the maximization bias and
bootstrapping. The value estimation learned by EVL,
on the contrary, achieves a trade-off between learning
optimal policy and behavior cloning and can be close
to the optimal value with proper chosen τ , as depicted
in Figure 2. The noise upon the operator largely de-
pends on the size of the dataset. Estimation error can
be significant with insufficent data. In this case, we
need a small τ to be conservative and be close to be-
havior cloning. When the dataset is large and we are
able to have an accurate estimation for the operator,
we can use a larger τ to recover the optimal policy. By adjusting τ , the expectile operator can ac-
commodate variant types of datasets. However, the expectile operator in Equation 2 does not have a

3

Published as a conference paper at ICLR 2022

closed-form solution. In practice, we consider the one-step gradient expectile operator

((Tg)µτV)(s) = V (s) + 2αEa∼µ(·|s)
[
τ [δ(s, a)]+ + (1− τ)[δ(s, a)]−

]
, (3)

where α is the step-size. Please refer to Appendix B.1 for the detailed derivation. For notational
convenience, we use T µτ to denote the one-step gradient expectile operator (Tg)µτ hereafter.

We consider the case where the dynamics are nearly-deterministic like robotic applications, and
we remove the expectation over the next states in the operator. This leads to a practical algorithm,
Expectile V -Learning, where we train the value network to minimize the following loss:

JV (θ) = E(s,a,s′)∼D

[(
V̂ (s)− Vθ (s)

)2]
,

V̂ (s) = Vθ′(s) + 2α
[
τ [δ(s, a, s′)]+ + (1− τ)[δ(s, a, s′)]−

]
,

(4)

where V̂ is the target value after applying one-step gradient expectile operator and δ(s, a, s′) =

r(s, a) + γVθ′(s
′) − Vθ′(s). V -function and the target V̂ -function are parameterized by θ and θ′,

respectively. EVL is guaranteed to converge with concentration rate γτ = 1−2(1−γ)αmax{τ, 1−
τ}. Please refer to Section 4 for a detailed analysis.

3.2 IMPLICIT MEMORY-BASED PLANNING

Although EVL reduces the extrapolation error, it is still a challenging problem to bootstrap over
long time horizons due to estimation errors with a fixed dataset. Therefore, we propose using value-
based planning to conduct bootstrapping more efficiently. We adopt an implicit memory-based
planning scheme that strictly plans within offline trajectories to avoid over-optimistic estimations in
the planning phase. This is aligned with recent advances in episodic memory-based methods (Hu
et al., 2021), but we conduct this planning on expectile V -values rather than Q-values. Specifically,
we compare the best return so far along the trajectory with the value estimates V̂ and takes the
maximum between them to get the augmented return R̂t:

R̂t =

{
rt + γmax(R̂t+1, V̂ (st+1)), if t < T,

rt, if t = T,
(5)

where t denotes steps along the trajectory, T is the episode length, and V̂ is generalized from similar
experiences. This procedure is conducted recursively from the last step to the first step along the
trajectory, forming an implicit planning scheme within the dataset to aggregate experiences along
and across trajectories. Further, the back-propagation process in Equation 5 can be unrolled and
rewritten as follows:

R̂t = max
0<n≤nmax

V̂t,n, V̂t,n =

{
rt + γV̂t+1,n−1 if n > 0,

V̂ (st) if n = 0,
(6)

where n denotes different length of rollout steps and V̂t,n = 0 for n > T .

3.3 GENERALIZED ADVANTAGE-WEIGHTED LEARNING

Based on R̂t calculated in Section 3.2, we can conduct policy learning in a regression form, as
adopted in return-based offline RL methods (Nair et al., 2020; Siegel et al., 2020; Peng et al., 2019):

max
φ
Jπ(φ) = E(st,at)∼D

[
log πφ(at | st) · f

(
Â(st, at)

)]
, (7)

where Â(st, at) = R̂t − V̂ (st) and f is an increasing, non-negative function. Please refer to Ap-
pendix C.1 for the detailed implementation of Equation 7. Note that R̂t is not the vanilla returns in
the dataset, but the enhanced estimation calculated by implicit planning from V̂t, as opposed with
other return based methods. Please refer to Algorithm 1 and Section 4 for implementation details
and theoretical analysis.

4

Published as a conference paper at ICLR 2022

4 THEORETICAL ANALYSIS

In this section, we first derive the convergence property of expectile V -Learning. Then, we demon-
strate that memory-based planning accelerates the convergence of the EVL. Finally, we design a toy
example to demonstrate these theoretical analyses empirically. Please refer to Appendix B for the
detailed proofs of the following analysis.

4.1 CONVERGENCE PROPERTY OF THE EXPECTILE V-LEARNING

In this section, we assume the environment is deterministic. We derive the contraction property of
T µτ as the following statement:
Lemma 1. For any τ ∈ (0, 1), T µτ is a γτ -contraction, where γτ = 1− 2α(1− γ) min{τ, 1− τ}.

Proof. We introduce two more operators to simplify the analysis:

(T µ+ V)(s) = V (s) + Ea∼µ[δ(s, a)]+, (T µ−V)(s) = V (s) + Ea∼µ[δ(s, a)]−. (8)

Next we show that both operators are non-expansion (e.g., ‖T µ+ V1 − T µ+ V2‖∞ ≤ ‖V1 − V2‖∞).
Finally, we rewrite T µτ based on T µ+ and T µ− and we prove that T µτ is a γτ -contraction. Please refer
to Appendix B.2 for the complete proof.

Based on Lemma 1, we give a discussion about the step-size α and the fraction τ :

About the step-size α. Generally, we always want a larger α. However, α must satisfy that
V (s) + 2ατδ(s, a) ≤ max{r(s, a) +γV (s′), V (s)} and V (s) + 2α(1− τ)δ(s, a) ≥ min{r(s, a) +
γV (s′), V (s)}, otherwise the V -value will be overestimated. Thus, we must have 2ατ ≤ 1
and 2α(1 − τ) ≤ 1, which infers that α ≤ 1

2max{τ,1−τ} . When α = 1
2max{τ,1−τ} , we have

γτ = 1− 2αmin{τ, 1− τ}(1− γ) = 1− min{τ,1−τ}
max{τ,1−τ} (1− γ).

About the fraction τ . It is easy to verify that γτ approaches to 1 when τ → 0 or τ → 1, which
means that with a larger τ the contractive property is getting weaker. The choice of τ makes a trade-
off between the learning stability and the optimality of values. We further point out that when τ = 1,
the Expectile V -learning degrades as a special case of the generalized self-imitation learning (Tang,
2020), which losses the contractive property.

Next, we prove that T µτ is monotonous improving with respect to τ :
Lemma 2. For any τ, τ ′ ∈ (0, 1), if τ ′ ≥ τ , we have T µτ ′V (s) ≥ T µτ V (s),∀s ∈ S.

Based on the Lemma 2, we derive that V ∗τ is monotonous improving with respect to τ :
Proposition 1. Let V ∗τ denote the fixed point of T µτ . For any τ, τ ′ ∈ (0, 1), if τ ′ ≥ τ , we have
V ∗τ ′(s) ≥ V ∗τ (s), ∀s ∈ S.

Further, we derive that V ∗τ gradually approaches V ∗ with respect to τ :
Lemma 3. Let V ∗ denote the fixed point of Bellman optimality operator T ∗. In the deterministic
MDP, we have limτ→1 V

∗
τ = V ∗.

Based on the above analysis, we have the following conclusion:
Remark 1. By choosing a suitable τ , we can achieve the trade-off between the contraction rate and
the fixed point bias. Particularly, a larger τ introduces a smaller fixed point bias between V ∗τ and
V ∗, and produces a larger contraction rate γτ simultaneously.

4.2 VALUE-BASED EPISODIC MEMORY

In this part, we demonstrate that the memory-based planning effectively accelerates the convergence
of the EVL. We first define the VEM operator as:

(TvemV)(s) = max
1≤n≤nmax

{(T µ)n−1T µτ V (s)}, (9)

5

Published as a conference paper at ICLR 2022

2.5 3.0 3.5

Bias

0.65

0.70

0.75

0.80

0.85

0.90

C
on

tr
ac

ti
on

R
at

e

0.7 0.8 0.9

Contraction Rate

0.10

0.15

0.20

V
ar

ia
n

ce

(a) The maximal rollout step nmax.

