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Abstract

Large language models have limitations in
maintaining up-to-date knowledge and prevent-
ing hallucinations. To address these issues, re-
cent research has explored integrating external
knowledge sources into language models, with
Knowledge Graphs emerging as a particularly
promising approach since their structured and
factual nature. However, effectively incorpo-
rating knowledge graphs into language mod-
els remains challenging due to the modality
gap and the lack of query-aware knowledge
selection in existing knowledge-to-text meth-
ods. This paper proposes a Knowledge Graph
to Knowledge-Augmented Prompt (KG2P), a
framework that optimizes knowledge graph-to-
text transformation for language model prompt-
ing. KG2P introduces black-box optimiza-
tion to systematically learn effective knowledge
transformation and query-aware alignment to
enhance relevance. Unlike previous approaches
that rely on rigid linearization or static hu-
man annotations, KG2P dynamically adapts
knowledge augmentation to improve reasoning
in language models. Experimental results on
knowledge graph question-answering bench-
marks demonstrate that KG2P consistently out-
performs existing methods. The findings sug-
gest that task-specific optimization is essential
for effectively incorporating structured knowl-
edge into language models, providing a new
direction for knowledge-augmented prompting.

1 Introduction

Large language models (LLMs) have demonstrated
remarkable success in various natural language
processing (NLP) tasks by pretraining on massive
text corpora. However, they still suffer from sig-
nificant limitations, such as hallucinations, where
they generate factually incorrect information, and
a lack of up-to-date knowledge due to their static
training data. To address this issue, extensive re-
search has been conducted on methods, which en-
able LLMs to generate responses by referencing

external knowledge such as Retrieval-Augmented
Generation (RAG).

Typically, unstructured text data, such as web
documents, is retrieved and utilized, but such data
often contains redundant or conflicting information,
which may reduce reliability. In contrast, Knowl-
edge Graphs (KGs) provide systematically struc-
tured information, making them a more reliable
knowledge base. A KG stores information in the
form of triples (subject, relation, object), explicitly
representing relationships between entities. Due to
this structured nature, KGs serve as not just a data
repository but also a crucial knowledge source that
enhances the factual accuracy and reasoning ability
of LLMs.

Despite their advantages, integrating KGs with
LLMs presents a fundamental modality gap since
KGs store information in graph format, whereas
LLMs primarily process textual input. To bridge
this gap, researchers have explored KG-to-Text
transformation methods that convert structured
graph knowledge into textual representations (Li
et al., 2020; Agarwal et al., 2021; Moiseev et al.,
2022; Kim et al., 2025a). A common approach is
linearization, which involves converting KG triples
into triple-form text that LLMs can process. For
example, Baek et al. (2023a) proposed retrieving
relevant triples, linearizing them, and incorporating
them into prompts to improve question-answering
(QA) performance. However, Wu et al. (2023) crit-
icized this approach for relying on rigid triple-form
text rather than free-form text, which is more natu-
rally processed by LLMs. To address this issue, Wu
et al. (2023) introduced a rewriting step that trans-
forms structured triples into more fluid, human-like
text.

While these methods mitigate some aspects of
the modality gap, two key challenges persist. First,
it is still unclear how knowledge from KGs should
be optimally transformed into text to maximize the
effectiveness of LLMs. Since LLMs function as



black-box models, little is known about how KG-
based knowledge is internally processed when in-
serted into prompts. In particular, closed LLMs that
are provided solely as APIs without open-source
code function as complete black boxes. Second,
existing KG-to-Text transformation methods do not
account for query dependency. The relevance of
KG-derived information varies depending on the
query, but prior approaches perform textualization
independently of the query context. Recent stud-
ies (Yasunaga et al., 2021; Kim et al., 2025b) have
demonstrated that query-dependent graph represen-
tations improve downstream performance, suggest-
ing that KG-to-Text transformation should also be
query-aware.

To address these challenges, we propose
Knowledge Graph to Knowledge-Augmented
Prompt (KG2P), a novel KG-to-Text transforma-
tion framework designed to enhance downstream
task performance of LLMs. KG2P introduces two
major innovations. First, it applies black-box op-
timization to refine structured graph knowledge
transformation for LLMs. Second, KG2P incor-
porates query dependency into the transformation
process, ensuring that only the most relevant KG
information is retained when constructing prompts.

We evaluate KG2P on the Knowledge Graph
Question Answering (KGQA) task and demon-
strate that it outperforms conventional KG-to-Text
methods in QA performance. Moreover, our experi-
ments reveal that traditional KG-to-Text techniques,
despite being widely adopted in general knowledge
conversion tasks, perform suboptimally when used
for LLM prompt construction in KGQA. To em-
pirically verify the robustness of our approach, we
conduct model cross-experiments, where its effec-
tiveness is tested with different LLM.

2 Related Works

2.1 Knowledge Graph-to-Text

KG-to-Text involves transforming structured triples
into free-form text. For example, given a set of
triple such as “(Parasite, director, Bong Joon-Ho),
(Parasite, Genre, Thriller Film), (Bong Joon-Ho,
educated at, Yonsei University)”, a KG-to-Text
model converts them into “Parasite, a film directed
by Bong Joon-Ho who was educated at Yonsei Uni-
versity, is a thriller film”.

