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ABSTRACT

Modeling causal relationships in graph representation learning remains a fundamental
challenge. Existing approaches often draw on theories and methods from causal infer-
ence to identify causal subgraphs or mitigate confounders. However, due to the inher-
ent complexity of graph-structured data, these approaches frequently aggregate diverse
graph elements into single causal variables—an operation that risks violating the core as-
sumptions of causal inference. In this work, we prove that such aggregation compromises
causal validity. Building on this conclusion, we propose a theoretical model grounded in
the smallest indivisible units of graph data to ensure that the causal validity is guaranteed.
With this model, we further analyze the costs of achieving precise causal modeling in
graph representation learning and identify the conditions under which the problem can be
simplified. To empirically support our theory, we construct a controllable synthetic dataset
that reflects real-world causal structures and conduct extensive experiments for validation.
Finally, we develop a causal modeling enhancement module that can be seamlessly inte-
grated into existing graph learning pipelines, and we demonstrate its effectiveness through
comprehensive comparative experiments. Code and data can be found in the supplemen-
tary materials.

1 INTRODUCTION

In deep learning, accurately modeling causal relationships is a key step toward building trustworthy AI (Li
et al., 2023). Causal relationships represent the real cause-and-effect links between variables, possessing
deterministic certainty, unlike probabilistic correlations that may involve false connections. This is espe-
cially important for graph representation learning using neural networks (Gao et al., 2023), as the complex
connections between nodes and the built-in structure of graph data are likely to create confusing biases and
false correlations (Jukna, 2006). In common applications, like recommendation systems (Wu et al., 2022a),
drug discovery (Takigawa & Mamitsuka, 2013), and social network analysis (Tan et al., 2019), these biases
often appear as the challenge of separating key causal factors—like telling popularity from true preference,
bias from biological function, and similarity from influence. Additionally, since graph models are often used
to study systems with spreading effects, predictions based on such false correlations are not only likely to
fail, but their negative outcomes can also be made much worse when spread by the network structure.

In recent years, researchers have sought to address this issue (Wu et al., 2022b; Fan et al., 2022; Gao et al.,
2023; 2024; Sun et al., 2025; Zhao et al., 2025). Mirroring trends in other domains of neural networks
(Kaddour et al., 2022), they have begun to integrate principles of causal inference into graph representa-
tion learning, achieving notable success. These approaches typically function by either identifying causal
subgraphs within the graph data or eliminating confounders—extraneous variables that interfere with the ac-
curate modeling of causal relationships. The efficacy of these methods has been validated on both synthetic
datasets designed for causal benchmarks and real-world datasets.

1



047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093

Under review as a conference paper at ICLR 2026

𝑋5𝑋3

Ideal Case Actual Case

𝑋2
𝑋1

𝑋7

𝐴 B

𝐶

𝑋4

𝑋3 𝑋5
𝑋6

𝑋7 𝑋8

𝐴 B

𝐶

?

??

Variables 

and their 

causal 

relationships 

in the data

Constructed

Causal

Model

𝑋4𝑋2

𝑋8

𝑋1 𝑋6

Figure 1: An example of the ideal case and
the actual case in causal model building. In
the actual case, the causal model cannot be
constructed as in the ideal case due to the
complex reciprocal causal relationships be-
tween the merged variables.

However, the aforementioned methods often merge multiple
graph components—such as nodes and edges—into a single
causal variable in their analysis. For example, they typically
consider the entire causal subgraph or confounder as one uni-
fied variable. In an ideal scenario, if the causal relationships
between the variables in the studied graph data align with the
variables created by these methods, then, based on the theory
of Spirtes (2009), such an analysis poses no issues and satis-
fies the prerequisites for causal inference applications. How-
ever, in real-world situations, the complex interrelationships
within graph data lead to highly intricate interactions between
the variables, which do not meet this ideal condition. We pro-
vide an intuitive example in Figure 1. This practice raises an
important question: what impact does such merging of vari-
ables have on the granularity and accuracy of causal anal-
ysis in graph representation learning? Our findings show
that such a simplification inevitably violates the two funda-
mental premises of causal inference, making it inapplicable.
Please refer to Proposition 1 for details. Consequently, a new
question emerges: from a causal theory perspective, is it possible to achieve perfectly accurate causal
relationship modeling in graph representation learning, and at what cost?

In this paper, we address the aforementioned issues from a rigorous theoretical perspective, supported by
sufficient experimental evidence. Specifically, we develop a new theoretical model for studying causal mod-
eling in graph representation learning. Such a model is built upon the smallest divisible variables in graph
data, ensuring strict adherence to the fundamental theoretical premises of causal inference. Based on this
model, we conduct a series of analyses and proofs. Subsequently, we carry out experimental analyses, con-
structing an artificial synthetic dataset that closely resembles real-world scenarios and performing multiple
experiments and analyses. Building upon the aforementioned research outcomes, we also develop a new
plug-and-play causal modeling enhancement module. Our contributions can be summarized as follows:

• We proposed a new theoretical model that strictly adheres to the fundamental premises of causal
inference for studying causal modeling in graph representation learning.

• Based on the proposed model, we derive and prove a series of theories concerning causal relation-
ship modeling in graph representation learning, including its costs and simplifications.

• We constructed a synthetic graph dataset with controllable causal relationships, more closely resem-
bling real-world scenarios, for causal relationship modeling research. Additionally, we conducted
a series of experiments for cross-validation with the proposed theory.

• Based on the aforementioned research and conclusions, we introduced a novel plug-and-play mod-
ule for optimizing causal relationship modeling in graph representation learning.

2 RELATED WORKS

2.1 CAUSAL LEARNING

Causal learning focuses on identifying and modeling causal relationships rather than mere correlations,
utilizing methods like causal graph models (Kocaoglu et al., 2019), causal inference (Pearl & Mackenzie,
2018), and causal discovery (Zheng et al., 2018). Recent advances integrate causal learning with neural
networks to enhance interpretability and generalization by incorporating causal structures (Chattopadhyay
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et al., 2019; Zhang et al., 2020), removing spurious correlations (Zhang et al., 2021), and analyzing latent
variable relationships (Yao et al., 2024). Causal deep generative models disentangle factors like object
shape and texture for counterfactual generation (Sauer & Geiger, 2021), while causal reinforcement learning
improves robustness through stable representations (Zhang et al., 2024). These approaches advance causal
understanding in neural networks across prediction, generation, and decision-making tasks (He et al., 2023;
Bagi et al., 2023; Cheng et al., 2024; Zeng et al., 2023; Zhu et al., 2023; Yu et al., 2024).

2.2 CAUSAL RELATIONSHIP MODELING WITH GRAPH NEURAL NETWORKS

Causality plays a crucial role in addressing the complexity of graph data (Lippe et al., 2023; Sui et al., 2022),
especially in fields such as finance (Wang et al., 2022), medicine (Shang et al., 2019), and biology (Zitnik
et al., 2018). Most current research focuses on how to enable Graph Neural Networks (GNNs) to model
causal relationships in graph representation learning. These studies typically employ two main approaches:
(1) modeling causal subgraphs, where Fan et al. (2024) proposed a causal representation framework for
stable GNNs, Wu et al. (2022b) developed a discovering invariant rationale (DIR) strategy, and Chen et al.
(2022) introduced Causal-Inspired Invariant Graph Learning (CIGA) for OOD generalization; and (2) elim-
inating confounding factors, where Fan et al. (2022) proposed a decoupled GNN framework, Gao et al.
(2024) designed a lightweight optimization module, and Wu et al. (2024) employed causal inference-inspired
learning to overcome confounding biases. Both of these approaches adopt variable merging in their causal
analysis, and our work aims to investigate the impact of this merging from both theoretical and experimental
perspectives.

3 THEORETICAL ANALYSIS

3.1 BASIC MODEL

As discussed above, research on graph representation learning from a causal perspective often merges nu-
merous node and edge-level variables, making it difficult to ensure causal validity. Additionally, categorizing
complex, interdependent variables within a graph dataset G = {Gi}|G|i=1 as “confounders” or “causal sub-
graphs” can impact the effectiveness of causal analysis methods, violating two key assumptions in causal
inference: the Causal Markov Assumption and the Causal Faithfulness Assumption (Pearl, 2009). Formally,
we propose the following proposition:

Proposition 1 When the variables within graph dataset G are merged to form a new and smaller variable
set S, in certain cases, it becomes impossible to construct a causal model based on S while still satisfying
the two key prerequisites for applying causal inference methods—namely, the Causal Markov Assumption
and the Causal Faithfulness Assumption.

The proof can be found in Appendix C.1. This influence warrants more rigorous and systematic theoretical
investigation. To study the problem, we formalize it using a Structural Causal Model (SCM) (Pearl, 2009),
which serves as a framework for representing causal relationships among variables. An SCM consists of a
set of variables and a corresponding set of relations that describe how each variable is causally influenced
by others. In Figure 2, we illustrate the SCM as a Directed Acyclic Graph (DAG), in line with standard
practices in causal inference. In this representation, vertices correspond to random variables, while edges
denote the causal relationships between them. The SCM we construct treats individual elements in the
graph—such as nodes and edges—as separate variables, enabling an analysis that strictly adheres to
the principles of causal theory.