0 1 2

Bias

0.35

0.40

0.45

0.50

C
on

tr
ac

ti
on

R
at

e

0.35 0.40 0.45 0.50

Contraction Rate

0.0

0.1

0.2

0.3

0.4

V
ar

ia
n

ce

(b) The different behavior policies.

Figure 3: A toy example in the random MDP. In both figures, the color darkens with a larger τ
(τ ∈ {0.6, 0.7, 0.8, 0.9}). The size of the spots is proportional to the relative scale of the third
variable: (a) Change nmax. From magenta to blue, nmax is set as 1, 2, 3, 4 in order. (b) Change the
behavior polices µ, where µ(s) = softmax(Q∗(s, ·)/α). From light yellow to dark red, the α is set
as 0.1, 0.3, 1, 3 in order.

where nmax is the maximal rollout step for memory control. Then, we derive that multi-step esti-
mation operator Tvem does not change the fixed point and contraction property of T µτ :

Lemma 4. Given τ ∈ (0, 1) and nmax ∈ N+, Tvem is a γτ -contraction. If τ > 1
2 , Tvem has the

same fixed point as T µτ .

Next, we derive that the contraction rate of Tvem depends on the dataset quality. Further, we demon-
strate that the convergence rate of Tvem is quicker than T µτ even the behavior policy µ is random:

Lemma 5. When the current value estimates V (s) are much lower than the value of behavior policy,
Tvem provides an optimistic update. Formally, we have

|TvemV (s)− V ∗τ (s)| ≤ γn∗(s)−1γτ‖V − V µn∗,τ‖∞ + ‖V µn∗,τ − V ∗τ ‖∞,∀s ∈ S, (10)

where n∗(s) = arg max0<n≤nmax
{(T µ)n−1T µτ V (s)}, V µn∗,τ is the fixed point of (T µ)n

∗(s)−1T µτ
and it is the optimal rollout value starting from s.

This lemma demonstrates that Tvem can provide an optimistic update for pessimistic value estimates.
Specifically, the scale of the update depends on the quality of the datasets. If the behavior policy µ
is expert, which means V µn∗,τ is close to V ∗τ . Then, following the lemma, the contraction rate will be
near to γn

∗(s)−1γτ . Moreover, if the initial value estimates are pessimistic (e.g., the initialized value
function with zeros), we will have n∗(s) ≈ nmax, indicating that the value update will be extremely
fast towards a lower bound of V ∗τ . On the contrary, if µ is random, we have n∗(s) ≈ 1 and the value
update will be slow towards V ∗τ .

Remark 2. By choosing a suitable nmax, we can achieve the trade-off between the contraction
rate and the estimation variance, i.e., a larger nmax yields a fast update towards a lower bound of
fixed point and tolerable variances empirically. Meanwhile, the choice of nmax does not introduce
additional bias, and the fixed point bias is totally controlled by τ .

4.3 TOY EXAMPLE

We design a toy example in the random deterministic MDP to empirically demonstrate the above
analysis. Following (Rowland et al., 2020), we adopt three indicators, including update variance,
fixed-point bias, and contraction rate, which is shown in Figure 3. Specifically, the contraction rate
is supV 6=V ′ ‖TvemV − TvemV ′‖∞/‖V − V ′‖∞, the bias is ‖V ∗vem − V ∗‖∞ and the variance is

E
[
‖T̂ V − TvemV ‖22

] 1
2

, where T̂vem is the stochastic approximation of Tvem and V ∗vem is the fixed
pointed of Tvem. First, the experimental results in Figure 3(a) demonstrate that the relationship
of n-step estimation and τ . Formally, the contraction rate decreases as n becomes larger, and the
fixed-point bias increases as τ becomes smaller, which are consistent with Lemma 1 and Lemma 2.
Figure 3(a) also shows that the variance is positively correlated with n. Second, the experimental
results in Figure 3(b) demonstrate that the relationship of dataset quality and τ . The higher dataset
quality corresponds to the lower contraction rate and variance, which is consistent with Lemma 5.

6

Published as a conference paper at ICLR 2022

(a) Large (b) Medium (c) Umaze

Figure 4: Visualization of the value estimation in various AntMaze tasks. Darker colors correspond
to the higher value estimation. Each map has several terminals (golden stars) and one of which is
reached by the agent (the light red star). The red line is the trajectory of the ant.

5 RELATED WORK

Offline Reinforcement Learning. Offline RL methods (Kumar et al., 2019; Siegel et al., 2020;
Argenson & Dulac-Arnold, 2020; Wu et al., 2021; Dadashi et al., 2021; Kostrikov et al., 2021; Jin
et al., 2021; Rashidinejad et al., 2021) can be roughly divided into policy constraint, pessimistic
value estimation, and model-based methods. Policy constraint methods aim to keep the policy to be
close to the behavior under a probabilistic distance (Fujimoto et al., 2019; Peng et al., 2019; Nair
et al., 2020). Pessimistic value estimation methods like CQL (Kumar et al., 2020) enforces a regu-
larization constraint on the critic loss to penalize overgeneralization. Model-based methods attempt
to learn a model from offline data, with minimal modification to the policy learning (Kidambi et al.,
2020; Yu et al., 2020; Janner et al., 2019). However, these methods have to introduce additional be-
havioral policy models, dynamics models, or regularization terms (Zhang et al., 2020b;a; Lee et al.,
2021). Another line of methods uses empirical return as the signal for policy learning, which con-
fines learning within the dataset but leads to limited performance (Levine et al., 2020; Geist et al.,
2019; Wang et al., 2021).

Episodic Control. Episodic control aims to store good past experiences in a non-parametric mem-
ory and rapidly latch into past successful policies when encountering similar states instead of waiting
for many optimization steps (Blundell et al., 2016b). Pritzel et al. (2017) and Lin et al. (2018) intro-
duce a parametric memory, which enables better generalization through neural networks. Our work
is closely related to recent advances in Hu et al. (2021), which adopts an implicit planning scheme to
enable episodic memory updates in continuous domains. Our method follows this implicit scheme,
but conducts planning with expectile V -values to avoid overgeneralization on actions out of dataset
support.

6 EXPERIMENTS

In our experiments, we aim to answer the following questions: 1) How does our method performe
compared to state-of-the-art offline RL algorithms on the D4RL benchmark dataset? 2) How does
implicit planning affect the performance on sparse reward tasks? 3) Can expectile V -Learning
effectively reduces the extrapolation error compared with other offline methods? 4) How does the
critical parameter τ affect the performance of our method?

6.1 EVALUATION ENVIRONMENTS

We ran VEM on AntMaze, Adroit, and MuJoCo environments to evaluate its performance on var-
ious types of tasks. Precisely, the AntMaze navigation tasks control an 8-DoF quadruped robot to
reach a specific or randomly sampled goal in three types of maps. The reward in the AntMaze
domain is highly sparse. The Adroit domain involves controlling a 24-DoF simulated hand tasked
with hammering a nail, opening a door, twirling a pen, or picking up and moving a ball. On the
adroit tasks, these datasets are the following, “human”: transitions collected by a human operator,