This task is often approached similarly to ma-
chine translation using sequence-to-sequence man-
ners (Li et al., 2020; Sutskever, 2014). Agarwal

et al. (2021) employed a sequence-to-sequence
model, specifically fine-tuning the T5 model (Raf-
fel et al., 2020), to convert KGs into natural text.
Similarly, Ribeiro et al. (2021) transformed graph-
based data into fluent text using BART and T5
(Lewis et al., 2019; Raffel et al., 2020). These stud-
ies showed that these pre-trained language models
achieve superior results across various graph do-
mains, demonstrating the effectiveness of sequence-
to-sequence architectures in graph-to-text genera-
tion tasks. Despite the advancements in KG-to-Text
methods, their reliance on human-labeled data is
not optimized for a downstream task.

2.2 Knowledge Graph Question Answering
and Knowledge-Augmented Prompting

The objective of KGQA tasks is to respond to nat-
ural language queries based on facts over KGs
(Chakraborty et al., 2019; Fu et al., 2020). Earlier
approaches have employed neural semantic pars-
ing methods that leverage deep learning techniques
to map natural language questions into structured
queries that can be executed against a KG. These
methods typically rely on end-to-end training of
neural networks that jointly learn representations
of both questions and KGs (Yih et al., 2015; Luo
et al., 2018). However, these methods have limita-
tions which are difficult to generalize across diverse
domain-specific KGs.

Another approach is an information retrieval-
based method known as Retrieval-Augmented
Graph QA. This approach retrieves relevant infor-
mation from KGs based on a query and then an-
swers the question using this information. Early
methods addressed the multiple-choice QA task by
training a neural classifier to utilize retrieved KG
information (Sun et al., 2018; Saxena et al., 2020).

Recently, there has been a focus shifted toward
employing LLMs for both multiple-choice and
general QA tasks (Baek et al., 2023a; Wu et al.,
2023). In order for LLMs to utilize the information
in KGs, it is necessary to transform the informa-
tion in the KG into text form. To address these
issues Baek et al. (2023a) proposed knowledge-
augmented prompting, an approach that incorpo-
rates retrieved triples from KGs directly into the
prompts in a linearized format. However, this tech-
nique sometimes leads to responses that may lack
natural linguistic coherence and be difficult for
LLMs to process as shown in Figure 1(b). Wu
et al. (2023) introduced a refinement by adding a
step to rewrite these triples into a natural language
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Figure 1: Different Methods for KG-to-Text Conversion for QA Tasks. The Linearization and KG-to-Text Model
convert a KG into text independently of the question and are not optimized for knowledge-augmented prompting. In
contrast, our proposed KG-to-Knowledge Augmented Prompt Model transforms KG into text while considering
query contexts and is optimized for knowledge-augmented prompting.

sentence without any further training. This leads to
enhanced KGQA performance as shown in Figure
1(c). Despite these advancements, these methods
were not specifically optimized for KG-to-Text for
a downstream task. Additionally, they failed to
consider the context of questions when converting
KG-to-Text.

2.3 Alignment Tuning

Ouyang et al. (2022) introduced a methodology
to use reinforcement learning to align LLMs with
human preference. Analogous to a black-box prob-
lem, the internal structure and formulaic representa-
tion of human preferences remains unknown. Fur-
thermore, the non-differentiable nature of these
preferences precludes traditional back-propagation
for training LLMs. To overcome this challenge,
Ouyang et al. (2022) developed a model to predict
human preferences from survey data, utilizing these
predictions as the foundation for a reward function
in reinforcement learning known as Reinforcement
Learning with Human Feedback (RLHF). Addition-
ally, Rafailov et al. (2024) showed that the method
for training LL.Ms aligns with human preferences
by using paired positive and negative response data,
without relying on reward models, known as Direct
Preference Optimization (DPO).

3 Methodology

A problem that optimizes KG-to-Text for QA is a
derivative-free and black-box optimization problem
analogous to human preferences. This occurs be-
cause the manner in which LLM processes prompts
is difficult to model mathematically, similar to hu-
man preferences, and the argmax operation and

instruction prompt templates make differentiation
impossible. Inspired by Rafailov et al. (2024), we
propose a novel optimization method that uses pos-
itive and negative data pairs as language model
preference guides and alignment tuning objective
functions. We aim to improve the QA performance
of LLMs, maintaining a pre-trained state as a black
box without further training, to optimize its input
prompts.

3.1 Problem Definition and Approach

In this study, we address the problem of KGQA.
KGQA involves generating an answer to a given
question ¢, based on a set of related triples
{T{, -+, T} from KG. In this process, the given
set of triples is transformed into a free-form text
P which, along with ¢, is used as a prompt for the
Solver LLLM to generate the answer. The Solver
LLM is not trained, but another LLM, KG2Py, is
trained to convert {7;%,--- , 75/} into P.

Formally, question ¢ and given related triples
{7, -+, T:} are passed into a KG2P template!
Tp : (¢,{T%,--- ,T#}) — xp. This instruction
x p is transformed into P by KG2Py. Here, 6 repre-
sents the trainable parameters of the KG2Py. Dur-
ing this process, KG2Py incorporates the context
of the query and generates knowledge-augmented
prompt P.