In Figure 2, let U = {Ui}|U |
i=1 denote the set of exogenous variables, X = {Xi}|X|

i=1 represent all the
smallest divisible variables included in the graph, and Y = {Yi}|Y |

i=1 indicate the set of label variables. The
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Figure 2: Graphical illustration of the proposed SCM of the graph representation learning scenario.

edges in the graph illustrate the causal relationships between the variables. For each variable Xi, there
is a direct causal relationship with its corresponding exogenous variable Ui, and Ui may also exert causal
influences on other variables within X . These uncertain causal relationships are represented by dashed
arrows. Furthermore, since we do not observe the values of the exogenous variables, our focus is solely on
their causal influence on X . Consequently, all edges between U and X are directed from U to X . Due to
the large number of variables and edges in the graph, it is impractical to display each element individually.
To address this, ellipses are employed to represent omitted variables and edges.

For the set X , we divide it into three subsets. As illustrated in Figure 2, subset one consists of variables
that do not have causal paths to the label set Y and may act as confounders. We denote this subset as
Xcfd. Subset two includes variables that do have paths to the labels Y = {Yi}|Y |

i=1 but are not part of⋃
i∈{1,2,...,k} Pa(Yi), where Pa(·) represents the parent node set. Specifically, these variables are not parent

nodes of any label Yi, but they are causally associated with Y . We refer to this subset as Xasoc. Subset
three is

⋃
i∈{1,2,...,k} Pa(Yi), and we denote this subset as Xcaus. As illustrated in the figure, the causal

relationships among variables are highly complex and uncertain. Within Xcfd, Xasoc, and Xcaus, variables
may exhibit mutual causal associations. Moreover, variables in Xasoc may have causal connections with
those in Xcfd, while variables in Xasoc and Xcaus may hold causal relationships in arbitrary directions. We
demonstrate the validity of the SCM:

Theorem 2 The proposed SCM in Figure 2 can characterize the general causal relationships between vari-
ous variables in the graph representation learning scenario. Furthermore, such an SCM satisfies the Causal
Markov Assumption and the Causal Faithfulness Assumption.

The proof can be found in Appendix C.1.

3.2 FURTHER DISCUSSION

Based on the proposed SCM that strictly satisfies the premises of causal inference, we wonder what it
would cost to achieve perfectly accurate causal modeling using a GNN model? Intuitively, this would
require analyzing every individual data element within the graph and conducting interventions. To this end,
we conducted a theoretical analysis and, for both atomic interventions (intervening on a single variable at
a time) and non-atomic interventions (intervening on multiple variables simultaneously), we derived the
corresponding lower bounds on the number of interventions required:

Theorem 3 Based on the SCM in Theorem 2, when utilizing GNN to model causal relation-
ships, for atomic interventions, the lower bound of the number of interventions required is

4
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minMmicro


1
λ |
(⋃|G|

i=1 Gi

)
|+|Y |−r(Mmicro)

2


, where Mmicro denotes any DAG that is equivalent to the

graphical representation of the ground truth causal model, and the vertex set of Mmicro =
(⋃|G|

i=1 Gi

)
∪ Y ,

λ denotes the average times that each variable occurs among each of the samples within dataset G, r(·)
calculates the total number of maximal cliques. For non-atomic interventions, the number of interventions

required exceeds O

mink

 1
λ |
(⋃|G|

i=1 Gi

)
|+|Y |

k log (log (k))

.

The proof can be found in Appendix C.3. Theorem 3 provides a lower bound on the number of interventions
required. Based on this theorem, for graph datasets, achieving accurate causal modeling would necessitate
an extremely large number of interventions—at least on the order of O

(⋃|G|
i=1 Gi

)
. Take the Citeseer dataset

(Caragea et al., 2014) as an example; the required number of interventions would amount to several thousand.
Given that interventions themselves are highly costly—and sometimes even infeasible—this raises a critical
question: is it possible to achieve accurate causal modeling without performing such an excessive number
of interventions?

Theorem 4 Assume there exists a GNN model that satisfies the infinite approximation theorem (Cybenko,
1989), and that interventions are applied to ensure the GNN models the causal relationships between the
graph variables and the labels. In this case, when applying causal inference in graph representation learn-
ing, it is possible to merge some variables from the original set X to form a new set S, where |S| < |X|,
while ensuring that the causal relationships between the graph data and the labels are accurately modeled.
However, the following conditions must be met:

(1) Variable s in S that satisfies s ∈ Pa(Y ) cannot simultaneously contain both the parent and child
nodes of another variable v ∈ X .

(2) Variables within Xcaus cannot be merged with those from other sets.

The proof can be found in Appendix C.4. Theorem 4, in fact, provides a simplified solution from the
perspective of variable merging. However, this solution is subject to conditions and still requires partial
knowledge of the underlying causal relationships. Nevertheless, the theorem offers a principled approach to
precise causal modeling and serves as a theoretical foundation for it.

3.3 EXPERIMENTAL ANALYSIS

3.3.1 RWG DATASET

Table 1: Comparison between our proposed RWG dataset and existing benchmark datasets.

Dataset Adjustable Known Adjustable Adjustable Adjustable Adjustable Real-world
Elements (↑) Causality Motif Node Feature Edge Connection Assemble Mode Grounded Data

Citeseer (Giles et al., 1998) Fixed × × × × × ✓
PROTEINS (Morris et al., 2020) Fixed × × × × × ✓
Synthetic Graph (Ying et al., 2019) 5 ✓ ✓ × × × ×
Spurious-Motif (Wu et al., 2022b) 6 ✓ ✓ × × × ×
CRCG (Gao et al., 2024) 54 ✓ ✓ ✓ ✓ × ×
RWG 90 ✓ ✓ ✓ ✓ ✓ ✓

To further investigate the research problem while maintaining close ties to real-world scenarios, we introduce
the Real-World knowledge-based synthesized Graph (RWG) dataset for empirical analysis. This dataset is
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grounded in real-world knowledge and rules, leveraging chemical and citation networks to construct syn-
thetic graph samples for testing graph classification and node classification tasks. Specifically, the RWG
dataset generates graph samples that closely resemble real-world chemical molecules by integrating various
chemical motifs, connecting modules, and controllable parameters, ensuring clear and modelable internal
causal relationships. It also simulates node features from real-world citation networks, constructing graph
samples that approximate real-world citation structures, with known internal causal relationships. Table 1
compares the RWG dataset with other related datasets. For additional details, please refer to Appendix D.

Next, we conduct experiments using the RWG dataset we have constructed to cross-validate with the previ-
ous theoretical analysis.

3.3.2 CAUSAL MODELING CAPABILITY
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Figure 3: Test accuracy comparison across three different scenarios.

We first analyze the causal modeling ability of multiple GNN baselines when dealing with different datasets
and the impact of intervention operations on this ability. Three datasets are used: SPMotif (Wu et al.,
2022b), RWG-Molecular, and RWG-Citation. Among them, RWG-Molecular and RWG-Citation are graph
classification and node classification datasets based on RWG, while SPMotif is a widely used artificially
synthesized graph dataset. The causal relationships in these datasets can be formally modeled and precisely
controlled.

Six GNN baselines are used for experimental analysis, including three causal relationship modeling-
enhanced GNN baselines: CaNet (Wu et al., 2024), CRCG (Gao et al., 2024), DIR (Wu et al., 2022b),
and three general GNN baselines: GCN (Kipf & Welling, 2017), ChebNet (Defferrard et al., 2016), and
GIN (Xu et al., 2019). We first make the causal relationships in the dataset explicit, ensuring that there is
no interference from confounders, so that the probabilistic associations in the dataset are equivalent to the
causal associations. In other words, all the elements we use to construct the dataset are associated with the
labels. At the same time, by reducing the problem’s difficulty and conducting multiple rounds of training,
we make the GNN modeling performance approach 100% test accuracy. Then, we introduce confounders
into the dataset and apply interventions to observe the effects. When applying interventions, we follow the
approach used by other causal graph representation learning methods (Wu et al., 2022b; Gao et al., 2024),
treating the confounder as a whole for the intervention. However, since we have complete knowledge of the
internal causal relationships within the data, we can ensure that the division of causal variables complies with
Theorem 4. Specifically, we fix the confounder as specific, invariant graph data to eliminate interference and
perform the intervention. Please refer to Appendix F for baselines and dataset details.

Figure 3 shows that introducing confounders degrades model performance, while interventions significantly
improve accuracy, almost fully restore the no-confounder level. This result supports Theorem 4, demon-
strating that intervention-based causal inference remains effective under reasonable variable merging. At the
same time, it can be observed that there is still some inevitable performance degradation in real-world sce-
narios. This is related to the inherent limitations of GNN models and the inability of intervention methods
applied to graph data to completely eliminate interference.
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3.3.3 INTERVENTION ANALYSIS

In this section, we analyze intervention effects under varying conditions using the same datasets and base-
lines as in Section 3.3.2. We simulate errors in variable merging by reassigning parts of Xcfd to Xcaus,
thereby violating Theorem 4. Given that our dataset is artificially synthesized with controllable causal
relationships, this operation merely entails treating the confounders as non-intervened components when
applying causal interventions. Results are shown in Figure 4. As the violation increases, model per-
formance degrades, indirectly validating Theorem 4. Moreover, SPMotif shows smaller fluctuations than
RWG-Molecular and RWG-Citation, due to its simpler structure. This highlights the importance of RWG
datasets, which better approximate real-world complexity and yield more reliable experimental outcomes.
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(b) RWG-Molecular
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Figure 4: Performance of the methods when Theorem 4 is violated to varying degrees. The horizontal axis
represents the percentage of data in Xcfd that is erroneously merged into Xcaus.
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Figure 5: Performance comparison across different scenarios.
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Figure 6: Performance of models trained solely with causal data.

