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Abstract

Large language models have limitations in001
maintaining up-to-date knowledge and prevent-002
ing hallucinations. To address these issues, re-003
cent research has explored integrating external004
knowledge sources into language models, with005
Knowledge Graphs emerging as a particularly006
promising approach since their structured and007
factual nature. However, effectively incorpo-008
rating knowledge graphs into language mod-009
els remains challenging due to the modality010
gap and the lack of query-aware knowledge011
selection in existing knowledge-to-text meth-012
ods. This paper proposes a Knowledge Graph013
to Knowledge-Augmented Prompt (KG2P), a014
framework that optimizes knowledge graph-to-015
text transformation for language model prompt-016
ing. KG2P introduces black-box optimiza-017
tion to systematically learn effective knowledge018
transformation and query-aware alignment to019
enhance relevance. Unlike previous approaches020
that rely on rigid linearization or static hu-021
man annotations, KG2P dynamically adapts022
knowledge augmentation to improve reasoning023
in language models. Experimental results on024
knowledge graph question-answering bench-025
marks demonstrate that KG2P consistently out-026
performs existing methods. The findings sug-027
gest that task-specific optimization is essential028
for effectively incorporating structured knowl-029
edge into language models, providing a new030
direction for knowledge-augmented prompting.031

1 Introduction032

Large language models (LLMs) have demonstrated033

remarkable success in various natural language034

processing (NLP) tasks by pretraining on massive035

text corpora. However, they still suffer from sig-036

nificant limitations, such as hallucinations, where037

they generate factually incorrect information, and038

a lack of up-to-date knowledge due to their static039

training data. To address this issue, extensive re-040

search has been conducted on methods, which en-041

able LLMs to generate responses by referencing042

external knowledge such as Retrieval-Augmented 043

Generation (RAG). 044

Typically, unstructured text data, such as web 045

documents, is retrieved and utilized, but such data 046

often contains redundant or conflicting information, 047

which may reduce reliability. In contrast, Knowl- 048

edge Graphs (KGs) provide systematically struc- 049

tured information, making them a more reliable 050

knowledge base. A KG stores information in the 051

form of triples (subject, relation, object), explicitly 052

representing relationships between entities. Due to 053

this structured nature, KGs serve as not just a data 054

repository but also a crucial knowledge source that 055

enhances the factual accuracy and reasoning ability 056

of LLMs. 057

Despite their advantages, integrating KGs with 058

LLMs presents a fundamental modality gap since 059

KGs store information in graph format, whereas 060

LLMs primarily process textual input. To bridge 061

this gap, researchers have explored KG-to-Text 062

transformation methods that convert structured 063

graph knowledge into textual representations (Li 064

et al., 2020; Agarwal et al., 2021; Moiseev et al., 065

2022; Kim et al., 2025a). A common approach is 066

linearization, which involves converting KG triples 067

into triple-form text that LLMs can process. For 068

example, Baek et al. (2023a) proposed retrieving 069

relevant triples, linearizing them, and incorporating 070

them into prompts to improve question-answering 071

(QA) performance. However, Wu et al. (2023) crit- 072

icized this approach for relying on rigid triple-form 073

text rather than free-form text, which is more natu- 074

rally processed by LLMs. To address this issue, Wu 075

et al. (2023) introduced a rewriting step that trans- 076

forms structured triples into more fluid, human-like 077

text. 078

While these methods mitigate some aspects of 079

the modality gap, two key challenges persist. First, 080

it is still unclear how knowledge from KGs should 081

be optimally transformed into text to maximize the 082

effectiveness of LLMs. Since LLMs function as 083
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black-box models, little is known about how KG-084