P = KG2Py(zp) (1)

The question ¢ and the knowledge-augmented
prompt P are passed through a QA template” Toa :
(g, P) — xqa. The Solver LLM takes xqa as input

"Details about the prompt are found in the Appendix A
1t is also found in the Appendix A



and generates a predicted answer y. Our work
focuses on training 6 to ensure that § matches the
correct answer y.

7 = Solver(zqa) 2)

We consider scenarios where the Solver LLM
cannot be directly trained due to restricted access to
its parameters or the prohibitively high cost of train-
ing. Therefore, the Solver LLM remains in its pre-
trained state without undergoing further training.
Thus, our objective is to train KG2Py to provide
optimized knowledge-augmented prompts that help
the Solver LLM generate correct answers, thereby
enhancing QA performance.

3.2 Knowledge Graph to
Knowledge-Augmented Prompt

We now present the details of our method,
Knowledge Graph to Knowledge-Augmented
Prompt (KG2P), a novel KG-to-Text strategy to
help solve question-answering.

Our proposed method is divided into two phases.
Figure 2 illustrates the overview of KG2P.

* Exploration (First Phase) Generating vari-
ous synthetic knowledge-augmented prompt
samples and automatically labeling them as
positive or negative.

» Exploitation (Second Phase) DPO training
the KG2P using the labeled prompt samples.

In the first phase, we generate automatically la-
beled data for KG2Py training. We adopt the DPO
training strategy (Rafailov et al., 2024). In rein-
forcement learning, random actions are simulated
across various situations, and the action search
space is explored during training. DPO approx-
imates this process by training on data consisting
of positive and negative actions in the same context.

For DPO training, it is necessary to generate
various knowledge-augmented prompts for the
given triple set with the question and label each
knowledge-augmented prompt as either good or
bad. Here, we define a ‘good’ (positive) prompt
as one that enables the Solver LLLM to generate
the correct answer to the given question, while
a prompt that fails to do so is labeled as a ‘bad’
(negative) prompt. Based on this definition, we
performed automatic labeling.

Formally, by applying nuclear sampling (Holtz-
man et al., 2019) to KG2Py, we generate a prompt

set (P = {P1,---, Pjp}) of given triple set with
question q. For each P;, the Solver LLM predicts
y; corresponding Tqa (g, P;). If g; matches correct
answer ¥, then P; is labeled as a positive prompt;
else P; becomes a negative prompt of question q.
The KG2Py produces five knowledge-augmented
prompts with he nucleus sampling threshold 0.9.

In the second phase, KG2Py is trained using
DPO to generate optimized knowledge-augmented
prompts. This process consists of two key steps:
(1) Supervised Fine-Tuning (SFT) and (2) DPO
Training.

First, in the SFT step, KG2Py is pre-trained
using only the positive prompts that were auto-
matically labeled in the exploration phase. The
goal of this step is to initialize KG2Py so that it
can generate high-quality prompts that assist the
Solver LLM in accurately predicting the correct
answers. KG2Py is an autoregressive language
model that is trained to minimize cross-entropy
loss. The training dataset consists only of the posi-
tive prompts—those that led to correct answers dur-
ing the exploration phase. After this process, the
fine-tuned model is denoted as KG2Psgr,, which
serves as the reference model in the subsequent
DPO training step.

Next, in the DPO Training step, KG2Psgt, un-
dergoes further optimization to refine its ability
to generate effective prompts. DPO increases the
likelihood of generating positive prompts while
decreasing the likelihood of generating negative
ones. This approach is based on preference learn-
ing, where KG2Pspr, is guided by the differences
between positive and negative prompts. The loss
function for DPO training is formulated as eq 3.

This loss function encourages KG2Pppo, to as-
sign higher probabilities to positive prompts com-
pared to the reference model KG2Psr,, while si-
multaneously lowering the probabilities of gener-
ating negative prompts. The training process fol-
lows these steps: (1) collect positive and negative
prompts from the exploration phase, (2) initialize
KG2Pppo, with the same weights as KG2Pspr,,
and (3) fine-tune KG2Pppo, by minimizing the
DPO loss function.

4 Experiments

4.1 Experiments Setup

We used Wiki5SM (Wang et al., 2021) as a knowl-
edge base, which is a subset of Wikidata (Vran-
deci¢ and Krotzsch, 2014). This dataset consists of
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approximately 20 million triple sets, created from
a combination of about 5 million entities and 1,000
relations. For KGQA datasets, we utilized the Sim-
ple Questions (SimQ) (Diefenbach et al., 2017),
WebQSP-WD (WebQSP) (Sorokin and Gurevych,
2018), and Mintaka (Sen et al., 2022), where the
answers to questions are entities within Wikidata.
In our experiments, we focused only on questions
with answer entities within WikiSM. We utilized a
text embedding-based retrieval system to identify
triples relevant to the given questions, following
the approach of Baek et al. (2023a).

Instruction-tuned LLMs are based on trans-
former (Vaswani et al., 2017) architecture and have
shown impressive general natural language perfor-
mance in responding to various queries. We uti-
lized two instruction-tuned LLMs, LLaMa2? (Tou-
vron et al., 2023) and Mistral* (Jiang et al., 2023),
as both KG2P and Solver LLM. Implementation
details are specified in the Appendix B.

