

A CLOSER LOOK AT THE APPLICATION OF CAUSAL INFERENCE IN GRAPH REPRESENTATION LEARNING

Anonymous authors

Paper under double-blind review

ABSTRACT

Modeling causal relationships in graph representation learning remains a fundamental challenge. Existing approaches often draw on theories and methods from causal inference to identify causal subgraphs or mitigate confounders. However, due to the inherent complexity of graph-structured data, these approaches frequently aggregate diverse graph elements into single causal variables—an operation that risks violating the core assumptions of causal inference. In this work, we prove that such aggregation compromises causal validity. Building on this conclusion, we propose a theoretical model grounded in the smallest indivisible units of graph data to ensure that the causal validity is guaranteed. With this model, we further analyze the costs of achieving precise causal modeling in graph representation learning and identify the conditions under which the problem can be simplified. To empirically support our theory, we construct a controllable synthetic dataset that reflects real-world causal structures and conduct extensive experiments for validation. Finally, we develop a causal modeling enhancement module that can be seamlessly integrated into existing graph learning pipelines, and we demonstrate its effectiveness through comprehensive comparative experiments. *Code and data can be found in the supplementary materials.*

1 INTRODUCTION

In deep learning, accurately modeling causal relationships is a key step toward building trustworthy AI (Li et al., 2023). Causal relationships represent the real cause-and-effect links between variables, possessing deterministic certainty, unlike probabilistic correlations that may involve false connections. This is especially important for graph representation learning using neural networks (Gao et al., 2023), as the complex connections between nodes and the built-in structure of graph data are likely to create confusing biases and false correlations (Jukna, 2006). In common applications, like recommendation systems (Wu et al., 2022a), drug discovery (Takigawa & Mamitsuka, 2013), and social network analysis (Tan et al., 2019), these biases often appear as the challenge of separating key causal factors—like telling popularity from true preference, bias from biological function, and similarity from influence. Additionally, since graph models are often used to study systems with spreading effects, predictions based on such false correlations are not only likely to fail, but their negative outcomes can also be made much worse when spread by the network structure.

In recent years, researchers have sought to address this issue (Wu et al., 2022b; Fan et al., 2022; Gao et al., 2023; 2024; Sun et al., 2025; Zhao et al., 2025). Mirroring trends in other domains of neural networks (Kaddour et al., 2022), they have begun to integrate principles of causal inference into graph representation learning, achieving notable success. These approaches typically function by either identifying causal subgraphs within the graph data or eliminating confounders—extraneous variables that interfere with the accurate modeling of causal relationships. The efficacy of these methods has been validated on both synthetic datasets designed for causal benchmarks and real-world datasets.

047 However, the aforementioned methods often merge multiple
 048 graph components—such as nodes and edges—into a single
 049 causal variable in their analysis. For example, they typically
 050 consider the entire causal subgraph or confounder as one unified
 051 variable. In an ideal scenario, if the causal relationships
 052 between the variables in the studied graph data align with the
 053 variables created by these methods, then, based on the theory
 054 of [Spirtes \(2009\)](#), such an analysis poses no issues and satisfies
 055 the prerequisites for causal inference applications. However,
 056 in real-world situations, the complex interrelationships
 057 within graph data lead to highly intricate interactions between
 058 the variables, which do not meet this ideal condition. We pro-
 059 vide an intuitive example in Figure 1. This practice raises an
 060 important question: **what impact does such merging of vari-
 061 ables have on the granularity and accuracy of causal
 062 analysis in graph representation learning?** Our findings show
 063 that such a simplification inevitably violates the two funda-
 064 mental premises of causal inference, making it inapplicable.
 065 Please refer to Proposition 1 for details. Consequently, a new
 066 question emerges: **from a causal theory perspective, is it possible to achieve perfectly accurate causal
 067 relationship modeling in graph representation learning, and at what cost?**

068 In this paper, we address the aforementioned issues from a rigorous theoretical perspective, supported by
 069 sufficient experimental evidence. Specifically, we develop a new theoretical model for studying causal mod-
 070 eling in graph representation learning. Such a model is built upon the smallest divisible variables in graph
 071 data, ensuring strict adherence to the fundamental theoretical premises of causal inference. Based on this
 072 model, we conduct a series of analyses and proofs. Subsequently, we carry out experimental analyses, con-
 073 structing an artificial synthetic dataset that closely resembles real-world scenarios and performing multiple
 074 experiments and analyses. Building upon the aforementioned research outcomes, we also develop a new
 075 plug-and-play causal modeling enhancement module. Our contributions can be summarized as follows:

- 076 • We proposed a new theoretical model that strictly adheres to the fundamental premises of causal
 077 inference for studying causal modeling in graph representation learning.
- 078 • Based on the proposed model, we derive and prove a series of theories concerning causal relation-
 079 ship modeling in graph representation learning, including its costs and simplifications.
- 080 • We constructed a synthetic graph dataset with controllable causal relationships, more closely resem-
 081 bling real-world scenarios, for causal relationship modeling research. Additionally, we conducted
 082 a series of experiments for cross-validation with the proposed theory.
- 083 • Based on the aforementioned research and conclusions, we introduced a novel plug-and-play mod-
 084 ule for optimizing causal relationship modeling in graph representation learning.

085 2 RELATED WORKS

086 2.1 CAUSAL LEARNING

087 Causal learning focuses on identifying and modeling causal relationships rather than mere correlations,
 088 utilizing methods like causal graph models ([Kocaoglu et al., 2019](#)), causal inference ([Pearl & Mackenzie, 2018](#)), and causal discovery ([Zheng et al., 2018](#)). Recent advances integrate causal learning with neural
 089 networks to enhance interpretability and generalization by incorporating causal structures ([Chattopadhyay](#)

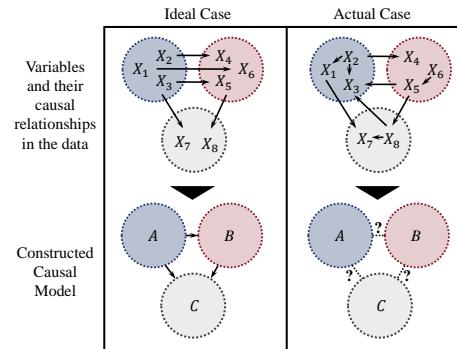


Figure 1: An example of the ideal case and the actual case in causal model building. In the actual case, the causal model cannot be constructed as in the ideal case due to the complex reciprocal causal relationships between the merged variables.

et al., 2019; Zhang et al., 2020), removing spurious correlations (Zhang et al., 2021), and analyzing latent variable relationships (Yao et al., 2024). Causal deep generative models disentangle factors like object shape and texture for counterfactual generation (Sauer & Geiger, 2021), while causal reinforcement learning improves robustness through stable representations (Zhang et al., 2024). These approaches advance causal understanding in neural networks across prediction, generation, and decision-making tasks (He et al., 2023; Bagi et al., 2023; Cheng et al., 2024; Zeng et al., 2023; Zhu et al., 2023; Yu et al., 2024).

2.2 CAUSAL RELATIONSHIP MODELING WITH GRAPH NEURAL NETWORKS

Causality plays a crucial role in addressing the complexity of graph data (Lippe et al., 2023; Sui et al., 2022), especially in fields such as finance (Wang et al., 2022), medicine (Shang et al., 2019), and biology (Zitnik et al., 2018). Most current research focuses on how to enable Graph Neural Networks (GNNs) to model causal relationships in graph representation learning. These studies typically employ two main approaches: (1) modeling causal subgraphs, where Fan et al. (2024) proposed a causal representation framework for stable GNNs, Wu et al. (2022b) developed a discovering invariant rationale (DIR) strategy, and Chen et al. (2022) introduced Causal-Inspired Invariant Graph Learning (CIGA) for OOD generalization; and (2) eliminating confounding factors, where Fan et al. (2022) proposed a decoupled GNN framework, Gao et al. (2024) designed a lightweight optimization module, and Wu et al. (2024) employed causal inference-inspired learning to overcome confounding biases. Both of these approaches adopt variable merging in their causal analysis, and our work aims to investigate the impact of this merging from both theoretical and experimental perspectives.

3 THEORETICAL ANALYSIS

3.1 BASIC MODEL

As discussed above, research on graph representation learning from a causal perspective often merges numerous node and edge-level variables, making it difficult to ensure causal validity. Additionally, categorizing complex, interdependent variables within a graph dataset $\mathcal{G} = \{G_i\}_{i=1}^{|\mathcal{G}|}$ as “confounders” or “causal subgraphs” can impact the effectiveness of causal analysis methods, violating two key assumptions in causal inference: the Causal Markov Assumption and the Causal Faithfulness Assumption (Pearl, 2009). Formally, we propose the following proposition:

Proposition 1 *When the variables within graph dataset \mathcal{G} are merged to form a new and smaller variable set S , in certain cases, it becomes impossible to construct a causal model based on S while still satisfying the two key prerequisites for applying causal inference methods—namely, the Causal Markov Assumption and the Causal Faithfulness Assumption.*

The proof can be found in [Appendix C.1](#). This influence warrants more rigorous and systematic theoretical investigation. To study the problem, we formalize it using a Structural Causal Model (SCM) (Pearl, 2009), which serves as a framework for representing causal relationships among variables. An SCM consists of a set of variables and a corresponding set of relations that describe how each variable is causally influenced by others. In [Figure 2](#), we illustrate the SCM as a Directed Acyclic Graph (DAG), in line with standard practices in causal inference. In this representation, vertices correspond to random variables, while edges denote the causal relationships between them. **The SCM we construct treats individual elements in the graph—such as nodes and edges—as separate variables, enabling an analysis that strictly adheres to the principles of causal theory.**

In [Figure 2](#), let $U = \{U_i\}_{i=1}^{|U|}$ denote the set of exogenous variables, $X = \{X_i\}_{i=1}^{|X|}$ represent all the smallest divisible variables included in the graph, and $Y = \{Y_i\}_{i=1}^{|Y|}$ indicate the set of label variables. The

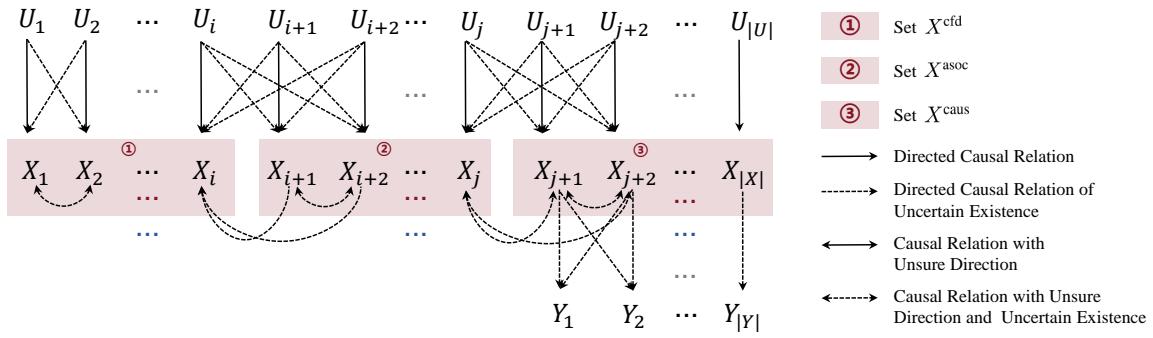


Figure 2: Graphical illustration of the proposed SCM of the graph representation learning scenario.

edges in the graph illustrate the causal relationships between the variables. For each variable X_i , there is a direct causal relationship with its corresponding exogenous variable U_i , and U_i may also exert causal influences on other variables within X . These uncertain causal relationships are represented by dashed arrows. Furthermore, since we do not observe the values of the exogenous variables, our focus is solely on their causal influence on X . Consequently, all edges between U and X are directed from U to X . Due to the large number of variables and edges in the graph, it is impractical to display each element individually. To address this, ellipses are employed to represent omitted variables and edges.

For the set X , we divide it into three subsets. As illustrated in Figure 2, subset one consists of variables that do not have causal paths to the label set Y and may act as confounders. We denote this subset as X^{cfid} . Subset two includes variables that do have paths to the labels $Y = \{Y_i\}_{i=1}^{|Y|}$ but are not part of $\bigcup_{i \in \{1, 2, \dots, k\}} Pa(Y_i)$, where $Pa(\cdot)$ represents the parent node set. Specifically, these variables are not parent nodes of any label Y_i , but they are causally associated with Y . We refer to this subset as X^{asoc} . Subset three is $\bigcup_{i \in \{1, 2, \dots, k\}} Pa(Y_i)$, and we denote this subset as X^{caus} . As illustrated in the figure, the causal relationships among variables are highly complex and uncertain. Within X^{cfid} , X^{asoc} , and X^{caus} , variables may exhibit mutual causal associations. Moreover, variables in X^{asoc} may have causal connections with those in X^{cfid} , while variables in X^{asoc} and X^{caus} may hold causal relationships in arbitrary directions. We demonstrate the validity of the SCM:

Theorem 2 *The proposed SCM in Figure 2 can characterize the general causal relationships between various variables in the graph representation learning scenario. Furthermore, such an SCM satisfies the Causal Markov Assumption and the Causal Faithfulness Assumption.*

The proof can be found in [Appendix C.1](#).

3.2 FURTHER DISCUSSION

Based on the proposed SCM that strictly satisfies the premises of causal inference, we wonder what it would cost to achieve perfectly accurate causal modeling using a GNN model? Intuitively, this would require analyzing every individual data element within the graph and conducting interventions. To this end, we conducted a theoretical analysis and, for both atomic interventions (intervening on a single variable at a time) and non-atomic interventions (intervening on multiple variables simultaneously), we derived the corresponding lower bounds on the number of interventions required:

Theorem 3 *Based on the SCM in Theorem 2, when utilizing GNN to model causal relationships, for atomic interventions, the lower bound of the number of interventions required is*

188 $\min_{\mathcal{M}^{micro}} \left(\left\lceil \frac{\frac{1}{\lambda} |(\bigcup_{i=1}^{|G|} G_i)| + |Y| - r(\mathcal{M}^{micro})}{2} \right\rceil \right)$, where \mathcal{M}^{micro} denotes any DAG that is equivalent to the
 189 graphical representation of the ground truth causal model, and the vertex set of $\mathcal{M}^{micro} = \left(\bigcup_{i=1}^{|G|} G_i \right) \cup Y$,
 190 λ denotes the average times that each variable occurs among each of the samples within dataset \mathcal{G} , $r(\cdot)$
 191 calculates the total number of maximal cliques. For non-atomic interventions, the number of interventions
 192 required exceeds $\mathcal{O} \left(\min_k \left(\frac{\frac{1}{\lambda} |(\bigcup_{i=1}^{|G|} G_i)| + |Y|}{k} \log(\log(k)) \right) \right)$.
 193

194 The proof can be found in [Appendix C.3](#). Theorem 3 provides a lower bound on the number of interventions
 195 required. Based on this theorem, for graph datasets, achieving accurate causal modeling would necessitate
 196 an extremely large number of interventions—at least on the order of $\mathcal{O} \left(\bigcup_{i=1}^{|G|} G_i \right)$. Take the Citeseer dataset
 197 ([Caragea et al., 2014](#)) as an example; the required number of interventions would amount to several thousand.
 198 Given that interventions themselves are highly costly—and sometimes even infeasible—this raises a critical
 199 question: is it possible to achieve accurate causal modeling without performing such an excessive number
 200 of interventions?

