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ABSTRACT

Offline reinforcement learning (RL) shows promise of applying RL to real-world
problems by effectively utilizing previously collected data. Most existing offline
RL algorithms use regularization or constraints to suppress extrapolation error for
actions outside the dataset. In this paper, we adopt a different framework, which
learns the V -function instead of the Q-function to naturally keep the learning pro-
cedure within the offline dataset. To enable effective generalization while main-
taining proper conservatism in offline learning, we propose Expectile V -Learning
(EVL), which smoothly interpolates between the optimal value learning and be-
havior cloning. Further, we introduce implicit planning along offline trajectories
to enhance learned V -values and accelerate convergence. Together, we present
a new offline method called Value-based Episodic Memory (VEM). We provide
theoretical analysis for the convergence properties of our proposed VEM method,
and empirical results in the D4RL benchmark show that our method achieves su-
perior performance in most tasks, particularly in sparse-reward tasks. Our code is
public online at https://github.com/YiqinYang/VEM.

1 INTRODUCTION

Despite the great success of deep reinforcement learning (RL) in various domains, most current al-
gorithms rely on interactions with the environment to learn through trial and error. In real-world
problems, particularly in risky and safety-crucial scenarios, interactions with the environment can
be expensive and unsafe, and only offline collected datasets are available, such as the expert demon-
stration or previously logged data. This growing demand has led to the emergence of offline rein-
forcement learning (offline RL) to conduct RL in a supervised manner.

The main challenge of offline RL comes from the actions out of the dataset’s support (Kumar et al.,
2019; 2020). The evaluation of these actions that do not appear in the dataset relies on the gener-
alization of the value network, which may exhibit extrapolation error (Fujimoto et al., 2019). This
error can be magnified through bootstrapping, leading to severe estimation errors. A rapidly devel-
oping line of recent work (Fujimoto et al., 2019; Kumar et al., 2020; Ghasemipour et al., 2021; Yang
et al., 2021) utilizes various methods to constrain optimistic estimation on unseen actions, such as
restricting available actions with a learned behavior model (Fujimoto et al., 2019) or penalizing the
unseen actions with additional regularization (Kumar et al., 2020). However, confining learning
within the distribution of the dataset can be insufficient for reducing extrapolation errors.

Another line of methods, on the contrary, uses the returns of the behavior policy as the signal for
policy learning, as adopted in Wang et al. (2018); Peng et al. (2019); Chen et al. (2020). By doing
so, they keep the value learning procedure completely within the dataset. However, the behavior
policy of the dataset can be imperfect and insufficient to guide policy learning. To achieve a trade-
off between imitation learning and optimal value learning while confines learning within the dataset,
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Figure 1: The diagram of algorithms. The left side denotes the general Q-based offline RL methods.
The right side is the framework of our proposed approach (VEM). Q-based methods learns boot-
strapped Q-values, but requires additional constraint or penalty for actions out of the dataset. Our
method, on the contrary, learns bootstrapped V -values while being completely confined within the
dataset without any regularization.

we propose Expectile V -learning (EVL), which is based on a new expectile operator that smoothly
interpolates between the Bellman expectation operator and optimality operator.

To better solve long-horizon and sparse-reward tasks, we further propose using value-based plan-
ning to improve the advantage estimation for policy learning. We adopt an implicit memory-based
planning scheme that strictly plans within offline trajectories to compute the advantages effectively,
as proposed in recent advances in episodic memory-based methods (Hu et al., 2021). Together, we
present our novel framework for offline RL, Value-based Episodic Memory (VEM), which uses ex-
pectile V -learning to approximate the optimal value with offline data and conduct implicit memory-
based planning to further enhance advantage estimation. With the properly learned advantage func-
tion, VEM trains the policy network in a simple regression manner. We demonstrate our algorithm
in Figure 1, and a formal description of our algorithm is provided in Algorithm 1.