For evaluation metrics, we measured (macro-

3h’ctps://hugging1°ace.co/meta—llama/
Llama-2-7b-chat-hf

4https ://huggingface.co/mistralai/
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averaged) F1 score and Exact Match score (EM)
for QA task (Rajpurkar et al., 2016). F1 score com-
putes the harmonic mean of precision and recall
between the predicted answer and label, while the
EM score calculates the percentage of predictions
that match any one of the ground truth answers
exactly.

Additionally, we reported the Bilingual Evalu-
ation Understudy (BLEU) score (Papineni et al.,
2002). The BLEU score evaluates the quality of
machine-translated text by measuring the n-gram
similarity between the translated text and reference
translations. As aforementioned, a traditional KG-
to-Text task is similar to a machine translation task.
So we measure the BLEU score to explore the rela-
tionship between QA performance and traditional
KG-to-Text performance. For this process, we used
WebNLG test dataset (Li et al., 2020).

4.2 Overall QA Performance

In our initial experiment, we designed multiple
baseline by varying the KG-to-Text methods. We
compared five distinct settings:

¢ Without KG Information (Without KG):
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In this setting, no related triple set is used
alongside the question as shown in Figurel(a).

* Linearization (Linearization): A prompt
is generated by the linearization process de-
scribed in Baek et al. (2023a) as shown in
Figurel(b).

* Pre-trained LLM (Frozen): A pre-trained
LLM produces knowledge-augmented
prompts without any additional training. In
this baseline, triples are transformed into a
free-form text. This method employs the
rewrite step similar to Wu et al. (2023). Wu
et al. (2023) did not consider query context in
the KG-to-Text conversion.

* KG-to-Text Model (KG2T): This setting em-
ploys an LLM trained specifically for the KG-
to-Text task using the dataset from Li et al.
(2020)° as shown in Figurel(c). Although
the KG-to-Text Model is optimized to repli-
cate human-labeled data, it is not tailored for
knowledge-augmented prompting which aims
to improve QA accuracy.

* Knowledge Graph to Knowledge-
Augmented Prompt Model (KG2P-SFT,
KG2P-DPO): This setting employs our
method, which trains the prompts to produce
more informative as shown in Figurel(d).
We evaluated two versions: the SFT version,
referred to as KG2P-SFT (KG2PsFr,), and
the version trained using the DPO approach,
referred to as KG2P-DPO (KG2Pppo,,).

Table 1 shows the overall results. And Detailed
examples are in Appendix C.

The impact of KG Information Providing KG
information generally enhanced QA task perfor-
mance compared to scenarios without it. However,
in the case of WebQSP and Mintaka, providing
KG information occasionally resulted in perfor-
mance declines. Notably, KG2P-DPO consistently
outperformed across all cases when prompts were
provided. This suggests that inappropriate forms of
KG information can hinder performance, whereas
our method effectively provides beneficial forms.

Triple Form vs Free Form Text Knowledge-
augmented prompt using LLMs to produce free-
form text is generally expected to outperform sim-

5h'ctps ://gitlab.com/shimorina/webnlg-dataset/
-/tree/master/release_v3.0/en

Table 1: Comparison of KGQA Performance. The
table shows QA performance metrics (F1, EM) based
on the prompt methods. BOLD indicates the highest
score for each dataset regarding the Solver LLM.

Easy Complex
Solver LLM Prompting Method SimQ WebQSP Mintaka
F1 EM F1 EM F1 EM
Without KG 2056 9.82 47.80 2622 35.11 29.20
Linearization 39.57 2895 47.17 30.81 29.19 22.88
Frozen 3626 24.63 49.11 3180 3928 3322
LLaMa2 KG2T 36.42 2477 4393 2732 2541 19.26
LLaMa?2 KG2P-SFT 3543 2449 51.15 3320 40.84 34.85
KG2P-DPO 4121 30.72 57.51 39.58 46.19 39.88
Frozen 36.99 2625 4588 30.81 2580 19.65
Mistral KG2T 37.07 2550 4391 28.02 2573 20.20
KG2P-SFT 37.40 2631 5141 33.10 2832 2251
KG2P-DPO  41.31 30.84 56.51 3928 34.62 26.19
Without KG 2231 1240 5029 31.51 3553 29.60
Linearization 38.06 27.96 4397 2851 28.17 22.83
Frozen 37.02 2573 4740 2931 30.61 24.14
KG2T 36.58 2556 40.10 22.63 25.87 19.34
LLaMa2

KG2P-SFT 3620 2552 49.73 31.01 32.89 26.69
KG2P-DPO 42.36 3232 57.52 37.59 38.76 32.93
Frozen 3477 25.60 41.96 2632 2548 18.68
KG2T 36.82 2635 3877 23.53 2529 18.89
KG2P-SFT 3341 2390 4323 2622 2790 21.60
KG2P-DPO  42.05 32.60 49.39 3190 37.22 30.41

Mistral

Mistral

Table 2: Pearson correlation between KG-to-Text per-
formance (BLEU) and QA performance (EM) across
different prompting methods. The low or negative cor-
relation values indicate little to no relationship between
KG-to-Text and QA performance, suggesting that im-
provements in one do not necessarily result in improve-
ments in the other.