7

Published as a conference paper at ICLR 2022

Type Env VEM(Ours) VEM(τ=0.5) BAIL BCQ CQL AWR
fixed umaze 87.5±1.1 85.0±1.5 62.5 ± 2.3 78.9 74.0 56.0
play medium 78.0±3.1 71.0±2.5 40.0 ± 15.0 0.0 61.2 0.0
play large 57.0±5.0 45.0±2.5 23.0±5.0 6.7 11.8 0.0
diverse umaze 78.0 ± 1.1 75.0±5.0 75.0±1.0 55.0 84.0 70.3
diverse medium 77.0±2.2 60.0±5.0 50.0±10.0 0.0 53.7 0.0
diverse large 58.0 ± 2.1 48.0±2.7 30.0±5.0 2.2 14.9 0.0
human door 11.2±4.2 6.9±1.1 0.0±0.1 -0.0 9.1 0.4
human hammer 3.6±1.0 2.5±1.0 0.0±0.1 0.5 2.1 1.2
human relocate 1.3±0.2 0.0±0.0 0.0±0.1 0.5 2.1 -0.0
human pen 65.0±2.1 55.2±3.1 32.5±1.5 68.9 55.8 12.3
cloned door 3.6±0.3 0.0±0.0 0.0±0.1 0.0 3.5 0.0
cloned hammer 2.7±1.5 0.5±0.1 0.1±0.1 0.4 5.7 0.4
cloned pen 48.7±3.2 27.8±2.2 46.5±3.5 44.0 40.3 28.0
expert door 105.5±0.2 104.8±0.2 104.7±0.3 99.0 - 102.9
expert hammer 128.3±1.1 102.3±5.6 123.5±3.1 114.9 - 39.0
expert relocate 109.8±0.2 101.0±1.5 94.4±2.7 41.6 - 91.5
expert pen 111.7±2.6 115.2±1.3 126.7±0.3 114.9 - 111.0
random walker2d 6.2±4.7 6.2±4.7 3.9±2.5 4.9 7.0 1.5
random hopper 11.1±1.0 10.8±1.2 9.8±0.1 10.6 10.8 10.2
random halfcheetah 16.4±3.6 2.6±2.1 0.0±0.1 2.2 35.4 2.5
medium walker2d 74.0±1.2 16.6±0.1 73.0±1.0 53.1 79.2 17.4
medium hopper 56.6±2.3 56.6±2.3 58.2±1.0 54.5 58.0 35.9
medium halfcheetah 47.4±0.2 45.3±0.2 42.6±1.2 40.7 44.4 37.4

Table 1: Performance of VEM with four offline RL baselines on the AntMaze, Adroit, and MuJoCo
domains with the normalized score metric proposed by D4RL benchmark, averaged over three ran-
dom seeds with± standard deviation. Scores range from 0 to 100, where 0 corresponds to a random
policy performance, and 100 indicates an expert. We use the results in Fu et al. (2020) for AWR
and BCQ, and use the results in Kumar et al. (2020) for CQL. The results of BAIL come from our
implementation according to the official code (https://github.com/lanyavik/BAIL).

“cloned”: transitions collected by a policy trained with behavioral cloning interacting in the environ-
ment + initial demonstrations, “expert”: transitions collected by a fine-tuned RL policy interacting
in the environment. As for the MuJoCo tasks, the datasets are “random”: transitions collected by
a random policy,“medium”: transitions collected by a policy with suboptimal performance. The
complete implementation details are presented in Appendix C.

6.2 PERFORMANCE ON D4RL TASKS

As shown in Table 1, VEM achieves state-of-the-art performance on most AntMaze tasks and has
a significant improvement over other methods on most Adroit tasks. VEM also achieves good per-
formances in MuJoCo domains. We find that VEM has low value estimation errors in all tasks,
which promotes its superior performance. However, as a similar training framework, BAIL only has
reasonable performances on simple offline tasks, such as MuJoCo. Please refer to Appendix D.2 for
the complete training curves and value estimation error on D4RL.

To further analyze the superior performance of VEM in the sparse reward tasks, we visualize the
learned value estimation in AntMaze tasks, which is shown in Figure 4. Experimental results show
that VEM has the higher value estimates on the critical place of the map (e.g., corners) since various
trajectories in the datasets are connected. The accurate value estimation leads to its success on
complex sparse reward tasks.

6.3 ANALYSIS OF VALUE ESTIMATION

As both Expectile V -Learning (EVL) and Batch Constrained Q-Learning (BCQ) (Fujimoto et al.,
2019) aim to avoid using the unseen state-action pairs to eliminate the extrapolation error, we re-
place EVL in VEM with BCQ (named BCQ-EM) to evaluate the effectiveness of the EVL module.

8

Published as a conference paper at ICLR 2022

The experimental results in Figure 9 in Appendix D.1 indicate that the performance of BCQ-EM is
mediocre, and BCQ reaches performance significantly below VEM. We observe a strong correla-
tion between the training instability and the explosion of the value estimation. This result should not
come as a surprise since the Adroit tasks have a larger action space compared with MuJoCo domains
and narrow human demonstrations. Therefore, the generative model in BCQ cannot guarantee com-
pletely the unseen actions are avoided. In contrast, VEM avoids fundamentally unseen actions by
keeping the learning procedure within the support of an offline dataset, indicating the necessity of
the EVL module. Please refer to Appendix C for the implementation details.

We evaluate τ ∈ {0.1, 0.2, ..., 0.9} to investigate the effect of the critical hyper-parameter in EVL,
which is shown in Figure 7 in Appendix D.1. The experimental results demonstrate that the esti-
mated value increases with a larger τ , which is consistent with the analysis in Section 4.1. Moreover,
we observe that τ is set at a low value in some complex high-dimensional robotic tasks or narrow
human demonstrations, such as Adroit-cloned/human, to get the conservative value estimates. How-
ever, if τ is set too high (e.g., τ = 0.9 in the pen-human task), the estimated value will explode and
poor performance. This is as expected since the over-large τ leads to the overestimation error caused
by neural networks. The experimental results demonstrate that we can balance behavior cloning and
optimal value learning by choosing τ in terms of different tasks.

6.4 ABLATIONS

Episodic Memory Module. Our first study aims to answer the impact of memory-based planning
on performance. We replace the episodic memory module in VEM with standard n-step value esti-
mation (named VEM-1step or VEM-nstep). The experimental results in Figure 8 in Appendix D.1
indicate that implicit planning along offline trajectories effectively accelerates the convergence of
EVL.

Expectile Loss. In addition to the Expectile loss, we explored other forms of loss. Formally, we
compare the Expectile loss and quantile loss, a popular form in Distributional RL algorithms (Dab-
ney et al., 2018), which is shown in Figure 5 in Appendix D.1. The experimental results indicate
that the Expectile loss is better since it is more stable when dealing with extreme values.

7 CONCLUSION

In this paper, we propose a novel offline RL method, VEM, based on a new V -learning algorithm,
EVL. EVL naturally avoids actions outside the dataset and provides a smooth tradeoff between gen-
eralization and conversation for offline learning. Further, VEM enables effective implicit planning
along offline trajectories to accelerate the convergence of EVL and achieve better advantage estima-
tion. Unlike most existing offline RL methods, we keep the learning procedure totally within the
dataset’s support without any auxiliary modular, such as environment model or behavior policy. The
experimental results demonstrate that VEM achieves superior performance in most D4RL tasks and
learns the accurate values to guide policy learning, especially in sparse reward tasks. We hope that
VEM will inspire more works on offline RL and promote practical RL methods in the future.

8 REPRODUCIBILITY

To ensure our work is reproducible, we provide our code in the supplementary materials. In the fu-
ture, we will publish all source code on Github. The detailed implementation of our algorithm is pre-
sented as follows. The value network is trained according to Equation 4. The actor-network is trained
according to Equation 7. The hyper-parameters and network structure used in VEM are shown in
Appendix C.3. All experiments are run on the standard offline tasks, D4RL (https://github.com/rail-
berkeley/d4rl/tree/master/d4rl).

9

Published as a conference paper at ICLR 2022

REFERENCES

Arthur Argenson and Gabriel Dulac-Arnold. Model-based offline planning. arXiv preprint
arXiv:2008.05556, 2020.

Charles Blundell, Benigno Uria, Alexander Pritzel, Yazhe Li, Avraham Ruderman, Joel Z Leibo,
Jack Rae, Daan Wierstra, and Demis Hassabis. Model-free episodic control. arXiv preprint
arXiv:1606.04460, 2016a.

Charles Blundell, Benigno Uria, Alexander Pritzel, Yazhe Li, Avraham Ruderman, Joel Z Leibo,
Jack Rae, Daan Wierstra, and Demis Hassabis. Model-free episodic control. arXiv preprint
arXiv:1606.04460, 2016b.