201 **Theorem 4** Assume there exists a GNN model that satisfies the infinite approximation theorem ([Cybenko, 1989](#)), and that interventions are applied to ensure the GNN models the causal relationships between the
 202 graph variables and the labels. In this case, when applying causal inference in graph representation learning,
 203 it is possible to merge some variables from the original set X to form a new set S , where $|S| < |X|$, while ensuring that the causal relationships between the graph data and the labels are accurately modeled.
 204 However, the following conditions must be met:

205 (1) Variable s in S that satisfies $s \in Pa(Y)$ cannot simultaneously contain both the parent and child
 206 nodes of another variable $v \in X$.
 207 (2) Variables within X^{caus} cannot be merged with those from other sets.

208 The proof can be found in [Appendix C.4](#). Theorem 4, in fact, provides a simplified solution from the
 209 perspective of variable merging. However, this solution is subject to conditions and still requires partial
 210 knowledge of the underlying causal relationships. Nevertheless, the theorem offers a principled approach to
 211 precise causal modeling and serves as a theoretical foundation for it.

212 3.3 EXPERIMENTAL ANALYSIS

213 3.3.1 RWG DATASET

214 Table 1: Comparison between our proposed RWG dataset and existing benchmark datasets.

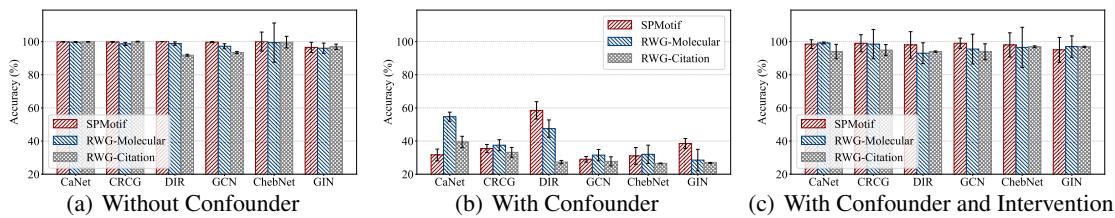
215 Dataset	216 Adjustable Elements (\uparrow)	217 Known Causality	218 Adjustable Motif	219 Adjustable Node Feature	220 Adjustable Edge Connection	221 Adjustable Ensemble Mode	222 Real-world Grounded Data
Citeseer (Giles et al., 1998)	Fixed	✗	✗	✗	✗	✗	✓
PROTEINS (Morris et al., 2020)	Fixed	✗	✗	✗	✗	✗	✓
Synthetic Graph (Ying et al., 2019)	5	✓	✓	✗	✗	✗	✗
Spurious-Motif (Wu et al., 2022b)	6	✓	✓	✗	✗	✗	✗
CRCG (Gao et al., 2024)	54	✓	✓	✓	✓	✗	✗
RWG	90	✓	✓	✓	✓	✓	✓

223 To further investigate the research problem while maintaining close ties to real-world scenarios, we introduce
 224 the *Real-World knowledge-based synthesized Graph* (RWG) dataset for empirical analysis. This dataset is

235 grounded in real-world knowledge and rules, leveraging chemical and citation networks to construct synthetic
 236 graph samples for testing graph classification and node classification tasks. Specifically, the RWG
 237 dataset generates graph samples that closely resemble real-world chemical molecules by integrating various
 238 chemical motifs, connecting modules, and controllable parameters, ensuring clear and modelable internal
 239 causal relationships. It also simulates node features from real-world citation networks, constructing graph
 240 samples that approximate real-world citation structures, with known internal causal relationships. Table 1
 241 compares the RWG dataset with other related datasets. For additional details, please refer to **Appendix D**.

242 Next, we conduct experiments using the RWG dataset we have constructed to cross-validate with the previous
 243 theoretical analysis.

245 3.3.2 CAUSAL MODELING CAPABILITY



254 Figure 3: Test accuracy comparison across three different scenarios.

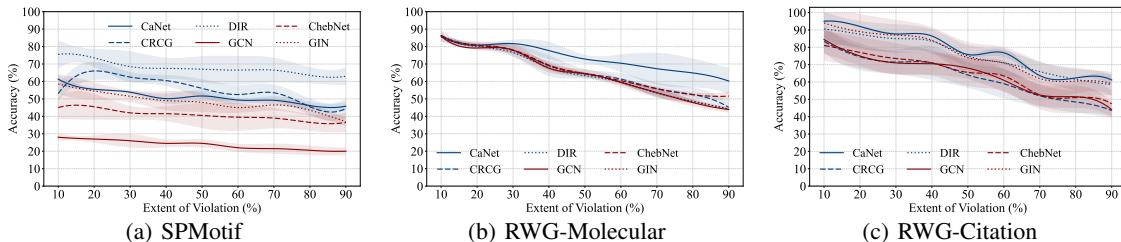
255 We first analyze the causal modeling ability of multiple GNN baselines when dealing with different datasets
 256 and the impact of intervention operations on this ability. Three datasets are used: SPMotif (Wu et al.,
 257 2022b), RWG-Molecular, and RWG-Citation. Among them, RWG-Molecular and RWG-Citation are graph
 258 classification and node classification datasets based on RWG, while SPMotif is a widely used artificially
 259 synthesized graph dataset. The causal relationships in these datasets can be formally modeled and precisely
 260 controlled.

261 Six GNN baselines are used for experimental analysis, including three causal relationship modeling-
 262 enhanced GNN baselines: CaNet (Wu et al., 2024), CRCG (Gao et al., 2024), DIR (Wu et al., 2022b),
 263 and three general GNN baselines: GCN (Kipf & Welling, 2017), ChebNet (Defferrard et al., 2016), and
 264 GIN (Xu et al., 2019). We first make the causal relationships in the dataset explicit, ensuring that there is
 265 no interference from confounders, so that the probabilistic associations in the dataset are equivalent to the
 266 causal associations. In other words, all the elements we use to construct the dataset are associated with the
 267 labels. At the same time, by reducing the problem's difficulty and conducting multiple rounds of training,
 268 we make the GNN modeling performance approach 100% test accuracy. Then, we introduce confounders
 269 into the dataset and apply interventions to observe the effects. When applying interventions, we follow the
 270 approach used by other causal graph representation learning methods (Wu et al., 2022b; Gao et al., 2024),
 271 treating the confounder as a whole for the intervention. However, since we have complete knowledge of the
 272 internal causal relationships within the data, we can ensure that the division of causal variables complies with
 273 Theorem 4. Specifically, we fix the confounder as specific, invariant graph data to eliminate interference and
 274 perform the intervention. Please refer to **Appendix F** for baselines and dataset details.

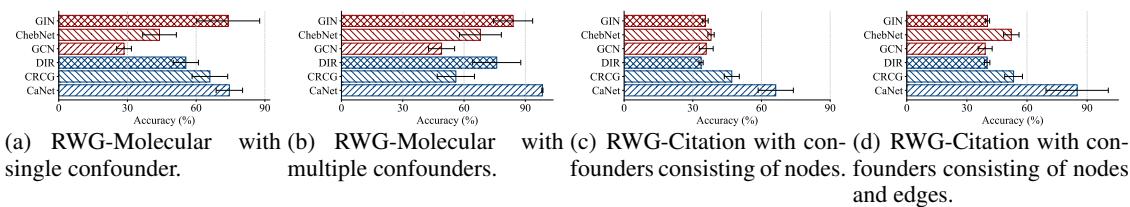
275 Figure 3 shows that introducing confounders degrades model performance, while interventions significantly
 276 improve accuracy, almost fully restore the no-confounder level. This result supports Theorem 4, demon-
 277 strating that intervention-based causal inference remains effective under reasonable variable merging. At the
 278 same time, it can be observed that there is still some inevitable performance degradation in real-world sce-
 279 narios. This is related to the inherent limitations of GNN models and the inability of intervention methods
 280 applied to graph data to completely eliminate interference.

282 3.3.3 INTERVENTION ANALYSIS
283

284 In this section, we analyze intervention effects under varying conditions using the same datasets and base-
285 lines as in Section 3.3.2. We simulate errors in variable merging by reassigning parts of X^{cf}_d to X^{caus} ,
286 thereby violating Theorem 4. Given that our dataset is artificially synthesized with controllable causal
287 relationships, this operation merely entails treating the confounders as non-intervened components when
288 applying causal interventions. Results are shown in Figure 4. As the violation increases, model per-
289 formance degrades, indirectly validating Theorem 4. Moreover, SPMotif shows smaller fluctuations than
290 RWG-Molecular and RWG-Citation, due to its simpler structure. This highlights the importance of RWG
291 datasets, which better approximate real-world complexity and yield more reliable experimental outcomes.



301 Figure 4: Performance of the methods when Theorem 4 is violated to varying degrees. The horizontal axis
302 represents the percentage of data in X^{cf}_d that is erroneously merged into X^{caus} .



311 Figure 5: Performance comparison across different scenarios.

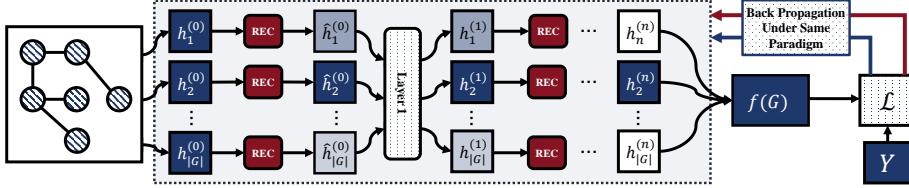
312 We also investigated how different
313 graph elements affect the causal
314 modeling capability of GNNs. Using
315 RWG-Molecular, we compared
316 a single large confounder subgraph
317 with multiple smaller ones; using
318 RWG-Citation, we added con-
319 founders consisting only of nodes
320 versus those involving both nodes
321 and edges. Results in Figure 5
322 show notable performance gaps between RWG-Molecular and RWG-Citation, but only minor differences
323 within the same dataset type. This suggests that merged elements cannot be completely treated as general
324 causal variables, as their effects remain dataset- and scenario-dependent.

325 Furthermore, we evaluate the generalization of GNNs trained solely on causal relationships using four
326 datasets: RWG-Molecular Large (fewer samples, larger motif), RWG-Molecular Small (more samples,
327 smaller motif), RWG-Citation Node (node-only relations), and RWG-Citation Complex (nodes, edges, and

328 Figure 6: Performance of models trained solely with causal data.

329 interactions). Results in Figure 6(a) show good performance on purely causal test data, but adding 70%
 330 confounding data (Figure 6(b)) causes a sharp decline. This experiment strongly demonstrates that, even
 331 when trained solely on causally associated data, models in complex graph representation learning scenar-
 332 os remain effective only within the original data distribution. Their performance deteriorates substantially
 333 when exposed to extraneous data. Further experimental results can be found in [Appendix E.2](#) and [E.3](#), the
 334 setting and dataset details can be found in [Appendix F](#).

336 4 METHOD



345 Figure 7: The illustration of how REC works.

346 Based on the above discussion, within the current graph representation learning framework, achieving
 347 strictly accurate causal relationship modeling is nearly impossible. Reviewing our entire analysis, we iden-
 348 tify the inherent complexity of graph data as the fundamental obstacle to causal modeling in graph repre-
 349 sentation learning. Therefore, we consider whether reducing this complexity could enable GNNs to better
 350 approximate the true underlying causal model. To begin, we propose the following proposition:

351 **Proposition 5** *When the GNN $f(\cdot)$ precisely models the causal mechanism, the cross-entropy loss \mathcal{L} between
 352 predictions $f(G)$ and labels Y is minimized. Moreover, \mathcal{L} equals the conditional KL divergence between the
 353 predictive distribution of $f(\cdot)$ and the background causal model, given each input graph G .*

354 The proof can be found in [Appendix C.5](#). Given that \mathcal{L} represents the conditional KL divergence between
 355 the trained GNN and the causal model, we argue that reducing data complexity, while keeping \mathcal{L} close
 356 to optimal, will make it easier to approximate the background causal model and reduce the likelihood of
 357 interference. Moreover, this complexity-reduction approach can be implemented as a plug-and-play module,
 358 improving both GNN backbones and causal enhanced graph learning methods.

359 In light of this, we propose a **Redundancy Elimination** method for **Causal** graph representation Learning
 360 (REC) to eliminate as many redundant variables as possible in X^{cf}_d and X^{asoc} , thereby simplifying the
 361 causal modeling process. The REC extracts the feature $h_v^{(0)}$ of each node v in the graph data G , along with
 362 the feature $h_v^{(l)}$ after processing through the l -th layer, and performs variable removing as follows:

$$363 \tilde{h}_v^{(0)} = \text{REC}(h_v^{(0)}) = \text{sigmoid}(\gamma + \delta^{(0)}(h_v^{(0)})) \cdot h_v^{(0)}, \quad (1)$$

364 similarly:

$$365 \tilde{h}_v^{(l)} = \text{REC}(h_v^{(l)}) = \text{sigmoid}(\gamma + \delta^{(l)}(h_v^{(l)})) \cdot h_v^{(l)}. \quad (2)$$

366 Here, $\delta^{(l)}(\cdot)$ is a multilayer perceptron (MLP) with an output dimension of 1, and all $\delta^{(l)}$ within the same
 367 layer share the same parameters. $\text{sigmoid}(\cdot)$ denotes the sigmoid function, which serves as a masking oper-
 368 ator for node features. Depending on the value of $(\gamma + \delta^{(l)}(h_v^{(l)}))$, the sigmoid function suppresses certain
 369 feature values toward zero, thereby excluding them from the forward propagation process and effectively
 370 removing the corresponding variables. γ is a value that gradually decreases during the training process. It

376 is designed to eliminate fewer variables at the beginning, allowing the GNN to first model relationships and
 377 then eliminate more variables in later stages. This enables the GNN to remove more redundant variables
 378 based on accumulated knowledge. Formally, we have:

$$\gamma = \max(\gamma_{\text{init}} \cdot (1 - \epsilon)^t, \gamma_{\text{min}}), \quad (3)$$

380 where t denotes the number of current round. γ_{init} and γ_{min} are hyperparameters that set the initial and
 381 minimum values, respectively. ϵ , also a hyperparameter, is a small value greater than zero that controls the
 382 rate of decrease. Then, the GNN layer that applies REC can be formulated as:

$$384 h_v^{(l+1)} = \text{Aggregate} \left(\mathbf{W}^{(l)} \text{REC}(h_v^{(l)}), \left\{ \mathbf{W}^{(l)} \text{REC}(h_u^{(l)}), \forall u \in \mathcal{N}(v) \right\} \right), \quad (4)$$

385 where $\mathbf{W}^{(l)}$ denotes the weight matrix for the l -th layer, $\mathcal{N}(v)$ denotes the neighboring nodes of node v ,
 386 $\text{Aggregate}(\cdot)$ denotes the aggregation process of GNN. REC can be applied to any GNN encoder in causal
 387 graph representation learning methods or GNN backbones to enhance the algorithm's causal modeling ca-
 388 pabilities. Parameters within REC are updated along with those of the GNN. Figure 7 offers an illustration
 389 of applying REC. To validate its effectiveness, we conducted extensive experiments on multiple datasets.
 390 Besides our own proposed datasets, we utilized the artificially generated dataset SPMotif, and real-world
 391 datasets CiteSeer (Caragea et al., 2014) and ENZYMEs (Rossi & Ahmed, 2015). Furthermore, we merged
 392 RWG's link construction paradigm with the SPMotif dataset to construct SPMotif-M, a graph dataset con-
 393 taining more diverse types of graph structural linkages. Simultaneously, we integrated RWG motifs approx-
 394 imitating real-world molecular structures with SPMotif to create SPMotif-C.