. SimQ ‘WebQSP Mintaka
Solver LLM Prompting Method EM BLEU EM BLEU EM BLEU
Linearization 2895 412 3081 412 2288 412
Frozen 24.63 1038 31.80 1038 3322 10.38
LLaMa2 KG2T 2477 3926 2732 3926 19.26 39.26
KG2P-SFT 2449 929 3320 5.89 3485 9.67
LLaMa2 KG2P-DPO  30.72 671 3958 2.74 39.88  6.53
Frozen 2625 477 3081 477 19.65 477
Mistral KG2T 2550 3945 28.02 3945 2020 3945
KG2P-SFT 2631 1497 33.10 11.33 2251 559
KG2P-DPO 30.84 639 2928 4.69 26.19 6.08
Linearization 2796 412 2851 412 2283 412
Frozen 2573 1038 29.31 10.38 24.14 1038
LLaMa2 KG2T 25.56 3926 2263 39.26 19.34 39.26
KG2P-SFT 2552 9.14 31.01 9.14 2669 781
Mistral KG2P-DPO 3232 1022 3759 328 3293 5.19
Frozen 25.60 477 2632 477 18.68 477
Mistral KG2T 2635 3945 2353 3945 18.89 3945
KG2P-SFT 2390 596 2622 7.28 21.60 573
KG2P-DPO  32.60 6.83 3190 3.88 3041 4.55
Pearson Correlation -0.33 -0.62 -0.44

ple rule-based linearization, which generates triple-
form text. However, the results indicate that this
was not always the case. In certain instances
with SimQ, WebQSP, and Mintaka, linearization
demonstrated better performance compared to free-
form text. This supports the findings of Baek
et al. (2023a), which suggest that linearization
is a simple yet effective method for knowledge-
augmented prompting. Nevertheless, KG2P-DPO
consistently generated superior prompts compared
to linearization, indicating that our method effec-
tively optimizes knowledge-augmented prompting
for KGQA.

Impact of DPO Training The Frozen method
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considers the query context when converting KG-
to-Text. The primary difference lies in whether
training is conducted using KG2P-SFT or KG2P-
DPO. The performance of KG2P-SFT is not always
superior to that of Frozen. However, the perfor-
mance of KG2P-DPO consistently surpasses that
of Frozen. When comparing the two specific strate-
gies of KG2P, the DPO training method demon-
strated better results than the SFT training method.

KG2T vs KG2P The Traditional KG-to-Text
method involves converting a set of triples from a
KG into natural language text, by training human-
translated data. This method is expected to enhance
readability, thus helping LLMs process KG infor-
mation more effectively. However, whether the
form of human labels is optimal for LLM process-
ing remains uncertain. To investigate this, we mea-
sured the KG-to-Text performance on WebNLG
test data Li et al. (2020) according to different
prompt methods. Table 2 shows the results.

The KG2T, which is directly trained from
human-translated labels, exhibited significantly
higher BLEU scores compared to other prompt-
ing methods. However, KG2T generally underper-
forms in QA tasks compared to Linearization. This
suggests that converting KG-to-Text by mimick-
ing human-translated labels does not help LLMs
process information effectively.

Furthermore, although KG2P-DPO achieves su-
perior QA performance, its lower BLEU scores
underscore the weak or negative correlation be-
tween KG-to-Text generation and QA performance
as demonstrated by the Pearson correlation val-
ues in Table 2. This lack of correlation highlights
that training for QA objectives and traditional KG-
to-Text objectives are largely independent. Our
findings suggest that optimizing for task-specific
KG-to-Text methods, rather than strictly imitating
human labels, offers a more promising approach for
improving downstream task performance in LLMs.

4.3 Abliation Study of Query Context and
Training for Knowledege Augmented
Prompting

The two primary factors of our proposed method
are 1) training aimed at optimizing knowledge-
augmented prompting and 2) the conversion that
takes into account the context of the query. We
conducted additional experiments to analyze the
impact on performance and their interaction. To
assess the impact of these factors, we compared the
performance of Frozen and KG2P-DPO as used in

Table 3: Performance Comparison With and With-
out Query Context and KG2P Training. ‘w/o Q’
means prompt method without considering query con-
text. Frozen refers to the LLM in the pre-trained state
without KG2P training. By comparing w/o Q and oth-
ers, we show how query context affects the quality of
prompts. Additionally, compare Frozen and KG2P to
see the impact of our proposed training method.

Easy Complex
Prompting Method SimQ WebQSP Mintaka
Fl1 EM Fl1 EM F1 EM

Frozenw/o Q 27.05 1526 4219 21.14 3626 26.53
Frozen 36.26 24.63 49.11 31.80 39.28 33.22
KG2Pw/oQ 37.09 26.05 4832 30.81 3940 32.17
KG2P-DPO 4121 30.72 57.51 39.58 46.19 39.88
Frozen w/o Q 3526 24.53 4546 2921 2838 2270
Frozen 36.99 2625 4588 3081 2580 19.65
KG2Pw/oQ 2436 13.80 3422 3420 3422 28.84
KG2P-DPO  41.31 30.84 56.51 39.28 34.62 26.19
Frozenw/o Q 30.45 19.68 45.14 2722 31.00 23.75
Frozen 37.02 2573 4740 2931 30.61 24.14
KG2Pw/oQ 1835 9.49 4511 2792 3097 26.08
KG2P-DPO 4236 3232 57.52 37.59 3876 3293
Frozenw/o Q 3340 2390 4235 2602 2854 2288
Frozen 3477 2560 4196 2632 2548 18.68
KG2Pw/oQ 3837 2846 45.17 27.82 29.81 2443
KG2P-DPO  42.05 32.60 49.39 3190 37.22 3041