The contributions of this paper are threefold. First, we present a new offline V -learning method,
EVL, and a novel offline RL framework, VEM. EVL learns the value function through the trade-offs
between imitation learning and optimal value learning. VEM uses a memory-based planning scheme
to enhance advantage estimation and conduct policy learning in a regression manner. Second, we
theoretically analyze our proposed algorithm’s convergence properties and the trade-off between
contraction rate, fixed-point bias, and variance. Specifically, we show that VEM is provably con-
vergent and enjoys a low concentration rate with a small fixed-point bias. Finally, we evaluate our
method in the offline RL benchmark D4RL (Fu et al., 2020). Comparing with other baselines, VEM
achieves superior performance, especially in the sparse reward tasks like AntMaze and Adroit. The
ablation study shows that VEM yields accurate value estimates and is robust to extrapolation errors.

2 BACKGROUND

Preliminaries. We consider a Markov Decision Process (MDP)M defined by a tuple (S,A, P, r, γ),
where S is the state space, A is the action space, P (· | s, a) : S × A × S → R is the transition
distribution function, r(s, a) : S×A → R is the reward function and γ ∈ [0, 1) is the discount factor.
We say an environment is deterministic if P (s′ | s, a) = δ(s′ = f(s, a)) for some deterministic
transition function f , where δ(·) is the Dirac function. The goal of an RL agent is to learn a policy
π : S × A → R, which maximizes the expectation of a discounted cumulative reward: J (π) =
Es0∼�0;at∼�(·|st);st+1∼P (·|st;at) [

P∞
t=0 γ

tr(st, at)], where ρ0 is the distribution of the initial states.

Value-based Offline Reinforcement Learning Methods. Current offline RL methods can be
roughly divided into two categories according to types of learned value function: Q-based and
V -based methods. Q-based methods, such as BCQ (Fujimoto et al., 2019), learn Q-function for
policy learning and avoid selecting unfamiliar actions via constraints or penalty. On the contrary,
V -based methods (Peng et al., 2019; Siegel et al., 2020; Chen et al., 2020) learns the value of be-
havior policy V �(s) with the trajectories in the offline dataset D and update policy as a regression
problem. Based on the learned V -function, V -based methods like AWR (Peng et al., 2019) updates
the policy using advantage-weighted regression, where each state-action pair is weighted according
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to the exponentiated advantage:

max
�
J�(φ) = E(st;at)∼D [log π�(at | st) exp (Rt − V �(st))] . (1)

Episodic Memory-Based Methods. Inspired by psychobiology, episodic memory-based methods
store experiences in a non-parametric table to fast retrieve past successful strategies when encoun-
tering similar states. Model-free episodic control (Blundell et al., 2016a) updates the memory table
by taking the maximum return R(s, a) among all rollouts starting from same state-action pair (s, a).
Hu et al. (2021) proposes Generalizable Episodic Memory, which extends this idea to the continuous
domain, and proposes updating formula with a parametric memory QEM� .

3 METHOD

In this section, we describe our novel offline method, value-based episodic memory, as depicted in
Figure 1. VEM uses expectile V -learning (EVL) to learn V -functions while confines value learning
within the dataset to reduce extrapolation error. EVL uses an expectile operator that interpolates
between Bellman expectation operator and optimality operator to balance behavior cloning and op-
timal value learning. Further, VEM integrates memory-based planning to improve the advantage
estimation and accelerate the convergence of EVL. Finally, generalized advantage-weighted learn-
ing is used for policy learning with enhanced advantage estimation. A formal description for the
VEM algorithm is shown in Algorithm 1 in Appendix A.1.

3.1 EXPECTILE V-LEARNING

To achieve a balance between behavior cloning and optimal value learning, we consider the Bellman
expectile operator defined as follows:

((T �� )V )(s) := arg min
v

Ea∼�(·|s)
�
τ [δ(s, a)]2+ + (1− τ)[δ(s, a)]2−

�
(2)

where µ is the behavior policy, δ(s, a) = Es0∼P (·|s;a)[r(s, a) + γV (s′)− v] is the expected one-
step TD error, [·]+ = max(·, 0) and [·]− = min(·, 0). This operator resembles the expectile statis-
tics (Newey & Powell, 1987; Rowland et al., 2019) and hence its name. We can see that when
τ = 1/2, this operator is reduced to Bellman expectation operator, while when τ → 1, this operator
approaches Bellman optimality operator, as depicted in Lemma 3.
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Figure 2: Trade-offs of EVL between gen-
eralization and conservatism in a random
MDP. The green line shows the optimal
value and the blue line shows the value of
behavior policy. The curve is averaged over
20 MDPs.