Xinyue Chen, Zijian Zhou, Zheng Wang, Che Wang, Yanqiu Wu, and Keith Ross. BAIL: Best-
action imitation learning for batch deep reinforcement learning. Advances in Neural Information
Processing Systems, 33, 2020.

Will Dabney, Mark Rowland, Marc G Bellemare, and Rémi Munos. Distributional reinforcement
learning with quantile regression. In Thirty-Second AAAI Conference on Artificial Intelligence,
2018.

Robert Dadashi, Shideh Rezaeifar, Nino Vieillard, Léonard Hussenot, Olivier Pietquin, and
Matthieu Geist. Offline reinforcement learning with pseudometric learning. arXiv preprint
arXiv:2103.01948, 2021.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4RL: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International Conference on Machine Learning, pp. 2052–2062. PMLR, 2019.

Matthieu Geist, Bruno Scherrer, and Olivier Pietquin. A theory of regularized markov decision
processes. In International Conference on Machine Learning, pp. 2160–2169. PMLR, 2019.

Seyed Kamyar Seyed Ghasemipour, Dale Schuurmans, and Shixiang Shane Gu. EMaQ: Expected-
max Q-learning operator for simple yet effective offline and online RL. In International Confer-
ence on Machine Learning, pp. 3682–3691. PMLR, 2021.

Hao Hu, Jianing Ye, Zhizhou Ren, Guangxiang Zhu, and Chongjie Zhang. Generalizable episodic
memory for deep reinforcement learning. arXiv preprint arXiv:2103.06469, 2021.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-
based policy optimization. Advances in Neural Information Processing Systems, 32:12519–
12530, 2019.

Ying Jin, Zhuoran Yang, and Zhaoran Wang. Is pessimism provably efficient for offline RL? In
International Conference on Machine Learning, pp. 5084–5096. PMLR, 2021.

Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. Morel: Model-
based offline reinforcement learning. arXiv preprint arXiv:2005.05951, 2020.

Ilya Kostrikov, Rob Fergus, Jonathan Tompson, and Ofir Nachum. Offline reinforcement learning
with fisher divergence critic regularization. In International Conference on Machine Learning,
pp. 5774–5783. PMLR, 2021.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy Q-
learning via bootstrapping error reduction. Advances in Neural Information Processing Systems,
32:11784–11794, 2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative Q-learning for offline
reinforcement learning. arXiv preprint arXiv:2006.04779, 2020.

Jongmin Lee, Wonseok Jeon, Byung-Jun Lee, Joelle Pineau, and Kee-Eung Kim. OptiDICE:
Offline policy optimization via stationary distribution correction estimation. arXiv preprint
arXiv:2106.10783, 2021.

10

Published as a conference paper at ICLR 2022

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Zichuan Lin, Tianqi Zhao, Guangwen Yang, and Lintao Zhang. Episodic memory deep Q-networks.
In Proceedings of the 27th International Joint Conference on Artificial Intelligence, pp. 2433–
2439, 2018.

Ashvin Nair, Murtaza Dalal, Abhishek Gupta, and Sergey Levine. Accelerating online reinforcement
learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

Whitney K Newey and James L Powell. Asymmetric least squares estimation and testing. Econo-
metrica: Journal of the Econometric Society, pp. 819–847, 1987.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

Alexander Pritzel, Benigno Uria, Sriram Srinivasan, Adria Puigdomenech Badia, Oriol Vinyals,
Demis Hassabis, Daan Wierstra, and Charles Blundell. Neural episodic control. In International
Conference on Machine Learning, pp. 2827–2836. PMLR, 2017.

Paria Rashidinejad, Banghua Zhu, Cong Ma, Jiantao Jiao, and Stuart Russell. Bridging offline rein-
forcement learning and imitation learning: A tale of pessimism. arXiv preprint arXiv:2103.12021,
2021.

Mark Rowland, Robert Dadashi, Saurabh Kumar, Rémi Munos, Marc G Bellemare, and Will Dab-
ney. Statistics and samples in distributional reinforcement learning. In International Conference
on Machine Learning, pp. 5528–5536. PMLR, 2019.

Mark Rowland, Will Dabney, and Rémi Munos. Adaptive trade-offs in off-policy learning. In
International Conference on Artificial Intelligence and Statistics, pp. 34–44. PMLR, 2020.

Noah Y Siegel, Jost Tobias Springenberg, Felix Berkenkamp, Abbas Abdolmaleki, Michael Ne-
unert, Thomas Lampe, Roland Hafner, Nicolas Heess, and Martin Riedmiller. Keep doing
what worked: Behavioral modelling priors for offline reinforcement learning. arXiv preprint
arXiv:2002.08396, 2020.

Yunhao Tang. Self-imitation learning via generalized lower bound Q-learning. Advances in Neural
Information Processing Systems, 33, 2020.

Qing Wang, Jiechao Xiong, Lei Han, Peng Sun, Han Liu, and Tong Zhang. Exponentially weighted
imitation learning for batched historical data. Advances in Neural Information Processing Sys-
tems, 31:6288, 2018.

Ruosong Wang, Yifan Wu, Ruslan Salakhutdinov, and Sham M Kakade. Instabilities of offline rl
with pre-trained neural representation. arXiv preprint arXiv:2103.04947, 2021.

Yue Wu, Shuangfei Zhai, Nitish Srivastava, Joshua Susskind, Jian Zhang, Ruslan Salakhutdinov,
and Hanlin Goh. Uncertainty weighted Actor-Critic for offline reinforcement learning. arXiv
preprint arXiv:2105.08140, 2021.

Yiqin Yang, Xiaoteng Ma, Li Chenghao, Zewu Zheng, Qiyuan Zhang, Gao Huang, Jun Yang, and
Qianchuan Zhao. Believe what you see: Implicit constraint approach for offline multi-agent
reinforcement learning. Advances in Neural Information Processing Systems, 34, 2021.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine, Chelsea
Finn, and Tengyu Ma. MOPO: Model-based offline policy optimization. Advances in Neural
Information Processing Systems, 33:14129–14142, 2020.

Ruiyi Zhang, Bo Dai, Lihong Li, and Dale Schuurmans. GenDICE: Generalized offline estimation
of stationary values. arXiv preprint arXiv:2002.09072, 2020a.

Shangtong Zhang, Bo Liu, and Shimon Whiteson. GradientDICE: Rethinking generalized offline
estimation of stationary values. In International Conference on Machine Learning, pp. 11194–
11203. PMLR, 2020b.

11

Published as a conference paper at ICLR 2022

A ALGORITHM

A.1 VALUE-BASED EPISODIC MEMORY CONTROL

Algorithm 1 Value-based Episodic Memory Control
Initialize critic networks Vθ1 , Vθ2 and actor network πφ with random parameters θ1, θ2, φ
Initialize target networks θ′1 ← θ1, θ

′
2 ← θ2

Initialize episodic memoryM
for t = 1 to T do

for i ∈ {1, 2} do
Sample N transitions

(
st, at, rt, st, R̂

(i)
t

)
fromM

Update θi ← minθiN
−1∑(

R
(i)
t − Vθi(st)

)2
Update φ← maxφN−1

∑∇ log πφ(at|st) · f
(

miniR̂
(i)
t −meaniVθi(st)

)
end for
if t mod u then
θ′i ← κθi + (1− κ)θ′i
Update Memory

end if
end for

Algorithm 2 Update Memory
for trajectories τ in bufferM do

for st, at, rt, st+1 in reversed(τ) do
for i ∈ {1, 2} do

Compute R̂(i)
t with Equation 6 and save into bufferM

end for
end for

end for

A.2 AN APPROACH FOR AUTO-TUNING τ

When we have a good estimation of V ∗, for example, when there is some expert data in the dataset,
we can auto-tune τ such that the value learned by EVL is close to the estimation of V ∗. This can be
done by calculating the Monte-Carlo return estimates of each state and selecting good return values
as the estimation of optimal value Ṽ ∗. Based on this target, we develop a method for auto-tuning τ .