based knowledge is internally processed when in-085

serted into prompts. In particular, closed LLMs that086

are provided solely as APIs without open-source087

code function as complete black boxes. Second,088

existing KG-to-Text transformation methods do not089

account for query dependency. The relevance of090

KG-derived information varies depending on the091

query, but prior approaches perform textualization092

independently of the query context. Recent stud-093

ies (Yasunaga et al., 2021; Kim et al., 2025b) have094

demonstrated that query-dependent graph represen-095

tations improve downstream performance, suggest-096

ing that KG-to-Text transformation should also be097

query-aware.098

To address these challenges, we propose099

Knowledge Graph to Knowledge-Augmented100

Prompt (KG2P), a novel KG-to-Text transforma-101

tion framework designed to enhance downstream102

task performance of LLMs. KG2P introduces two103

major innovations. First, it applies black-box op-104

timization to refine structured graph knowledge105

transformation for LLMs. Second, KG2P incor-106

porates query dependency into the transformation107

process, ensuring that only the most relevant KG108

information is retained when constructing prompts.109

We evaluate KG2P on the Knowledge Graph110

Question Answering (KGQA) task and demon-111

strate that it outperforms conventional KG-to-Text112

methods in QA performance. Moreover, our experi-113

ments reveal that traditional KG-to-Text techniques,114

despite being widely adopted in general knowledge115

conversion tasks, perform suboptimally when used116

for LLM prompt construction in KGQA. To em-117

pirically verify the robustness of our approach, we118

conduct model cross-experiments, where its effec-119

tiveness is tested with different LLM.120

2 Related Works121

2.1 Knowledge Graph-to-Text122

KG-to-Text involves transforming structured triples123

into free-form text. For example, given a set of124

triple such as “(Parasite, director, Bong Joon-Ho),125

(Parasite, Genre, Thriller Film), (Bong Joon-Ho,126

educated at, Yonsei University)”, a KG-to-Text127

model converts them into “Parasite, a film directed128

by Bong Joon-Ho who was educated at Yonsei Uni-129

versity, is a thriller film”.130

This task is often approached similarly to ma-131

chine translation using sequence-to-sequence man-132

ners (Li et al., 2020; Sutskever, 2014). Agarwal133

et al. (2021) employed a sequence-to-sequence 134

model, specifically fine-tuning the T5 model (Raf- 135

fel et al., 2020), to convert KGs into natural text. 136

Similarly, Ribeiro et al. (2021) transformed graph- 137

based data into fluent text using BART and T5 138

(Lewis et al., 2019; Raffel et al., 2020). These stud- 139

ies showed that these pre-trained language models 140

achieve superior results across various graph do- 141

mains, demonstrating the effectiveness of sequence- 142

to-sequence architectures in graph-to-text genera- 143

tion tasks. Despite the advancements in KG-to-Text 144

methods, their reliance on human-labeled data is 145

not optimized for a downstream task. 146

2.2 Knowledge Graph Question Answering 147

and Knowledge-Augmented Prompting 148

The objective of KGQA tasks is to respond to nat- 149

ural language queries based on facts over KGs 150

(Chakraborty et al., 2019; Fu et al., 2020). Earlier 151

approaches have employed neural semantic pars- 152

ing methods that leverage deep learning techniques 153

to map natural language questions into structured 154

queries that can be executed against a KG. These 155

methods typically rely on end-to-end training of 156

neural networks that jointly learn representations 157

of both questions and KGs (Yih et al., 2015; Luo 158

et al., 2018). However, these methods have limita- 159

tions which are difficult to generalize across diverse 160

domain-specific KGs. 161

Another approach is an information retrieval- 162

based method known as Retrieval-Augmented 163

Graph QA. This approach retrieves relevant infor- 164

mation from KGs based on a query and then an- 165

swers the question using this information. Early 166

methods addressed the multiple-choice QA task by 167

training a neural classifier to utilize retrieved KG 168

information (Sun et al., 2018; Saxena et al., 2020). 169

Recently, there has been a focus shifted toward 170

employing LLMs for both multiple-choice and 171

general QA tasks (Baek et al., 2023a; Wu et al., 172

2023). In order for LLMs to utilize the information 173

in KGs, it is necessary to transform the informa- 174

tion in the KG into text form. To address these 175

issues Baek et al. (2023a) proposed knowledge- 176

augmented prompting, an approach that incorpo- 177

rates retrieved triples from KGs directly into the 178

prompts in a linearized format. However, this tech- 179

nique sometimes leads to responses that may lack 180

natural linguistic coherence and be difficult for 181

LLMs to process as shown in Figure 1(b). Wu 182

et al. (2023) introduced a refinement by adding a 183

step to rewrite these triples into a natural language 184
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Figure 1: Different Methods for KG-to-Text Conversion for QA Tasks. The Linearization and KG-to-Text Model
convert a KG into text independently of the question and are not optimized for knowledge-augmented prompting. In
contrast, our proposed KG-to-Knowledge Augmented Prompt Model transforms KG into text while considering
query contexts and is optimized for knowledge-augmented prompting.

sentence without any further training. This leads to185

enhanced KGQA performance as shown in Figure186

1(c). Despite these advancements, these methods187

were not specifically optimized for KG-to-Text for188

a downstream task. Additionally, they failed to189

consider the context of questions when converting190

KG-to-Text.191

2.3 Alignment Tuning192

Ouyang et al. (2022) introduced a methodology193

to use reinforcement learning to align LLMs with194

human preference. Analogous to a black-box prob-195

lem, the internal structure and formulaic representa-196

tion of human preferences remains unknown. Fur-197

thermore, the non-differentiable nature of these198

preferences precludes traditional back-propagation199

for training LLMs. To overcome this challenge,200

Ouyang et al. (2022) developed a model to predict201

human preferences from survey data, utilizing these202

predictions as the foundation for a reward function203

in reinforcement learning known as Reinforcement204

Learning with Human Feedback (RLHF). Addition-205

ally, Rafailov et al. (2024) showed that the method206

for training LLMs aligns with human preferences207

by using paired positive and negative response data,208

without relying on reward models, known as Direct209

Preference Optimization (DPO).210

3 Methodology211

A problem that optimizes KG-to-Text for QA is a212

derivative-free and black-box optimization problem213

analogous to human preferences. This occurs be-214

cause the manner in which LLM processes prompts215

is difficult to model mathematically, similar to hu-216

man preferences, and the argmax operation and217

instruction prompt templates make differentiation 218

impossible. Inspired by Rafailov et al. (2024), we 219

propose a novel optimization method that uses pos- 220

itive and negative data pairs as language model 221

preference guides and alignment tuning objective 222

functions. We aim to improve the QA performance 223

of LLMs, maintaining a pre-trained state as a black 224

box without further training, to optimize its input 225

prompts. 226

3.1 Problem Definition and Approach 227

In this study, we address the problem of KGQA. 228

KGQA involves generating an answer to a given 229

question q, based on a set of related triples 230

{T q
1 , · · · , T

q
n } from KG. In this process, the given 231

set of triples is transformed into a free-form text 232

P which, along with q, is used as a prompt for the 233

Solver LLM to generate the answer. The Solver 234

LLM is not trained, but another LLM, KG2Pθ, is 235

trained to convert {T q
1 , · · · , T

q
n } into P . 236

Formally, question q and given related triples 237

{T q
1 , · · · , T

q
n } are passed into a KG2P template1 238

TP : (q, {T q
1 , · · · , T

q
n }) 7→ xP . This instruction 239

xP is transformed into P by KG2Pθ. Here, θ repre- 240

sents the trainable parameters of the KG2Pθ. Dur- 241

ing this process, KG2Pθ incorporates the context 242

of the query and generates knowledge-augmented 243

prompt P . 244

P = KG2Pθ(xP ) (1) 245

The question q and the knowledge-augmented 246

prompt P are passed through a QA template2 TQA : 247

(q, P ) 7→ xQA. The Solver LLM takes xQA as input 248

1Details about the prompt are found in the Appendix A
2It is also found in the Appendix A
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and generates a predicted answer ŷ. Our work249

