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ABSTRACT

Quantization has been substantially adopted to accelerate inference and reduce
memory consumption of large language models (LLMs). While activation-weight
joint quantization speeds up the inference process through low-precision ker-
nels, we demonstrate that it suffers severe performance degradation on multi-
step reasoning tasks, rendering it ineffective. We propose a novel quantization
paradigm called QSPEC, which seamlessly integrates two complementary quan-
tization schemes for speculative decoding. Leveraging nearly cost-free execution
switching, QSPEC drafts tokens with low-precision, fast activation-weight quanti-
zation, and verifies them with high-precision weight-only quantization, effectively
combines the strengths of both quantization schemes. Compared to high-precision
quantization methods, QSPEC empirically boosts token generation throughput by
up to 1.80× without any quality compromise, distinguishing it from other low-
precision quantization approaches. This enhancement is also consistent across
various serving tasks, model sizes, quantization methods, and batch sizes. Un-
like existing speculative decoding techniques, our approach reuses weights and
the KV cache, avoiding additional memory overhead. Furthermore, QSPEC offers
a plug-and-play advantage without requiring any training. We believe that QSPEC
demonstrates unique strengths for future deployment of high-fidelity quantization
schemes, particularly in memory-constrained scenarios (e.g., edge devices).

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable abilities across various domains, in-
cluding mathematics, coding, and planning (Shao et al., 2024b; Guo et al., 2024a; Huang et al.,
2024). Nonetheless, their immense scales pose substantial challenges for deployment due to high
memory and computational demands, especially in resource-limited scenarios (e.g., inference on
edge devices). Quantization has been an effective compression technique to facilitate LLM infer-
ence with limited resources (Lin et al., 2024a; Ashkboos et al., 2024; Zhao et al., 2024b; Lin et al.,
2024b). By converting high-precision values (e.g., FP16) into their lower-precision counterparts
(e.g., INT4), quantization effectively lowers memory and computational requirements, allowing for
larger serving batches and model sizes. Furthermore, the reduced memory footprint boosts token
generation throughput by accelerating the typically memory-bound autoregressive decoding pro-
cess (Zhao et al., 2024a).

Based on the quantized objects, recent quantization algorithms can be broadly classified into two cat-
egories: weight-only and WXAX: (1) Weight-only quantization, represented by W4A16 (Lin et al.,
2024a), quantizes model weights to low precision (e.g., 4-bit) for storage, and then dequantizes them
to a higher precision (i.e., FP16) during inference; (2) WXAX methods, such as W4A4 (Ashkboos
et al., 2024; Zhao et al., 2024b) and W8A8 (Xiao et al., 2023), simultaneously quantize both weights
and activations, and leverage low-precision hardware support for faster execution without dequan-
tizing them to higher precision. Nevertheless, WXAX schemes generally suffer model performance
degradation due to more low-precision activations used (as verified in Sec. 2). This poses a tough
trade-off between efficacy and efficiency, raising the question:

“Is there a quantization solution that boosts efficiency while avoiding performance degradation?”.
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Figure 1: Diagrams of different 4-bit quantization schemes. Left: W4A16 uses 4-bit weight and 16-
bit activation for inference. Middle: W4A4 further adopts 4-bit activation to utilize low-precision
W4A4 kernels. Right: QSPEC accelerates W4A16 by drafting tokens with W4A4 and verifying
them with W4A16, and applies KV cache overwriting for consistent memory consumption.

Considering the comparable performance claims on recent W4A4 methods (Zhao et al., 2024b;
Ashkboos et al., 2024), we first contend that their conclusions are biased due to limited evaluation
tasks, and W4A4 still experiences significant performance drops when compared to their higher-
precision activation counterparts. Specifically, while W4A4 schemes such as Atom (Zhao et al.,
2024b) and QuaRot (Ashkboos et al., 2024) perform well on general tasks, such as PIQA (Bisk
et al., 2020), Winogrande (Sakaguchi et al., 2019) and ARC Clark et al. (2018), they demonstrate no-
table performance declines in multi-step reasoning, particularly on mathematical and coding bench-
marks (Xiong et al., 2024; Guo et al., 2024b) (shown in Table 1). This raises concerns about the
comprehensiveness of evaluation and emphasizes the necessity of incorporating multi-step reasoning
tasks into quantization assessment.