Method	RWG-Molecular	Spmotif-M	Spmotif-C	RWG-Citation	CRCG	CiteSeer	ENZYMEs
CaNet	52.17 \pm 2.02	32.40 \pm 1.30	45.00 \pm 1.32	59.33 \pm 1.04	32.77 \pm 1.27	83.87 \pm 0.67	17.00 \pm 6.78
CaNet+REC	56.50 \pm 2.65	34.17 \pm 1.35	46.83 \pm 3.06	61.83 \pm 0.76	36.43 \pm 1.17	84.90 \pm 0.12	18.33 \pm 6.94
Improvement	+4.33	+1.77	+1.83	+2.50	+3.66	+1.03	+1.33
CRCG	45.50 \pm 3.53	36.80 \pm 1.89	44.50 \pm 2.91	45.50 \pm 6.29	29.70 \pm 4.62	42.78 \pm 3.76	34.67 \pm 7.10
CRCG+REC	45.50 \pm 4.39	38.17 \pm 3.83	50.50 \pm 3.05	47.50 \pm 6.26	33.10 \pm 5.29	44.07 \pm 3.30	40.33 \pm 3.24
Improvement	+0.00	+1.37	+6.00	+2.00	+3.40	+1.29	+5.66
DIR	49.00 \pm 5.26	38.67 \pm 4.57	63.00 \pm 6.55	52.50 \pm 5.67	31.80 \pm 4.76	66.53 \pm 1.42	42.67 \pm 6.01
DIR+REC	52.00 \pm 5.68	39.97 \pm 3.12	67.00 \pm 4.79	57.50 \pm 6.24	36.10 \pm 4.14	67.70 \pm 1.74	48.00 \pm 2.21
Improvement	+3.00	+1.30	+4.00	+5.00	+4.30	+1.17	+5.33
GCN	40.00 \pm 5.56	38.60 \pm 1.71	19.50 \pm 2.36	43.50 \pm 6.96	17.22 \pm 1.26	71.08 \pm 0.48	24.67 \pm 1.94
GCN+REC	42.35 \pm 4.10	40.21 \pm 0.96	26.36 \pm 2.76	52.29 \pm 4.41	26.30 \pm 1.67	71.93 \pm 0.33	28.33 \pm 2.83
Improvement	+2.35	+1.61	+6.86	+8.79	+9.08	+0.85	+3.66
ChebNet	41.00 \pm 4.45	38.63 \pm 1.61	33.50 \pm 4.90	55.50 \pm 7.23	33.75 \pm 1.89	55.39 \pm 2.44	26.33 \pm 3.09
ChebNet+REC	50.18 \pm 6.77	40.40 \pm 0.98	37.95 \pm 5.21	57.40 \pm 6.19	36.02 \pm 1.91	57.27 \pm 1.72	30.33 \pm 1.63
Improvement	+9.18	+1.77	+4.45	+1.90	+2.27	+1.88	+4.00
GIN	50.50 \pm 8.44	14.27 \pm 4.43	36.50 \pm 3.43	46.50 \pm 4.56	28.02 \pm 0.82	52.80 \pm 3.53	27.00 \pm 4.14
GIN+REC	55.90 \pm 1.74	38.60 \pm 4.60	45.00 \pm 3.98	53.10 \pm 1.38	33.64 \pm 2.39	54.57 \pm 2.74	33.67 \pm 1.87
Improvement	+5.40	+24.33	+8.50	+6.60	+5.62	+1.77	+6.67

410 Table 2: Performance comparison of different methods with and without REC enhancement on various
 411 datasets. The improvement row shows the absolute performance gain achieved by REC.

413 Experimental results, as shown in Table 2, demonstrate that our method achieves improvements across all
 414 baselines, with significant enhancements in certain scenarios. This not only validates the effectiveness of
 415 REC but also provides supporting evidence for Proposition 5. Detailed settings can be found in Appendix F.

417 5 CONCLUSION

419 This paper approaches causal modeling in graph representation learning from a theoretical perspective,
 420 developing a theoretical model that strictly adheres to the fundamental assumptions of causal inference.
 421 Building on this foundation, we conduct in-depth analyses combined with experimental cross-validation and
 422 further propose an improved enhancement module.

423 REPRODUCIBILITY STATEMENT
424

425 All of our theoretical results have been rigorously proven, and the corresponding proofs are provided in
426 Appendix C. Additionally, our experiments and methods include data and code for reproducibility. The code
427 for generating datasets is available in the `/gen_datasets` directory of the supplementary materials. The
428 generated datasets are provided in the `/data` directory. The code for loading the datasets and training the
429 models is available in the `/models` directory. For more details and environment setup, please refer to the
430 `README.md` in the supplementary materials.

431
432 REFERENCES
433

434 Shayan Shirahmad Gale Bagi, Zahra Gharaee, Oliver Schulte, and Mark Crowley. Generative causal
435 representation learning for out-of-distribution motion forecasting. In Andreas Krause, Emma Brun-
436 skill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), *International
437 Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA*, volume
438 202 of *Proceedings of Machine Learning Research*, pp. 31596–31612. PMLR, 2023. URL <https://proceedings.mlr.press/v202/shirahmad-gale-bagi23a.html>.

440 Cornelia Caragea, Jian Wu, Alina Ciobanu, Kyle Williams, Juan Fernández-Ramírez, Hung-Hsuan Chen,
441 Zhaohui Wu, and Lee Giles. Citeseer x: A scholarly big dataset. In *European Conference on Information
442 Retrieval*, pp. 311–322. Springer, 2014.

443 Aditya Chattopadhyay, Piyushi Manupriya, Anirban Sarkar, and Vineeth N. Balasubramanian. Neural net-
444 work attributions: A causal perspective. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), *Pro-
445 ceedings of the 36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long
446 Beach, California, USA*, volume 97 of *Proceedings of Machine Learning Research*, pp. 981–990. PMLR,
447 2019. URL <http://proceedings.mlr.press/v97/chattopadhyay19a.html>.

448 Yongqiang Chen, Yonggang Zhang, Yatao Bian, Han Yang, Kaili Ma, Binghui Xie, Tongliang Liu,
449 Bo Han, and James Cheng. Learning causally invariant representations for out-of-distribution gener-
450 alization on graphs. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and
451 A. Oh (eds.), *Advances in Neural Information Processing Systems 35: Annual Conference on Neu-
452 ral Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - De-
453 cember 9, 2022*, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/8b21a7ea42cbcd1c29a7a88c444cce45-Abstract-Conference.html.

456 Dapeng Cheng, Jiale Gai, Bo Yang, Yanyan Mao, Xiaolian Gao, Baosheng Zhang, Wanting Jing, Jia Deng,
457 Feng Zhao, and Ning Mao. Gu-net: Causal relationship-based generative medical image segmentation
458 model. *Heliyon*, 10(18), 2024.

459 Davin Choo, Kirankumar Shiragur, and Arnab Bhattacharyya. Verification and search algorithms for causal
460 dags. *Advances in Neural Information Processing Systems*, 35:12787–12799, 2022.

462 George Cybenko. Approximation by superpositions of a sigmoidal function. *Mathematics of control, signals
463 and systems*, 2(4):303–314, 1989.

464 Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on graphs
465 with fast localized spectral filtering. In Daniel D. Lee, Masashi Sugiyama, Ulrike von Luxburg, Is-
466 abelle Guyon, and Roman Garnett (eds.), *Advances in Neural Information Processing Systems 29: An-
467 nual Conference on Neural Information Processing Systems 2016, December 5-10, 2016, Barcelona,
468 Spain*, pp. 3837–3845, 2016. URL <https://proceedings.neurips.cc/paper/2016/hash/04df4d434d481c5bb723be1b6df1ee65-Abstract.html>.

470 Shaohua Fan, Xiao Wang, Yanhu Mo, Chuan Shi, and Jian Tang. Debiasing graph neural networks via learning
 471 disentangled causal substructure. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave,
 472 K. Cho, and A. Oh (eds.), *Advances in Neural Information Processing Systems 35: Annual Conference on*
 473 *Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - De-*
 474 *cember 9, 2022*. URL http://papers.nips.cc/paper_files/paper/2022/hash/9e47a0bc530cc88b09b7670d2c130a29-Abstract-Conference.html.

475

476 Shaohua Fan, Xiao Wang, Chuan Shi, Peng Cui, and Bai Wang. Generalizing graph neural networks on out-
 477 of-distribution graphs. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 46(1):322–337,
 478 2024. doi: 10.1109/TPAMI.2023.3321097.

479

480 Hang Gao, Jiangmeng Li, Wenwen Qiang, Lingyu Si, Bing Xu, Changwen Zheng, and Fuchun Sun. Robust
 481 causal graph representation learning against confounding effects. In *Proceedings of the AAAI Conference*
 482 *on Artificial Intelligence*, volume 37, pp. 7624–7632, 2023.

483

484 Hang Gao, Chengyu Yao, Jiangmeng Li, Lingyu Si, Yifan Jin, Fengge Wu, Changwen Zheng, and Huap-
 485 ing Liu. Rethinking causal relationships learning in graph neural networks. In Michael J. Wooldridge,
 486 Jennifer G. Dy, and Sriraam Natarajan (eds.), *Thirty-Eighth AAAI Conference on Artificial Intelligence,*
 487 *AAAI 2024, Thirty-Sixth Conference on Innovative Applications of Artificial Intelligence, IAAI 2024, Four-
 488 teenth Symposium on Educational Advances in Artificial Intelligence, EAAI 2024, February 20-27, 2024,*
 489 *Vancouver, Canada*, pp. 12145–12154. AAAI Press, 2024. doi: 10.1609/AAAI.V38I11.29103. URL
 490 <https://doi.org/10.1609/aaai.v38i11.29103>.

491

492 C Lee Giles, Kurt D Bollacker, and Steve Lawrence. Citeseer: An automatic citation indexing system. In *Proceedings of the third ACM conference on Digital libraries*, pp. 89–98, 1998.

493

494 Yimeng He, Le Yao, Zhiqiang Ge, and Zhihuan Song. Causal generative model for root-cause diagnosis and
 495 fault propagation analysis in industrial processes. *IEEE Transactions on Instrumentation and Measure-
 496 ment*, 72:1–11, 2023. doi: 10.1109/TIM.2023.3273686.

497

498 Ziming Hong, Zhenyi Wang, Li Shen, Yu Yao, Zhuo Huang, Shiming Chen, Chuanwu Yang, Mingming
 499 Gong, and Tongliang Liu. Improving non-transferable representation learning by harnessing content
 500 and style. In *The Twelfth International Conference on Learning Representations, ICLR 2024, Vienna,
 501 Austria, May 7-11, 2024*. OpenReview.net, 2024. URL <https://openreview.net/forum?id=FYKVPOHCpE>.

502

503 Kurt Hornik, Maxwell B. Stinchcombe, and Halbert White. Multilayer feedforward networks are univer-
 504 sal approximators. *Neural Networks*, 2(5):359–366, 1989. doi: 10.1016/0893-6080(89)90020-8. URL
 505 [https://doi.org/10.1016/0893-6080\(89\)90020-8](https://doi.org/10.1016/0893-6080(89)90020-8).

506

507 Stasys Jukna. On graph complexity. *Combinatorics, Probability and Computing*, 15(6):855–876, 2006.

508

509 Jean Kaddour, Aengus Lynch, Qi Liu, Matt J Kusner, and Ricardo Silva. Causal machine learning: A survey
 510 and open problems. *arXiv preprint arXiv:2206.15475*, 2022.

511

512 Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In *5th*
 513 *International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017,*
 514 *Conference Track Proceedings*. OpenReview.net, 2017. URL <https://openreview.net/forum?id=SJU4ayYg1>.

515

516 Murat Kocaoglu, Amin Jaber, Karthikeyan Shanmugam, and Elias Bareinboim. Characterization and
 517 learning of causal graphs with latent variables from soft interventions. In Hanna M. Wallach,
 518 Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett

517 (eds.), *Advances in Neural Information Processing Systems 32: Annual Conference on Neural In-*
 518 *formation Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada,*
 519 *pp. 14346–14356, 2019.* URL <https://proceedings.neurips.cc/paper/2019/hash/c3d96fbd5b1b45096ff04c04038fff5d-Abstract.html>.

520

521

522 Bo Li, Peng Qi, Bo Liu, Shuai Di, Jingen Liu, Jiquan Pei, Jinfeng Yi, and Bowen Zhou. Trustworthy ai:
 523 From principles to practices. *ACM Computing Surveys*, 55(9):1–46, 2023.

524

525 Phillip Lippe, Sara Magliacane, Sindy Löwe, Yuki M. Asano, Taco Cohen, and Efstratios Gavves. Causal
 526 representation learning for instantaneous and temporal effects in interactive systems. In *The Eleventh*
 527 *International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023.*
 528 OpenReview.net, 2023. URL <https://openreview.net/forum?id=itz6ggvMnzS>.

529

530 Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion Neumann.
 531 Tudataset: A collection of benchmark datasets for learning with graphs. *CoRR*, abs/2007.08663, 2020.
 532 URL <https://arxiv.org/abs/2007.08663>.

533 Judea Pearl. *Causality: Models, Reasoning, and Inference*. Cambridge University Press, 2000.

534

535 Judea Pearl. *Causality*. Cambridge university press, 2009.

536

537 Judea Pearl and Dana Mackenzie. The book of why: The new science of cause and effect. *Basic Books*,
 538 2018.

539

540 Ryan A. Rossi and Nesreen K. Ahmed. The network data repository with interactive graph analytics and
 541 visualization. In Blai Bonet and Sven Koenig (eds.), *Proceedings of the Twenty-Ninth AAAI Conference*
 542 *on Artificial Intelligence, January 25-30, 2015, Austin, Texas, USA*, pp. 4292–4293. AAAI Press, 2015.
 543 doi: 10.1609/AAAI.V29I1.9277. URL <https://doi.org/10.1609/aaai.v29i1.9277>.

544

545 Axel Sauer and Andreas Geiger. Counterfactual generative networks. In *9th International Conference on*
 546 *Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021.* OpenReview.net, 2021.
 547 URL <https://openreview.net/forum?id=BXewfAYMmJw>.

548

549 Junyuan Shang, Tengfei Ma, Cao Xiao, and Jimeng Sun. Pre-training of graph augmented transformers for
 550 medication recommendation. In Sarit Kraus (ed.), *Proceedings of the Twenty-Eighth International Joint*
 551 *Conference on Artificial Intelligence, IJCAI 2019, Macao, China, August 10-16, 2019*, pp. 5953–5959.
 552 ijcai.org, 2019. doi: 10.24963/IJCAI.2019/825. URL <https://doi.org/10.24963/ijcai.2019/825>.

553

554 Karthikeyan Shanmugam, Murat Kocaoglu, Alexandros G. Dimakis, and Sriram Vishwanath. Learning
 555 causal graphs with small interventions. In Corinna Cortes, Neil D. Lawrence, Daniel D. Lee, Masashi
 556 Sugiyama, and Roman Garnett (eds.), *Advances in Neural Information Processing Systems 28: Annual*
 557 *Conference on Neural Information Processing Systems 2015, December 7-12, 2015, Montreal, Quebec,*
 558 *Canada*, pp. 3195–3203, 2015. URL <https://proceedings.neurips.cc/paper/2015/hash/b865367fc4c0845c0682bd466e6ebf4c-Abstract.html>.

559

560 Peter Spirtes. Variable definition and causal inference. 2009.

561

562 Peter Spirtes and Clark Glymour. An algorithm for fast recovery of sparse causal graphs. *Social Science*
 563 *Computer Review*, 9(1):62–72, 1991. doi: 10.1177/089443939100900106. URL <https://doi.org/10.1177/089443939100900106>.

564 Yongduo Sui, Xiang Wang, Jiancan Wu, Min Lin, Xiangnan He, and Tat-Seng Chua. Causal attention
 565 for interpretable and generalizable graph classification. In Aidong Zhang and Huzefa Rangwala (eds.),
 566 *KDD '22: The 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington,
 567 DC, USA, August 14 - 18, 2022*, pp. 1696–1705. ACM, 2022. doi: 10.1145/3534678.3539366. URL
 568 <https://doi.org/10.1145/3534678.3539366>.