focuses on training θ to ensure that ŷ matches the250

correct answer y.251

ŷ = Solver(xQA) (2)252

We consider scenarios where the Solver LLM253

cannot be directly trained due to restricted access to254

its parameters or the prohibitively high cost of train-255

ing. Therefore, the Solver LLM remains in its pre-256

trained state without undergoing further training.257

Thus, our objective is to train KG2Pθ to provide258

optimized knowledge-augmented prompts that help259

the Solver LLM generate correct answers, thereby260

enhancing QA performance.261

3.2 Knowledge Graph to262

Knowledge-Augmented Prompt263

We now present the details of our method,264

Knowledge Graph to Knowledge-Augmented265

Prompt (KG2P), a novel KG-to-Text strategy to266

help solve question-answering.267

Our proposed method is divided into two phases.268

Figure 2 illustrates the overview of KG2P.269

• Exploration (First Phase) Generating vari-270

ous synthetic knowledge-augmented prompt271

samples and automatically labeling them as272

positive or negative.273

• Exploitation (Second Phase) DPO training274

the KG2P using the labeled prompt samples.275

In the first phase, we generate automatically la-276

beled data for KG2Pθ training. We adopt the DPO277

training strategy (Rafailov et al., 2024). In rein-278

forcement learning, random actions are simulated279

across various situations, and the action search280

space is explored during training. DPO approx-281

imates this process by training on data consisting282

of positive and negative actions in the same context.283

For DPO training, it is necessary to generate284

various knowledge-augmented prompts for the285

given triple set with the question and label each286

knowledge-augmented prompt as either good or287

bad. Here, we define a ‘good’ (positive) prompt288

as one that enables the Solver LLM to generate289

the correct answer to the given question, while290

a prompt that fails to do so is labeled as a ‘bad’291

(negative) prompt. Based on this definition, we292

performed automatic labeling.293

Formally, by applying nuclear sampling (Holtz-294

man et al., 2019) to KG2Pθ, we generate a prompt295

set (P = {P1, · · · , P|P|}) of given triple set with 296

question q. For each Pi, the Solver LLM predicts 297

ŷi corresponding TQA(q, Pi). If ŷi matches correct 298

answer y, then Pi is labeled as a positive prompt; 299

else Pi becomes a negative prompt of question q. 300

The KG2Pθ produces five knowledge-augmented 301

prompts with he nucleus sampling threshold 0.9. 302

In the second phase, KG2Pθ is trained using 303

DPO to generate optimized knowledge-augmented 304

prompts. This process consists of two key steps: 305

(1) Supervised Fine-Tuning (SFT) and (2) DPO 306

Training. 307

First, in the SFT step, KG2Pθ is pre-trained 308

using only the positive prompts that were auto- 309

matically labeled in the exploration phase. The 310

goal of this step is to initialize KG2Pθ so that it 311

can generate high-quality prompts that assist the 312

Solver LLM in accurately predicting the correct 313

answers. KG2Pθ is an autoregressive language 314

model that is trained to minimize cross-entropy 315

loss. The training dataset consists only of the posi- 316

tive prompts—those that led to correct answers dur- 317

ing the exploration phase. After this process, the 318

fine-tuned model is denoted as KG2PSFTθ
, which 319

serves as the reference model in the subsequent 320

DPO training step. 321

Next, in the DPO Training step, KG2PSFTθ
un- 322

dergoes further optimization to refine its ability 323

to generate effective prompts. DPO increases the 324

likelihood of generating positive prompts while 325

decreasing the likelihood of generating negative 326

ones. This approach is based on preference learn- 327

ing, where KG2PSFTθ
is guided by the differences 328

between positive and negative prompts. The loss 329

function for DPO training is formulated as eq 3. 330

This loss function encourages KG2PDPOθ
to as- 331

sign higher probabilities to positive prompts com- 332

pared to the reference model KG2PSFTθ
, while si- 333

multaneously lowering the probabilities of gener- 334

ating negative prompts. The training process fol- 335

lows these steps: (1) collect positive and negative 336

prompts from the exploration phase, (2) initialize 337

KG2PDPOθ
with the same weights as KG2PSFTθ

, 338

and (3) fine-tune KG2PDPOθ
by minimizing the 339

DPO loss function. 340

4 Experiments 341

4.1 Experiments Setup 342

We used Wiki5M (Wang et al., 2021) as a knowl- 343

edge base, which is a subset of Wikidata (Vran- 344

dečić and Krötzsch, 2014). This dataset consists of 345
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Figure 2: Overview of Knowledge Graph to Knowledge Augmented Prompt (KG2P). In the first phase, data for
training KG2H is generated. Triples related to the given question are retrieved in the KG, and the triples are used to
create different knowledge-augmented prompt using KG2P. Each hint is evaluated to determine whether it is Positive
or Negative by comparing labels with answers which is created by Solver LLM using the knowledge-augmented
prompt. And then KG2Pθ is train by using LDPO

.