We also investigated how differ-
ent graph elements affect the causal
modeling capability of GNNs. Us-
ing RWG-Molecular, we compared
a single large confounder subgraph
with multiple smaller ones; us-
ing RWG-Citation, we added con-
founders consisting only of nodes
versus those involving both nodes
and edges. Results in Figure 5
show notable performance gaps between RWG-Molecular and RWG-Citation, but only minor differences
within the same dataset type. This suggests that merged elements cannot be completely treated as general
causal variables, as their effects remain dataset- and scenario-dependent.

Furthermore, we evaluate the generalization of GNNs trained solely on causal relationships using four
datasets: RWG-Molecular Large (fewer samples, larger motif), RWG-Molecular Small (more samples,
smaller motif), RWG-Citation Node (node-only relations), and RWG-Citation Complex (nodes, edges, and
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interactions). Results in Figure 6(a) show good performance on purely causal test data, but adding 70%
confounding data (Figure 6(b)) causes a sharp decline. This experiment strongly demonstrates that, even
when trained solely on causally associated data, models in complex graph representation learning scenar-
ios remain effective only within the original data distribution. Their performance deteriorates substantially
when exposed to extraneous data. Further experimental results can be found in Appendix E.2 and E.3, the
setting and dataset details can be found in Appendix F.
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Figure 7: The illustration of how REC works.

Based on the above discussion, within the current graph representation learning framework, achieving
strictly accurate causal relationship modeling is nearly impossible. Reviewing our entire analysis, we iden-
tify the inherent complexity of graph data as the fundamental obstacle to causal modeling in graph repre-
sentation learning. Therefore, we consider whether reducing this complexity could enable GNNs to better
approximate the true underlying causal model. To begin, we propose the following proposition:

Proposition 5 When the GNN f(·) precisely models the causal mechanism, the cross-entropy loss L between
predictions f(G) and labels Y is minimized. Moreover, L equals the conditional KL divergence between the
predictive distribution of f(·) and the background causal model, given each input graph G.

The proof can be found in Appendix C.5. Given that L represents the conditional KL divergence between
the trained GNN and the causal model, we argue that reducing data complexity, while keeping L close
to optimal, will make it easier to approximate the background causal model and reduce the likelihood of
interference. Moreover, this complexity-reduction approach can be implemented as a plug-and-play module,
improving both GNN backbones and causal enhanced graph learning methods.

In light of this, we propose a Redundancy Elimination method for Causal graph representation Learning
(REC) to eliminate as many redundant variables as possible in Xcfd and Xasoc, thereby simplifying the
causal modeling process. The REC extracts the feature h

(0)
v of each node v in the graph data G, along with

the feature h
(l)
v after processing through the l-th layer, and performs variable removing as follows:

h̃(0)
v = REC(h(0)

v ) = sigmoid
(
γ + δ(0)

(
h(0)
v

))
· h(0)

v , (1)

similarly:
h̃(l)
v = REC(h(l)

v ) = sigmoid
(
γ + δ(l)

(
h(l)
v

))
· h(l)

v . (2)

Here, δ(l)(·) is a multilayer perceptron (MLP) with an output dimension of 1, and all δ(l) within the same
layer share the same parameters. sigmoid(·) denotes the sigmoid function, which serves as a masking oper-
ator for node features. Depending on the value of

(
(γ+ δ(l)

(
h
(l)
v

))
, the sigmoid function suppresses certain

feature values toward zero, thereby excluding them from the forward propagation process and effectively
removing the corresponding variables. γ is a value that gradually decreases during the training process. It
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is designed to eliminate fewer variables at the beginning, allowing the GNN to first model relationships and
then eliminate more variables in later stages. This enables the GNN to remove more redundant variables
based on accumulated knowledge. Formally, we have:

γ = max
(
γinit · (1− ϵ)t, γmin

)
, (3)

where t denotes the number of current round. γinit and γmin are hyperparameters that set the initial and
minimum values, respectively. ϵ, also a hyperparameter, is a small value greater than zero that controls the
rate of decrease. Then, the GNN layer that applies REC can be formulated as:

h(l+1)
v = Aggregate

(
W(l)REC(h(l)

v ),
{
W(l)REC(h(l)

u ),∀u ∈ N (v)
})

, (4)

where W(l) denotes the weight matrix for the l-th layer, N (v) denotes the neighboring nodes of node v,
Aggregate(·) denotes the aggregation process of GNN. REC can be applied to any GNN encoder in causal
graph representation learning methods or GNN backbones to enhance the algorithm’s causal modeling ca-
pabilities. Parameters within REC are updated along with those of the GNN. Figure 7 offers an illustration
of applying REC. To validate its effectiveness, we conducted extensive experiments on multiple datasets.
Besides our own proposed datasets, we utilized the artificially generated dataset SPMotif, and real-world
datasets CiteSeer (Caragea et al., 2014) and ENZYMES (Rossi & Ahmed, 2015). Furthermore, we merged
RWG’s link construction paradigm with the SPMotif dataset to construct SPMotif-M, a graph dataset con-
taining more diverse types of graph structural linkages. Simultaneously, we integrated RWG motifs approx-
imating real-world molecular structures with SPMotif to create SPMotif-C.

Method RWG-Molecular Spmotif-M Spmotif-C RWG–Citation CRCG CiteSeer ENZYMES

CaNet 52.17 ± 2.02 32.40 ± 1.30 45.00 ± 1.32 59.33 ± 1.04 32.77 ± 1.27 83.87 ± 0.67 17.00 ± 6.78
CaNet+REC 56.50 ± 2.65 34.17 ± 1.35 46.83 ± 3.06 61.83 ± 0.76 36.43 ± 1.17 84.90 ± 0.12 18.33 ± 6.94
Improvement +4.33 +1.77 +1.83 +2.50 +3.66 +1.03 +1.33

CRCG 45.50 ± 3.53 36.80 ± 1.89 44.50 ± 2.91 45.50 ± 6.29 29.70 ± 4.62 42.78 ± 3.76 34.67 ± 7.10
CRCG+REC 45.50 ± 4.39 38.17 ± 3.83 50.50 ± 3.05 47.50 ± 6.26 33.10 ± 5.29 44.07 ± 3.30 40.33 ± 3.24
Improvement +0.00 +1.37 +6.00 +2.00 +3.40 +1.29 +5.66

DIR 49.00 ± 5.26 38.67 ± 4.57 63.00 ± 6.55 52.50 ± 5.67 31.80 ± 4.76 66.53 ± 1.42 42.67 ± 6.01
DIR+REC 52.00 ± 5.68 39.97 ± 3.12 67.00 ± 4.79 57.50 ± 6.24 36.10 ± 4.14 67.70 ± 1.74 48.00 ± 2.21
Improvement +3.00 +1.30 +4.00 +5.00 +4.30 +1.17 +5.33

GCN 40.00 ± 5.56 38.60 ± 1.71 19.50 ± 2.36 43.50 ± 6.96 17.22 ± 1.26 71.08 ± 0.48 24.67 ± 1.94
GCN+REC 42.35 ± 4.10 40.21 ± 0.96 26.36 ± 2.76 52.29 ± 4.41 26.30 ± 1.67 71.93 ± 0.33 28.33 ± 2.83
Improvement +2.35 +1.61 +6.86 +8.79 +9.08 +0.85 +3.66

ChebNet 41.00 ± 4.45 38.63 ± 1.61 33.50 ± 4.90 55.50 ± 7.23 33.75 ± 1.89 55.39 ± 2.44 26.33 ± 3.09
ChebNet+REC 50.18 ± 6.77 40.40 ± 0.98 37.95 ± 5.21 57.40 ± 6.19 36.02 ± 1.91 57.27 ± 1.72 30.33 ± 1.63
Improvement +9.18 +1.77 +4.45 +1.90 +2.27 +1.88 +4.00

GIN 50.50 ± 8.44 14.27 ± 4.43 36.50 ± 3.43 46.50 ± 4.56 28.02 ± 0.82 52.80 ± 3.53 27.00 ± 4.14
GIN+REC 55.90 ± 1.74 38.60 ± 4.60 45.00 ± 3.98 53.10 ± 1.38 33.64 ± 2.39 54.57 ± 2.74 33.67 ± 1.87
Improvement +5.40 +24.33 +8.50 +6.60 +5.62 +1.77 +6.67

Table 2: Performance comparison of different methods with and without REC enhancement on various
datasets. The improvement row shows the absolute performance gain achieved by REC.

Experimental results, as shown in Table 2, demonstrate that our method achieves improvements across all
baselines, with significant enhancements in certain scenarios. This not only validates the effectiveness of
REC but also provides supporting evidence for Proposition 5. Detailed settings can be found in Appendix F.

5 CONCLUSION

This paper approaches causal modeling in graph representation learning from a theoretical perspective,
developing a theoretical model that strictly adheres to the fundamental assumptions of causal inference.
Building on this foundation, we conduct in-depth analyses combined with experimental cross-validation and
further propose an improved enhancement module.
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REPRODUCIBILITY STATEMENT

All of our theoretical results have been rigorously proven, and the corresponding proofs are provided in
Appendix C. Additionally, our experiments and methods include data and code for reproducibility. The code
for generating datasets is available in the /gen datasets directory of the supplementary materials. The
generated datasets are provided in the /data directory. The code for loading the datasets and training the
models is available in the /models directory. For more details and environment setup, please refer to the
README.md in the supplementary materials.
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A USAGE OF LARGE LANGUAGE MODEL

In our paper, we used LLMs to assist with polishing the writing, including correcting grammatical errors
and making the sentences more consistent with academic English writing conventions.