569 Jinze Sun, Yongpan Sheng, Lirong He, Yongbin Qin, Ming Liu, and Tao Jia. CEGRL-TKGR: A causal
 570 enhanced graph representation learning framework for temporal knowledge graph reasoning. In *Proceed-
 571 ings of the 31st International Conference on Computational Linguistics, COLING 2025 - Workshops, Abu
 572 Dhabi, UAE, January 19-24, 2025*, pp. 6–17. Association for Computational Linguistics, 2025. URL
 573 <https://aclanthology.org/2025.neusympbridge-1.2/>.

574 Ichigaku Takigawa and Hiroshi Mamitsuka. Graph mining: procedure, application to drug discovery and
 575 recent advances. *Drug discovery today*, 18(1-2):50–57, 2013.

576 Qiaoyu Tan, Ninghao Liu, and Xia Hu. Deep representation learning for social network analysis. *Frontiers
 577 in big Data*, 2:2, 2019.

578 Lijing Wang, Aniruddha Adiga, Jiangzhuo Chen, Adam Sadilek, Srinivasan Venkatramanan, and Madhav
 579 Marathe. Causalgnn: Causal-based graph neural networks for spatio-temporal epidemic forecasting. In
 580 *Proceedings of the AAAI conference on artificial intelligence*, volume 36, pp. 12191–12199, 2022.

581 Qitian Wu, Fan Nie, Chenxiao Yang, Tianyi Bao, and Junchi Yan. Graph out-of-distribution generalization
 582 via causal intervention. In Tat-Seng Chua, Chong-Wah Ngo, Ravi Kumar, Hady W. Lauw, and Roy Ka-
 583 Wei Lee (eds.), *Proceedings of the ACM on Web Conference 2024, WWW 2024, Singapore, May 13-17,
 584 2024*, pp. 850–860. ACM, 2024. doi: 10.1145/3589334.3645604. URL <https://doi.org/10.1145/3589334.3645604>.

585 Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin Cui. Graph neural networks in recommender systems:
 586 a survey. *ACM Computing Surveys*, 55(5):1–37, 2022a.

587 Yingxin Wu, Xiang Wang, An Zhang, Xiangnan He, and Tat-Seng Chua. Discovering invariant rationales
 588 for graph neural networks. In *The Tenth International Conference on Learning Representations, ICLR
 589 2022, Virtual Event, April 25-29, 2022*. OpenReview.net, 2022b. URL <https://openreview.net/forum?id=hGXij5rfiHw>.

590 Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks? In
 591 *7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9,
 592 2019*. OpenReview.net, 2019. URL <https://openreview.net/forum?id=ryGs6iA5Km>.

593 Dingling Yao, Danru Xu, Sébastien Lachapelle, Sara Magliacane, Perouz Taslakian, Georg Martius, Julius
 594 von Kügelgen, and Francesco Locatello. Multi-view causal representation learning with partial ob-
 595 servability. In *The Twelfth International Conference on Learning Representations, ICLR 2024, Vienna,
 596 Austria, May 7-11, 2024*. OpenReview.net, 2024. URL <https://openreview.net/forum?id=OGtnhKQJms>.

597 Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. Gnnex-
 598 plainer: Generating explanations for graph neural networks. In Hanna M. Wallach, Hugo
 599 Larochelle, Alina Beygelzimer, Florence d'Alché-Buc, Emily B. Fox, and Roman Garnett (eds.),
 600 *Advances in Neural Information Processing Systems 32: Annual Conference on Neural Informa-
 601 tion Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada*,
 602 pp. 9240–9251, 2019. URL <https://proceedings.neurips.cc/paper/2019/hash/d80b7040b773199015de6d3b4293c8ff-Abstract.html>.

611 Shuguang Yu, Shuxing Fang, Ruixin Peng, Zhengling Qi, Fan Zhou, and Chengchun Shi. Two-
 612 way deconfounder for off-policy evaluation in causal reinforcement learning. In Amir Globersons,
 613 Lester Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng
 614 Zhang (eds.), *Advances in Neural Information Processing Systems 38: Annual Conference on Neu-*
 615 *ral Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10*
 616 *- 15, 2024, 2024*. URL http://papers.nips.cc/paper_files/paper/2024/hash/8ecf25e3a462e9bb1e29662dfe7258fe-Abstract-Conference.html.

617

618 Yan Zeng, Ruichu Cai, Fuchun Sun, Libo Huang, and Zhifeng Hao. A survey on causal reinforcement
 619 learning. *CoRR*, abs/2302.05209, 2023. doi: 10.48550/ARXIV.2302.05209. URL <https://doi.org/10.48550/arXiv.2302.05209>.

620

621 Cheng Zhang, Kun Zhang, and Yingzhen Li. A causal view on robustness of neural net-
 622 works. In Hugo Larochelle, Marc'Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
 623 and Hsuan-Tien Lin (eds.), *Advances in Neural Information Processing Systems 33: Annual*
 624 *Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,*
 625 *2020, virtual, 2020*. URL <https://proceedings.neurips.cc/paper/2020/hash/02ed812220b0705fabb868ddb17ea20-Abstract.html>.

626

627

628 Wanpeng Zhang, Yilin Li, Boyu Yang, and Zongqing Lu. Tackling non-stationarity in reinforcement learning
 629 via causal-origin representation. In *Forty-first International Conference on Machine Learning, ICML*
 630 *2024, Vienna, Austria, July 21-27, 2024*. OpenReview.net, 2024. URL <https://openreview.net/forum?id=WLGWMDtj8L>.

631

632 Xingxuan Zhang, Peng Cui, Renzhe Xu, Linjun Zhou, Yue He, and Zheyuan Shen. Deep sta-
 633 ble learning for out-of-distribution generalization. In *IEEE Conference on Computer Vi-*
 634 *sion and Pattern Recognition, CVPR 2021, virtual, June 19-25, 2021*, pp. 5372–5382.
 635 Computer Vision Foundation / IEEE, 2021. doi: 10.1109/CVPR46437.2021.00533. URL
 636 https://openaccess.thecvf.com/content/CVPR2021/html/Zhang_Deep_Stable_Learning_for_Out-of-Distribution_Generalization_CVPR_2021_paper.html.

637

638 Chu Zhao, Enneng Yang, Yuliang Liang, Pengxiang Lan, Yuting Liu, Jianzhe Zhao, Guibing Guo, and
 639 Xingwei Wang. Graph representation learning via causal diffusion for out-of-distribution recom-
 640 mendation. In Guodong Long, Michale Blumestein, Yi Chang, Liane Lewin-Eytan, Zi Helen Huang, and Elad
 641 Yom-Tov (eds.), *Proceedings of the ACM on Web Conference 2025, WWW 2025, Sydney, NSW, Aus-*
 642 *tralia, 28 April 2025- 2 May 2025*, pp. 334–346. ACM, 2025. doi: 10.1145/3696410.3714849. URL
 643 <https://doi.org/10.1145/3696410.3714849>.

644

645 Xun Zheng, Bryon Aragam, Pradeep Ravikumar, and Eric P. Xing. Dags with NO TEARS: continuous opti-
 646 mization for structure learning. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman,
 647 Nicolò Cesa-Bianchi, and Roman Garnett (eds.), *Advances in Neural Information Processing Systems 31:*
 648 *Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018,*
 649 *Montréal, Canada*, pp. 9492–9503, 2018. URL <https://proceedings.neurips.cc/paper/2018/hash/e347c51419ffb23ca3fd5050202f9c3d-Abstract.html>.

650

651 Wenzuan Zhu, Chao Yu, and Qiang Zhang. Causal deep reinforcement learning using observational data. In
 652 *Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI 2023,*
 653 *19th-25th August 2023, Macao, SAR, China*, pp. 4711–4719. ijcai.org, 2023. doi: 10.24963/IJCAI.2023/524. URL <https://doi.org/10.24963/ijcai.2023/524>.

654

655 Marinka Zitnik, Monica Agrawal, and Jure Leskovec. Modeling polypharmacy side effects with graph
 656 convolutional networks. *Bioinformatics*, 34(13):i457–i466, 2018.

657

658 **A USAGE OF LARGE LANGUAGE MODEL**
659660 In our paper, we used LLMs to assist with polishing the writing, including correcting grammatical errors
661 and making the sentences more consistent with academic English writing conventions.
662663 **B EXTENDED RELATED WORKS**
664665 **B.1 CAUSAL LEARNING**666 Causal learning is a learning method based on identifying and modeling causal relationships (Pearl, 2000).
667 Unlike traditional correlation learning, causal learning focuses on the causal effects between variables, i.e.,
668 how a change in one variable causes a change in another, rather than merely observing the statistical corre-
669 lation between them. Causal learning aims to extract causal relationships between variables from data and
670 use these relationships for prediction, reasoning, or decision-making. It typically involves methods such as
671 causal graph models (Kocaoglu et al., 2019), causal inference (Pearl & Mackenzie, 2018), and causal discov-
672 ery (Zheng et al., 2018), to infer causal structures from observational data. In recent years, with the rise of
673 deep learning, research on causal learning has gradually shifted to the field of neural networks, particularly
674 how to incorporate causal inference into the training and inference processes of neural networks.
675676 Causal learning in neural networks is primarily reflected in the integration of causal inference with deep
677 learning models to improve the performance of neural networks. On the one hand, neural networks mainly
678 model data by learning the relationships between variables, but since they cannot directly understand the
679 causal relationships between variables, this limits their performance on more complex problems. Therefore,
680 recent research has attempted to incorporate causal inference into the training process of neural networks
681 in order to enhance model interpretability and generalization ability (Chattopadhyay et al., 2019; Zhang
682 et al., 2020). Zhang et al. (2021) removes dependencies between features by learning weights for training
683 samples, thus allowing deep learning models to avoid spurious correlations and focus more on the true
684 relationships between features and labels. Yao et al. (2024) analyzes and understands the causal relationships
685 between latent variables in the data, identifying more fine-grained representations under the generally milder
686 assumption of partial observability. Hong et al. (2024) introduces causal models to understand and advance
687 Non-transferable learning by modeling content and style as two latent factors, decoupling them and using
688 them as guides to learn non-transferable representations with inherent causal relationships. These methods
689 enhance the model’s reasoning ability by introducing causal graph structures or causal analysis mechanisms
690 into neural networks.691 Moreover, causal deep generative models are also an important research direction in causal learning within
692 neural networks in recent years (He et al., 2023; Bagi et al., 2023; Cheng et al., 2024). For example, Sauer
693 & Geiger (2021) proposes decomposing the image generation process into independent causal mechanisms
694 and training them without direct supervision. By utilizing appropriate inductive biases, these mechanisms
695 disentangle object shape, object texture, and background, thus enabling the generation of counterfactual
696 images. In the field of reinforcement learning, causal inference has also started to integrate with deep rein-
697 forcement learning methods (Zeng et al., 2023; Zhu et al., 2023; Yu et al., 2024). For example, Zhang et al.
698 (2024) adopts a guided updating mechanism to learn a stable causal origin representation. By leveraging
699 this representation, the learned policy demonstrates significant robustness to nonstationarity.700 **B.2 CAUSAL RELATIONSHIPS MODELING WITH GNNs**
701702 This paper primarily explores how to enhance the causal relationship modeling in Graph Neural Networks
703 (GNNs). Causality is crucial in graph representation learning (Lippe et al., 2023; Sui et al., 2022), as
704 the complexity and variability of graph data, unlike images and text, require stronger causal relationship

705 modeling capabilities to ensure generalization and robustness. Moreover, several application areas of graph
 706 representation learning, including finance (Wang et al., 2022), medicine (Shang et al., 2019), and biology
 707 (Zitnik et al., 2018), have significant demands for the causal relationships being modeled.

708 There are currently many related studies addressing this issue, which can be categorized into two technical
 709 approaches: one focusing on modeling causal relationship subgraphs and the other on eliminating the impact
 710 of confounding factors. Regarding the first approach, Fan et al. (2024) proposed that spurious correlations
 711 exist within subgraph-level units and analyzed the degeneration of GNNs from a causal perspective. Based
 712 on this causal analysis, a general causal representation framework was proposed to build stable GNNs.
 713 Wu et al. (2022b) introduced a new discovering invariant rationale (DIR) strategy to construct inherently
 714 interpretable GNNs and enhance their causal relationship modeling ability. Chen et al. (2022) proposed
 715 a new framework called Causal-Inspired Invariant Graph Learning (CIGA) to capture the invariances in
 716 graphs, ensuring out-of-distribution (OOD) generalization under various distribution changes.

717 Regarding the second approach, Fan et al. (2022) proposed a general decoupled GNN framework, learning
 718 causal substructures and bias substructures separately. Gao et al. (2024) developed a lightweight optimization
 719 module based on the relationship between causal key modeling and confounding factors. Fan et al.
 720 (2022) also introduced a general decoupled GNN framework to separately learn causal and bias substructures,
 721 ensuring that the final model can debias. Wu et al. (2024) employed a new learning objective inspired
 722 by causal inference, which coordinates an environment estimator with an expert mixed GNN predictor. This
 723 new method overcomes the confounding biases in training data and promotes the learning of widely adapt-
 724 able predictive relationships.

725 C THEORETICAL PROOFS

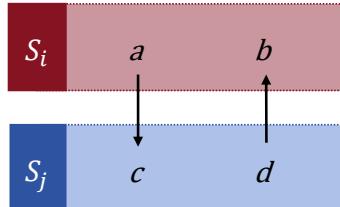
726 C.1 PROOF OF PROPOSITION 1

727 **proposition 1.** *When the variables within graph dataset \mathcal{G} are merged to form a new and smaller variable
 728 set S , in certain cases, it becomes impossible to construct a causal model based on S while still satisfying
 729 the two key prerequisites for applying causal inference methods—namely, the Causal Markov Assumption
 730 and the Causal Faithfulness Assumption.*

731 *Proof.* To illustrate the proposition, we provide a corresponding counterexample. To ensure the clarity
 732 of the proof, we first present the detailed formulations of the Causal Markov Assumption and Causal
 733 Faithfulness Assumption.

734 **Causal Markov Assumption** (Spirtes, 2009) : *For a set of variables in which there are no hidden common
 735 causes, variables are independent of their non-effects conditional on their immediate causes.*

736 **Causal Faithfulness Assumption** (Spirtes, 2009): *There are no independencies other than those entailed
 737 by the Causal Markov Assumption.*



750 Figure 8: The graphical illustration of the causal relationships between variables a , b , c , and d .
 751

For the Causal Markov Assumption, given variables S_i and S_j within S , we assume that $\{a, b\} \subset S_i$ and $\{c, d\} \subset S_j$, and that the ground-truth causal relationships among a, b, c , and d are as illustrated in Figure 8. In this case, S_i contains causes of S_j , and S_j also contains causes of S_i . Suppose we designate S_i as the cause and construct a causal pathway $S_i \rightarrow S_j$. Then, for another variable $S_k \in S$, if S_k also contains causes of S_j , and S_j contains causes of S_k , while S_k is similarly designated as the cause, it is possible that S_i and S_k are dependent even when conditioned on all their common causes. Moreover, this phenomenon persists regardless of how the causal direction is assigned within the constructed causal model. Thus, the Causal Markov Assumption no longer holds.