LDPO = E(dpos,dneg)∼P

[
− log σ

(
log

KG2PDPOθ
(dpos|xP)

KG2PSFTθ
(dpos|xP)

− log
KG2PDPOθ

(dneg|xP)

KG2PSFTθ
(dneg|xP)

)]
(3)

approximately 20 million triple sets, created from346

a combination of about 5 million entities and 1,000347

relations. For KGQA datasets, we utilized the Sim-348

ple Questions (SimQ) (Diefenbach et al., 2017),349

WebQSP-WD (WebQSP) (Sorokin and Gurevych,350

2018), and Mintaka (Sen et al., 2022), where the351

answers to questions are entities within Wikidata.352

In our experiments, we focused only on questions353

with answer entities within Wiki5M. We utilized a354

text embedding-based retrieval system to identify355

triples relevant to the given questions, following356

the approach of Baek et al. (2023a).357

Instruction-tuned LLMs are based on trans-358

former (Vaswani et al., 2017) architecture and have359

shown impressive general natural language perfor-360

mance in responding to various queries. We uti-361

lized two instruction-tuned LLMs, LLaMa23 (Tou-362

vron et al., 2023) and Mistral4 (Jiang et al., 2023),363

as both KG2P and Solver LLM. Implementation364

details are specified in the Appendix B.365

For evaluation metrics, we measured (macro-366

3https://huggingface.co/meta-llama/
Llama-2-7b-chat-hf

4https://huggingface.co/mistralai/
Mistral-7B-Instruct-v0.1

averaged) F1 score and Exact Match score (EM) 367

for QA task (Rajpurkar et al., 2016). F1 score com- 368

putes the harmonic mean of precision and recall 369

between the predicted answer and label, while the 370

EM score calculates the percentage of predictions 371

that match any one of the ground truth answers 372

exactly. 373

Additionally, we reported the Bilingual Evalu- 374

ation Understudy (BLEU) score (Papineni et al., 375

2002). The BLEU score evaluates the quality of 376

machine-translated text by measuring the n-gram 377

similarity between the translated text and reference 378

translations. As aforementioned, a traditional KG- 379

to-Text task is similar to a machine translation task. 380

So we measure the BLEU score to explore the rela- 381

tionship between QA performance and traditional 382

KG-to-Text performance. For this process, we used 383

WebNLG test dataset (Li et al., 2020). 384

4.2 Overall QA Performance 385

In our initial experiment, we designed multiple 386

baseline by varying the KG-to-Text methods. We 387

compared five distinct settings: 388

• Without KG Information (Without KG): 389
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In this setting, no related triple set is used390

alongside the question as shown in Figure1(a).391

• Linearization (Linearization): A prompt392

is generated by the linearization process de-393

scribed in Baek et al. (2023a) as shown in394

Figure1(b).395

• Pre-trained LLM (Frozen): A pre-trained396

LLM produces knowledge-augmented397

prompts without any additional training. In398

this baseline, triples are transformed into a399

free-form text. This method employs the400

rewrite step similar to Wu et al. (2023). Wu401

et al. (2023) did not consider query context in402

the KG-to-Text conversion.403

• KG-to-Text Model (KG2T): This setting em-404

ploys an LLM trained specifically for the KG-405

to-Text task using the dataset from Li et al.406

(2020)5 as shown in Figure1(c). Although407

the KG-to-Text Model is optimized to repli-408

cate human-labeled data, it is not tailored for409

knowledge-augmented prompting which aims410

to improve QA accuracy.411

• Knowledge Graph to Knowledge-412

Augmented Prompt Model (KG2P-SFT,413

KG2P-DPO): This setting employs our414

method, which trains the prompts to produce415

more informative as shown in Figure1(d).416

We evaluated two versions: the SFT version,417

referred to as KG2P-SFT (KG2PSFTθ
), and418

the version trained using the DPO approach,419

referred to as KG2P-DPO (KG2PDPOθ
).420

Table 1 shows the overall results. And Detailed421

examples are in Appendix C.422

The impact of KG Information Providing KG423

information generally enhanced QA task perfor-424

mance compared to scenarios without it. However,425

in the case of WebQSP and Mintaka, providing426

KG information occasionally resulted in perfor-427

mance declines. Notably, KG2P-DPO consistently428

outperformed across all cases when prompts were429

provided. This suggests that inappropriate forms of430

KG information can hinder performance, whereas431

our method effectively provides beneficial forms.432

Triple Form vs Free Form Text Knowledge-433

augmented prompt using LLMs to produce free-434

form text is generally expected to outperform sim-435

5https://gitlab.com/shimorina/webnlg-dataset/
-/tree/master/release_v3.0/en

Table 1: Comparison of KGQA Performance. The
table shows QA performance metrics (F1, EM) based
on the prompt methods. BOLD indicates the highest
score for each dataset regarding the Solver LLM.

Solver LLM Prompting Method
Easy Complex

SimQ WebQSP Mintaka
F1 EM F1 EM F1 EM

LLaMa2

Without KG 20.56 9.82 47.80 26.22 35.11 29.20
Linearization 39.57 28.95 47.17 30.81 29.19 22.88

LLaMa2

Frozen 36.26 24.63 49.11 31.80 39.28 33.22
KG2T 36.42 24.77 43.93 27.32 25.41 19.26

KG2P-SFT 35.43 24.49 51.15 33.20 40.84 34.85
KG2P-DPO 41.21 30.72 57.51 39.58 46.19 39.88

Mistral

Frozen 36.99 26.25 45.88 30.81 25.80 19.65
KG2T 37.07 25.50 43.91 28.02 25.73 20.20

KG2P-SFT 37.40 26.31 51.41 33.10 28.32 22.51
KG2P-DPO 41.31 30.84 56.51 39.28 34.62 26.19

Mistral

Without KG 22.31 12.40 50.29 31.51 35.53 29.60
Linearization 38.06 27.96 43.97 28.51 28.17 22.83

LLaMa2

Frozen 37.02 25.73 47.40 29.31 30.61 24.14
KG2T 36.58 25.56 40.10 22.63 25.87 19.34

KG2P-SFT 36.20 25.52 49.73 31.01 32.89 26.69
KG2P-DPO 42.36 32.32 57.52 37.59 38.76 32.93

Mistral

Frozen 34.77 25.60 41.96 26.32 25.48 18.68
KG2T 36.82 26.35 38.77 23.53 25.29 18.89

KG2P-SFT 33.41 23.90 43.23 26.22 27.90 21.60
KG2P-DPO 42.05 32.60 49.39 31.90 37.22 30.41

Table 2: Pearson correlation between KG-to-Text per-
formance (BLEU) and QA performance (EM) across
different prompting methods. The low or negative cor-
relation values indicate little to no relationship between
KG-to-Text and QA performance, suggesting that im-
provements in one do not necessarily result in improve-
ments in the other.