By parameterizing τ = sigmoid(ξ) with a differentiable parameter ξ ∈ R, we can auto-tune τ by
minimizing the following loss J (ξ) = ξ(EV̂ (s) − Ṽ ∗). If (EV̂ (s) − Ṽ ∗) < 0, the differentiable
parameter ξ will become larger and the value estimation EV̂ (s) will become larger accordingly.
Similarly, ξ and EV̂ (s) will become smaller if (EV̂ (s) − Ṽ ∗) > 0. The experimental results in
Figure 10 in Appendix D.1 show that auto-tuning can lead to similar performance compared with
manual selection.

12

Published as a conference paper at ICLR 2022

B THEORETICAL ANALYSIS

B.1 COMPLETE DERIVATION.

The expectile regression loss (Rowland et al., 2019) is defined as
ER(q; %, τ) = EZ∼%

[
[τI(Z > q) + (1− τ)I(Z ≤ q)] (Z − q)2

]
, (11)

where % is the target distribution and the minimiser of this loss is called the τ -expectile of %. the
corresponding loss in reinforcement learning is
JV (θ) = Eµ

[
τ(r(s, a) + γVθ′(s

′)− Vθ(s))2+ + (1− τ)(r(s, a) + γVθ′(s
′)− Vθ(s))2−

]
= Eµ

[
τ(y − Vθ(s))2+ + (1− τ)(y − Vθ(s))2−

]
.

(12)

Then, taking the gradient of the value objective with respect to Vθ(s), we have

∇JV (θ) =
∑

µ(a | s) [−2τ(y − Vθ(s))+I(y > Vθ(s))− 2(1− τ)(y − Vθ(s))+I(y ≤ Vθ(s))]

=
∑

µ(a | s) [−2τ(y − Vθ(s))+ − 2(1− τ)(y − Vθ(s))−]

=
∑

µ(a | s) [−2τ(δ)+ − 2(1− τ)(δ)−] .

(13)
Therefore,

V̂ (s) = Vθ(s)− α∇JV (θ)

= Vθ(s) + 2αEa∼µ [τ [δ(s, a)]+ + (1− τ)[δ(s, a)]−]
(14)

B.2 PROOF OF LEMMA 1

Lemma 1. For any τ ∈ [0, 1), T µτ is a γτ -contraction, where γτ = 1− 2α(1− γ) min{τ, 1− τ}.

Proof. Note that T µ1/2 is the standard policy evaluation Bellman operator for µ, whose fixed point is
V µ. We see that for any V1, V2,

T µ1/2V1(s)− T µ1/2V2(s)

= V1(s) + αEa∼µ[δ1(s, a)]− (V2(s) + αEa∼µ[δ2(s, a)])

= (1− α)(V1(s)− V2(s)) + αEa∼µ[r(s, a) + γV1(s′)− r(s, a)− γV2(s′)]

≤ (1− α)‖V1 − V2‖∞ + αγ‖V1 − V2‖∞
= (1− α(1− γ))‖V1 − V2‖∞.

(15)

We introduce two more operators to simplify the analysis:
T µ+ V (s) = V (s) + Ea∼µ[δ(s, a)]+,

T µ−V (s) = V (s) + Ea∼µ[δ(s, a)]−.
(16)

Next we show that both operators are non-expansion (i.e., ‖T µ+ V1 − T µ+ V2‖∞ ≤ ‖V1 − V2‖∞). For
any V1, V2, we have

T µ+ V1(s)− T µ+ V2(s) = V1(s)− V2(s) + Ea∼µ[[δ1(s, a)]+ − [δ2(s, a)]+]

= Ea∼µ[[δ1(s, a)]+ + V1(s)− ([δ2(s, a)]+ + V2(s))].
(17)

The relationship between [δ1(s, a)]+ +V1(s) and [δ2(s, a)]+ +V2(s) exists in four cases, which are

• δ1 ≥ 0, δ2 ≥ 0, then [δ1(s, a)]+ + V1(s)− ([δ2(s, a)]+ + V2(s)) = γ(V1(s′)− V2(s′)).

• δ1 < 0, δ2 < 0, then [δ1(s, a)]+ + V1(s)− ([δ2(s, a)]+ + V2(s)) = V1(s)− V2(s).

• δ1 ≥ 0, δ2 < 0, then
[δ1(s, a)]+ + V1(s)− ([δ2(s, a)]+ + V2(s))

= (r(s, a) + γV1(s′))− V2(s)

< (r(s, a) + γV1(s′))− (r(s, a) + γV2(s′))

= γ(V1(s′)− V2(s′)),

(18)

where the inequality comes from r(s, a) + γV2(s′) < V2(s).

13

Published as a conference paper at ICLR 2022

• δ1 < 0, δ2 ≥ 0, then

[δ1(s, a)]+ + V1(s)− ([δ2(s, a)]+ + V2(s))

= V1(s)− (r(s, a) + γV2(s′))

≤ V1(s)− V2(s),

(19)

where the inequality comes from r(s, a) + γV2(s′) ≥ V2(s).

Therefore, we have T µ+ V1(s)− T µ+ V2(s) ≤ ‖V1 − V2‖∞. With the T µ+ , T µ− , we rewrite T µτ as

T µτ V (s) = V (s) + 2αEa∼µ[τ [δ(s, a)]+ + (1− τ)[δ(s, a)]−]

= (1− 2α)V (s) + 2ατ(V (s) + Ea∼µ[δ(s, a)]+) + 2α(1− τ)(V (s) + Ea∼µ[δ(s, a)]−)

= (1− 2α)V (s) + 2ατT µ+ V (s) + 2α(1− τ)T µ−V (s).
(20)

And
T µ1/2V (s) = V (s) + αEa∼µ[δ(s, a)]

= V (s) + α(T µ+ V (s) + T µ−V (s)− 2V (s))

= (1− 2α)V (s) + α(T µ+ V (s) + T µ−V (s)).

(21)

We first focus on τ < 1
2 . For any V1, V2, we have

T µτ V1(s)− T µτ V2(s)

= (1− 2α)(V1(s)− V2(s)) + 2ατ(T µ+ V1(s)− T µ+ V2(s)) + 2α(1− τ)(T µ−V1(s)− T µ−V2(s))

= (1− 2α− 2τ(1− 2α))(V1(s)− V2(s)) + 2τ
(
T µ1/2V1(s)− T µ1/2V2(s)

)
+

2α(1− 2τ)
(
T µ−V1(s)− T µ−V2(s)

)
≤ (1− 2α− 2τ(1− 2α))‖V1 − V2‖∞ + 2τ(1− α(1− γ))‖V1 − V2‖∞ + 2α(1− 2τ)‖V1 − V2‖∞
= (1− 2ατ(1− γ))‖V1 − V2‖∞

(22)
Similarly, when τ > 1/2, we have T µτ V1(s)−T µτ V2(s) ≤ (1−2α(1− τ)(1−γ))‖V1−V2‖∞.

B.3 PROOF OF LEMMA 2

Lemma 2. For any τ, τ ′ ∈ (0, 1), if τ ′ ≥ τ , we have T µτ ′ ≥ T µτ ,∀s ∈ S.

Proof. Based on Equation 20, we have

T µτ ′V (s)− T µτ V (s)

= (1− 2α)V (s) + 2ατ ′T µ+ V (s) + 2α(1− τ ′)T µ−V (s)

− ((1− 2α)V (s) + 2ατT µ+ V (s) + 2α(1− τ)T µ−V (s))

= 2α(τ ′ − τ)(T µ+ V (s)− T µ−V (s))

= 2α(τ ′ − τ)Ea∼µ[[δ(s, a)]+ − [δ(s, a)]−] ≥ 0.

(23)

B.4 PROOF OF LEMMA 3

Lemma 3. Let V ∗ denote the fixed point of Bellman optimality operator T ∗. In the deterministic
MDP, we have limτ→1 V

∗
τ = V ∗.

Proof. We first show that V ∗ is also a fixed point for T µ+ . Based on the definition of T ∗, we have
V ∗(s) = maxa[r(s, a) + γV ∗(s′)], which infers that δ(s, a) ≤ 0, ∀s ∈ S, a ∈ A. Thus, we have
T µ+ V ∗(s) = V ∗(s) + Ea∼µ[δ(s, a)]+ = V ∗(s). By setting (1 − τ) → 0, we eliminate the effect
of T µ− . Further by the contractive property of T µτ , we obtain the uniqueness of V ∗τ . The proof is
completed.