For the Causal Faithfulness Assumption, we just need to assume that $a \perp\!\!\!\perp b$; in that case, such an independence would be regarded as arising from factors other than those implied by the Causal Markov Assumption. The proposition is proved. \square

C.2 PROOF OF THEOREM 2

Theorem 2 *The SCM in Figure 2 can characterize the general causal relationships between various variables in the graph representation learning scenario. Furthermore, such an SCM satisfies the Causal Markov Assumption and the Causal Faithfulness Assumption.*

Proof. To demonstrate the theorem, we follow the PC algorithm (Spirtes & Glymour, 1991), a method used to infer causal relationships from observational data and reconstruct the SCM depicted in Figure 2 from scratch. The entire process can be divided into three steps, which are detailed below.

Step 1. As in the current scenario, for any $i \in \{1, 2, \dots, m\}$, there does not exist a set B such that the conditional independence $U_i \perp\!\!\!\perp X_i | B$ holds. According to Spirtes & Glymour (1991), we connect each element in U with its corresponding element in X . Since it cannot be determined whether there exists a B such that $U_i \perp\!\!\!\perp X_j | B$ holds for $i \neq j, i \in \{1, 2, \dots, m\}, j \in \{1, 2, \dots, m\}$, we use dashed lines to connect these elements. For the same reasons, we connect all elements in X . Additionally, since the following holds:

$$X^{\text{caus}} = \bigcup_{i \in 1, 2, \dots, k} Pa(Y_i), \quad (5)$$

we have:

$$X_i \perp\!\!\!\perp Y \mid \left(\bigcup_{i \in 1, 2, \dots, k} Pa(Y_i) \right), \forall X_i \in X^{\text{cf}} \cup X^{\text{asoc}}. \quad (6)$$

i.e.:

$$X_i \perp\!\!\!\perp Y | X^{\text{caus}}, \forall X_i \in X^{\text{cf}} \cup X^{\text{asoc}}. \quad (7)$$

Therefore, we only link the elements within X^{caus} with Y using dashed lines. The result of step 1 is demonstrated in Figure 9(a).

Step 2. Since we do not study the values of exogenous variables, we only consider their influence on X , hence all edges from U to X as directed downwards. Based on Equation 5, we direct the edges between X^{caus} and Y towards Y . As elements within X^{cf} holds none causal path towards Y , we direct edges between $X^{\text{asoc}} \cup X^{\text{caus}}$ and X^{cf} towards X^{cf} . The result of step 2 is demonstrated in Figure 9(b).

Step 3. The remaining edges cannot be oriented, thus they are represented using bidirectional arrows. The result of step 3 is demonstrated in Figure 9(c).

We can see that the final result obtained, as shown in Figure 9(c), is consistent with Figure 2.

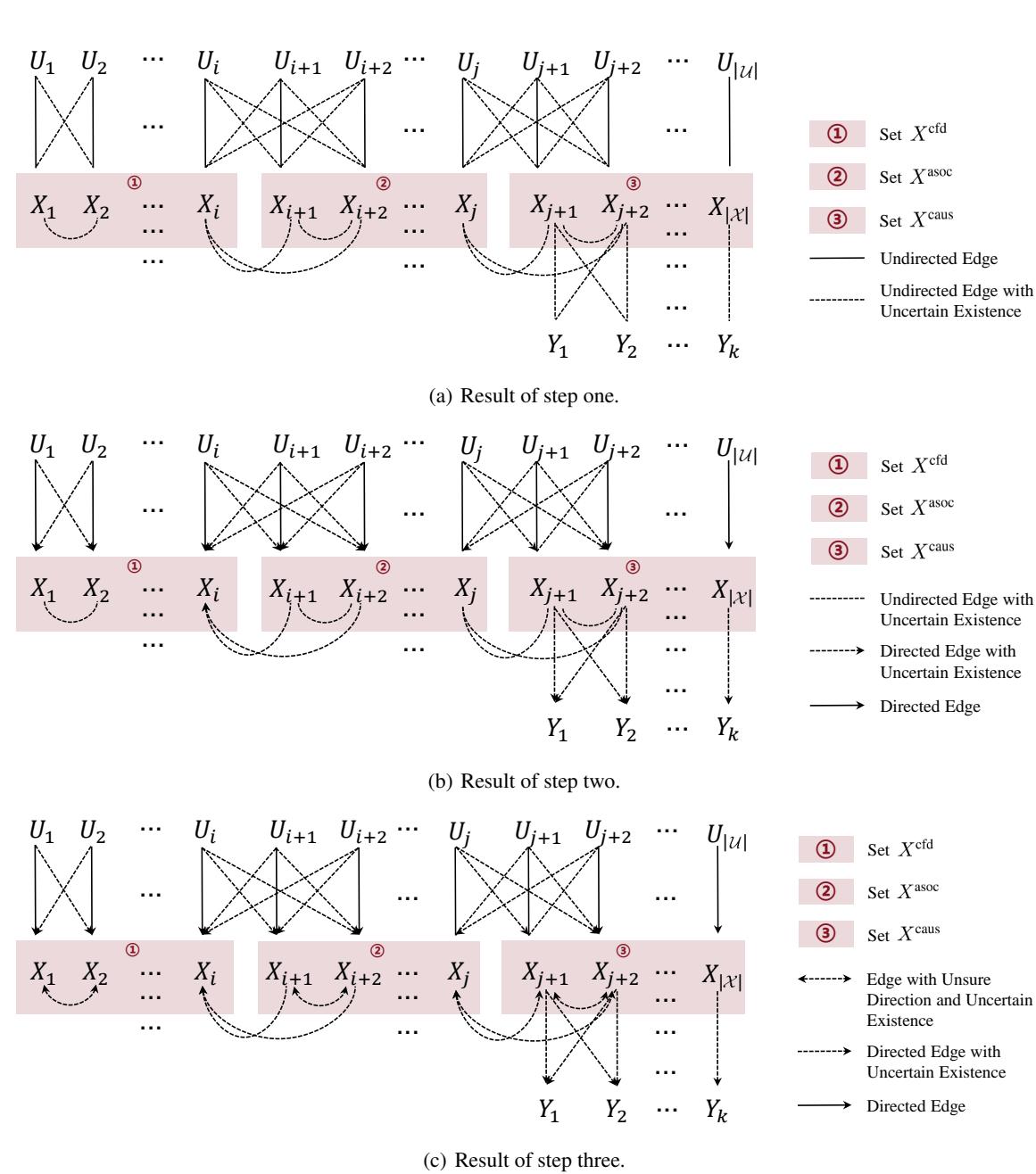


Figure 9: Results of the PC algorithm for SCM reconstruction.

846 Furthermore, since the variables used in the SCM are the smallest divisible variables in G , when there are
 847 no common causes between any two variables a and b in the SCM, $Pa(a)$ can block all causal effects from
 848 a to b . Therefore, the Causal Markov Assumption holds.

849 At the same time, for any $a \perp\!\!\!\perp b$ in this SCM, $Pa(a)$ can block all causal effects from a to b . Thus, the
 850 Causal Faithfulness Assumption also holds. The theorem is thereby proven. \square
 851

852
 853
 854 **C.3 PROOF OF THEOREM 3.**

855
 856
 857 **Theorem 3** *Based on the SCM in Theorem 2, When utilizing GNN to model causal relationship, for atomic interventions, the lower bound of the number of interventions required is*
 858 $\min_{\mathcal{M}^{\text{micro}}} \left(\left\lceil \frac{\frac{1}{\lambda} \left| \left(\bigcup_{i=1}^{|G|} G_i \right) \right| + |Y| - r(\mathcal{M}^{\text{micro}})}{2} \right\rceil \right)$, where $\mathcal{M}^{\text{micro}}$ denotes any DAG that is equivalent to the
 859 graphical representation of the ground truth causal model, and the vertex set of $\mathcal{M}^{\text{micro}} = \left(\bigcup_{i=1}^{|G|} G_i \right) \cup Y$,
 860 λ denotes the average times that each variable occurs among each of the samples within dataset \mathcal{G} , $r(\cdot)$
 861 calculates the total number of maximal cliques. For non-atomic interventions, the number of interventions
 862 required exceeds $\mathcal{O} \left(\min_k \left(\frac{\frac{1}{\lambda} \left| \left(\bigcup_{i=1}^{|G|} G_i \right) \right| + |Y|}{k} \log(\log(k)) \right) \right)$.
 863
 864

865 *Proof.* To conduct the proof, we perform the analysis within the SCM framework shown in Figure 2. Our
 866 focus is on the causal relationship between X and Y , and thus, we concentrate on the variable relationships
 867 between these two sets. As we do not yet have a clear partition of the variables within X , the elements within
 868 X remain unknown to us. Following the analysis of causal inference and variable definitions presented in
 869 [Spirtes \(2009\)](#), it is crucial to ensure that the defined variables satisfy both the Markov assumption and the
 870 faithfulness assumption to facilitate accurate causal reasoning.

871 As noted in [Pearl \(2009\)](#), *starting from the deterministic case, all variables can be explained by microscopic*
 872 *details, ensuring the Markov assumption holds.* Without a clear partition of variables in advance, we need
 873 to follow the approach in [Pearl \(2009\)](#) by decomposing all variables to the finest granularity to ensure the
 874 Markov assumption holds. Assuming each node in the graph data corresponds to a single-dimensional
 875 attribute, every node is treated as an individual variable, ensuring minimal data partitioning. As λ denotes
 876 the average times that each variable occur among each of the samples within dataset \mathcal{G} , the dataset contains
 877 $\frac{1}{\lambda} \left| \left(\bigcup_{i=1}^{|G|} G_i \right) \right| + |Y|$ variables.
 878

879 We denote such variable set as X^{micro} , we have:
 880

$$881 |X^{\text{micro}}| = \frac{1}{\lambda} \left| \left(\bigcup_{i=1}^{|G|} G_i \right) \right| + |Y| \quad (8)$$

882 The proposed theorem by [Choo et al. \(2022\)](#) provides the lower bound of the number of atomic interventions
 883 required for modeling causal relationships among $\mathcal{M}^{\text{micro}}$, where $\mathcal{M}^{\text{micro}}$ denotes any Markov equivalence
 884 class corresponding to $\mathcal{M}^{\text{micro}*}$. $\mathcal{M}^{\text{micro}*}$ is the unknown causal model's graphical representation of all
 885

variables within X^{micro} . Therefore, we have that:

$$\begin{aligned}
|\mathcal{I}| &\geq \min_{\mathcal{M}^{\text{micro}}} \left(\left\lceil \frac{|X^{\text{micro}}| - r(\mathcal{M}^{\text{micro}})}{2} \right\rceil \right) \\
&\geq \min_{\mathcal{M}^{\text{micro}}} \left(\left\lceil \frac{\frac{1}{\lambda} \left| \left(\bigcup_{i=1}^{|\mathcal{G}|} G_i \right) \right| + |Y| - r(\mathcal{M}^{\text{micro}})}{2} \right\rceil \right), \tag{9}
\end{aligned}$$

where \mathcal{I} denotes the set of utilized interventions. $r(\mathcal{M}^{\text{micro}})$ denotes the total number of maximal cliques in the chordal chain components of $\mathcal{M}^{\text{micro}}$. Choo et al. (2022) propose that $\mathcal{M}^{\text{micro}}$ is equivalent to $\mathcal{M}^{\text{micro}*}$ if they cannot be distinguished with statistical independency.

If the model we use satisfies the universal approximation theorem (Hornik et al., 1989) and the data in the dataset is sufficient, then we can model $\mathcal{M}^{\text{micro}}$ based on the statistical information from the dataset. Otherwise, more computational effort is needed to solve the structure of $\mathcal{M}^{\text{micro}}$ first. In either case, the lower bound of Equation 9 holds.

For non-atomic interventions, research is still ongoing, and providing an exact calculation of the precise lower bound remains challenging. However, [Shanmugam et al. \(2015\)](#) has provided an approximate estimate of its lower bound, as follows:

$$|\mathcal{I}| \geq \mathcal{O}\left(\frac{n}{k} \log(\log(k))\right), \quad (10)$$

where n denotes the number of the studied variables, k denotes the number of variables under interventions. Therefore, we acquire the lower of non-atomic interventions as follows:

$$|\mathcal{I}| \geq \mathcal{O} \left(\frac{\frac{1}{\lambda} \left(\left| \bigcup_{i=1}^{|\mathcal{G}|} G_i \right| + |Y| \right)}{k} \log(\log(k)) \right), \quad (11)$$

We refine the lower bound for any k as follows:

$$|\mathcal{I}| \geq \mathcal{O} \left(\min_k \left(\frac{\frac{1}{\lambda} \left| \left(\bigcup_{i=1}^{|\mathcal{G}|} G_i \right) \right| + |Y|}{k} \log(\log(k)) \right) \right). \quad (12)$$

Based on the above results, we have proved that for atomic interventions, the number of interventions required to fully discern all the causal relationships between the variables in X and Y exceeds $\min_{\mathcal{M}^{\text{micro}}} \left(\left\lceil \frac{\frac{1}{\lambda} \left| \left(\bigcup_{i=1}^{|\mathcal{G}|} G_i \right) \right| + |Y| - r(\mathcal{M}^{\text{micro}})}{2} \right\rceil \right)$. For non-atomic interventions, the number of interventions required exceeds $\mathcal{O} \left(\min_k \left(\frac{\frac{1}{\lambda} \left| \left(\bigcup_{i=1}^{|\mathcal{G}|} G_i \right) \right| + |Y|}{k} \log(\log(k)) \right) \right)$. Since our goal is to model the causal relationships between G and Y , variables that are independent of Y in the graphical data do not need to be analyzed. Therefore, we have:

$$|\mathcal{I}| \geq \min_{\mathcal{M}^{\text{micro}}} \left(\left\lceil \frac{\frac{1}{\lambda} \left| \left(\bigcup_{i=1}^{|\mathcal{G}|} G_i \right) \right| + |Y| - \frac{1}{\sigma} \left| \left(\bigcup_{i=1}^{|\mathcal{G}|} D_i \right) \right| - r(\mathcal{M}^{\text{micro}})}{2} \right\rceil \right), \quad (13)$$

940 where $D \in G$ denotes the data that independence with Y , σ denotes the average times that each variable
 941 within $\bigcup_{i=1}^{|G|} D_i$ occurs. We have:
 942

$$943 \quad 944 \quad 945 \quad |\mathcal{I}| \geq \min_{\mathcal{M}^{\text{micro}}} \left(\left\lceil \frac{\frac{1}{\lambda} \left| \left(\bigcup_{i=1}^{|G|} G_i \right) \right| + |Y| - r(\mathcal{M}^{\text{micro}})}{2} \right\rceil \right). \quad (14)$$

946 For non-atomic interventions, we have:
 947

$$948 \quad 949 \quad 950 \quad |\mathcal{I}| \geq \mathcal{O} \left(\min_k \left(\frac{\frac{1}{\lambda} \left| \left(\bigcup_{i=1}^{|G|} G_i \right) \right| + |Y|}{k} \log(\log(k)) \right) \right). \quad (15)$$

951 The theorem is proved. □
 952

953 C.4 PROOF OF THEOREM 4

955 **Theorem 4** *Assume there exists a GNN model that satisfies the infinite approximation theorem (Cybenko,
 956 1989), and that interventions are applied to ensure the GNN models the causal relationships between the
 957 graph variables and the labels. In this case, when applying causal inference in graph representation learning,
 958 it is possible to merge some variables from the original set X to form a new set S , where $|S| < |X|$,
 959 while ensuring that the causal relationships between the graph data and the labels are accurately modeled.
 960 However, the following conditions must be met:*

961 (1) *Variable s in S that satisfy $s \in \text{Pa}(Y)$ cannot simultaneously contain both the parent and child nodes
 962 of another variable $v \in X$.*
 963 (2) *Variables within X^{caus} cannot be merged with those of other sets.*

965 *Proof.* To prove the theorem, it suffices to demonstrate that the two conditions (1) and (2) proposed in the
 966 theorem are both necessary and sufficient for transforming X into S , while ensuring the accurate modeling
 967 of causal relationships.