We use the following toy example to further illustrate
the trade-offs achieved by EVL. Consider a random
generated MDP. When the operator can be applied
exactly, the Bellman optimality operator is sufficient
to learn the optimal value V ∗. However, applying
operators with an offline dataset raises a noise on the
actual operator due to the estimation error with finite
and biased data. We simulate this effect by adding
random Gaussian noise to the operator. Applying the
optimality operator on offline datasets can lead to se-
vere overestimation due to the maximization bias and
bootstrapping. The value estimation learned by EVL,
on the contrary, achieves a trade-off between learning
optimal policy and behavior cloning and can be close
to the optimal value with proper chosen τ , as depicted
in Figure 2. The noise upon the operator largely de-
pends on the size of the dataset. Estimation error can
be significant with insufficent data. In this case, we
need a small τ to be conservative and be close to be-
havior cloning. When the dataset is large and we are
able to have an accurate estimation for the operator,
we can use a larger τ to recover the optimal policy. By adjusting τ , the expectile operator can ac-
commodate variant types of datasets. However, the expectile operator in Equation 2 does not have a
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closed-form solution. In practice, we consider the one-step gradient expectile operator

((Tg) �
� V)(s) = V (s) + 2 � Ea� � ( �j s)

�
� [� (s; a)]+ + (1 � � )[� (s; a)] �

�
; (3)

where� is the step-size. Please refer to Appendix B.1 for the detailed derivation. For notational
convenience, we useT �

� to denote the one-step gradient expectile operator(Tg) �
� hereafter.

We consider the case where the dynamics are nearly-deterministic like robotic applications, and
we remove the expectation over the next states in the operator. This leads to a practical algorithm,
ExpectileV -Learning, where we train the value network to minimize the following loss:

J V (� ) = E(s;a;s 0) �D

� �
V̂ (s) � V� (s)

� 2
�

;

V̂ (s) = V� 0(s) + 2 �
�
� [� (s; a; s0)]+ + (1 � � )[� (s; a; s0)] �

�
;

(4)

whereV̂ is the target value after applying one-step gradient expectile operator and� (s; a; s0) =
r (s; a) + 
V � 0(s0) � V� 0(s). V -function and the target̂V -function are parameterized by� and� 0,
respectively. EVL is guaranteed to converge with concentration rate
 � = 1 � 2(1� 
 )� maxf �; 1�
� g. Please refer to Section 4 for a detailed analysis.

3.2 IMPLICIT MEMORY-BASED PLANNING

Although EVL reduces the extrapolation error, it is still a challenging problem to bootstrap over
long time horizons due to estimation errors with a �xed dataset. Therefore, we propose using value-
based planning to conduct bootstrapping more ef�ciently. We adopt an implicit memory-based
planning scheme that strictly plans within of�ine trajectories to avoid over-optimistic estimations in
the planning phase. This is aligned with recent advances in episodic memory-based methods (Hu
et al., 2021), but we conduct this planning on expectileV -values rather thanQ-values. Speci�cally,
we compare the best return so far along the trajectory with the value estimatesV̂ and takes the
maximum between them to get the augmented returnR̂t :

R̂t =
�

r t + 
 max(R̂t +1 ; V̂ (st +1 )) ; if t < T;
r t ; if t = T;

(5)

wheret denotes steps along the trajectory,T is the episode length, and̂V is generalized from similar
experiences. This procedure is conducted recursively from the last step to the �rst step along the
trajectory, forming an implicit planning scheme within the dataset to aggregate experiences along
and across trajectories. Further, the back-propagation process in Equation 5 can be unrolled and
rewritten as follows:

R̂t = max
0<n � n max

V̂t;n ; V̂t;n =

(
r t + 
 V̂t +1 ;n � 1 if n > 0;
V̂ (st ) if n = 0 ;

(6)

wheren denotes different length of rollout steps andV̂t;n = 0 for n > T .