B EXTENDED RELATED WORKS

B.1 CAUSAL LEARNING

Causal learning is a learning method based on identifying and modeling causal relationships (Pearl, 2000).
Unlike traditional correlation learning, causal learning focuses on the causal effects between variables, i.e.,
how a change in one variable causes a change in another, rather than merely observing the statistical corre-
lation between them. Causal learning aims to extract causal relationships between variables from data and
use these relationships for prediction, reasoning, or decision-making. It typically involves methods such as
causal graph models (Kocaoglu et al., 2019), causal inference (Pearl & Mackenzie, 2018), and causal discov-
ery (Zheng et al., 2018), to infer causal structures from observational data. In recent years, with the rise of
deep learning, research on causal learning has gradually shifted to the field of neural networks, particularly
how to incorporate causal inference into the training and inference processes of neural networks.

Causal learning in neural networks is primarily reflected in the integration of causal inference with deep
learning models to improve the performance of neural networks. On the one hand, neural networks mainly
model data by learning the relationships between variables, but since they cannot directly understand the
causal relationships between variables, this limits their performance on more complex problems. Therefore,
recent research has attempted to incorporate causal inference into the training process of neural networks
in order to enhance model interpretability and generalization ability (Chattopadhyay et al., 2019; Zhang
et al., 2020). Zhang et al. (2021) removes dependencies between features by learning weights for training
samples, thus allowing deep learning models to avoid spurious correlations and focus more on the true
relationships between features and labels. Yao et al. (2024) analyzes and understands the causal relationships
between latent variables in the data, identifying more fine-grained representations under the generally milder
assumption of partial observability. Hong et al. (2024) introduces causal models to understand and advance
Non-transferable learning by modeling content and style as two latent factors, decoupling them and using
them as guides to learn non-transferable representations with inherent causal relationships. These methods
enhance the model’s reasoning ability by introducing causal graph structures or causal analysis mechanisms
into neural networks.

Moreover, causal deep generative models are also an important research direction in causal learning within
neural networks in recent years (He et al., 2023; Bagi et al., 2023; Cheng et al., 2024). For example, Sauer
& Geiger (2021) proposes decomposing the image generation process into independent causal mechanisms
and training them without direct supervision. By utilizing appropriate inductive biases, these mechanisms
disentangle object shape, object texture, and background, thus enabling the generation of counterfactual
images. In the field of reinforcement learning, causal inference has also started to integrate with deep rein-
forcement learning methods (Zeng et al., 2023; Zhu et al., 2023; Yu et al., 2024). For example, Zhang et al.
(2024) adopts a guided updating mechanism to learn a stable causal origin representation. By leveraging
this representation, the learned policy demonstrates significant robustness to nonstationarity.

B.2 CAUSAL RELATIONSHIPS MODELING WITH GNNS

This paper primarily explores how to enhance the causal relationship modeling in Graph Neural Networks
(GNNs). Causality is crucial in graph representation learning (Lippe et al., 2023; Sui et al., 2022), as
the complexity and variability of graph data, unlike images and text, require stronger causal relationship
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modeling capabilities to ensure generalization and robustness. Moreover, several application areas of graph
representation learning, including finance (Wang et al., 2022), medicine (Shang et al., 2019), and biology
(Zitnik et al., 2018), have significant demands for the causal relationships being modeled.

There are currently many related studies addressing this issue, which can be categorized into two technical
approaches: one focusing on modeling causal relationship subgraphs and the other on eliminating the impact
of confounding factors. Regarding the first approach, Fan et al. (2024) proposed that spurious correlations
exist within subgraph-level units and analyzed the degeneration of GNNs from a causal perspective. Based
on this causal analysis, a general causal representation framework was proposed to build stable GNNs.
Wu et al. (2022b) introduced a new discovering invariant rationale (DIR) strategy to construct inherently
interpretable GNNs and enhance their causal relationship modeling ability. Chen et al. (2022) proposed
a new framework called Causal-Inspired Invariant Graph Learning (CIGA) to capture the invariances in
graphs, ensuring out-of-distribution (OOD) generalization under various distribution changes.

Regarding the second approach, Fan et al. (2022) proposed a general decoupled GNN framework, learning
causal substructures and bias substructures separately. Gao et al. (2024) developed a lightweight optimiza-
tion module based on the relationship between causal key modeling and confounding factors. Fan et al.
(2022) also introduced a general decoupled GNN framework to separately learn causal and bias substruc-
tures, ensuring that the final model can debias. Wu et al. (2024) employed a new learning objective inspired
by causal inference, which coordinates an environment estimator with an expert mixed GNN predictor. This
new method overcomes the confounding biases in training data and promotes the learning of widely adapt-
able predictive relationships.

C THEORETICAL PROOFS

C.1 PROOF OF PROPOSITION 1

proposition 1. When the variables within graph dataset G are merged to form a new and smaller variable
set S, in certain cases, it becomes impossible to construct a causal model based on S while still satisfying
the two key prerequisites for applying causal inference methods—namely, the Causal Markov Assumption
and the Causal Faithfulness Assumption.

Proof. To illustrate the proposition, we provide a corresponding counterexample. To ensure the clar-
ity of the proof, we first present the detailed formulations of the Causal Markov Assumption and Causal
Faithfulness Assumption.

Causal Markov Assumption (Spirtes, 2009) : For a set of variables in which there are no hidden common
causes, variables are independent of their non-effects conditional on their immediate causes.

Causal Faithfulness Assumption (Spirtes, 2009): There are no independencies other than those entailed
by the Causal Markov Assumption.

𝑆𝑖 a b

c d𝑆𝑗

Figure 8: The graphical illustration of the causal relationships between variables a, b, c, and d.
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For the Causal Markov Assumption, given variables Si and Sj within S, we assume that {a, b} ⊂ Si and
{c, d} ⊂ Sj , and that the ground-truth causal relationships among a, b, c, and d are as illustrated in Figure
8. In this case, Si contains causes of Sj , and Sj also contains causes of Si. Suppose we designate Si as
the cause and construct a causal pathway Si → Sj . Then, for another variable Sk ∈ S, if Sk also contains
causes of Sj , and Sj contains causes of Sk, while Sk is similarly designated as the cause, it is possible that
Si and Sk are dependent even when conditioned on all their common causes. Moreover, this phenomenon
persists regardless of how the causal direction is assigned within the constructed causal model. Thus, the
Causal Markov Assumption no longer holds.

For the Causal Faithfulness Assumption, we just need to assume that a ⊥⊥ b; in that case, such an indepen-
dence would be regarded as arising from factors other than those implied by the Causal Markov Assumption.
The proposition is proved.

□

C.2 PROOF OF THEOREM 2

Theorem 2 The SCM in Figure 2 can characterize the general causal relationships between various vari-
ables in the graph representation learning scenario. Furthermore, such an SCM satisfies the Causal Markov
Assumption and the Causal Faithfulness Assumption.

Proof. To demonstrate the theorem, we follow the PC algorithm (Spirtes & Glymour, 1991), a method
used to infer causal relationships from observational data and reconstruct the SCM depicted in Figure 2 from
scratch. The entire process can be divided into three steps, which are detailed below.

Step 1. As in the current scenario, for any i ∈ {1, 2, ...,m}, there does not exist a set B such that the
conditional independence Ui ⊥⊥ Xi|B holds. According to Spirtes & Glymour (1991), we connect each
element in U with its corresponding element in X . Since it cannot be determined whether there exists a B
such that Ui ⊥⊥ Xj |B holds for i ̸= j, i ∈ {1, 2, ...,m}, j ∈ {1, 2, ...,m}, we use dashed lines to connect
these elements. For the same reasons, we connect all elements in X . Additionally, since the following holds:

Xcaus =
⋃

i∈1,2,...,k

Pa(Yi), (5)

we have:

Xi ⊥⊥ Y |

 ⋃
i∈1,2,...,k

Pa(Yi)

 ,∀Xi ∈ Xcfd ∪Xasoc. (6)

i.e.:
Xi ⊥⊥ Y |Xcaus,∀Xi ∈ Xcfd ∪Xasoc. (7)

Therefore, we only link the elements within Xcaus with Y using dashed lines. The result of step 1 is demon-
strated in Figure 9(a).

Step 2. Since we do not study the values of exogenous variables, we only consider their influence on X ,
hence all edges from U to X as directed downwards. Based on Equation 5, we direct the edges between
Xcaus and Y towards Y . As elements within Xcfd holds none causal path towards Y , we direct edges between
Xasoc ∪Xcaus and Xcfd towards Xcfd. The result of step 2 is demonstrated in Figure 9(b).

Step 3. The remaining edges cannot be oriented, thus they are represented using bidirectional arrows. The
result of step 3 is demonstrated in Figure 9(c).

We can see that the final result obtained, as shown in Figure 9(c), is consistent with Figure 2.

17



799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845

Under review as a conference paper at ICLR 2026

𝑌1

𝑈𝑗
... 𝑈𝑖+1𝑈1

𝑋𝑗... 𝑋𝑖+1𝑋2

𝑌𝑘

𝑋1 𝑋𝑖

𝑈2 𝑈𝑖 ...