Solver LLM Prompting Method
SimQ WebQSP Mintaka

EM BLEU EM BLEU EM BLEU

LLaMa2

Linearization 28.95 4.12 30.81 4.12 22.88 4.12

LLaMa2

Frozen 24.63 10.38 31.80 10.38 33.22 10.38
KG2T 24.77 39.26 27.32 39.26 19.26 39.26

KG2P-SFT 24.49 9.29 33.20 5.89 34.85 9.67
KG2P-DPO 30.72 6.71 39.58 2.74 39.88 6.53

Mistral

Frozen 26.25 4.77 30.81 4.77 19.65 4.77
KG2T 25.50 39.45 28.02 39.45 20.20 39.45

KG2P-SFT 26.31 14.97 33.10 11.33 22.51 5.59
KG2P-DPO 30.84 6.39 29.28 4.69 26.19 6.08

Mistral

Linearization 27.96 4.12 28.51 4.12 22.83 4.12

LLaMa2

Frozen 25.73 10.38 29.31 10.38 24.14 10.38
KG2T 25.56 39.26 22.63 39.26 19.34 39.26

KG2P-SFT 25.52 9.14 31.01 9.14 26.69 7.81
KG2P-DPO 32.32 10.22 37.59 3.28 32.93 5.19

Mistral

Frozen 25.60 4.77 26.32 4.77 18.68 4.77
KG2T 26.35 39.45 23.53 39.45 18.89 39.45

KG2P-SFT 23.90 5.96 26.22 7.28 21.60 5.73
KG2P-DPO 32.60 6.83 31.90 3.88 30.41 4.55

Pearson Correlation -0.33 -0.62 -0.44

ple rule-based linearization, which generates triple- 436

form text. However, the results indicate that this 437

was not always the case. In certain instances 438

with SimQ, WebQSP, and Mintaka, linearization 439

demonstrated better performance compared to free- 440

form text. This supports the findings of Baek 441

et al. (2023a), which suggest that linearization 442

is a simple yet effective method for knowledge- 443

augmented prompting. Nevertheless, KG2P-DPO 444

consistently generated superior prompts compared 445

to linearization, indicating that our method effec- 446

tively optimizes knowledge-augmented prompting 447

for KGQA. 448

Impact of DPO Training The Frozen method 449
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considers the query context when converting KG-450

to-Text. The primary difference lies in whether451

training is conducted using KG2P-SFT or KG2P-452

DPO. The performance of KG2P-SFT is not always453

superior to that of Frozen. However, the perfor-454

mance of KG2P-DPO consistently surpasses that455

of Frozen. When comparing the two specific strate-456

gies of KG2P, the DPO training method demon-457

strated better results than the SFT training method.458

KG2T vs KG2P The Traditional KG-to-Text459

method involves converting a set of triples from a460

KG into natural language text, by training human-461

translated data. This method is expected to enhance462

readability, thus helping LLMs process KG infor-463

mation more effectively. However, whether the464

form of human labels is optimal for LLM process-465

ing remains uncertain. To investigate this, we mea-466

sured the KG-to-Text performance on WebNLG467

test data Li et al. (2020) according to different468

prompt methods. Table 2 shows the results.469

The KG2T, which is directly trained from470

human-translated labels, exhibited significantly471

higher BLEU scores compared to other prompt-472

ing methods. However, KG2T generally underper-473

forms in QA tasks compared to Linearization. This474

suggests that converting KG-to-Text by mimick-475

ing human-translated labels does not help LLMs476

process information effectively.477

Furthermore, although KG2P-DPO achieves su-478

perior QA performance, its lower BLEU scores479

underscore the weak or negative correlation be-480

tween KG-to-Text generation and QA performance481

as demonstrated by the Pearson correlation val-482

ues in Table 2. This lack of correlation highlights483

that training for QA objectives and traditional KG-484

to-Text objectives are largely independent. Our485

findings suggest that optimizing for task-specific486

KG-to-Text methods, rather than strictly imitating487

human labels, offers a more promising approach for488

improving downstream task performance in LLMs.489

4.3 Abliation Study of Query Context and490

Training for Knowledege Augmented491

Prompting492

The two primary factors of our proposed method493

are 1) training aimed at optimizing knowledge-494

augmented prompting and 2) the conversion that495

takes into account the context of the query. We496

conducted additional experiments to analyze the497

impact on performance and their interaction. To498

assess the impact of these factors, we compared the499

performance of Frozen and KG2P-DPO as used in500

Table 3: Performance Comparison With and With-
out Query Context and KG2P Training. ‘w/o Q’
means prompt method without considering query con-
text. Frozen refers to the LLM in the pre-trained state
without KG2P training. By comparing w/o Q and oth-
ers, we show how query context affects the quality of
prompts. Additionally, compare Frozen and KG2P to
see the impact of our proposed training method.