Solver LLM

LLaMa2

LLaMa2

Mistral

LLaMa2

Mistral

Mistral

Table 4: Analysis for Impact of Proposed Factors. It
shows the average EM scores for each case in Table 3.
To measure the effect of query context and KG2P train-
ing, we calculated the ratio by dividing the results with
each factor by the results without. We also compared
the performance of KG2P-DPO and the performance of
Frozen w/o Q to evaluate the collaborative results of the
two factors.

without KG2P Train ~ with KG2P Train | AKG2P Training
without Query Context 23.57 25.84 2.27 (10%)
with Query Context 26.35 33.69 7.34 (28%)
AQuery Context 2.78 (12%) 7.85 (30%) 10.12 (43%)

the §4.2 and along with additional baselines. The
details are below:

* Pre-trained LLM without Query Context
(Frozen w/o Q) As with the Frozen LLM in
§4.2, we converted KG-to-Text form using the
pre-trained LLM without additional training.
And, during the converting process, we did
not not consider query context.

* KG2P-DPO without Query Context (KG2P
w/o Q) As KG2P-DPO in §4.2, we converted
KG-to-Text from using our proposal method.
However, during the converting process, we
do not consider query context.

Table 3 presents the results of our ablation stud-
ies. Additionally, for quantitative analysis, Table
4 reports the average EM scores both when each
factor is considered and when it is not. When train-
ing for knowledge-augmented prompting was not
applied, incorporating the query context led to a



12% performance improvement, while the training
combined with query context reflection resulted in
a 30% improvement. This indicates that incorporat-
ing the query context is a significant positive factor
in prompt generation.

Moreover, the proposed training method resulted
in a 10% performance improvement without incor-
porating the query context, and a 28% improvement
when the query context was incorporated. Com-
pared to the case where neither factor was incor-
porated, incorporating both factors led to a 43%
performance improvement. This demonstrates that
our proposed training method effectively optimizes
prompt generation for QA tasks. Furthermore, it
shows that incorporating query context into the
learning process results in positive interactions.

4.4 Experiments of Robustness

Our methodology aims to improve the perfor-
mance of the Solver LLM on KGQA by generating
prompts. If the Solver LLM is replaced with a
different LLM, the optimization criteria change,
potentially leading to a decline in QA performance
and undermining the robustness of the proposed
method. We measured the impact on QA perfor-
mance when the Solver LLM was replaced with
an alternative LLM. To quantify this, we calculate
the ratio by dividing the swapped Solver LLM’s
performance by the same Solver LLM used in the
train.

The results are shown in Table 5. When the
Solver LLM was changed from LLaMa?2 to Mistral,
there was no significant performance change for
SimQ and Mintaka. However, for WebQSP, this
change resulted in a 16% performance decline. The
overall range of the Ratio was from 0.84 to 1.04,
indicating a slight performance drop as expected.
When the Solver LLM was switched from Mistral
to LLaMa2, performance varied from a maximum
9% decline to a maximum 14% improvement.

Despite some performance drops in both scenar-
ios, our methodology still outperformed other base-
lines. Even with instances of performance decline,
our approach consistently demonstrated superior
performance compared to other baselines. The re-
sults show that our method is robust even when the
solver LLM is substituted.

5 Conclusion

In this study, we propose the Knowledge Graph
to Knowledge-Augmented Prompt (KG2P) frame-

Table 5: Results of Robustness Experiments. It shows
the change in EM for each data when the Solver LLM is
swapped during testing. The ratio is calculated by divid-
ing the performance when the Solver LLM is swapped
by the performance when the Solver LLM remains the
same during training and testing.

Solver LLM KG2P-DPO (LLaMa2) KG2P-DPO (Mistral)
Train Test SimQ WebQSP Mintaka SimQ WebQSP Mintaka
LLaMa2 LLaMa2 | 30.72  39.58 39.88  30.84  39.28 26.19
LLaMa2 Mistral | 30.31 36.19 41.54 3193 33.00 26.97
Ratio 0.99 0.91 1.04 1.04 0.84 1.03
Mistral ~ Mistral | 32.32  37.59 3293 32,60  31.90 30.41
Mistral  LLaMa2 | 30.90  39.28 30.07 2982 3629 29.49
Ratio 0.96 1.04 0.91 0.91 1.14 0.97

work, which effectively integrates LLMs with KGs.
Existing KG-to-Text transformation methods are
not optimized for enabling LLMs to effectively
utilize KG information, as they perform indepen-
dent transformations without considering the query.
This often results in unnecessary information being
included or critical information being omitted. To
overcome these limitations, our study introduces
two key techniques.

First, we employ DPO to refine knowledge-
augmented prompts, automatically learning trans-
formations that maximize QA performance. As a
result, KG-to-Text transformation is not merely a
replication of human annotation but is fine-tuned to
enable LLMs to generate more accurate responses.
Second, we apply query-aware transformation, en-
suring that KG information is tailored to the given
query. This optimization allows LLMs to leverage
KG information more effectively in QA tasks.