... 𝑋𝑗+1 ...

...

𝑈𝑗+1 ...

... ... ...

...

...

... ...
... ...

𝑋𝑖+2

𝑈𝑖+2

𝑋𝑗+2

𝑈𝑗+2

𝑌2

① ② ③

Undirected Edge...
Undirected Edge with 

Uncertain Existence

𝑋|𝑋|

𝑈|𝑈|

① Set  

② Set 

③ Set 

(a) Result of step one.

Directed Edge

Undirected Edge with 

Uncertain Existence

𝑌1

𝑈𝑗
... 𝑈𝑖+1𝑈1

𝑋𝑗... 𝑋𝑖+1𝑋2

𝑌𝑘

𝑋1 𝑋𝑖

𝑈2 𝑈𝑖 ...

... 𝑋𝑗+1 ...

...

𝑈𝑗+1 ...

... ... ...

...

...

... ...
... ...

𝑋𝑖+2

𝑈𝑖+2

𝑋𝑗+2

𝑈𝑗+2

𝑌2

① ② ③

...
Directed Edge with 

Uncertain Existence

𝑋|𝑋|

𝑈|𝑈| ① Set  

② Set 

③ Set 

(b) Result of step two.

Directed Edge

Edge with Unsure 

Direction and Uncertain 

Existence

𝑌1

𝑈𝑗
... 𝑈𝑖+1𝑈1

𝑋𝑗... 𝑋𝑖+1𝑋2

𝑌𝑘

𝑋1 𝑋𝑖

𝑈2 𝑈𝑖 ...

... 𝑋𝑗+1 ...

...

𝑈𝑗+1 ...

... ... ...

...

...

... ...
... ...

𝑋𝑖+2

𝑈𝑖+2

𝑋𝑗+2

𝑈𝑗+2

𝑌2

① ② ③

...
Directed Edge with 

Uncertain Existence

𝑋|𝑋|

𝑈|𝑈| ① Set  

② Set 

③ Set 

(c) Result of step three.

Figure 9: Results of the PC algorithm for SCM reconstruction.
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Furthermore, since the variables used in the SCM are the smallest divisible variables in G, when there are
no common causes between any two variables a and b in the SCM, Pa(a) can block all causal effects from
a to b. Therefore, the Causal Markov Assumption holds.

At the same time, for any a ⊥⊥ b in this SCM, Pa(a) can block all causal effects from a to b. Thus, the
Causal Faithfulness Assumption also holds. The theorem is thereby proven. □

C.3 PROOF OF THEOREM 3.

Theorem 3 Based on the SCM in Theorem 2, When utilizing GNN to model causal rela-
tionship, for atomic interventions, the lower bound of the number of interventions required is

minMmicro


1
λ |
(⋃|G|

i=1 Gi

)
|+|Y |−r(Mmicro)

2


, where Mmicro denotes any DAG that is equivalent to the

graphical representation of the ground truth causal model, and the vertex set of Mmicro =
(⋃|G|

i=1 Gi

)
∪ Y ,

λ denotes the average times that each variable occurs among each of the samples within dataset G, r(·)
calculates the total number of maximal cliques. For non-atomic interventions, the number of interventions

required exceeds O

mink

 1
λ |
(⋃|G|

i=1 Gi

)
|+|Y |

k log (log (k))

.

Proof. To conduct the proof, we perform the analysis within the SCM framework shown in Figure 2. Our
focus is on the causal relationship between X and Y , and thus, we concentrate on the variable relationships
between these two sets. As we do not yet have a clear partition of the variables within X , the elements within
X remain unknown to us. Following the analysis of causal inference and variable definitions presented in
Spirtes (2009), it is crucial to ensure that the defined variables satisfy both the Markov assumption and the
faithfulness assumption to facilitate accurate causal reasoning.

As noted in Pearl (2009), starting from the deterministic case, all variables can be explained by microscopic
details, ensuring the Markov assumption holds. Without a clear partition of variables in advance, we need
to follow the approach in Pearl (2009) by decomposing all variables to the finest granularity to ensure the
Markov assumption holds. Assuming each node in the graph data corresponds to a single-dimensional
attribute, every node is treated as an individual variable, ensuring minimal data partitioning. As λ denotes
the average times that each variable occur among each of the samples within dataset G, the dataset contains
1
λ |
(⋃|G|

i=1 Gi

)
|+ |Y | variables.

We denote such variable set as Xmicro, we have:

|Xmicro| = 1

λ
|
( |G|⋃

i=1

Gi

)
|+ |Y | (8)

The proposed theorem by Choo et al. (2022) provides the lower bound of the number of atomic interventions
required for modeling causal relationships among Mmicro, where Mmicro denotes any Markov equivalence
class corresponding to Mmicro∗. Mmicro∗ is the unknown causal model’s graphical representation of all
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variables within Xmicro. Therefore, we have that:

|I| ≥ min
Mmicro

(⌈
|Xmicro| − r(Mmicro)

2

⌉)

≥ min
Mmicro


1
λ |
(⋃|G|

i=1 Gi

)
|+ |Y | − r(Mmicro)

2


 , (9)

where I denotes the set of utilized interventions. r(Mmicro) denotes the total number of maximal cliques in
the chordal chain components of Mmicro. Choo et al. (2022) propose that Mmicro is equivalent to Mmicro∗ if
they cannot be distinguished with statistical independency.

If the model we use satisfies the universal approximation theorem (Hornik et al., 1989) and the data in
the dataset is sufficient, then we can model Mmicro based on the statistical information from the dataset.
Otherwise, more computational effort is needed to solve the structure of Mmicro first. In either case, the
lower bound of Equation 9 holds.

For non-atomic interventions, research is still ongoing, and providing an exact calculation of the precise
lower bound remains challenging. However, Shanmugam et al. (2015) has provided an approximate estimate
of its lower bound, as follows:

|I| ≥ O
(n
k
log (log (k))

)
, (10)

where n denotes the number of the studied variables, k denotes the number of variables under interventions.
Therefore, we acquire the lower of non-atomic interventions as follows:

|I| ≥ O

 1
λ |
(⋃|G|

i=1 Gi

)
|+ |Y |

k
log (log (k))

 , (11)

We refine the lower bound for any k as follows:

|I| ≥ O

min
k

 1
λ |
(⋃|G|

i=1 Gi

)
|+ |Y |

k
log (log (k))

 . (12)

Based on the above results, we have proved that for atomic interventions, the number of interven-
tions required to fully discern all the causal relationships between the variables in X and Y exceeds

minMmicro


1
λ |
(⋃|G|

i=1 Gi

)
|+|Y |−r(Mmicro)

2


. For non-atomic interventions, the number of interventions

required exceeds O

mink

 1
λ |
(⋃|G|

i=1 Gi

)
|+|Y |

k log (log (k))

. Since our goal is to model the causal re-

lationships between G and Y , variables that are independent of Y in the graphical data do not need to be
analyzed. Therefore, we have:

|I| ≥ min
Mmicro

(⌈ 1
λ |
(⋃|G|

i=1 Gi

)
|+ |Y | − 1

σ |
(⋃|G|

i=1 Di

)
| − r(Mmicro)

2

⌉)
, (13)
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where D ∈ G denotes the data that independence with Y , σ denotes the average times that each variable
within

⋃|G|
i=1 Di occurs. We have:

|I| ≥ min
Mmicro

(⌈ 1
λ |
(⋃|G|

i=1 Gi

)
|+ |Y | − r(Mmicro)

2

⌉)
. (14)

For non-atomic interventions, we have:

|I| ≥ O

min
k

 1
λ |
(⋃|G|

i=1 Gi

)
|+ |Y |

k
log (log (k))

 . (15)

The theorem is proved. □

C.4 PROOF OF THEOREM 4

Theorem 4 Assume there exists a GNN model that satisfies the infinite approximation theorem (Cybenko,
1989), and that interventions are applied to ensure the GNN models the causal relationships between the
graph variables and the labels. In this case, when applying causal inference in graph representation learn-
ing, it is possible to merge some variables from the original set X to form a new set S, where |S| < |X|,
while ensuring that the causal relationships between the graph data and the labels are accurately modeled.
However, the following conditions must be met:

(1) Variable s in S that satisfy s ∈ Pa(Y ) cannot simultaneously contain both the parent and child nodes
of another variable v ∈ X .

(2) Variables within Xcaus cannot be merged with those of other sets.

Proof. To prove the theorem, it suffices to demonstrate that the two conditions (1) and (2) proposed in the
theorem are both necessary and sufficient for transforming X into S, while ensuring the accurate modeling
of causal relationships.

We first prove sufficiency. Based on Theorem 2, since conditions (1) and (2) hold, we have the following:

P
(
Y | do(X \Xcaus = x)

)
= P

(
Y | do(S \ Scaus = x)

)
, (16)

where x is a specific value of X \Xcaus, and Scaus denotes the set of variables within S generated by merging
Xcaus. Here, do(·) represents the intervention operation.

Equation 16 demonstrates that conducting the same intervention on X \Xcaus and S \ Scaus yields identical
outcomes. This implies that, with an appropriate set of interventions, even if the variables are merged into
set S, it remains possible to apply interventions that isolate and sever the influence of variables not involved
in the causal component.