14

Published as a conference paper at ICLR 2022

B.5 PROOF OF LEMMA 4

Lemma 4. Given τ ∈ (0, 1) and T ∈ N+, Tvem is a γτ -contraction. If τ > 1
2 , Tvem has the same

fixed point as T µτ .

Proof. We prove the contraction first. For any V1, V2, we have

TvemV1(s)− TvemV2(s) = max
1≤n≤nmax

{(T µ)n−1T µτ V1(s)} − max
1≤n≤T

{(T µ)n−1T µτ V2(s)}

≤ max
1≤n≤nmax

|(T µ)n−1T µτ V1(s)− (T µ)n−1T µτ V2(s)|

≤ max
1≤n≤nmax

γn−1γτ‖V1 − V2‖∞
≤ γτ‖V1 − V2‖∞.

(24)

Next we show that V ∗τ , the fixed point of T µτ , is also the fixed point of Tvem when τ > 1
2 . By

definition, we have V ∗τ = T µτ V ∗τ . Following Lemma 2, we have V ∗τ = T µτ V ∗τ ≥ T µ1/2V ∗τ = T µV ∗τ .
Repeatedly applying T µ and using its monotonicity, we have T µV ∗τ ≥ (T µ)n−1V ∗τ , 1 ≤ n ≤ nmax.
Thus, we have TvemV ∗τ (s) = max1≤n≤T {(T µ)n−1T µτ V ∗τ (s)} = V ∗τ (s).

B.6 PROOF OF LEMMA 5

Lemma 5. When the current value estimates V (s) are much lower than the value of behavior policy,
Tvem provides an optimistic update. Formally, we have

|TvemV (s)− V ∗τ (s)| ≤ γn∗(s)−1γτ‖V − V µn∗,τ‖∞ + ‖V µn∗,τ − V ∗τ ‖∞,∀s ∈ S, (25)

where n∗(s) = arg max1≤n≤T {(T µ)n−1T µτ V (s)} and V µn∗,τ is the fixed point of (T µ)n
∗(s)−1T µτ .

Proof. The lemma is a direct result of the triangle inequality. We have

TvemV (s)− V ∗τ (s) = (T µ)n
∗(s)−1T µτ V (s)− V ∗τ (s)

= (T µ)n
∗(s)−1T µτ V (s)− (T µ)n

∗(s)−1T µτ V µn∗,τ (s) + V µn∗,τ (s)− V ∗τ (s)

≤ γn∗(s)−1γτ‖V − V µn∗,τ‖∞ + ‖V µn∗,τ − V ∗τ ‖.
(26)

B.7 PROOF OF PROPOSITION 1

Proposition 1. Let V ∗τ denote the fixed point of T µτ . For any τ, τ ′ ∈ (0, 1), if τ ′ ≥ τ , we have
V ∗τ ′(s) ≥ V ∗τ (s), ∀s ∈ S.

Proof. With the Lemma 2, we have T µτ ′V ∗τ ≥ T µτ V ∗τ . Since V ∗τ is the fixed point of T µτ , we have
T µτ V ∗τ = V ∗τ . Putting the results together, we obtain V ∗τ = T µτ V ∗τ ≤ T µτ ′V ∗τ . Repeatedly applying
T µτ ′ and using its monotonicity, we have V ∗τ ≤ T µτ ′V ∗τ ≤ (T µτ ′)

∞
V ∗τ = V ∗τ ′ .

C DETAILED IMPLEMENTATION

C.1 GENERALIZED ADVANTAGE-WEIGHTED LEARNING

In practice, we adopt Leaky-ReLU or Softmax functions.

Leaky-ReLU:
max
φ

Jπ(φ) = E(s,a)∼D

[
log πφ(a | s) · f

(
Â(s, a)

)]
,

where f(Â(s, a)) =

{
Â(s, a) if Â(s, a) > 0
Â(s,a)
α if Â(s, a) ≤ 0

(27)

15

Published as a conference paper at ICLR 2022

Softmax:

max
φ

Jπ(φ) = E(s,a)∼D

[
log πφ(a | s) · exp(1

α Â(s, a))∑
(si,ai)∼Batch exp(1

α Â(si, ai))

]
. (28)

C.2 BCQ-EM

The value network of BCQ-EM is trained by minimizing the following loss:

min
θ
JQ(θ) = E(st,at,st+1)∼D

[
(Rt −Qθ(st, at))2

]
(29)

Rt = max
0<n≤nmax

Qt,n, Qt,n =

{
rt + γQt+1,n−1(st+1, ât+1) if n > 0,

Q(st, ât) if n = 0,
(30)

where ât corresponds to the perturbed actions, sampled from the generative model Gw(st).

The perturbation network of BCQ-EM is trained by minimizing the following loss:
min
φ
Jξ(φ) = −Es∼D [Qθ(s, ai + ξφ(s, ai,Φ))] , {ai ∼ Gw(s)}ni=1, (31)

where ξφ(s, ai,Φ) is a perturbation model, which outputs an adjustment to an action a in the range
[−Φ,Φ]. We adopt conditional variational auto-encoder to represent the generative model Gw(s)
and it is trained to match the state-action pairs sampled from D by minimizing the cross-entropy
loss-function.

C.3 HYPER-PARAMETER AND NETWORK STRUCTURE

Table 2: Hyper-parameter Sheet
Hyper-Parameter Value

Critic Learning Rate 1e-3
Actor Learning Rate 1e-3

Optimizer Adam
Target Update Rate (κ) 0.005
Memory Update Period 100

Batch Size 128
Discount Factor 0.99

Gradient Steps per Update 200
Maximum Length d Episode Length T

Table 3: Hyper-Parameter τ used in VEM across different tasks

AntMaze-fixed umaze medium large
0.4 0.3 0.3

AntMaze-diverse umaze medium large
0.3 0.4 0.1

Adroit-human door hammer pen
0.4 0.4 0.4

Adroit-cloned door hammer pen
0.2 0.3 0.1

Adroit-expert door hammer pen
0.3 0.3 0.3

MuJoCo-medium walker2d halfcheetah hopper
0.3 0.4 0.5

MuJoCo-random walker2d halfcheetah hopper
0.5 0.6 0.7

We use a fully connected neural network as a function approximation with 256 hid-
den units and ReLU as an activation function. The structure of the actor network
is [(state dim, 256), (256, 256), (256, action dim)]. The structure of the value network is
[(state dim, 256), (256, 256), (256, 1)].

16

Published as a conference paper at ICLR 2022

D ADDITIONAL EXPERIMENTS ON D4RL

D.1 ABLATION STUDY

0.0 0.2 0.4 0.6 0.8 1.0
Million Steps

0

200

400

E
pi

so
de

R
et

ur
n

VEM

VEM (abs)

(a) door-human

0.0 0.2 0.4 0.6 0.8 1.0
Million Steps

−200

0

200

400

600

E
pi

so
de

R
et

ur
n

VEM

VEM (abs)

(b) hammer-human

0.0 0.2 0.4 0.6 0.8 1.0
Million Steps

0

50

100

E
pi

so
de

R
et

ur
n

VEM

VEM (abs)

(c) relocate-human

0.0 0.2 0.4 0.6 0.8 1.0
Million Steps

0

1000

2000

E
pi

so
de

R
et

ur
n

VEM

VEM (abs)

(d) pen-human

Figure 5: Comparison results between expectile loss and quantile loss on Adroit tasks. We respec-
tively name our algorithm with expectile loss and quantile loss as VEM and VEM (abs).