3.3 GENERALIZED ADVANTAGE-WEIGHTED LEARNING

Based onR̂t calculated in Section 3.2, we can conduct policy learning in a regression form, as
adopted in return-based of�ine RL methods (Nair et al., 2020; Siegel et al., 2020; Peng et al., 2019):

max
�

J � (� ) = E(st ;a t ) �D

h
log � � (at j st ) � f

�
Â(st ; at )

�i
; (7)

whereÂ(st ; at ) = R̂t � V̂ (st ) andf is an increasing, non-negative function. Please refer to Ap-
pendix C.1 for the detailed implementation of Equation 7. Note thatR̂t is not the vanilla returns in
the dataset, but the enhanced estimation calculated by implicit planning fromV̂t , as opposed with
other return based methods. Please refer to Algorithm 1 and Section 4 for implementation details
and theoretical analysis.
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4 THEORETICAL ANALYSIS

In this section, we �rst derive the convergence property of expectileV -Learning. Then, we demon-
strate that memory-based planning accelerates the convergence of the EVL. Finally, we design a toy
example to demonstrate these theoretical analyses empirically. Please refer to Appendix B for the
detailed proofs of the following analysis.

4.1 CONVERGENCEPROPERTY OF THEEXPECTILE V-L EARNING

In this section, we assume the environment is deterministic. We derive the contraction property of
T �

� as the following statement:

Lemma 1. For any� 2 (0; 1), T �
� is a 
 � -contraction, where
 � = 1 � 2� (1 � 
 ) minf �; 1 � � g.

Proof. We introduce two more operators to simplify the analysis:

(T �
+ V)(s) = V (s) + Ea� � [� (s; a)]+ ; (T �

� V)(s) = V (s) + Ea� � [� (s; a)] � : (8)

Next we show that both operators are non-expansion (e.g.,kT �
+ V1 � T �

+ V2k1 � k V1 � V2k1 ).
Finally, we rewriteT �

� based onT �
+ andT �

� and we prove thatT �
� is a
 � -contraction. Please refer

to Appendix B.2 for the complete proof.

Based on Lemma 1, we give a discussion about the step-size� and the fraction� :

About the step-size� . Generally, we always want a larger� . However, � must satisfy that
V (s) + 2 �� � (s; a) � maxf r (s; a) + 
V (s0); V (s)g andV(s) + 2 � (1 � � )� (s; a) � minf r (s; a) +

V (s0); V (s)g, otherwise theV -value will be overestimated. Thus, we must have2�� � 1
and 2� (1 � � ) � 1, which infers that� � 1

2 max f �; 1� � g . When � = 1
2 max f �; 1� � g , we have


 � = 1 � 2� minf �; 1 � � g(1 � 
 ) = 1 � min f �; 1� � g
max f �; 1� � g (1 � 
 ).

About the fraction � . It is easy to verify that
 � approaches to 1 when� ! 0 or � ! 1, which
means that with a larger� the contractive property is getting weaker. The choice of� makes a trade-
off between the learning stability and the optimality of values. We further point out that when� = 1 ,
the ExpectileV -learning degrades as a special case of the generalized self-imitation learning (Tang,
2020), which losses the contractive property.

Next, we prove thatT �
� is monotonous improving with respect to� :

Lemma 2. For any�; � 0 2 (0; 1), if � 0 � � , we haveT �
� 0V(s) � T �

� V(s); 8s 2 S.

Based on the Lemma 2, we derive thatV �
� is monotonous improving with respect to� :

Proposition 1. Let V �
� denote the �xed point ofT �

� . For any �; � 0 2 (0; 1), if � 0 � � , we have
V �

� 0(s) � V �
� (s), 8s 2 S.

Further, we derive thatV �
� gradually approachesV � with respect to� :

Lemma 3. Let V � denote the �xed point of Bellman optimality operatorT � . In the deterministic
MDP, we havelim � ! 1 V �

� = V � .

Based on the above analysis, we have the following conclusion:

Remark 1. By choosing a suitable� , we can achieve the trade-off between the contraction rate and
the �xed point bias. Particularly, a larger� introduces a smaller �xed point bias betweenV �

� and
V � , and produces a larger contraction rate
 � simultaneously.