We can also conclude the following:

P
(
Y | do(Xcaus = x)

)
= P

(
Y | do(Scaus = x)

)
. (17)

Furthermore, for each Scaus
i ∈ Scaus, we have:

P
(
Y | do(Ocaus

i = si)
)
= P

(
Y | do(Scaus

i = si)
)
, (18)

and
P
(
Y | do(Xcaus \Ocaus

i = si)
)
= P

(
Y | do(Scaus \ Scaus

i = si)
)
, (19)

where Ocaus
i is the subset of elements within X that, when merged, create Si.
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Based on condition 2 of the proposed theorem, we can model the causal relationship between each Scaus
i and

Y via the intervention operation. Therefore, we can apply a suitable GNN as described in the theorem to
model the causal relationship between Scaus and Y , i.e., the causal relationship between G and Y . Thus,
sufficiency is proven.

Next, we prove the necessity. First, consider the case where condition (1) does not hold. In this situation,
it is possible for two variables, s and v, to exist such that s is both a parent and a child of v within the
background SCM. This creates a confounding arc (Pearl, 2009) and cannot be removed via intervention. As
a result, the causal relationship becomes unpresentable. Thus, condition (1) must hold.

Now, consider the case where condition (2) is violated. In this case, a variable Scaus
j may include components

unrelated to the outcome Y . When examining Scaus
j , the confounding effects cannot be eliminated through

intervention, rendering the causal relationship unfeasible. Therefore, condition 2 must also be satisfied. The
necessity is proved. Therefore, the theorem is proved. □

C.5 PROOF OF PROPOSITION 5

Proposition 5 When the GNN f(·) precisely models the causal mechanism, the cross-entropy loss L between
predictions f(G) and labels Y is minimized. Moreover, L equals the conditional KL divergence between the
predictive distribution of f(·) and the background causal model, given each input graph G.

Proof. The proof of Proposition 5 is straightforward. The key observation is that the ground-truth labels Y
are, under all circumstances, the same as output of the background causal model; the remaining steps follow
from standard properties of the cross-entropy loss. For completeness and rigor, we still provide a detailed
proof below.

We begin by proving the first conclusion of the proposition. According to the definition of L, we have:

L =
1

n

n∑
i=1

log
1

τ(f(Gi))
. (20)

As τ(·) extracts the output probability of the ground truth labels, we have τ(f(Gi)) = 1 when the back-
ground causal structure is precisely modeled. We denote L∗ as the value of L under the former condition.
Based on Equation 20, the L∗ can be represented as:

L∗ =
1

n

n∑
i=1

log
1

1
= 0. (21)

As τ(f(Gi)) ≤ 1, thus log 1
τ(f(Gi))

≥ 0, and L = 1
n

∑n
i=1 log

1
τ(f(Gi))

≥ 0. Therefore, L∗ reaches the
minimal value. The first conclusion of the proposition is proved.

Next, we proof the second conclusion. The Conditional KL divergence between the output of f(·) and the
ground truth label given different inputs can be formulated as:

DKL(p(Y |G)||q(Y |G)) =

n∑
i=1

p(Gi)
∑
Y

p(Y |Gi)log
p(Y |Gi)

q(Y |Gi)

=

n∑
i=1

1

n

∑
Y

p(Y |Gi)log
p(Y |Gi)

q(Y |Gi)
. (22)

As p(Y |Gi) = 0 if Y is not the ground truth label, therefore:

DKL(p(Y |G)||q(Y |G)) =
1

n

n∑
i=1

1 · log 1

q(Y ∗|Gi)
=

1

n

n∑
i=1

log
1

τ(f(Gi))
, (23)

where Y ∗ denotes the ground truth label. The proposition is proved. □
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D RWG DATASET

D.1 DATA CONSTRUCTED BASED ON REAL-WORLD CHEMICAL INFORMATION

We constructed the RWG graph classification data based on extensive real-world chemical knowledge,
specifically focusing on molecular structures commonly encountered in the field of chemistry. The con-
struction process began by collecting a total of 26 well-known molecular graph motifs, which serve as the
fundamental building blocks for the graphs we aim to analyze. These motifs represent common substruc-
tures found in a wide variety of molecules, and they play a critical role in capturing the structural diversity
that exists within molecular graphs. Table 3 provides a detailed list and description of these motifs.

Each motif is defined by its own unique arrangement of atoms and bonds, and these motifs can also undergo
slight variations. The variations are achieved by adding or removing edges between atoms, which allows
us to generate a range of related but distinct molecular structures. This flexibility in modifying the motifs
ensures that the graph models are not only diverse but also closely aligned with the variability found in real
chemical data.

In addition to these molecular motifs, we also constructed 15 connector modules that are based on common
chemical molecular architectures. These modules include well-established structural elements, such as ring
structures, chain structures, and various hybrid forms that combine these basic components. These connector
modules facilitate the composition of the aforementioned molecular graph motifs into larger, more complex
molecular graphs, enabling the representation of a broad spectrum of chemical compounds.

Each connector module is implemented through a corresponding function that allows for customization in
terms of size and branching. The size parameter enables the adjustment of the module’s scale, making it
possible to control the overall size of the connected structure. The branch parameter, on the other hand,
allows for modification of the number of branches that extend from the core structure, providing further
flexibility in defining how the motifs are interconnected. By adjusting these parameters, we can create a wide
variety of complex molecular graphs that reflect the structural diversity of real-world chemical networks.

D.2 DATA CONSTRUCTED BASED ON REAL-WORLD CITATION NETWORK INFORMATION

We constructed a citation network based on real-world citation network data, consisting of a total of 25
citation relationships. These relationships were carefully selected to represent a diverse range of connec-
tions within the network, capturing the complexity of academic citation patterns across various fields. The
citation relationships reflect the way in which research papers influence one another through references, and
the resulting network serves as a model for understanding the dynamics of knowledge dissemination and
academic collaboration. Table 5 presents a detailed overview of these citation relationships, showcasing the
various connections between the papers and their corresponding citation patterns.

In parallel with the citation relationships, we developed a total of 24 node feature generation methods, each
based on different statistical distributions and mathematical sequences. These methods were designed to
generate meaningful node features that reflect both the structural and contextual aspects of the citation net-
work. The details of these feature generation methods, including the specific distributions and sequences
used, are presented in Table 6. The distributions encompass a wide range of statistical models, such as
normal, uniform, exponential, and lognormal distributions, among others, while the sequences include arith-
metic, geometric, Fibonacci, and prime number sequences, providing a rich variety of feature generation
options.

To generate the node features for the dataset, we set parameters for each of the distributions and sequences
based on the specific characteristics of the citation network. For instance, the parameters were chosen to
align with the real-world distribution of citation frequencies, as well as the structural properties of the ci-
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tation relationships, such as the number of citations a paper typically receives and how those citations are
distributed across the network. Once the node features were generated, we incorporated the citation relation-
ships to guide the construction of the entire graph, ensuring that the generated features were appropriately
aligned with the network’s structure and that the graph accurately represented the interplay between the dif-
ferent academic papers. Once completed, we constructed a dataset with clear internal causal relationships,
closely aligned with real-world scenarios, and it can serve as a foundation for adding confounders and other
elements required for experiments.

D.3 CAUSAL AND CONFOUNDING DATA GENERATION

For our data generation, we establish causality through precise programmatic control over the dataset’s
construction, enabling us to explicitly define causal factors and introduce confounders. Specifically, we
create a causal relationship by making a graph’s label directly dependent on designated graph elements,
while a confounder is created by introducing a spurious correlation that exists exclusively within the training
set and is broken in the validation and test sets. The primary graph elements we manipulate for these
purposes are our constructed motifs, node features, and relational edges.

For instance, in our chemical graph dataset built from 26 molecular motifs, a graph’s label can be causally
determined by the presence of a ”benzene ring” motif. To introduce a confounder, a different motif, like a
”chain structure,” could be made highly correlated with the label in the training data, a correlation that is
removed in the test set to make it a misleading shortcut.

Similarly, using our 24-node feature generation methods for the citation network, we can establish a causal
link where the label is determined by a statistical property, such as the average value of a feature generated
from a Fibonacci sequence. As a confounder, a separate feature from a uniform statistical distribution could
be artificially correlated with the label only during training, a pattern that would not hold during evaluation.

Finally, relational edges, representing 25 types of citation relationships, are also precisely controlled. A
causal factor could be the existence of a double bond within the presence of a ”self-citation” relationship in
the citation network. A confounding relationship could be introduced where a specific type of citation link
is frequently associated with a positive label in the training data, but this pattern is randomized in the test set
to ensure it’s a non-causal artifact.

E EXTRA EXPERIMENTS

In this section, we present additional experimental results to facilitate a more thorough and in-depth analysis.
These results provide further insights into the behavior and performance studied methods, enabling a better
understanding of the underlying properties.

E.1 EXPERIMENTAL RESULTS ACROSS DIFFERENT LEVELS OF CONFOUNDER INFLUENCE.

Based on the provided results in Figure 10, the experimental results of different models under varying con-
founder bias proportions can be analyzed. Causal enhancement methods such as CaNet, CRCG, and DIR
generally outperform standard GNN frameworks (GCN, ChebNet, GIN) as the bias increases, indicating that
these methods exhibit stronger robustness when faced with biases or noise in the data.