0.0 0.2 0.4 0.6 0.8 1.0
Million Steps

0

1000

2000

3000

E
pi

so
de

R
et

ur
n

VEM (0.1)

VEM (0.3)

VEM (0.5)

VEM (0.7)

VEM (0.8)

(a) pen-human

0.0 0.2 0.4 0.6 0.8 1.0
Million Steps

0

200

400

600
E

pi
so

de
R

et
ur

n

(b) door-human

0.0 0.2 0.4 0.6 0.8 1.0
Million Steps

−250

0

250

500

750

E
pi

so
de

R
et

ur
n

(c) hammer-human

0.0 0.2 0.4 0.6 0.8 1.0
Million Steps

0

2000

4000

6000

8000

10000

E
st

im
at

io
n

V
al

ue

VEM (0.1)

VEM (0.3)

VEM (0.5)

VEM (0.7)

VEM (0.8)

(d) pen-human

0.0 0.2 0.4 0.6 0.8 1.0
Million Steps

200

400

600

800

E
st

im
at

io
n

V
al

ue

(e) door-human

0.0 0.2 0.4 0.6 0.8 1.0
Million Steps

0

5000

10000
E

st
im

at
io

n
V

al
ue

(f) hammer-human

Figure 6: The results of VEM (τ) with various τ in Adroit tasks. The results in the upper row are
the performance. The results in the bottom row are the estimation value.

0.0 0.2 0.4 0.6 0.8 1.0
Million Steps

0

1000

2000

E
pi

so
de

R
et

ur
n

VEM

TD3+BC(0.5)

TD3+BC(2.5)

TD3+BC(4.5)

(a) pen-human

0.0 0.2 0.4 0.6 0.8 1.0
Million Steps

0

200

400

E
pi

so
de

R
et

ur
n

VEM

TD3+BC(0.5)

TD3+BC(2.5)

TD3+BC(4.5)

(b) door-human

0.0 0.2 0.4 0.6 0.8 1.0
Million Steps

−200

0

200

400

600

E
pi

so
de

R
et

ur
n

VEM

TD3+BC(0.5)

TD3+BC(2.5)

TD3+BC(4.5)

(c) hammer-human

0.0 0.2 0.4 0.6 0.8 1.0
Million Steps

0

50

100

E
pi

so
de

R
et

ur
n

VEM

TD3+BC(0.5)

TD3+BC(2.5)

TD3+BC(4.5)

(d) relocate-human

0.0 0.2 0.4 0.6 0.8 1.0
Million Steps

0

2

4

6

E
st

im
at

io
n

E
rr

or

×1012

VEM

TD3+BC(0.5)

TD3+BC(2.5)

TD3+BC(4.5)

(e) pen-human

0.0 0.2 0.4 0.6 0.8 1.0
Million Steps

0

2

4

E
st

im
at

io
n

E
rr

or

×1012

VEM

TD3+BC(0.5)

TD3+BC(2.5)

TD3+BC(4.5)

(f) door-human

0.0 0.2 0.4 0.6 0.8 1.0
Million Steps

0

2

4

6

E
st

im
at

io
n

E
rr

or

×1012

VEM

TD3+BC(0.5)

TD3+BC(2.5)

TD3+BC(4.5)

(g) hammer-human

0.0 0.2 0.4 0.6 0.8 1.0
Million Steps

0

2

4

E
st

im
at

io
n

E
rr

or

×1012

VEM

TD3+BC(0.5)

TD3+BC(2.5)

TD3+BC(4.5)

(h) relocate-human

Figure 7: Comparison results between VEM with TD3+BC. We adopt different hyper-parameters
α ∈ {0.5, 2.5, 4.5} in TD3+BC to test its performance. The upper row are the performance. The
results in the bottom row are the estimation error (the unit is 1012).

17

Published as a conference paper at ICLR 2022

0.0 0.1 0.2 0.3 0.4 0.5
Million Steps

0.0

0.2

0.4

0.6

0.8

E
pi

so
de

R
et

ur
n

VEM

VEM-1step

VEM-nstep

(a) medium-play

0.0 0.1 0.2 0.3 0.4 0.5
Million Steps

0.00

0.25

0.50

0.75

E
pi

so
de

R
et

ur
n

VEM

VEM-1step

VEM-nstep

(b) medium-diverse

0.0 0.1 0.2 0.3 0.4 0.5
Million Steps

0.0

0.2

0.4

0.6

E
pi

so
de

R
et

ur
n

VEM

VEM-1step

VEM-nstep

(c) large-play

0.0 0.1 0.2 0.3 0.4 0.5
Million Steps

0.0

0.2

0.4

0.6

E
pi

so
de

R
et

ur
n

VEM

VEM-1step

VEM-nstep

(d) large-diverse

Figure 8: The comparison between episodic memory and n-step value estimation on AntMaze tasks.

0.0 0.2 0.4 0.6 0.8 1.0
Million Steps

0

200

400

E
pi

so
de

R
et

ur
n

VEM

BCQ-EM

BCQ

(a) door-human

0.0 0.2 0.4 0.6 0.8 1.0
Million Steps

0

500

1000
E

pi
so

de
R

et
ur

n
VEM

BCQ-EM

BCQ

(b) hammer-human

0.0 0.2 0.4 0.6 0.8 1.0
Million Steps

0

25

50

75

100

E
pi

so
de

R
et

ur
n

VEM

BCQ-EM

BCQ

(c) relocate-human

0.0 0.2 0.4 0.6 0.8 1.0
Million Steps

0

1000

2000

E
pi

so
de

R
et

ur
n

VEM

BCQ-EM

BCQ

(d) pen-human

0.0 0.2 0.4 0.6 0.8 1.0
Million Steps

0

2

4

E
st

im
at

io
n

E
rr

or

×1013

VEM

BCQ-EM

BCQ

(e) door-human

0.0 0.2 0.4 0.6 0.8 1.0
Million Steps

0.00

0.25

0.50

0.75

1.00

E
st

im
at

io
n

E
rr

or

×1014

VEM

BCQ-EM

BCQ

(f) hammer-human

0.0 0.2 0.4 0.6 0.8 1.0
Million Steps

0

2

4

6

E
st

im
at

io
n

E
rr

or

×1013

VEM

BCQ-EM

BCQ

(g) relocate-human

0.0 0.2 0.4 0.6 0.8 1.0
Million Steps

0

2

4

6

8

E
st

im
at

io
n

E
rr

or

×1013

VEM

BCQ-EM

BCQ

(h) pen-human

Figure 9: The comparison between VEM, BCQ-EM and BCQ on Adroit-human tasks. The results
in the upper row are the performance. The results in the bottom row are the estimation error, where
the unit is 1013.

D.2 COMPLETE TRAINING CURVES AND VALUE ESTIMATION ERROR

0.0 0.1 0.2 0.3 0.4
Million Steps

0

200

400

E
pi

so
de

R
et

ur
n

VEM

VEM(auto)

(a) Episode return

0.0 0.1 0.2 0.3 0.4
Million Steps

0.2

0.3

0.4

0.5

τ

VEM(auto)

(b) τ value

Figure 10: Comparison between fixed τ (VEM) and auto-tuning τ (VEM(auto)) in the door-human
task.

18

Published as a conference paper at ICLR 2022

0.0 0.1 0.2 0.3 0.4
Million Steps

0

200

400

600
V

al
ue

E
st

im
at

io
n

VEM(1)

VEM(1000)

(a) door-human

0.0 0.1 0.2 0.3 0.4
Million Steps

0

2000

4000

6000

V
al

ue
E

st
im

at
io

n

VEM(1)

VEM(1000)

(b) hammer-human

0.0 0.1 0.2 0.3 0.4
Million Steps

0

500

1000

1500

2000

V
al

ue
E

st
im

at
io

n

VEM(1)

VEM(1000)

(c) relocate-human

0.0 0.1 0.2 0.3 0.4
Million Steps

2000

4000

V
al

ue
E

st
im

at
io

n

VEM(1)

VEM(1000)

(d) pen-human

Figure 11: Value estimation of VEM (nmax) in adroit-human tasks, where nmax is the maximal
rollout step for memory control (see Equation 11). We set τ = 0.5 in all tasks.