Then to answer the above question, we draw inspiration from Speculative Decoding (Leviathan
et al., 2023; Chen et al., 2023), which combines rapid drafting of a small model with high-quality
token generation of a larger model to boost throughput (i.e., efficiency) without compromising per-
formance (i.e., efficacy). We propose a novel paradigm called QSPEC, which combines mixed-
precision quantization execution to tackle the trade-off between efficiency and efficacy while
maintaining the memory usage of high-precision quantization. Our key insight is that a single
weight-quantized model can efficiently toggle two parallel quantization schemes: one with quan-
tized activations and the other without, which we further empirically verify to produce highly similar
tokens (Sec. 2.2). This observation unveils the potential for a synergistic approach combining both
schemes. As illustrated in Figure 1, for a 4-bit weight-quantized model, we can leverage the faster
yet lower-quality execution flow (i.e., W4A4) to draft tokens, while verifying these drafted tokens
with the higher-quality quantization flow (i.e., W4A16) with negligible switching costs. Similar to
speculative decoding, this ‘draft-verify’ mode with mixed quantization execution ensures high fi-
delity with the verifying flow. Differently, our approach re-utilizes the weights and high-precision
KV cache, maintaining the memory overhead equivalent to that of the high-precision scheme alone,
rather than the sum of both schemes in speculative decoding.

We evaluate the generation quality and end-to-end serving throughput of QSPEC against W4A4
and W4A16 schemes across multiple datasets, model sizes, quantization methods, and batch sizes.
Empirically, QSPEC preserves memory consumption and generation quality compared to W4A16,
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while offering a high acceptance rate and up to 1.80× higher token generation throughput, thereby
mitigating the efficiency-efficacy trade-off of existing quantization methods. Notably, for multi-step
reasoning tasks such as MATH (Hendrycks et al., 2021), QSPEC fully compensates for an up to
51.11% decline in generation quality observed with existing W4A4 methods. Furthermore, QSPEC
provides plug-and-play compatibility without any training requirements, and can be seamlessly ap-
plied to any existing models, delivering superior performance with minimal effort.

In summary, our main contributions are as follows:

• We demonstrate that multi-step reasoning tasks can better capture the performance vari-
ations of quantization schemes than current evaluation protocols, and advocate for their
incorporation for more comprehensive assessment.

• We validate and instantiate the feasibility of switching between two quantization schemes
of a shared weight-quantized model, as well as their high token-level similarities, illumi-
nating future development of quantization schemes.

• We propose QSPEC, synergizing two complementary weight-shared quantization schemes
with speculative decoding, alleviating the efficiency-efficacy trade-off of quantization.

• Our empirical results reveal up to 1.80× acceleration without any quality sacrifice across
diverse settings. Alongside consistent memory usage, these advantages promise QSPEC
for high-fidelity quantization deployment, especially in memory-constrained scenarios.

2 MOTIVATION

2.1 COMPROMISED PERFORMANCE OF ACTIVATION QUANTIZATION

State-of-the-art (SOTA) activation-weight joint quantization methods, like Atom (Zhao et al., 2024b)
and QuaRot (Ashkboos et al., 2024), achieve notable speed-ups with negligible performance loss
compared to weight-only ones. However, we argue that this conclusion is skewed by the limited
evaluation benchmarks, which fail to capture the negative impacts of activation quantization.