968 We first prove sufficiency. Based on Theorem 2, since conditions (1) and (2) hold, we have the following:
 969

$$970 \quad P(Y \mid \text{do}(X \setminus X^{\text{caus}} = x)) = P(Y \mid \text{do}(S \setminus S^{\text{caus}} = x)), \quad (16)$$

971 where x is a specific value of $X \setminus X^{\text{caus}}$, and S^{caus} denotes the set of variables within S generated by merging
 972 X^{caus} . Here, $\text{do}(\cdot)$ represents the intervention operation.
 973

974 Equation 16 demonstrates that conducting the same intervention on $X \setminus X^{\text{caus}}$ and $S \setminus S^{\text{caus}}$ yields identical
 975 outcomes. This implies that, with an appropriate set of interventions, even if the variables are merged into
 976 set S , it remains possible to apply interventions that isolate and sever the influence of variables not involved
 977 in the causal component.

978 We can also conclude the following:
 979

$$980 \quad P(Y \mid \text{do}(X^{\text{caus}} = x)) = P(Y \mid \text{do}(S^{\text{caus}} = x)). \quad (17)$$

981 Furthermore, for each $S_i^{\text{caus}} \in S^{\text{caus}}$, we have:
 982

$$983 \quad P(Y \mid \text{do}(O_i^{\text{caus}} = s_i)) = P(Y \mid \text{do}(S_i^{\text{caus}} = s_i)), \quad (18)$$

984 and
 985

$$986 \quad P(Y \mid \text{do}(X^{\text{caus}} \setminus O_i^{\text{caus}} = s_i)) = P(Y \mid \text{do}(S^{\text{caus}} \setminus S_i^{\text{caus}} = s_i)), \quad (19)$$

987 where O_i^{caus} is the subset of elements within X that, when merged, create S_i .

987 Based on condition 2 of the proposed theorem, we can model the causal relationship between each S_i^{caus} and
 988 Y via the intervention operation. Therefore, we can apply a suitable GNN as described in the theorem to
 989 model the causal relationship between S^{caus} and Y , i.e., the causal relationship between G and Y . Thus,
 990 sufficiency is proven.

991 Next, we prove the necessity. First, consider the case where condition (1) does not hold. In this situation,
 992 it is possible for two variables, s and v , to exist such that s is both a parent and a child of v within the
 993 background SCM. This creates a confounding arc (Pearl, 2009) and cannot be removed via intervention. As
 994 a result, the causal relationship becomes unrepresentable. Thus, condition (1) must hold.

995 Now, consider the case where condition (2) is violated. In this case, a variable S_j^{caus} may include components
 996 unrelated to the outcome Y . When examining S_j^{caus} , the confounding effects cannot be eliminated through
 997 intervention, rendering the causal relationship unfeasible. Therefore, condition 2 must also be satisfied. The
 998 necessity is proved. Therefore, the theorem is proved. \square

1000 C.5 PROOF OF PROPOSITION 5

1002 **Proposition 5** *When the GNN $f(\cdot)$ precisely models the causal mechanism, the cross-entropy loss \mathcal{L} between
 1003 predictions $f(G)$ and labels Y is minimized. Moreover, \mathcal{L} equals the conditional KL divergence between the
 1004 predictive distribution of $f(\cdot)$ and the background causal model, given each input graph G .*

1005 *Proof.* The proof of Proposition 5 is straightforward. The key observation is that the ground-truth labels Y
 1006 are, under all circumstances, the same as output of the background causal model; the remaining steps follow
 1007 from standard properties of the cross-entropy loss. For completeness and rigor, we still provide a detailed
 1008 proof below.

1009 We begin by proving the first conclusion of the proposition. According to the definition of \mathcal{L} , we have:

$$1011 \mathcal{L} = \frac{1}{n} \sum_{i=1}^n \log \frac{1}{\tau(f(G_i))}. \quad (20)$$

1013 As $\tau(\cdot)$ extracts the output probability of the ground truth labels, we have $\tau(f(G_i)) = 1$ when the back-
 1014 ground causal structure is precisely modeled. We denote \mathcal{L}^* as the value of \mathcal{L} under the former condition.
 1015 Based on Equation 20, the \mathcal{L}^* can be represented as:

$$1017 \mathcal{L}^* = \frac{1}{n} \sum_{i=1}^n \log \frac{1}{1} = 0. \quad (21)$$

1019 As $\tau(f(G_i)) \leq 1$, thus $\log \frac{1}{\tau(f(G_i))} \geq 0$, and $\mathcal{L} = \frac{1}{n} \sum_{i=1}^n \log \frac{1}{\tau(f(G_i))} \geq 0$. Therefore, \mathcal{L}^* reaches the
 1020 minimal value. The first conclusion of the proposition is proved.

1021 Next, we proof the second conclusion. The Conditional KL divergence between the output of $f(\cdot)$ and the
 1022 ground truth label given different inputs can be formulated as:

$$1024 D_{\text{KL}}(p(Y|G) || q(Y|G)) = \sum_{i=1}^n p(G_i) \sum_Y p(Y|G_i) \log \frac{p(Y|G_i)}{q(Y|G_i)} \\ 1025 = \sum_{i=1}^n \frac{1}{n} \sum_Y p(Y|G_i) \log \frac{p(Y|G_i)}{q(Y|G_i)}. \quad (22)$$

1029 As $p(Y|G_i) = 0$ if Y is not the ground truth label, therefore:

$$1031 D_{\text{KL}}(p(Y|G) || q(Y|G)) = \frac{1}{n} \sum_{i=1}^n 1 \cdot \log \frac{1}{q(Y^*|G_i)} = \frac{1}{n} \sum_{i=1}^n \log \frac{1}{\tau(f(G_i))}, \quad (23)$$

1033 where Y^* denotes the ground truth label. The proposition is proved. \square

1034 **D RWG DATASET**
10351036 **D.1 DATA CONSTRUCTED BASED ON REAL-WORLD CHEMICAL INFORMATION**
10371038 We constructed the RWG graph classification data based on extensive real-world chemical knowledge,
1039 specifically focusing on molecular structures commonly encountered in the field of chemistry. The con-
1040 struction process began by collecting a total of 26 well-known molecular graph motifs, which serve as the
1041 fundamental building blocks for the graphs we aim to analyze. These motifs represent common substruc-
1042 tures found in a wide variety of molecules, and they play a critical role in capturing the structural diversity
1043 that exists within molecular graphs. Table 3 provides a detailed list and description of these motifs.1044 Each motif is defined by its own unique arrangement of atoms and bonds, and these motifs can also undergo
1045 slight variations. The variations are achieved by adding or removing edges between atoms, which allows
1046 us to generate a range of related but distinct molecular structures. This flexibility in modifying the motifs
1047 ensures that the graph models are not only diverse but also closely aligned with the variability found in real
1048 chemical data.1049 In addition to these molecular motifs, we also constructed 15 connector modules that are based on common
1050 chemical molecular architectures. These modules include well-established structural elements, such as ring
1051 structures, chain structures, and various hybrid forms that combine these basic components. These connector
1052 modules facilitate the composition of the aforementioned molecular graph motifs into larger, more complex
1053 molecular graphs, enabling the representation of a broad spectrum of chemical compounds.1054 Each connector module is implemented through a corresponding function that allows for customization in
1055 terms of size and branching. The `size` parameter enables the adjustment of the module’s scale, making it
1056 possible to control the overall size of the connected structure. The `branch` parameter, on the other hand,
1057 allows for modification of the number of branches that extend from the core structure, providing further
1058 flexibility in defining how the motifs are interconnected. By adjusting these parameters, we can create a wide
1059 variety of complex molecular graphs that reflect the structural diversity of real-world chemical networks.1060
1061 **D.2 DATA CONSTRUCTED BASED ON REAL-WORLD CITATION NETWORK INFORMATION**
10621063 We constructed a citation network based on real-world citation network data, consisting of a total of 25
1064 citation relationships. These relationships were carefully selected to represent a diverse range of connec-
1065 tions within the network, capturing the complexity of academic citation patterns across various fields. The
1066 citation relationships reflect the way in which research papers influence one another through references, and
1067 the resulting network serves as a model for understanding the dynamics of knowledge dissemination and
1068 academic collaboration. Table 5 presents a detailed overview of these citation relationships, showcasing the
1069 various connections between the papers and their corresponding citation patterns.1070 In parallel with the citation relationships, we developed a total of 24 node feature generation methods, each
1071 based on different statistical distributions and mathematical sequences. These methods were designed to
1072 generate meaningful node features that reflect both the structural and contextual aspects of the citation net-
1073 work. The details of these feature generation methods, including the specific distributions and sequences
1074 used, are presented in Table 6. The distributions encompass a wide range of statistical models, such as
1075 normal, uniform, exponential, and lognormal distributions, among others, while the sequences include arith-
1076 metic, geometric, Fibonacci, and prime number sequences, providing a rich variety of feature generation
1077 options.1078 To generate the node features for the dataset, we set parameters for each of the distributions and sequences
1079 based on the specific characteristics of the citation network. For instance, the parameters were chosen to
1080 align with the real-world distribution of citation frequencies, as well as the structural properties of the ci-

1081 tation relationships, such as the number of citations a paper typically receives and how those citations are
 1082 distributed across the network. Once the node features were generated, we incorporated the citation relation-
 1083 ships to guide the construction of the entire graph, ensuring that the generated features were appropriately
 1084 aligned with the network’s structure and that the graph accurately represented the interplay between the dif-
 1085 ferent academic papers. Once completed, we constructed a dataset with clear internal causal relationships,
 1086 closely aligned with real-world scenarios, and it can serve as a foundation for adding confounders and other
 1087 elements required for experiments.

1088

1089 D.3 CAUSAL AND CONFOUNDING DATA GENERATION

1090

1091 For our data generation, we establish causality through precise programmatic control over the dataset’s
 1092 construction, enabling us to explicitly define causal factors and introduce confounders. Specifically, we
 1093 create a causal relationship by making a graph’s label directly dependent on designated graph elements,
 1094 while a confounder is created by introducing a spurious correlation that exists exclusively within the training
 1095 set and is broken in the validation and test sets. The primary graph elements we manipulate for these
 1096 purposes are our constructed motifs, node features, and relational edges.

1097 For instance, in our chemical graph dataset built from 26 molecular motifs, a graph’s label can be causally
 1098 determined by the presence of a “benzene ring” motif. To introduce a confounder, a different motif, like a
 1099 “chain structure,” could be made highly correlated with the label in the training data, a correlation that is
 1100 removed in the test set to make it a misleading shortcut.

1101 Similarly, using our 24-node feature generation methods for the citation network, we can establish a causal
 1102 link where the label is determined by a statistical property, such as the average value of a feature generated
 1103 from a Fibonacci sequence. As a confounder, a separate feature from a uniform statistical distribution could
 1104 be artificially correlated with the label only during training, a pattern that would not hold during evaluation.

1105 Finally, relational edges, representing 25 types of citation relationships, are also precisely controlled. A
 1106 causal factor could be the existence of a double bond within the presence of a “self-citation” relationship in
 1107 the citation network. A confounding relationship could be introduced where a specific type of citation link
 1108 is frequently associated with a positive label in the training data, but this pattern is randomized in the test set
 1109 to ensure it’s a non-causal artifact.

1110

1111 E EXTRA EXPERIMENTS

1112

1113 In this section, we present additional experimental results to facilitate a more thorough and in-depth analysis.
 1114 These results provide further insights into the behavior and performance studied methods, enabling a better
 1115 understanding of the underlying properties.

1116

1117 E.1 EXPERIMENTAL RESULTS ACROSS DIFFERENT LEVELS OF CONFOUNDER INFLUENCE.

1118

1119 Based on the provided results in Figure 10, the experimental results of different models under varying con-
 1120 founder bias proportions can be analyzed. Causal enhancement methods such as CaNet, CRCG, and DIR
 1121 generally outperform standard GNN frameworks (GCN, ChebNet, GIN) as the bias increases, indicating that
 1122 these methods exhibit stronger robustness when faced with biases or noise in the data.

1123 As the confounder bias increases from 10% to 80%, the performance of models like GCN, ChebNet, and
 1124 GIN declines significantly, suggesting that these models struggle more to recognize underlying patterns
 1125 when strong biases are present, making them more susceptible to the influence of confounders. Among
 1126 the causal enhancement methods, DIR shows a slight advantage at higher bias levels (e.g., 50%, 60% and
 1127 above), indicating that DIR may be more effective in handling and mitigating the impact of confounders

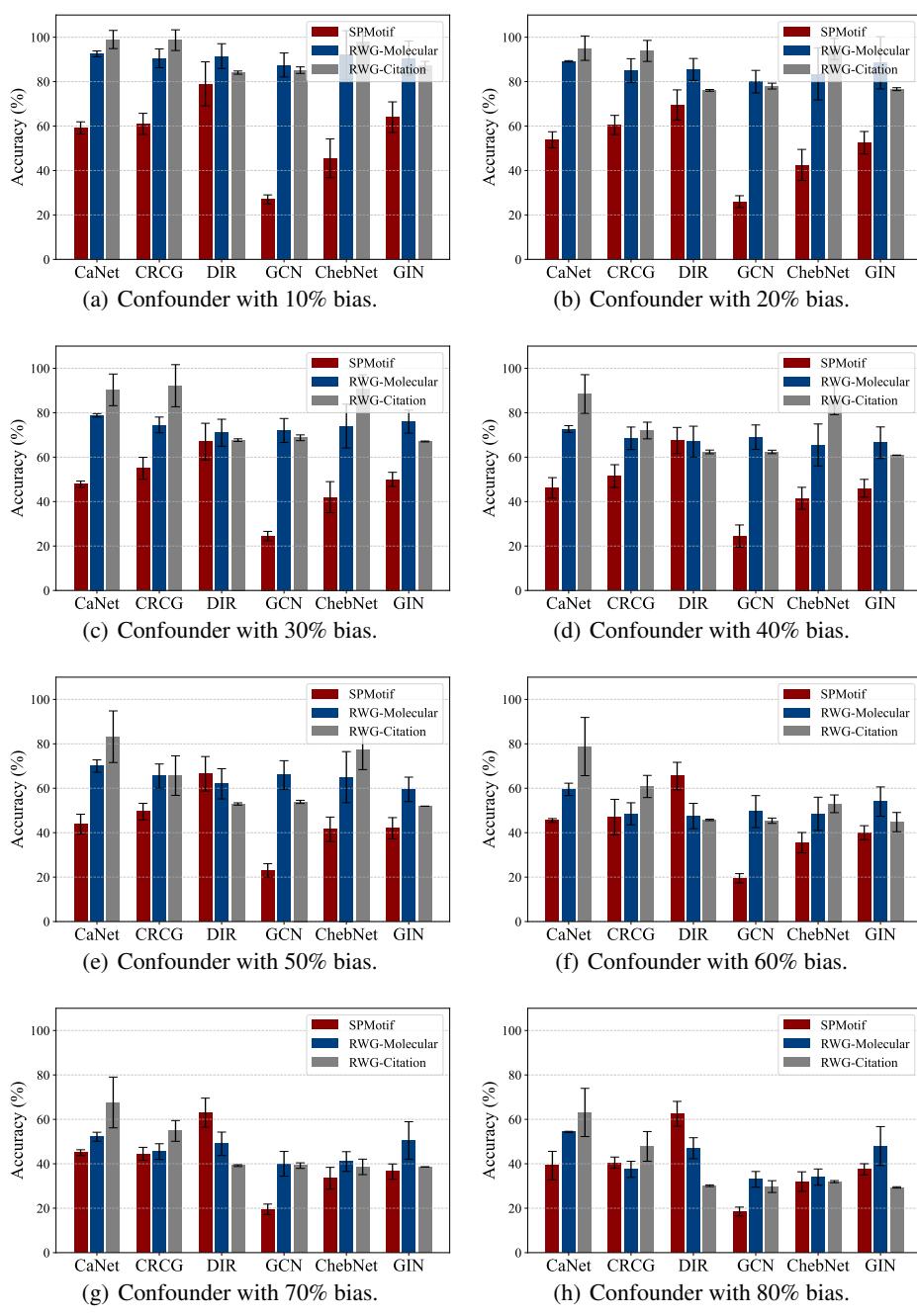


Figure 10: Test Accuracy comparison with different bias.