Solver LLM Prompting Method
Easy Complex

SimQ WebQSP Mintaka
F1 EM F1 EM F1 EM

LLaMa2

LLaMa2

Frozen w/o Q 27.05 15.26 42.19 21.14 36.26 26.53
Frozen 36.26 24.63 49.11 31.80 39.28 33.22

KG2P w/o Q 37.09 26.05 48.32 30.81 39.40 32.17
KG2P-DPO 41.21 30.72 57.51 39.58 46.19 39.88

Mistral

Frozen w/o Q 35.26 24.53 45.46 29.21 28.38 22.70
Frozen 36.99 26.25 45.88 30.81 25.80 19.65

KG2P w/o Q 24.36 13.80 34.22 34.20 34.22 28.84
KG2P-DPO 41.31 30.84 56.51 39.28 34.62 26.19

Mistral

LLaMa2

Frozen w/o Q 30.45 19.68 45.14 27.22 31.00 23.75
Frozen 37.02 25.73 47.40 29.31 30.61 24.14

KG2P w/o Q 18.35 9.49 45.11 27.92 30.97 26.08
KG2P-DPO 42.36 32.32 57.52 37.59 38.76 32.93

Mistral

Frozen w/o Q 33.40 23.90 42.35 26.02 28.54 22.88
Frozen 34.77 25.60 41.96 26.32 25.48 18.68

KG2P w/o Q 38.37 28.46 45.17 27.82 29.81 24.43
KG2P-DPO 42.05 32.60 49.39 31.90 37.22 30.41

Table 4: Analysis for Impact of Proposed Factors. It
shows the average EM scores for each case in Table 3.
To measure the effect of query context and KG2P train-
ing, we calculated the ratio by dividing the results with
each factor by the results without. We also compared
the performance of KG2P-DPO and the performance of
Frozen w/o Q to evaluate the collaborative results of the
two factors.

without KG2P Train with KG2P Train ∆KG2P Training
without Query Context 23.57 25.84 2.27 (10%)

with Query Context 26.35 33.69 7.34 (28%)
∆Query Context 2.78 (12%) 7.85 (30%) 10.12 (43%)

the §4.2 and along with additional baselines. The 501

details are below: 502

• Pre-trained LLM without Query Context 503

(Frozen w/o Q) As with the Frozen LLM in 504

§4.2, we converted KG-to-Text form using the 505

pre-trained LLM without additional training. 506

And, during the converting process, we did 507

not not consider query context. 508

• KG2P-DPO without Query Context (KG2P 509

w/o Q) As KG2P-DPO in §4.2, we converted 510

KG-to-Text from using our proposal method. 511

However, during the converting process, we 512

do not consider query context. 513

Table 3 presents the results of our ablation stud- 514

ies. Additionally, for quantitative analysis, Table 515

4 reports the average EM scores both when each 516

factor is considered and when it is not. When train- 517

ing for knowledge-augmented prompting was not 518

applied, incorporating the query context led to a 519

7



12% performance improvement, while the training520

combined with query context reflection resulted in521

a 30% improvement. This indicates that incorporat-522

ing the query context is a significant positive factor523

in prompt generation.524

Moreover, the proposed training method resulted525

in a 10% performance improvement without incor-526

porating the query context, and a 28% improvement527

when the query context was incorporated. Com-528

pared to the case where neither factor was incor-529

porated, incorporating both factors led to a 43%530

performance improvement. This demonstrates that531

our proposed training method effectively optimizes532

prompt generation for QA tasks. Furthermore, it533

shows that incorporating query context into the534

learning process results in positive interactions.535

4.4 Experiments of Robustness536

Our methodology aims to improve the perfor-537

mance of the Solver LLM on KGQA by generating538

prompts. If the Solver LLM is replaced with a539

different LLM, the optimization criteria change,540

potentially leading to a decline in QA performance541

and undermining the robustness of the proposed542

method. We measured the impact on QA perfor-543

mance when the Solver LLM was replaced with544

an alternative LLM. To quantify this, we calculate545

the ratio by dividing the swapped Solver LLM’s546

performance by the same Solver LLM used in the547

train.548

The results are shown in Table 5. When the549

Solver LLM was changed from LLaMa2 to Mistral,550

there was no significant performance change for551

SimQ and Mintaka. However, for WebQSP, this552

change resulted in a 16% performance decline. The553

overall range of the Ratio was from 0.84 to 1.04,554

indicating a slight performance drop as expected.555

When the Solver LLM was switched from Mistral556

to LLaMa2, performance varied from a maximum557

9% decline to a maximum 14% improvement.558

Despite some performance drops in both scenar-559

ios, our methodology still outperformed other base-560

lines. Even with instances of performance decline,561

our approach consistently demonstrated superior562

performance compared to other baselines. The re-563

sults show that our method is robust even when the564

solver LLM is substituted.565

5 Conclusion566

In this study, we propose the Knowledge Graph567

to Knowledge-Augmented Prompt (KG2P) frame-568

Table 5: Results of Robustness Experiments. It shows
the change in EM for each data when the Solver LLM is
swapped during testing. The ratio is calculated by divid-
ing the performance when the Solver LLM is swapped
by the performance when the Solver LLM remains the
same during training and testing.

Solver LLM KG2P-DPO (LLaMa2) KG2P-DPO (Mistral)
Train Test SimQ WebQSP Mintaka SimQ WebQSP Mintaka

LLaMa2 LLaMa2 30.72 39.58 39.88 30.84 39.28 26.19
LLaMa2 Mistral 30.31 36.19 41.54 31.93 33.00 26.97

Ratio 0.99 0.91 1.04 1.04 0.84 1.03
Mistral Mistral 32.32 37.59 32.93 32.60 31.90 30.41
Mistral LLaMa2 30.90 39.28 30.07 29.82 36.29 29.49