Experiments conducted on KGQA benchmark
datasets demonstrate that KG2P consistently out-
performs existing KG-to-Text methods. No-
tably, KG2P generates query-relevant information
more effectively than simple triple linearization
or traditional KG-to-Text models, providing better
prompts for Solver LLMs to derive correct answers.
Furthermore, cross-model evaluation with different
LLMs, including LLaMa?2 and Mistral, confirmed
KG2P’s robustness and adaptability across various
LLM environments.

This study makes a contribution by introducing a
new paradigm for integrating LLLMs with structured
knowledge. While prior KG-to-Text approaches
rely on static, human-generated data, our proposed
framework directly optimizes LLM response per-
formance.



6 Limitations

Our approach transcends the boundaries of KGQA
and offers potential applicability to a range of
studies involving the integration of KG with LM.
Nonetheless, this investigation remains focused on
QA, leaving the exploration of its wider applicabil-
ity for future research.

It is generally observed that LM with more pa-
rameters tend to exhibit better QA performance.
Due to resource limitations, our study is unable to
explore a wide range of models. We employ mod-
els that have 7 billion parameters and enhance their
performance using LoRA and quantization tech-
niques. Future investigations into the performance
of more advanced LM may potentially yield even
better results.

Additionally, various alignment tuning tech-
niques such as Identity Preference Optimisation
(IPO) and Kahneman-Tversky Optimization (KTO)
could be applied to our study alongside DPO (Azar
et al., 2024; Ethayarajh et al., 2024). However, a
key limitation of our work is that we did not con-
duct experiments with different methods and only
evaluated DPO.
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A Details of Prompt Template

KG2P Tempalte (Tp)

Please create a short hint paragraph to an-
swer the question reorganizing the triple
information, step by step.

Question: {question q}

Triple Information: {triples T, - -,
Hint Paragraph:

7o'}

QA Template (1 1)

Below are the facts that might be relevant
to answer the question. Please provide a
short answer(1-3 words in English) to the
following question.

Facts: {Knowledge Augmented Prompt P}
Question: {question q}

Answer:

B Implementation Details

B.1 QA Dataset Preprocessing

In this study, we used WikiSM, a subset of Wiki-
data, as our knowledge base. The KGQA datasets
used in our experiments are based on the entirety of
Wikidata, which includes questions that cannot be
answered within the scope of WikiSM. Therefore,
questions whose answer entities are not included in
WikiSM were excluded from the experiments. The
specific number of excluded questions is shown in
Table 6.

Table 6: Number of Questions for Each Dataset Orig-
inal refers to the size provided by the original dataset.
Answerable means the count of questions whose answer
entities are included in WikiSM.

Simple Question WebQSP-WD Mintaka
Train Test Train  Test  Train  Test
Original 19481 5622 3098 1033 14000 4000
Answerable 17700 5071 2763 1003 13275 3811

B.2 Retrieval System

All triples in the Wiki5M dataset were converted
into text form using the linearization method, and
their vectors were generated using a text embed-
ding model. These vectors were indexed in a triple
vector repository denoted as DB. Upon receiving
a question, the text embedding model produced an
embedding vector for the question z,, which was
used to retrieve relevant triples through Maximum
Inner Product Search (MIPS).


https://doi.org/10.18653/v1/2021.naacl-main.45
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Specifically, the argtopk operation searches the
k triples based on high inner product scores in the
DB. We employed a pre-trained SentenceTrans-
former® (Reimers and Gurevych, 2019) as our text
embedding model, and leveraged Faiss (Johnson
et al., 2019) to efficiently perform the MIPS opera-
tions.

{73?,..

-, T} = argtopk,, pgInnerProduc(z, ;)

4

B.3 Computational Resources and Training
Details

We utilized an Nvidia RTX 3090 24G GPU. To
efficiently use computational resources, we applied
4-bit NormalFloat (NF4) quantization and Low-
Rank Adaptation (LoRA) during the training pro-
cess, and NF4 quantization was also used during
the inference process (Hu et al., 2021; Dettmers
et al., 2024). Both SFT and DPO’ were trained for
2 epochs on each dataset with a mini-batch size of
2. For optimization, we used Adafactor (Shazeer
and Stern, 2018) with a learning rate of le-5.

C Case Study

In §4.2, there are instances where performance de-
creased despite the provision of KG information.
Baek et al. (2023b) interpreted this phenomenon
by categorizing two types of errors: retrieval error,
where irrelevant knowledge is retrieved for a query,
and grounding error, where an LLM fails to gener-
ate the correct answer despite relevant knowledge
is provided. Specifically, a retrieval error occurs
when the retrieved results do not contain the cor-
rect answer entity, while a grounding error occurs
when the LLM generates an incorrect answer de-
spite the presence of the answer in the given KG
information. We conducted a detailed analysis by
categorizing cases into Without Retrieval Error and
With Retrieval Error based on the correct labels for
each dataset.

The role of the prompt generator differs depend-
ing on the case. In the Without Retrieval Error
case, the primary role of the prompt generator is to
reduce the grounding error. Therefore, the prompt
generator should transform triples into free-form

®https://huggingface.co/sentence-transformers/
all-MinilLM-L12-v2

"Hugging Face Trainer was used for training.
https://huggingface.co/docs/trl/sft_trainer
https://huggingface.co/docs/trl/dpo_trainer
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text that is more easily processed by LLMs. Con-
versely, in the case With Retrieval Error, the given
triples are insufficient to generate correct answers.
The primary objective of the prompt generator is
to extract information related to the question from
its parametric knowledge, which is acquired dur-
ing the pre-training process, to compensate for this
insufficiency.