As the confounder bias increases from 10% to 80%, the performance of models like GCN, ChebNet, and
GIN declines significantly, suggesting that these models struggle more to recognize underlying patterns
when strong biases are present, making them more susceptible to the influence of confounders. Among
the causal enhancement methods, DIR shows a slight advantage at higher bias levels (e.g., 50%, 60% and
above), indicating that DIR may be more effective in handling and mitigating the impact of confounders
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(a) Confounder with 10% bias.
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(b) Confounder with 20% bias.
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(c) Confounder with 30% bias.
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(d) Confounder with 40% bias.
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(e) Confounder with 50% bias.
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(f) Confounder with 60% bias.
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(g) Confounder with 70% bias.
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(h) Confounder with 80% bias.

Figure 10: Test Accuracy comparison with different bias.
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Molecule Molecular Formula Node Count Edge Count
Acetic Acid C2H4O2 3 2
Adrenaline C9H13NO3 5 6
Ammonia NH3 2 3
Anthracene C14H10 24 12
Benzene Ring C6H6 6 6
Benzoic Acid C7H6O2 9 8
Ethane C2H6 2 1
Ethanol C2H6O 3 2
Fullerenes C60 60 90
Glucose C6H12O6 24 12
Hexamethylbenzene C9H12 21 15
Hydrated Sulfuric Acid H2SO4·H2O 4 5
Imidazole C3H4N2 9 6
Indole C8H7N 15 9
Methane CH4 1 1
Methyl Anthranilate C8H9NO2 18 12
Nitrobenzene C6H5NO2 9 9
Nitrophenol C6H5NO3 10 10
Porphyrin C20H12N4 24 23
Pyridine C5H5N 6 5
Pyrimidine C4H4N2 8 5
Pyrrole C4H5N 6 5
Simplified Dopamine C8H11NO2 11 11
Thiazole C3H3NS 7 5
Thioether C4H8S 12 7
Vitamin C C6H8O6 20 10

Table 3: Fundamental molecular motifs.

compared to other causal methods. Overall, as the confounder bias increases, the performance of all models
declines, but the rate of decline varies across different models.

Causal enhancement models exhibit relatively stable performance, especially CaNet and CRCG, which
maintain higher accuracy across various bias levels. However, when the confounder bias reaches 90%, even
these models experience a significant drop in performance. The accuracy in the “Paper” column (represent-
ing some baseline or paper-defined method) consistently remains low, suggesting that traditional methods
without causal modeling perform worse when bias is introduced.

In conclusion, causal enhancement methods like CaNet, CRCG, and DIR are more robust to the influence
of confounders compared to standard GNN models such as GCN, ChebNet, and GIN, with their advantage
being more pronounced at higher bias levels. However, even these causal enhancement methods experi-
ence performance degradation under strong biases, indicating that while causal modeling helps mitigate the
impact of confounders, it is not immune to them.

E.2 TRAINING PROCESS ANALYSIS

We also analyzed the training performance of different methods under various scenarios. The results are
shown in Figure 11. We can observe significant differences in the training performance of different methods
across different datasets. In the molecular dataset with a single confounder (Figure a), the performance of the
CaNet model is clearly superior to other methods. As the number of training epochs increases, its validation
accuracy continuously rises, ultimately approaching 100%. Other methods, such as GCN, ChebNet, and
GIN, show relatively flat performance, with validation accuracy fluctuating around 50%, and they fail to
improve significantly.

In the molecular dataset with multiple confounders (Figure b), CaNet still performs excellently, with its
validation accuracy surpassing 80% and steadily increasing. Similar to Figure a, the performance of other
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Motif Name Construction Method Functionality Description

Star Motif Central node connected to all others Generates a star structure with one center node connected to
all peripheral nodes.

Path Motif Nodes connected in sequence Constructs a linear path where each node connects to the next
in sequence.

Fan Motif Central node with multiple branch nodes Creates a fan-like shape with a central hub and several out-
ward branches, possibly interconnected.

Cusped Polygon Motif Polygon with potential branches Builds a polygon structure with pointed (cusped) corners and
optional branching substructures.

Random Bipartite Motif Bipartite graph with random connections Generates a bipartite graph where two partitions are randomly
interconnected.

Tree Motif Hierarchical branching structure Constructs a tree graph where each node may connect to mul-
tiple child nodes.

Trident Motif Central node with two side branches Creates a trident-shaped structure, with a central node con-
nected to two others, repeated for multiple tridents.

Conical Connection Motif Backbone and branches in conical form Forms a cone-like motif where a backbone and branches are
merged into a sandglass-shaped structure.

Chain Bypass Motif Chain with branching bypasses Builds a chain structure with additional side branches that by-
pass parts of the chain.

Partial Polygon Motif Incomplete polygon with extensions Forms a partial polygon with potential branch-based exten-
sions.

Complete Graph Motif All nodes interconnected Constructs a complete graph where every node is connected
to every other node.

Grid/Net Motif Nodes arranged in a grid Creates a net or grid shape where nodes are placed in a matrix
and connected to adjacent nodes.

Cycle Motif Nodes forming a ring Forms a cycle where each node links to the next in a loop.

Dual Ring Motif Two connected ring structures Builds two separate ring structures that may be intercon-
nected.

Triangle Motif Nodes forming triangles Creates triangle-based motifs where nodes are connected in
three-node cycles.

Table 4: Connector modules.

Link Rule Description
Random Citation Generation Each paper randomly cites a set of papers; the number of citations follows a Poisson distribution.
Citation by High Citation Count Each paper cites papers with higher citation counts to increase connectivity among highly cited papers.
Co-Author Based Citation Papers by authors who have collaborated with the current paper’s authors are preferentially cited.
Propagation-Based Citation Citation links are simulated using an information diffusion model (e.g., Independent Cascade).
Topic Similarity-Based Citation Papers with high topic similarity (e.g., via cosine similarity on keywords/abstracts) are cited.
Temporal Citation Older papers are preferentially cited to simulate time-evolving citation behavior.
Author Influence-Based Citation Papers by more influential authors are more likely to be cited.
Co-Citation Frequency-Based Citation Papers that are frequently co-cited with the current paper are selected as citation targets.
Citation Density-Based Citation Papers with higher citation density (degree) are more likely to be cited.
Network Topology-Based Citation Papers cite one of their neighbor nodes; if no neighbors exist, no citation is made.
Author Expertise-Based Citation Papers from authors in the same or related research domains are preferred as citations.
Citation Centrality-Based Citation Papers with higher centrality (e.g., degree, betweenness) in the citation graph are favored.
Geographic Proximity-Based Citation Authors are more likely to cite papers from geographically proximate researchers.
Research Team Size-Based Citation Papers from authors with similarly sized research teams are favored.
Citation Credibility-Based Citation Papers with higher credibility (e.g., journal impact, author reputation) are more likely to be cited.
Academic Lineage-Based Citation Papers authored by academic mentors or descendants are favored.
Citation Structure-Based Citation Triangular citation patterns (e.g., A→B→C→A) are promoted to reflect structural motifs.
Citation Distance-Based Citation Papers with fewer intermediate citation steps (shorter path length) are more likely to be cited.
Knowledge Flow-Based Citation Knowledge flows from frontier to traditional areas guide citation directionality.
Citation Chain Length-Based Citation Longer citation chains increase the likelihood of being cited.
Diversity-Based Citation Papers with more diverse citation sources (across fields or topics) are more likely to be cited.
Reference Count-Based Citation Papers with more references may appear more informative and are thus more likely to be cited.
Research Object-Based Citation Papers focusing on attractive or high-interest research objects are more likely to be cited.
Venue Reputation-Based Citation Papers published in high-impact journals/conferences are preferentially cited.
Open Access-Based Citation Open access papers are more accessible and thus more likely to be cited.

Table 5: Citation Link Rules in Citation Network Construction
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(a) RWG-Molecular with single confounder.
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(b) RWG-Molecular with multiple confounders.
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(c) RWG-Citation with confounders consist of nodes.
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(d) RWG-Citation with confounders consist of nodes and
edges.

Figure 11: Validation accuracy upon training procedure.
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Table 6: Node Feature Generation Methods based on Statistical Distributions and Mathematical Sequences

Type Description

Normal Distribution Generates node features based on a normal distribution with specified
mean and standard deviation.

Uniform Distribution Generates node features based on a uniform distribution over a specified
range.

Exponential Distribution Generates node features based on an exponential distribution.
Lognormal Distribution Generates node features based on a lognormal distribution.
Gamma Distribution Generates node features based on a gamma distribution.
Beta Distribution Generates node features based on a beta distribution.
Weibull Distribution Generates node features based on a Weibull distribution.
Laplace Distribution Generates node features based on a Laplace distribution.
Logistic Distribution Generates node features based on a logistic distribution.
Rayleigh Distribution Generates node features based on a Rayleigh distribution.
Pareto Distribution Generates node features based on a Pareto distribution.
Cauchy Distribution Generates node features based on a Cauchy distribution.
Negative Binomial Distribution Generates node features based on a negative binomial distribution.
Gumbel Distribution Generates node features based on a Gumbel distribution.
Gompertz Distribution Generates node features based on a Gompertz distribution.

Arithmetic Sequence Generates node features based on an arithmetic sequence with a speci-
fied step size.

Geometric Sequence Generates node features based on a geometric sequence.
Fibonacci Sequence Generates node features based on the Fibonacci sequence.
Square Sequence Generates node features based on a sequence of square numbers.
Cube Sequence Generates node features based on a sequence of cube numbers.
Prime Sequence Generates node features based on a sequence of prime numbers.
Triangular Sequence Generates node features based on a triangular number sequence.
Rectangular Sequence Generates node features based on a rectangular number sequence.
Binomial Coefficient Sequence Generates node features based on a binomial coefficient sequence.
Hamiltonian Sequence Generates node features based on a Hamiltonian sequence.

methods is closer to each other, with DIR and GIN showing poorer results, failing to significantly improve
the model accuracy.