Ratio 0.96 1.04 0.91 0.91 1.14 0.97

work, which effectively integrates LLMs with KGs. 569

Existing KG-to-Text transformation methods are 570

not optimized for enabling LLMs to effectively 571

utilize KG information, as they perform indepen- 572

dent transformations without considering the query. 573

This often results in unnecessary information being 574

included or critical information being omitted. To 575

overcome these limitations, our study introduces 576

two key techniques. 577

First, we employ DPO to refine knowledge- 578

augmented prompts, automatically learning trans- 579

formations that maximize QA performance. As a 580

result, KG-to-Text transformation is not merely a 581

replication of human annotation but is fine-tuned to 582

enable LLMs to generate more accurate responses. 583

Second, we apply query-aware transformation, en- 584

suring that KG information is tailored to the given 585

query. This optimization allows LLMs to leverage 586

KG information more effectively in QA tasks. 587

Experiments conducted on KGQA benchmark 588

datasets demonstrate that KG2P consistently out- 589

performs existing KG-to-Text methods. No- 590

tably, KG2P generates query-relevant information 591

more effectively than simple triple linearization 592

or traditional KG-to-Text models, providing better 593

prompts for Solver LLMs to derive correct answers. 594

Furthermore, cross-model evaluation with different 595

LLMs, including LLaMa2 and Mistral, confirmed 596

KG2P’s robustness and adaptability across various 597

LLM environments. 598

This study makes a contribution by introducing a 599

new paradigm for integrating LLMs with structured 600

knowledge. While prior KG-to-Text approaches 601

rely on static, human-generated data, our proposed 602

framework directly optimizes LLM response per- 603

formance. 604
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6 Limitations605

Our approach transcends the boundaries of KGQA606

and offers potential applicability to a range of607

studies involving the integration of KG with LM.608

Nonetheless, this investigation remains focused on609

QA, leaving the exploration of its wider applicabil-610

ity for future research.611

It is generally observed that LM with more pa-612

rameters tend to exhibit better QA performance.613

Due to resource limitations, our study is unable to614

explore a wide range of models. We employ mod-615

els that have 7 billion parameters and enhance their616

performance using LoRA and quantization tech-617

niques. Future investigations into the performance618

of more advanced LM may potentially yield even619

better results.620

Additionally, various alignment tuning tech-621

niques such as Identity Preference Optimisation622

(IPO) and Kahneman-Tversky Optimization (KTO)623

could be applied to our study alongside DPO (Azar624

et al., 2024; Ethayarajh et al., 2024). However, a625

key limitation of our work is that we did not con-626

duct experiments with different methods and only627

evaluated DPO.628
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A Details of Prompt Template 842

KG2P Tempalte (TP )
Please create a short hint paragraph to an-
swer the question reorganizing the triple
information, step by step.
Question: {question q}
Triple Information: {triples T q

1 , · · · , T
q
n }

Hint Paragraph:
843

QA Template (TQA)
Below are the facts that might be relevant
to answer the question. Please provide a
short answer(1-3 words in English) to the
following question.
Facts: {Knowledge Augmented Prompt P }
Question: {question q}
Answer:

844

B Implementation Details 845

B.1 QA Dataset Preprocessing 846

In this study, we used Wiki5M, a subset of Wiki- 847

data, as our knowledge base. The KGQA datasets 848

used in our experiments are based on the entirety of 849

Wikidata, which includes questions that cannot be 850

answered within the scope of Wiki5M. Therefore, 851

questions whose answer entities are not included in 852

Wiki5M were excluded from the experiments. The 853

specific number of excluded questions is shown in 854

Table 6. 855

Table 6: Number of Questions for Each Dataset Orig-
inal refers to the size provided by the original dataset.
Answerable means the count of questions whose answer
entities are included in Wiki5M.

Simple Question WebQSP-WD Mintaka
Train Test Train Test Train Test

Original 19481 5622 3098 1033 14000 4000
Answerable 17700 5071 2763 1003 13275 3811

B.2 Retrieval System 856

All triples in the Wiki5M dataset were converted 857

into text form using the linearization method, and 858

their vectors were generated using a text embed- 859

ding model. These vectors were indexed in a triple 860

vector repository denoted as DB. Upon receiving 861

a question, the text embedding model produced an 862

embedding vector for the question zq, which was 863

used to retrieve relevant triples through Maximum 864

Inner Product Search (MIPS). 865
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Specifically, the argtopk operation searches the866

k triples based on high inner product scores in the867

DB. We employed a pre-trained SentenceTrans-868

former6 (Reimers and Gurevych, 2019) as our text869

embedding model, and leveraged Faiss (Johnson870

et al., 2019) to efficiently perform the MIPS opera-871

tions.872

{T q
1 , · · · , T

q
k } = argtopkzi∈DBInnerProduc(zq, zi)

(4)873

B.3 Computational Resources and Training874

Details875

We utilized an Nvidia RTX 3090 24G GPU. To876

efficiently use computational resources, we applied877

4-bit NormalFloat (NF4) quantization and Low-878

Rank Adaptation (LoRA) during the training pro-879

cess, and NF4 quantization was also used during880

the inference process (Hu et al., 2021; Dettmers881

et al., 2024). Both SFT and DPO7 were trained for882

2 epochs on each dataset with a mini-batch size of883

2. For optimization, we used Adafactor (Shazeer884

and Stern, 2018) with a learning rate of 1e-5.885

C Case Study886

In §4.2, there are instances where performance de-887

creased despite the provision of KG information.888

Baek et al. (2023b) interpreted this phenomenon889

by categorizing two types of errors: retrieval error,890

where irrelevant knowledge is retrieved for a query,891

and grounding error, where an LLM fails to gener-892

ate the correct answer despite relevant knowledge893

is provided. Specifically, a retrieval error occurs894

when the retrieved results do not contain the cor-895

rect answer entity, while a grounding error occurs896

when the LLM generates an incorrect answer de-897

spite the presence of the answer in the given KG898

information. We conducted a detailed analysis by899

categorizing cases into Without Retrieval Error and900

With Retrieval Error based on the correct labels for901

each dataset.902

The role of the prompt generator differs depend-903

ing on the case. In the Without Retrieval Error904

case, the primary role of the prompt generator is to905

reduce the grounding error. Therefore, the prompt906

generator should transform triples into free-form907

6https://huggingface.co/sentence-transformers/
all-MiniLM-L12-v2

7Hugging Face Trainer was used for training.
https://huggingface.co/docs/trl/sft_trainer
https://huggingface.co/docs/trl/dpo_trainer