Molecule	Molecular Formula	Node Count	Edge Count
Acetic Acid	C ₂ H ₄ O ₂	3	2
Adrenaline	C ₉ H ₁₃ NO ₃	5	6
Ammonia	NH ₃	2	3
Anthracene	C ₁₄ H ₁₀	24	12
Benzene Ring	C ₆ H ₆	6	6
Benzoic Acid	C ₇ H ₆ O ₂	9	8
Ethane	C ₂ H ₆	2	1
Ethanol	C ₂ H ₆ O	3	2
Fullerenes	C ₆₀	60	90
Glucose	C ₆ H ₁₂ O ₆	24	12
Hexamethylbenzene	C ₉ H ₁₂	21	15
Hydrated Sulfuric Acid	H ₂ SO ₄ ·H ₂ O	4	5
Imidazole	C ₃ H ₄ N ₂	9	6
Indole	C ₈ H ₇ N	15	9
Methane	CH ₄	1	1
Methyl Anthranilate	C ₈ H ₉ NO ₂	18	12
Nitrobenzene	C ₆ H ₅ NO ₂	9	9
Nitrophenol	C ₆ H ₅ NO ₃	10	10
Porphyrin	C ₃₄ H ₁₂ N ₄	24	23
Pyridine	C ₅ H ₅ N	6	5
Pyrimidine	C ₄ H ₄ N ₂	8	5
Pyrrole	C ₄ H ₅ N	6	5
Simplified Dopamine	C ₈ H ₁₁ NO ₂	11	11
Thiazole	C ₃ H ₃ N ₂ S	7	5
Thioether	C ₄ H ₈ S	12	7
Vitamin C	C ₆ H ₈ O ₆	20	10

Table 3: Fundamental molecular motifs.

compared to other causal methods. Overall, as the confounder bias increases, the performance of all models declines, but the rate of decline varies across different models.

Causal enhancement models exhibit relatively stable performance, especially CaNet and CRCG, which maintain higher accuracy across various bias levels. However, when the confounder bias reaches 90%, even these models experience a significant drop in performance. The accuracy in the “Paper” column (representing some baseline or paper-defined method) consistently remains low, suggesting that traditional methods without causal modeling perform worse when bias is introduced.

In conclusion, causal enhancement methods like CaNet, CRCG, and DIR are more robust to the influence of confounders compared to standard GNN models such as GCN, ChebNet, and GIN, with their advantage being more pronounced at higher bias levels. However, even these causal enhancement methods experience performance degradation under strong biases, indicating that while causal modeling helps mitigate the impact of confounders, it is not immune to them.

E.2 TRAINING PROCESS ANALYSIS

We also analyzed the training performance of different methods under various scenarios. The results are shown in Figure 11. We can observe significant differences in the training performance of different methods across different datasets. In the molecular dataset with a single confounder (Figure a), the performance of the CaNet model is clearly superior to other methods. As the number of training epochs increases, its validation accuracy continuously rises, ultimately approaching 100%. Other methods, such as GCN, ChebNet, and GIN, show relatively flat performance, with validation accuracy fluctuating around 50%, and they fail to improve significantly.

In the molecular dataset with multiple confounders (Figure b), CaNet still performs excellently, with its validation accuracy surpassing 80% and steadily increasing. Similar to Figure a, the performance of other

1222	Motif Name	Construction Method	Functionality Description
1223	Star Motif	Central node connected to all others	Generates a star structure with one center node connected to all peripheral nodes.
1224	Path Motif	Nodes connected in sequence	Constructs a linear path where each node connects to the next in sequence.
1225	Fan Motif	Central node with multiple branch nodes	Creates a fan-like shape with a central hub and several outward branches, possibly interconnected.
1226	Cusped Polygon Motif	Polygon with potential branches	Builds a polygon structure with pointed (cusped) corners and optional branching substructures.
1227	Random Bipartite Motif	Bipartite graph with random connections	Generates a bipartite graph where two partitions are randomly interconnected.
1228	Tree Motif	Hierarchical branching structure	Constructs a tree graph where each node may connect to multiple child nodes.
1229	Trident Motif	Central node with two side branches	Creates a trident-shaped structure, with a central node connected to two others, repeated for multiple tridents.
1230	Conical Connection Motif	Backbone and branches in conical form	Forms a cone-like motif where a backbone and branches are merged into a sandglass-shaped structure.
1231	Chain Bypass Motif	Chain with branching bypasses	Builds a chain structure with additional side branches that bypass parts of the chain.
1232	Partial Polygon Motif	Incomplete polygon with extensions	Forms a partial polygon with potential branch-based extensions.
1233	Complete Graph Motif	All nodes interconnected	Constructs a complete graph where every node is connected to every other node.
1234	Grid/Net Motif	Nodes arranged in a grid	Creates a net or grid shape where nodes are placed in a matrix and connected to adjacent nodes.
1235	Cycle Motif	Nodes forming a ring	Forms a cycle where each node links to the next in a loop.
1236	Dual Ring Motif	Two connected ring structures	Builds two separate ring structures that may be interconnected.
1237	Triangle Motif	Nodes forming triangles	Creates triangle-based motifs where nodes are connected in three-node cycles.

Table 4: Connector modules.

Link Rule	Description
Random Citation Generation	Each paper randomly cites a set of papers; the number of citations follows a Poisson distribution.
Citation by High Citation Count	Each paper cites papers with higher citation counts to increase connectivity among highly cited papers.
Co-Author Based Citation	Papers by authors who have collaborated with the current paper's authors are preferentially cited.
Propagation-Based Citation	Citation links are simulated using an information diffusion model (e.g., Independent Cascade).
Topic Similarity-Based Citation	Papers with high topic similarity (e.g., via cosine similarity on keywords/abstracts) are cited.
Temporal Citation	Older papers are preferentially cited to simulate time-evolving citation behavior.
Author Influence-Based Citation	Papers by more influential authors are more likely to be cited.
Co-Citation Frequency-Based Citation	Papers that are frequently co-cited with the current paper are selected as citation targets.
Citation Density-Based Citation	Papers with higher citation density (degree) are more likely to be cited.
Network Topology-Based Citation	Papers cite one of their neighbor nodes; if no neighbors exist, no citation is made.
Author Expertise-Based Citation	Papers from authors in the same or related research domains are preferred as citations.
Citation Centrality-Based Citation	Papers with higher centrality (e.g., degree, betweenness) in the citation graph are favored.
Geographic Proximity-Based Citation	Authors are more likely to cite papers from geographically proximate researchers.
Research Team Size-Based Citation	Papers from authors with similarly sized research teams are favored.
Citation Credibility-Based Citation	Papers with higher credibility (e.g., journal impact, author reputation) are more likely to be cited.
Academic Lineage-Based Citation	Papers authored by academic mentors or descendants are favored.
Citation Structure-Based Citation	Triangular citation patterns (e.g., A → B → C → A) are promoted to reflect structural motifs.
Citation Distance-Based Citation	Papers with fewer intermediate citation steps (shorter path length) are more likely to be cited.
Knowledge Flow-Based Citation	Knowledge flows from frontier to traditional areas guide citation directionality.
Citation Chain Length-Based Citation	Longer citation chains increase the likelihood of being cited.
Diversity-Based Citation	Papers with more diverse citation sources (across fields or topics) are more likely to be cited.
Reference Count-Based Citation	Papers with more references may appear more informative and are thus more likely to be cited.
Research Object-Based Citation	Papers focusing on attractive or high-interest research objects are more likely to be cited.
Venue Reputation-Based Citation	Papers published in high-impact journals/conferences are preferentially cited.
Open Access-Based Citation	Open access papers are more accessible and thus more likely to be cited.

Table 5: Citation Link Rules in Citation Network Construction

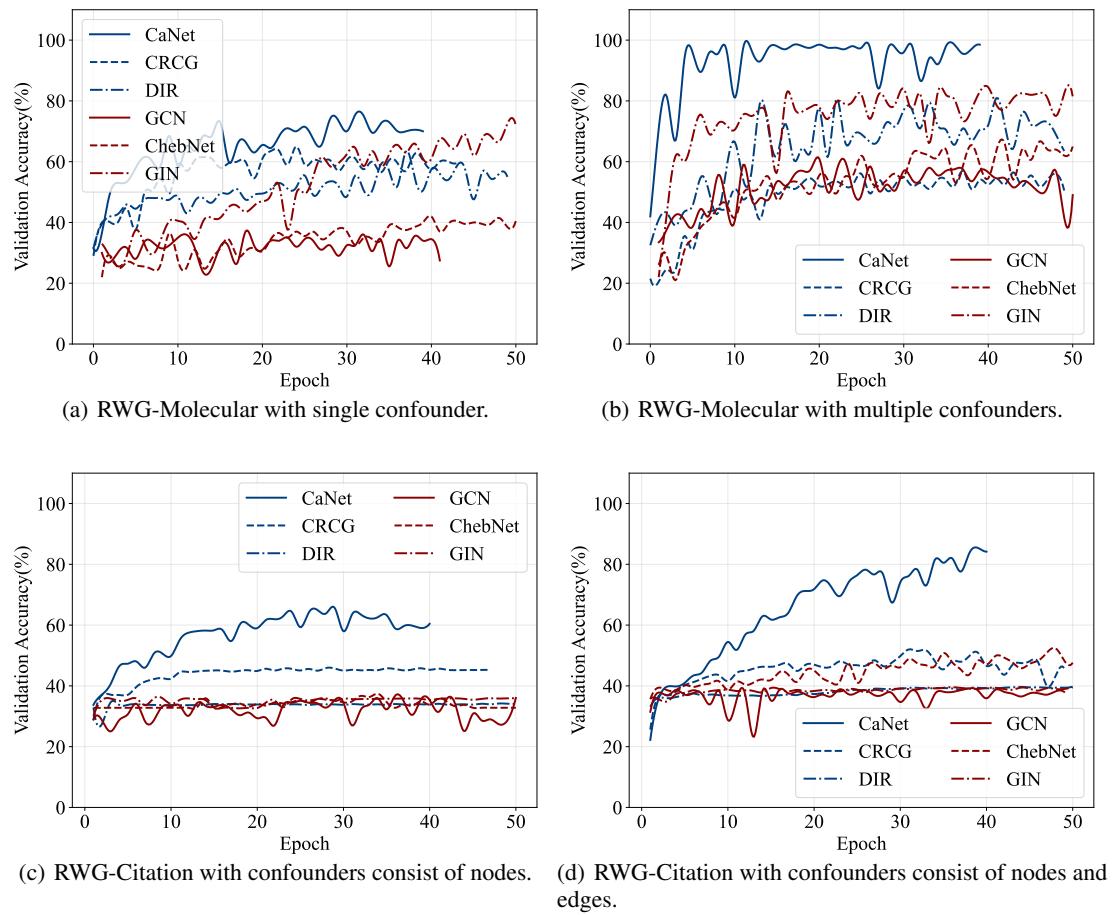


Figure 11: Validation accuracy upon training procedure.

1316 Table 6: Node Feature Generation Methods based on Statistical Distributions and Mathematical Sequences
1317

Type	Description
Normal Distribution	Generates node features based on a normal distribution with specified mean and standard deviation.
Uniform Distribution	Generates node features based on a uniform distribution over a specified range.
Exponential Distribution	Generates node features based on an exponential distribution.
Lognormal Distribution	Generates node features based on a lognormal distribution.
Gamma Distribution	Generates node features based on a gamma distribution.
Beta Distribution	Generates node features based on a beta distribution.
Weibull Distribution	Generates node features based on a Weibull distribution.
Laplace Distribution	Generates node features based on a Laplace distribution.
Logistic Distribution	Generates node features based on a logistic distribution.
Rayleigh Distribution	Generates node features based on a Rayleigh distribution.
Pareto Distribution	Generates node features based on a Pareto distribution.
Cauchy Distribution	Generates node features based on a Cauchy distribution.
Negative Binomial Distribution	Generates node features based on a negative binomial distribution.
Gumbel Distribution	Generates node features based on a Gumbel distribution.
Gompertz Distribution	Generates node features based on a Gompertz distribution.
Arithmetic Sequence	Generates node features based on an arithmetic sequence with a specified step size.
Geometric Sequence	Generates node features based on a geometric sequence.
Fibonacci Sequence	Generates node features based on the Fibonacci sequence.
Square Sequence	Generates node features based on a sequence of square numbers.
Cube Sequence	Generates node features based on a sequence of cube numbers.
Prime Sequence	Generates node features based on a sequence of prime numbers.
Triangular Sequence	Generates node features based on a triangular number sequence.
Rectangular Sequence	Generates node features based on a rectangular number sequence.
Binomial Coefficient Sequence	Generates node features based on a binomial coefficient sequence.
Hamiltonian Sequence	Generates node features based on a Hamiltonian sequence.

1339
1340 methods is closer to each other, with DIR and GIN showing poorer results, failing to significantly improve
1341 the model accuracy.1342 For the citation dataset, where confounders consist of nodes (Figure c), CaNet’s performance remains the
1343 most outstanding, with validation accuracy maintained at a high level, and the training process is relatively
1344 stable. In Figure d (where confounders consist of both nodes and edges), CaNet still achieves good results,
1345 with validation accuracy showing a steady upward trend. Other methods, such as GCN and ChebNet, show
1346 slightly worse performance, with validation accuracy fluctuating significantly.1347 In summary, causal graph representation learning demonstrates an advantage over general methods throughout
1348 the training process. Additionally, we observe that some methods may experience performance degra-
1349 dation as training progresses when confounder interference is present.
13501351 E.3 EXPERIMENTAL RESULTS ACROSS DIFFERENT CONFOUNDER TYPES.
13521353 We also analyzed the effects of different types of graph elements acting as confounders within Figure 12, 13
1354 and 14. The results are shown in the figures. From the overall trend, it can be observed that the test accuracy
1355 fluctuates across different methods as the type of graph element changes.
13561357 When dealing with different graph structures, such as “Star,” “Path,” and “Fan,” it is evident that the accuracy
1358 of the models varies depending on the confounder type. For example, in certain graph element scenarios,
1359 the accuracy fluctuates to varying degrees, while in others, it gradually stabilizes as training progresses,
1360 indicating that these methods exhibit different adaptability to confounders.1361 For molecular structure datasets, such as “Benzene Ring,” “Methane,” and “Ethane,” the impact of different
1362 confounder types on model performance is also noticeable. In some structures, the interference of con-

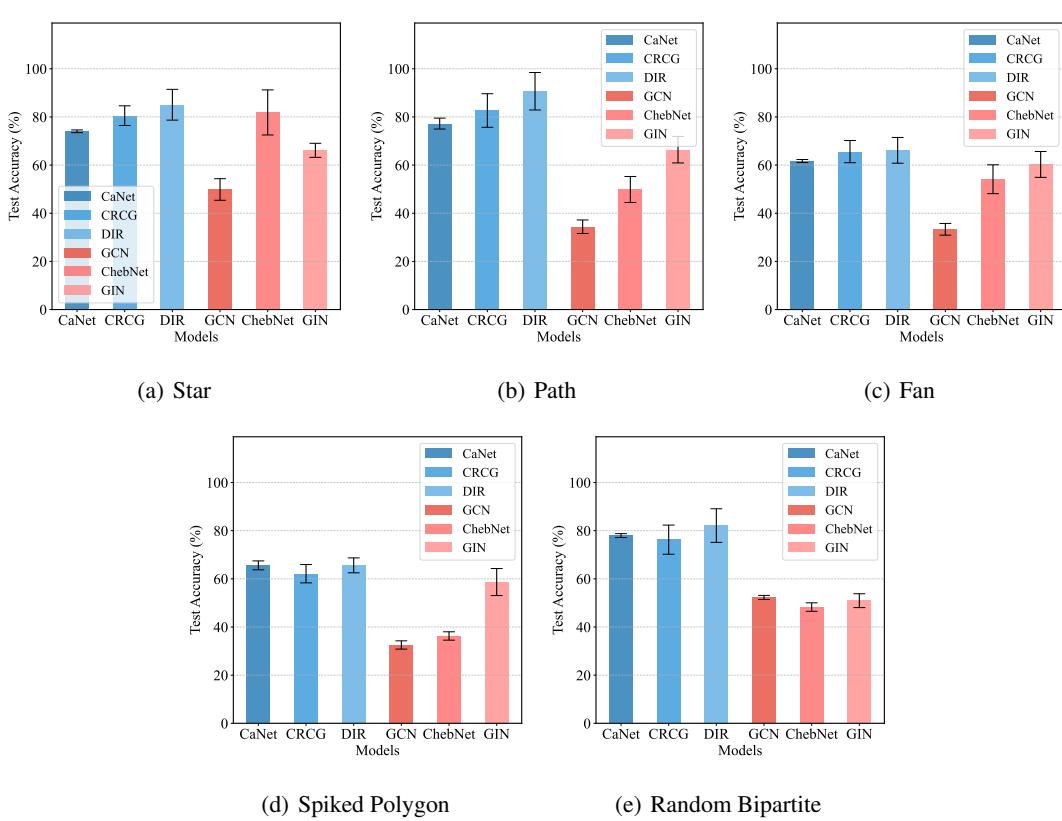


Figure 12: Motif Confounders

founders appears to complicate the training process and affects the final test accuracy, while in other cases, the confounder's interference does not result in a significant accuracy drop.