4.2 VALUE-BASED EPISODICMEMORY

In this part, we demonstrate that the memory-based planning effectively accelerates the convergence
of the EVL. We �rst de�ne the VEM operator as:

(Tvem V)(s) = max
1� n � n max

f (T � )n � 1T �
� V(s)g; (9)
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(a) The maximal rollout stepnmax . (b) The different behavior policies.

Figure 3: A toy example in the random MDP. In both �gures, the color darkens with a larger�
(� 2 f 0:6; 0:7; 0:8; 0:9g). The size of the spots is proportional to the relative scale of the third
variable: (a) Changenmax . From magenta to blue,nmax is set as1; 2; 3; 4 in order. (b) Change the
behavior polices� , where� (s) = softmax(Q� (s; �)=� ). From light yellow to dark red, the� is set
as0:1; 0:3; 1; 3 in order.

wherenmax is the maximal rollout step for memory control. Then, we derive that multi-step esti-
mation operatorTvem does not change the �xed point and contraction property ofT �

� :

Lemma 4. Given� 2 (0; 1) and nmax 2 N+ , Tvem is a 
 � -contraction. If� > 1
2 , Tvem has the

same �xed point asT �
� .

Next, we derive that the contraction rate ofTvem depends on the dataset quality. Further, we demon-
strate that the convergence rate ofTvem is quicker thanT �

� even the behavior policy� is random:

Lemma 5. When the current value estimatesV (s) are much lower than the value of behavior policy,
Tvem provides an optimistic update. Formally, we have

jTvem V(s) � V �
� (s)j � 
 n � (s) � 1
 � kV � V �

n � ;� k1 + kV �
n � ;� � V �

� k1 ; 8s 2 S; (10)

wheren� (s) = arg max 0<n � n max
f (T � )n � 1T �

� V(s)g, V �
n � ;� is the �xed point of(T � )n � (s) � 1T �

�
and it is the optimal rollout value starting froms.

This lemma demonstrates thatTvem can provide an optimistic update for pessimistic value estimates.
Speci�cally, the scale of the update depends on the quality of the datasets. If the behavior policy�
is expert, which meansV �

n � ;� is close toV �
� . Then, following the lemma, the contraction rate will be

near to
 n � (s) � 1
 � . Moreover, if the initial value estimates are pessimistic (e.g., the initialized value
function with zeros), we will haven� (s) � nmax , indicating that the value update will be extremely
fast towards a lower bound ofV �

� . On the contrary, if� is random, we haven� (s) � 1 and the value
update will be slow towardsV �

� .

Remark 2. By choosing a suitablenmax , we can achieve the trade-off between the contraction
rate and the estimation variance, i.e., a largernmax yields a fast update towards a lower bound of
�xed point and tolerable variances empirically. Meanwhile, the choice ofnmax does not introduce
additional bias, and the �xed point bias is totally controlled by� .

4.3 TOY EXAMPLE

We design a toy example in the random deterministic MDP to empirically demonstrate the above
analysis. Following (Rowland et al., 2020), we adopt three indicators, including update variance,
�xed-point bias, and contraction rate, which is shown in Figure 3. Speci�cally, the contraction rate
is supV 6= V 0 kTvem V � T vem V 0k1 =kV � V 0k1 , the bias iskV �

vem � V � k1 and the variance is

E
h
kT̂ V � T vem Vk2

2

i 1
2
, whereT̂vem is the stochastic approximation ofTvem andV �

vem is the �xed
pointed ofTvem . First, the experimental results in Figure 3(a) demonstrate that the relationship
of n-step estimation and� . Formally, the contraction rate decreases asn becomes larger, and the
�xed-point bias increases as� becomes smaller, which are consistent with Lemma 1 and Lemma 2.
Figure 3(a) also shows that the variance is positively correlated withn. Second, the experimental
results in Figure 3(b) demonstrate that the relationship of dataset quality and� . The higher dataset
quality corresponds to the lower contraction rate and variance, which is consistent with Lemma 5.
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