text that is more easily processed by LLMs. Con- 908

versely, in the case With Retrieval Error, the given 909

triples are insufficient to generate correct answers. 910

The primary objective of the prompt generator is 911

to extract information related to the question from 912

its parametric knowledge, which is acquired dur- 913

ing the pre-training process, to compensate for this 914

insufficiency. 915

Table 7 presents a case study comparing scenar- 916

ios with and without Retrieval Error. In the Without 917

Retrieval Error case, it is crucial to highlight the 918

relevant triples and eliminate the noise triples that 919

are unnecessary for deriving the correct answer. 920

Other baselines tend to emphasize irrelevant in- 921

formation or overly broad details, such as genres. 922

In contrast, KG2P-DPO accurately highlights the 923

necessary information, aiding the Solver LLM in 924

generating the correct answer. 925

In the With Retrieval Error case, there is insuffi- 926

cient information in retrieval results to derive the 927

correct answer, necessitating the generation of new 928

information using parametric knowledge. The most 929

critical factor in this process is generating relevant 930

information without hallucination. Linearization 931

and KG2T failed to generate new information, re- 932

sulting in the Solver LLM’s inability to produce the 933

correct answer. Frozen and KG2P-SFT generated 934

information but exhibited hallucinations by produc- 935

ing incorrect information. However, KG2P-DPO 936

generated accurate additional information, which 937

enabled the Solver LLM to derive the correct an- 938

swer. 939

Yu et al. (2023) demonstrates that leveraging 940

the parametric knowledge inherent in LLMs can 941

lead to the creation of prompt generator enhancing 942

QA task performance. Therefore, KG2P-DPO not 943

only effectively utilizes retrieval results but also 944

enriches answers with additional, relevant informa- 945

tion extracted from the vast parametric knowledge 946

in LLMs, demonstrating a robust method for im- 947

proving accuracy in KGQA tasks. 948
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Table 7: Example of Generated Knowledge Augmented Prompts. The example illustrates how KG2P-DPO
addresses Grounding Error and Retrieval Error. In the case without Retrieval Error, KG2P-DPO highlights the
essential knowledge needed to answer the question, thereby eliciting the correct answer. Moreover, in the case with
Retrieval Error, KG2P-DPO generates new knowledge to answer the question using parametric knowledge.

[Without Retrieval Error]
Question: What music is in espion, lève-toi?

Correct Answer: Ennio Morricone
Prompting Method Knowledge-Augmented Prompt Answer

Linearization

“(espion, lève-toi, instance of, movie)”,
“(espion, lève-toi, composer, ennio morricone)”,
“(Esra Dalfidan, genre, jazz music)”,
“(Cassiane, genre, Devotional music)”,
“(espion, lève-toi, genre, Spy movie)”

Jazz

Frozen
The music piece “espion, lève-toi” is featured in a spy movie.
Ennio Morricone composed it, and it belongs to the genre of spy music.
(the rest omitted)

Spy

KG2T
Espion, Lève-Toi is a spy movie with Ennio Morricone as its composer.
It is performed in jazz and devotional music.
Cassiane performs devotional music. Esra Dalfidan’s genre is jazz music.

Jazz

KG2P-SFT

The music you are looking for is “L’Impero” from the 1965 Italian spy film “Operazione San Gennaro.”
This score was composed by Ennio Morricone and features a distinctive blend of jazz
and devotional music that adds depth and complexity to the film’s action scenes.
(the rest omitted)

Jazz

KG2P-DPO

Based on the triple information provided, it can be inferred that the music in
“Espion, lève-toi” is Ennio Morricone’s score.
This talented Italian composer has created numerous iconic soundtracks for films,
including this spy movie.
(the rest omitted)

Ennio Morricone

[With Retrieval Error]
Question: What airport do you fly into to get to destin fl?

Correct Answer: Destin-Fort Walton Beach Airport
Prompting Method Knowledge-Augmented Prompt Answer

Linearization

“(Davin Lake Airport, country, p:ca)”,
“(michelle dusan, start point, Miami Airport, Florida)”,
“(northwest florida beaches international airport, place served by transport hub, un/locode:uspfn)”,
“(via742, destination point, Miami Airport, Florida)”,
“(mário lopes leite state airport, country, Brzil)”

MIA

Frozen

To get to Destin, Florida from Davin Lake Airport in Canada,
you will need to fly into Northwest Florida Beaches International Airport,
which is located near Panama City, Florida. From there, you can take a taxi or rental car to
Miami Airport, where you can catch a flight to Miami, and then another flight to Destin.
(the rest omitted)

Miami Airport

KG2T

The airport serving Destin is Northwest Florida Beaches International Airport
which has an Un/Locode of USPFN.
Michelle Dusan started at Miami Airport in Florida and via 742 she arrived there.
Davin Lake Airport is located in Brazil.

USPFN

KG2P-SFT

To get to Destin, Florida from Davin Lake Airport in Canada, you will need to fly into
Northwest Florida Beaches International Airport or Pensacola International Airport,
both located in Florida. From there, you can take a taxi or rental car
to your final destination in Destin.
(the rest omitted)

Northwest Florida
Beaches International

Airport (ECP)

KG2P-DPO

To get to Destin, Florida from your starting point of Miami Airport,
you will fly into Destin-Fort Walton Beach Airport,
which is located in the United States and serves as a major transportation hub for the region.
(the rest omitted)

Destin-Fort Walton
Beach Airport
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