In the citation dataset, such as “Basic Element,” “Citation Element,” and “Topic Element,” the test accuracy shows more complex trends as the confounder type changes. In certain graph element scenarios, the models exhibit higher volatility when processing specific elements, indicating greater sensitivity to confounders in these contexts.

In conclusion, as the confounder type changes, the test accuracy of the models is influenced by varying degrees, and different types of graph elements exhibit different impact patterns. This suggests that the performance of methods in handling confounders is closely related to the type and complexity of the confounder, as well as the specific structure of the data.

F DETAILS OF EXPERIMENTS

F.1 REC SETTINGS

This module's key hyperparameters include: $\lambda_{\text{init}} = 1.0$, which controls the initial filtering strength; $\epsilon = 0.01$, which implements progressive decay during the training process; $\lambda_{\text{min}} = 0.2$.

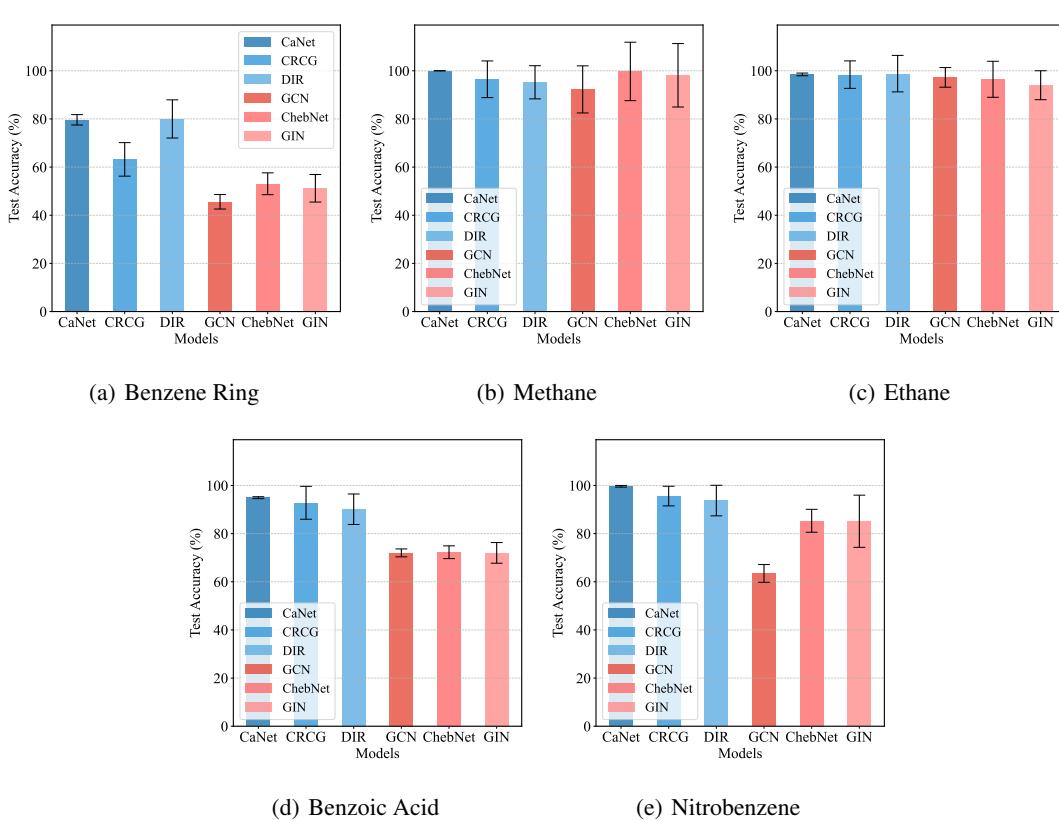


Figure 13: Molecular Structure Confounders

1440 F.2 BASELINES AND SETTINGS

1441 **GCN.** We adopt a two-layer Graph Convolutional Network (GCN) architecture for representation learning.
1442 The hidden dimension is set to 64, and each layer performs neighborhood aggregation based on the graph
1443 structure, trained using a learning rate of 0.01, a weight decay of 5×10^{-4} , a batch size of 32, and for 50
1444 training epochs
1445

1446 **GIN.** This baseline is a graph neural network architecture designed to achieve strong expressive power in
1447 distinguishing graph structures. It is based on a message-passing mechanism, where node representations
1448 are iteratively updated through neighborhood aggregation. In our configuration, GIN employs a hidden
1449 dimension of 64, with two network layers. The model is also trained using the setting as GCN.
1450

1451 **ChebNet.** This baseline performs graph convolution through Chebyshev polynomial approximation of the
1452 graph Laplacian. In our baseline, we adopt a two-layer architecture with polynomial order 2 and a hidden
1453 dimension of 64. The model is trained for 10,000 epochs with a learning rate of 0.01 and a dropout rate of
1454 0.5. By leveraging higher-order polynomial filters on either the symmetrically normalized or the random-
1455 walk normalized Laplacian, ChebNet enables effective aggregation of neighborhood information. Each layer
1456 is followed by nonlinear activation and dropout, which enhance the expressiveness of node representations.
1457

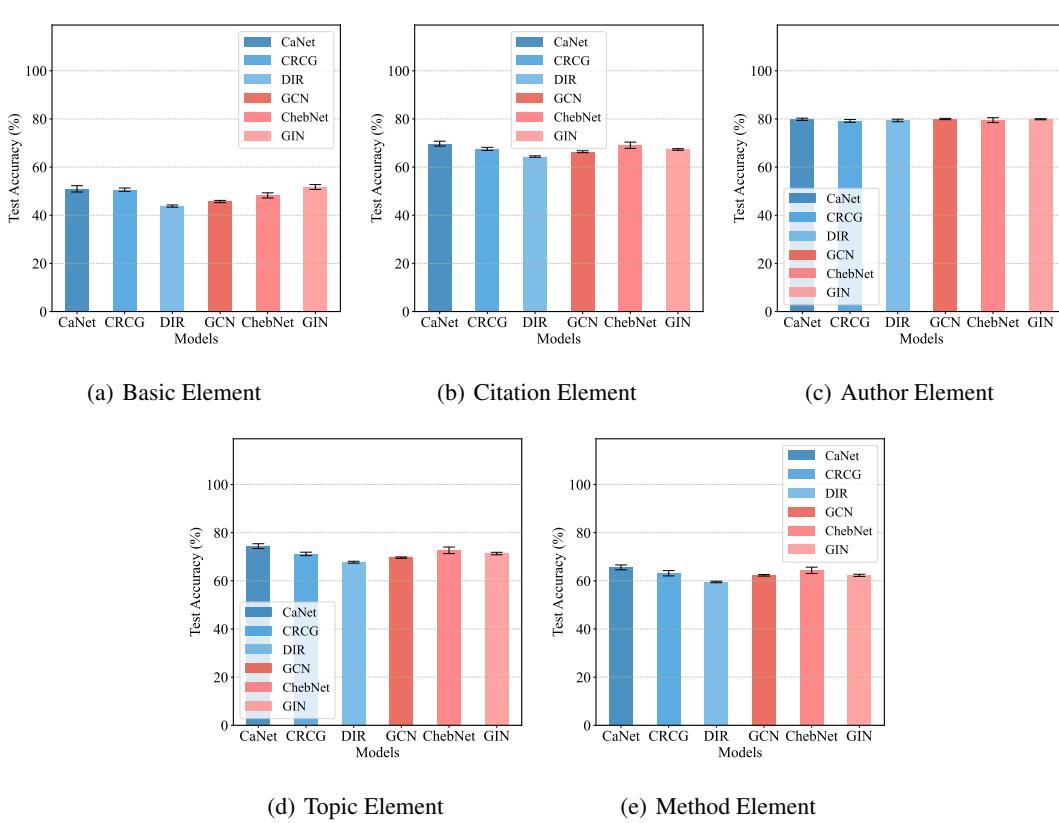


Figure 14: Citation Confounders

DIR. This baseline is designed to capture causal structures within graphs. The model is configured with a hidden dimension of 128, a causal ratio of 0.7, a learning rate of 0.001, a batch size of 128, and is trained for 50 epochs. It estimates edge importance scores through convolutional encoding and a multilayer perceptron, and then separates subgraphs based on the causal ratio. The architecture incorporates three predictive branches, focusing on causal, confounding, and combined predictions. Training follows a dual-loss strategy with masking mechanisms, which emphasize causal signals while mitigating the influence of confounders.

CRCG. This baseline integrates causal representation learning into graph neural networks. With a hidden dimension of 32, a causal ratio of 0.25, a learning rate of 0.001, a batch size of 64, and 50 training epochs, this baseline jointly models causal and confounding structures. Edge importance is estimated by combining an encoder with a scoring mechanism, and graphs are split into causal and confounding subgraphs before being relabeled for consistency. The predictive module contains distinct branches for causal and confounding signals. Training employs a dual-loss scheme, and model performance is evaluated with multiple metrics, including accuracy, precision, and mean reciprocal rank.

CaNet. This baseline introduces a causal attention mechanism for robust graph learning. It is evaluated on the Citeseer dataset with a two-layer architecture, a hidden dimension of 64, three environments, a learning rate of 0.01, weight decay of 5×10^{-4} , and 40 training epochs. To ensure stability, experiments are repeated

1504 three times. CaNet leverages Gumbel-Softmax to learn environment distributions and adopts a two-stage
 1505 forward process, where the model outputs both predictions and regularization losses during training. A
 1506 feature filtering module is applied at the input stage to suppress noisy or irrelevant features, and graph-
 1507 level pooling is used for aggregation. This design strengthens the generalization ability of the model across
 1508 different environments.

1509

1510 F.3 DATASETS

1511

1512 **RWG-Molecular.** Each generated dataset contains 1900 graphs, among which 1500 graph samples are
 1513 used as training samples, 200 samples as validation samples, and 200 samples as test samples. The number
 1514 of nodes ranges from 50 to 80, the number of edges ranges from 60 to 120, the node feature dimension is 5,
 1515 and there are 5 classes. In the experiment of Figure 3, the dataset is artificially synthesized molecular data,
 1516 with a confounding ratio of 90% and an intervention probability of 100%. In the experiment of Figure 4,
 1517 the dataset is artificially synthesized molecular data, with the confounding ratio ranging from 10% to 90%.
 1518 In the experiment of Figure 5, the dataset is artificially synthesized molecular data with either a single large
 1519 molecule block (index = 1, size = 50, branched = 10) or multiple small molecule blocks (indices = 1–10, size
 1520 = 5, branches = 5), and a confounding ratio of 70% is applied. In the experiment of Figure 6, the training set
 1521 of the dataset has a confounding ratio of 0%, while the validation and test sets have a confounding ratio of
 1522 70%. In the experiment of Table 2, the dataset is artificially synthesized molecular data, with a confounding
 1523 ratio of 70%.

1524 **RWG-Citation.** Each generated dataset contains 1900 graphs, among which 1500 graph samples are used
 1525 for training, 200 samples for validation, and 200 samples for testing. The number of nodes ranges from
 1526 15 to 25, the number of edges ranges from 20 to 60, the node feature dimension is 5, and there are 5
 1527 classes. In the experiment of Figure 3, the dataset is artificially synthesized citation network data, with a
 1528 confounding ratio of 90% and an intervention probability of 100%. In the experiment of Figure 4, the dataset
 1529 is artificially synthesized citation network data, with the confounding ratio ranging from 10% to 90%. In
 1530 the experiment of Figure 5, the dataset is artificially synthesized citation network data, incorporating mixed
 1531 node information and complex structures (e.g., node relations), with a confounding ratio of 70%. In the
 1532 experiment of Figure 6, the training set of the dataset is applied with a confounding ratio of 0%, while the
 1533 validation and test sets are applied with a confounding ratio of 70%. In the experiment of Table 2, the dataset
 1534 is artificially synthesized citation network data, with a confounding ratio of 70%.

1535 **SPMotif.** In each generated dataset, there are 1900 graphs in total, with 1500 graphs used as training
 1536 samples, 200 graphs as validation samples, and 200 graphs as test samples. The number of nodes ranges
 1537 from 20 to 40, the number of edges ranges from 30 to 50, the node feature dimension is 5, and there are 5
 1538 classes. In the experiments of Figure 3, the dataset consists of synthetically generated primitive data, with
 1539 a confounding ratio of 90% and an intervention probability of 100%. In the experiments of Figure 4, the
 1540 dataset consists of synthetically generated primitive data, with the confounding ratio ranging from 10% to
 1541 90%. In the experiments of Figure 6, the training set of the dataset is generated with a confounding ratio of
 1542 0, while the validation and test sets are generated with a confounding ratio of 70%. In the experiments of
 1543 Table 2, the dataset consists of synthetically generated primitive data, with a confounding ratio of 70%.

1544 **CRCG.** This dataset is a synthetic graph classification dataset. Following the official setting, our generated
 1545 data comprises 4,000 graphs in total, with 1,000 for training, 1,000 for validation, and 2,000 for testing. The
 1546 dataset contains five classes, and the confounder ratio is set to 70%.

1547 **CiteSeer.** This dataset is a citation network dataset consisting of 3,312 nodes, each with a 3,703-
 1548 dimensional feature vector, and 4,723 edges. The dataset contains six classes.

1551 **ENZYMES.** This dataset is a graph dataset constructed from protein tertiary structures. It contains 600
1552 graphs with a total of 19,580 nodes and 174,564 edges. Each node has a 3-dimensional feature vector, and
1553 the dataset covers six classes.
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597