For the citation dataset, where confounders consist of nodes (Figure c), CaNet’s performance remains the
most outstanding, with validation accuracy maintained at a high level, and the training process is relatively
stable. In Figure d (where confounders consist of both nodes and edges), CaNet still achieves good results,
with validation accuracy showing a steady upward trend. Other methods, such as GCN and ChebNet, show
slightly worse performance, with validation accuracy fluctuating significantly.

In summary, causal graph representation learning demonstrates an advantage over general methods through-
out the training process. Additionally, we observe that some methods may experience performance degra-
dation as training progresses when confounder interference is present.

E.3 EXPERIMENTAL RESULTS ACROSS DIFFERENT CONFOUNDER TYPES.

We also analyzed the effects of different types of graph elements acting as confounders within Figure 12, 13
and 14. The results are shown in the figures. From the overall trend, it can be observed that the test accuracy
fluctuates across different methods as the type of graph element changes.

When dealing with different graph structures, such as “Star,” “Path,” and “Fan,” it is evident that the accuracy
of the models varies depending on the confounder type. For example, in certain graph element scenarios,
the accuracy fluctuates to varying degrees, while in others, it gradually stabilizes as training progresses,
indicating that these methods exhibit different adaptability to confounders.

For molecular structure datasets, such as “Benzene Ring,” “Methane,” and “Ethane,” the impact of different
confounder types on model performance is also noticeable. In some structures, the interference of con-
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(a) Star
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(b) Path
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(c) Fan
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(d) Spiked Polygon
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(e) Random Bipartite

Figure 12: Motif Confounders

founders appears to complicate the training process and affects the final test accuracy, while in other cases,
the confounder’s interference does not result in a significant accuracy drop.

In the citation dataset, such as “Basic Element,” “Citation Element,” and “Topic Element,” the test accuracy
shows more complex trends as the confounder type changes. In certain graph element scenarios, the models
exhibit higher volatility when processing specific elements, indicating greater sensitivity to confounders in
these contexts.

In conclusion, as the confounder type changes, the test accuracy of the models is influenced to varying de-
grees, and different types of graph elements exhibit different impact patterns. This suggests that the perfor-
mance of methods in handling confounders is closely related to the type and complexity of the confounder,
as well as the specific structure of the data.

F DETAILS OF EXPERIMENTS

F.1 REC SETTINGS

This module’s key hyperparameters include: λinit = 1.0, which controls the initial filtering strength; ϵ =
0.01, which implements progressive decay during the training process;λmin = 0.2.
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(a) Benzene Ring
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(b) Methane
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(c) Ethane
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(d) Benzoic Acid
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(e) Nitrobenzene

Figure 13: Molecular Structure Confounders

F.2 BASELINES AND SETTINGS

GCN. We adopt a two-layer Graph Convolutional Network (GCN) architecture for representation learning.
The hidden dimension is set to 64, and each layer performs neighborhood aggregation based on the graph
structure, trained using a learning rate of 0.01, a weight decay of 5 × 10−4, a batch size of 32, and for 50
training epochs

GIN. This baseline is a graph neural network architecture designed to achieve strong expressive power in
distinguishing graph structures. It is based on a message-passing mechanism, where node representations
are iteratively updated through neighborhood aggregation. In our configuration, GIN employs a hidden
dimension of 64, with two network layers. The model is also trained using the setting as GCN.

ChebNet. This baseline performs graph convolution through Chebyshev polynomial approximation of the
graph Laplacian. In our baseline, we adopt a two-layer architecture with polynomial order 2 and a hidden
dimension of 64. The model is trained for 10,000 epochs with a learning rate of 0.01 and a dropout rate of
0.5. By leveraging higher-order polynomial filters on either the symmetrically normalized or the random-
walk normalized Laplacian, ChebNet enables effective aggregation of neighborhood information. Each layer
is followed by nonlinear activation and dropout, which enhance the expressiveness of node representations.
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(a) Basic Element
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(b) Citation Element
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(c) Author Element
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(d) Topic Element
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(e) Method Element

Figure 14: Citation Confounders

DIR. This baseline is designed to capture causal structures within graphs. The model is configured with a
hidden dimension of 128, a causal ratio of 0.7, a learning rate of 0.001, a batch size of 128, and is trained
for 50 epochs. It estimates edge importance scores through convolutional encoding and a multilayer percep-
tron, and then separates subgraphs based on the causal ratio. The architecture incorporates three predictive
branches, focusing on causal, confounding, and combined predictions. Training follows a dual-loss strategy
with masking mechanisms, which emphasize causal signals while mitigating the influence of confounders.

CRCG. This baseline integrates causal representation learning into graph neural networks. With a hidden
dimension of 32, a causal ratio of 0.25, a learning rate of 0.001, a batch size of 64, and 50 training epochs,
this baseline jointly models causal and confounding structures. Edge importance is estimated by combining
an encoder with a scoring mechanism, and graphs are split into causal and confounding subgraphs before
being relabeled for consistency. The predictive module contains distinct branches for causal and confounding
signals. Training employs a dual-loss scheme, and model performance is evaluated with multiple metrics,
including accuracy, precision, and mean reciprocal rank.

CaNet. This baseline introduces a causal attention mechanism for robust graph learning. It is evaluated on
the Citeseer dataset with a two-layer architecture, a hidden dimension of 64, three environments, a learning
rate of 0.01, weight decay of 5×10−4, and 40 training epochs. To ensure stability, experiments are repeated
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three times. CaNet leverages Gumbel-Softmax to learn environment distributions and adopts a two-stage
forward process, where the model outputs both predictions and regularization losses during training. A
feature filtering module is applied at the input stage to suppress noisy or irrelevant features, and graph-
level pooling is used for aggregation. This design strengthens the generalization ability of the model across
different environments.

F.3 DATASETS

RWG-Molecular. Each generated dataset contains 1900 graphs, among which 1500 graph samples are
used as training samples, 200 samples as validation samples, and 200 samples as test samples. The number
of nodes ranges from 50 to 80, the number of edges ranges from 60 to 120, the node feature dimension is 5,
and there are 5 classes. In the experiment of Figure 3, the dataset is artificially synthesized molecular data,
with a confounding ratio of 90% and an intervention probability of 100%. In the experiment of Figure 4,
the dataset is artificially synthesized molecular data, with the confounding ratio ranging from 10% to 90%.
In the experiment of Figure 5, the dataset is artificially synthesized molecular data with either a single large
molecule block (index = 1, size = 50, branched = 10) or multiple small molecule blocks (indices = 1–10, size
= 5, branches = 5), and a confounding ratio of 70% is applied. In the experiment of Figure 6, the training set
of the dataset has a confounding ratio of 0%, while the validation and test sets have a confounding ratio of
70%. In the experiment of Table 2, the dataset is artificially synthesized molecular data, with a confounding
ratio of 70%.

RWG-Citation. Each generated dataset contains 1900 graphs, among which 1500 graph samples are used
for training, 200 samples for validation, and 200 samples for testing. The number of nodes ranges from
15 to 25, the number of edges ranges from 20 to 60, the node feature dimension is 5, and there are 5
classes. In the experiment of Figure 3, the dataset is artificially synthesized citation network data, with a
confounding ratio of 90% and an intervention probability of 100%. In the experiment of Figure 4, the dataset
is artificially synthesized citation network data, with the confounding ratio ranging from 10% to 90%. In
the experiment of Figure 5, the dataset is artificially synthesized citation network data, incorporating mixed
node information and complex structures (e.g., node relations), with a confounding ratio of 70%. In the
experiment of Figure 6, the training set of the dataset is applied with a confounding ratio of 0%, while the
validation and test sets are applied with a confounding ratio of 70%. In the experiment of Table 2, the dataset
is artificially synthesized citation network data, with a confounding ratio of 70%.

SPMotif. In each generated dataset, there are 1900 graphs in total, with 1500 graphs used as training
samples, 200 graphs as validation samples, and 200 graphs as test samples. The number of nodes ranges
from 20 to 40, the number of edges ranges from 30 to 50, the node feature dimension is 5, and there are 5
classes. In the experiments of Figure 3, the dataset consists of synthetically generated primitive data, with
a confounding ratio of 90% and an intervention probability of 100%. In the experiments of Figure 4, the
dataset consists of synthetically generated primitive data, with the confounding ratio ranging from 10% to
90%. In the experiments of Figure 6, the training set of the dataset is generated with a confounding ratio of
0, while the validation and test sets are generated with a confounding ratio of 70%. In the experiments of
Table 2, the dataset consists of synthetically generated primitive data, with a confounding ratio of 70%.

CRCG. This dataset is a synthetic graph classification dataset. Following the official setting, our generated
data comprises 4,000 graphs in total, with 1,000 for training, 1,000 for validation, and 2,000 for testing. The
dataset contains five classes, and the confounder ratio is set to 70%.

CiteSeer. This dataset is a citation network dataset consisting of 3,312 nodes, each with a 3,703-
dimensional feature vector, and 4,723 edges. The dataset contains six classes.
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ENZYMES. This dataset is a graph dataset constructed from protein tertiary structures. It contains 600
graphs with a total of 19,580 nodes and 174,564 edges. Each node has a 3-dimensional feature vector, and
the dataset covers six classes.
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