Table 7 presents a case study comparing scenar-
ios with and without Retrieval Error. In the Without
Retrieval Error case, it is crucial to highlight the
relevant triples and eliminate the noise triples that
are unnecessary for deriving the correct answer.
Other baselines tend to emphasize irrelevant in-
formation or overly broad details, such as genres.
In contrast, KG2P-DPO accurately highlights the
necessary information, aiding the Solver LLM in
generating the correct answer.

In the With Retrieval Error case, there is insuffi-
cient information in retrieval results to derive the
correct answer, necessitating the generation of new
information using parametric knowledge. The most
critical factor in this process is generating relevant
information without hallucination. Linearization
and KG2T failed to generate new information, re-
sulting in the Solver LLM’s inability to produce the
correct answer. Frozen and KG2P-SFT generated
information but exhibited hallucinations by produc-
ing incorrect information. However, KG2P-DPO
generated accurate additional information, which
enabled the Solver LLM to derive the correct an-
SWer.

Yu et al. (2023) demonstrates that leveraging
the parametric knowledge inherent in LLMs can
lead to the creation of prompt generator enhancing
QA task performance. Therefore, KG2P-DPO not
only effectively utilizes retrieval results but also
enriches answers with additional, relevant informa-
tion extracted from the vast parametric knowledge
in LLMs, demonstrating a robust method for im-
proving accuracy in KGQA tasks.


https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2
https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2
https://huggingface.co/docs/trl/sft_trainer
https://huggingface.co/docs/trl/dpo_trainer

Table 7: Example of Generated Knowledge Augmented Prompts. The example illustrates how KG2P-DPO
addresses Grounding Error and Retrieval Error. In the case without Retrieval Error, KG2P-DPO highlights the
essential knowledge needed to answer the question, thereby eliciting the correct answer. Moreover, in the case with
Retrieval Error, KG2P-DPO generates new knowledge to answer the question using parametric knowledge.

[Without Retrieval Error]
Question: What music is in espion, leve-toi?
Correct Answer: Ennio Morricone

Prompting Method

Knowledge-Augmented Prompt

Answer

Linearization

“(espion, leve-toi, instance of, movie)”,
“(espion, leve-toi, composer, ennio morricone)”,
“(Esra Dalfidan, genre, jazz music)”,
“(Cassiane, genre, Devotional music)”,
“(espion, leve-toi, genre, Spy movie)”

Jazz

Frozen

The music piece “espion, leve-toi” is featured in a spy movie.
Ennio Morricone composed it, and it belongs to the genre of spy music.
(the rest omitted)

Spy

KG2T

Espion, Leve-Toi is a spy movie with Ennio Morricone as its composer.
It is performed in jazz and devotional music.
Cassiane performs devotional music. Esra Dalfidan’s genre is jazz music.

Jazz

KG2P-SFT

The music you are looking for is “L’Impero” from the 1965 Italian spy film “Operazione San Gennaro.’

This score was composed by Ennio Morricone and features a distinctive blend of jazz
and devotional music that adds depth and complexity to the film’s action scenes.
(the rest omitted)

Jazz

KG2P-DPO

Based on the triple information provided, it can be inferred that the music in
“Espion, léve-toi” is Ennio Morricone’s score.

This talented Italian composer has created numerous iconic soundtracks for films,
including this spy movie.

(the rest omitted)

Ennio Morricone

[With Retrieval Error]
Question: What airport do you fly into to get to destin f1?
Correct Answer: Destin-Fort Walton Beach Airport

Prompting Method

Knowledge-Augmented Prompt

Answer

Linearization

“(Davin Lake Airport, country, p:ca)”,
“(michelle dusan, start point, Miami Airport, Florida)”,

“(northwest florida beaches international airport, place served by transport hub, un/locode:uspfn)”,

“(via742, destination point, Miami Airport, Florida)”,
“(mdrio lopes leite state airport, country, Brzil)”

MIA

Frozen

To get to Destin, Florida from Davin Lake Airport in Canada,

you will need to fly into Northwest Florida Beaches International Airport,

which is located near Panama City, Florida. From there, you can take a taxi or rental car to
Miami Airport, where you can catch a flight to Miami, and then another flight to Destin.
(the rest omitted)

Miami Airport

KG2T

The airport serving Destin is Northwest Florida Beaches International Airport
which has an Un/Locode of USPFN.

Michelle Dusan started at Miami Airport in Florida and via 742 she arrived there.
Davin Lake Airport is located in Brazil.

USPFN

KG2P-SFT

To get to Destin, Florida from Davin Lake Airport in Canada, you will need to fly into
Northwest Florida Beaches International Airport or Pensacola International Airport,
both located in Florida. From there, you can take a taxi or rental car

to your final destination in Destin.

(the rest omitted)

Northwest Florida
Beaches International
Airport (ECP)

KG2P-DPO

To get to Destin, Florida from your starting point of Miami Airport,
you will fly into Destin-Fort Walton Beach Airport,

which is located in the United States and serves as a major transportation hub for the region.

(the rest omitted)

Destin-Fort Walton
Beach Airport
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