0.0 0.1 0.2 0.3 0.4 0.5
Million Steps

0.00

0.25

0.50

0.75

E
pi

so
de

R
et

ur
n

VEM

BAIL

(a) antmaze-umaze

0.0 0.1 0.2 0.3 0.4 0.5
Million Steps

0.0

0.2

0.4

0.6

0.8

E
pi

so
de

R
et

ur
n

VEM

BAIL

(b) antmaze-umaze-
diverse

0.0 0.1 0.2 0.3 0.4 0.5
Million Steps

0.0

0.2

0.4

0.6

0.8

E
pi

so
de

R
et

ur
n

VEM

BAIL

(c) antmaze-medium-
play

0.0 0.1 0.2 0.3 0.4 0.5
Million Steps

0.00

0.25

0.50

0.75

E
pi

so
de

R
et

ur
n

VEM

BAIL

(d) antmaze-medium-
diverse

0.0 0.1 0.2 0.3 0.4 0.5
Million Steps

0.0

0.2

0.4

0.6

E
pi

so
de

R
et

ur
n

VEM

BAIL

(e) antmaze-large-play

0.0 0.1 0.2 0.3 0.4 0.5
Million Steps

0.0

0.2

0.4

0.6

E
pi

so
de

R
et

ur
n

VEM

BAIL

(f) antmaze-large-diverse

0.0 0.2 0.4 0.6 0.8 1.0
Million Steps

0

200

400

E
pi

so
de

R
et

ur
n

VEM

BAIL

(g) door-human

0.0 0.2 0.4 0.6 0.8 1.0
Million Steps

−200

0

200

400

600

E
pi

so
de

R
et

ur
n

VEM

BAIL

(h) hammer-human

0.0 0.2 0.4 0.6 0.8 1.0
Million Steps

0

50

100

E
pi

so
de

R
et

ur
n

VEM

BAIL

(i) relocate-human

0.0 0.2 0.4 0.6 0.8 1.0
Million Steps

0

1000

2000

E
pi

so
de

R
et

ur
n

VEM

BAIL

(j) pen-human

0.0 0.2 0.4 0.6 0.8 1.0
Million Steps

−50

0

50

100

150

E
pi

so
de

R
et

ur
n

VEM

BAIL

(k) door-cloned

0.0 0.2 0.4 0.6 0.8 1.0
Million Steps

−200

0

200

400

E
pi

so
de

R
et

ur
n

VEM

BAIL

(l) hammer-cloned

0.0 0.2 0.4 0.6 0.8 1.0
Million Steps

1000

1500

2000

2500

E
pi

so
de

R
et

ur
n

VEM

BAIL

(m) pen-cloned

0.0 0.2 0.4 0.6 0.8 1.0
Million Steps

500

1000

1500

2000

E
pi

so
de

R
et

ur
n

VEM

BAIL

(n) hopper-medium

0.0 0.2 0.4 0.6 0.8 1.0
Million Steps

1000

2000

3000

E
pi

so
de

R
et

ur
n

VEM

BAIL

(o) walker2d-medium

0.0 0.2 0.4 0.6 0.8 1.0
Million Steps

0

2000

4000

E
pi

so
de

R
et

ur
n

VEM

BAIL

(p) halfcheetah-medium

0.0 0.2 0.4 0.6 0.8 1.0
Million Steps

0

100

200

300

400

E
pi

so
de

R
et

ur
n

VEM

BAIL

(q) hopper-random

0.0 0.1 0.2 0.3 0.4
Million Steps

200

400

600

E
pi

so
de

R
et

ur
n

VEM

BAIL

(r) walker2d-random

0.0 0.2 0.4 0.6 0.8 1.0
Million Steps

0

1000

2000

E
pi

so
de

R
et

ur
n

VEM

BAIL

(s) halfcheetah-random

Figure 12: The training curves of VEM and BAIL on D4RL tasks.

19

Published as a conference paper at ICLR 2022

0.0 0.1 0.2 0.3 0.4 0.5
Million Steps

0.3

0.4

0.5

0.6

E
st

im
at

io
n

E
rr

or

VEM

(a) antmaze-umaze

0.0 0.1 0.2 0.3 0.4 0.5
Million Steps

0.0

0.1

0.2

0.3

0.4

E
st

im
at

io
n

E
rr

or

VEM

(b) antmaze-umaze-
diverse

0.0 0.1 0.2 0.3 0.4 0.5
Million Steps

0.0

0.1

0.2

0.3

0.4

E
st

im
at

io
n

E
rr

or

VEM

(c) antmaze-medium-
play

0.0 0.1 0.2 0.3 0.4 0.5
Million Steps

0.1

0.2

0.3

0.4

E
st

im
at

io
n

E
rr

or

VEM

(d) antmaze-medium-
diverse

0.0 0.1 0.2 0.3 0.4 0.5
Million Steps

0.05

0.10

0.15

E
st

im
at

io
n

E
rr

or

VEM

(e) antmaze-large-play

0.0 0.1 0.2 0.3 0.4 0.5
Million Steps

0.025

0.050

0.075

0.100

E
st

im
at

io
n

E
rr

or

VEM

(f) antmaze-large-diverse

0.0 0.2 0.4 0.6 0.8 1.0
Million Steps

200

400

600

800

E
st

im
at

io
n

E
rr

or

VEM

(g) door-human

0.0 0.2 0.4 0.6 0.8 1.0
Million Steps

2000

4000

E
st

im
at

io
n

E
rr

or

VEM

(h) hammer-human

0.0 0.2 0.4 0.6 0.8 1.0
Million Steps

1000

1500

2000

E
st

im
at

io
n

E
rr

or

VEM

(i) relocate-human

0.0 0.2 0.4 0.6 0.8 1.0
Million Steps

5000

10000

15000

20000

E
st

im
at

io
n

E
rr

or

VEM

(j) pen-human

0.0 0.2 0.4 0.6 0.8 1.0
Million Steps

0

100

200

300

400

E
st

im
at

io
n

E
rr

or

VEM

(k) door-cloned

0.0 0.2 0.4 0.6 0.8 1.0
Million Steps

500

1000

1500

2000

E
st

im
at

io
n

E
rr

or

VEM

(l) hammer-cloned

0.0 0.2 0.4 0.6 0.8 1.0
Million Steps

400

600

800

E
st

im
at

io
n

E
rr

or

VEM

(m) pen-cloned

0.0 0.2 0.4 0.6 0.8 1.0
Million Steps

50

100

150

E
st

im
at

io
n

E
rr

or

VEM

(n) hopper-medium

0.0 0.2 0.4 0.6 0.8 1.0
Million Steps

40

60

80

100

E
st

im
at

io
n

E
rr

or

VEM

(o) walker2d-medium

0.0 0.2 0.4 0.6 0.8 1.0
Million Steps

200

400

600

E
st

im
at

io
n

E
rr

or

VEM

(p) halfcheetah-medium

0.0 0.2 0.4 0.6 0.8 1.0
Million Steps

0

100

200

300

400

E
st

im
at

io
n

E
rr

or

VEM

(q) hopper-random

0.0 0.1 0.2 0.3 0.4
Million Steps

0

2000

4000

6000

E
st

im
at

io
n

E
rr

or

VEM

(r) walker2d-random

0.0 0.2 0.4 0.6 0.8 1.0
Million Steps

40

60

80

100

E
st

im
at

io
n

E
rr

or

VEM

(s) halfcheetah-random

Figure 13: The value estimation error of VEM on D4RL tasks. The estimation error refers to the
average estimated state values minus the average returns.

20

	Introduction
	Background
	Method
	Expectile V-Learning
	Implicit Memory-Based Planning
	Generalized Advantage-Weighted Learning

	Theoretical Analysis
	Convergence Property of the Expectile V-Learning
	Value-based Episodic Memory
	Toy Example

	Related Work
	Experiments
	Evaluation environments
	Performance on D4RL tasks
	Analysis of Value Estimation
	Ablations

	Conclusion
	Reproducibility
	Algorithm
	Value-based Episodic Memory Control
	An Approach for Auto-tuning

	Theoretical Analysis
	Complete derivation.
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Lemma 4
	Proof of Lemma 5
	Proof of Proposition 1

	Detailed Implementation
	Generalized Advantage-Weighted Learning
	BCQ-EM
	Hyper-Parameter and Network Structure

	Additional Experiments on D4RL
	Ablation Study
	Complete training curves and value estimation error