To substantiate this claim, we conduct experiments on Llama-3-8B-Instruct models (Dubey et al.,
2024) quantized with W16A16, W4A16, and W4A4 methods across four task datasets: PIQA (Bisk
et al., 2020), WikiText-2 (Merity et al., 2016), GSM8K (Cobbe et al., 2021), and MBPP (Austin
et al., 2021). PIQA is a two-choice commonsense reasoning benchmark for physical knowledge,
evaluated using classification accuracy, while WikiText-2 comprises a collection of high-quality
Wikipedia articles, assessed for language fluency via perplexity (Jelinek et al., 1977). Both are com-
monly adopted in current quantization evaluations. GSM8K includes diverse grade school math-
ematical problems, evaluated by “exact match” metrics; MBPP focuses on crowd-sourced Python
programming challenges, assessed by accuracy. Unlike the former two benchmarks, both GSM8K
and MBPP necessitate auto-regressive multi-step reasoning abilities. While these critical abilities
are propelled by the rapid advancement in LLMs recently, they have not yet been widely integrated
into mainstream quantization evaluation. As shown in Table 1, Atom-based quantization schemes
show comparable performance to W16A16 across commonly adopted tasks such as on PIQA and
WikiText-2, aligning with the claims in Zhao et al. (2024b). However, W4A4 suffers a nearly 30%

Table 1: Performance of Atom-based quantization schemes with different weight and activation
precision across diverse tasks. “Acc”, “PPL” and “EM” stand for accuracy, perplexity, and exact
match, respectively, with arrows indicating their positive trends. “W16A16” refers to standard FP16
inference, where both weights and activations are represented in FP16 precision.

Task Metric W16A16 Quantization

Atom (W4A16) Atom (W4A4)

WikiText-2 PPL ↓ 7.73 7.87 (+0.15%) 8.58 (+0.85%)
PIQA (10-shot) EM ↑ 78.6 77.5 (-1.40%) 75.6 (-3.81%)
MBPP (0-shot) EM ↑ 42.0 41.5 (-1.19%) 30.5 (-27.38%)

GSM8K (8-shot) EM ↑ 79.0 73.4 (-7.09%) 54.2 (-31.39%)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

average performance decline on complex reasoning tasks (i.e., on MBPP and GSM8K), whereas
W4A16 only experiences about 4%. This indicates that activation quantization leads to several
times more performance degradation on multi-step reasoning tasks, despite the improved efficiency.
Besides, the performance trend observed on multi-step reasoning tasks shows a stronger correlation
with quantization precision than perplexity does, validating their adequacy in assessing quantization
performance.

In summary, activation quantization still incurs significant performance loss on more advanced
multi-step reasoning tasks. This necessitates the inclusion of reasoning tasks in quantization evalua-
tion for a more comprehensive assessment. On the other hand, this also underscores the demand for
a quality-preserving yet efficient quantization paradigm.

2.2 HIGH-SIMILARITY TOKEN PREDICTIONS

Despite the notable performance decline caused by activation quantization, we observe, more mi-
croscopically, high similarity in top-1 token predictions between quantization schemes with high
and low precision activations. Specifically, we first employ Atom-based W4A16 greedy sampling
to generate the golden token sequences for the GSM8K test set, obtaining the prediction probabil-
ities for each top-1 answer token. Subsequently, we perform one Atom-based W4A4 forward pass
(i.e., prefill) on the concatenated input of each question and its corresponding golden answer to ac-
quire the token probabilities as well. This allows us to assess the prediction discrepancy between
W4A4 and W4A16. As illustrated in Figure 2, we observe that (1) the majority of token prediction
probabilities of both W4A4 and W4A16 exceed 80%, and most of the tokens associated with high
probabilities are accepted. (2) Compared to accepted tokens, the number of rejected ones is negli-
gible, underscoring the high similarity between the two quantization methods. Combined with the
analysis in Sec. 2.1, this can be interpreted that a small set of salient token variations can trigger a
snowball effect of errors, especially on multi-step reasoning tasks where the subsequent steps are
closely conditioned on the previous ones, akin to findings in Zhang et al. (2023), thus impairing the
performance of the low-precision activation scheme. Prior studies indicate that low similarity leads
to frequent token rejections, thereby diminishing the efficiency of speculative decoding (Leviathan
et al., 2023). The observed high token-level similarity suggests that we could potentially restore
the generation quality by detecting and correcting a limited number of generation errors incurred
by activation quantization. This insight motivates us to propose a quantization-specific speculative
decoding framework.

Figure 2: Scatter plot of token prediction probabilities for Atom-based W4A4 and W4A16 on
GSM8K test set, along with their two-dimensional and marginal probability distributions. A striking
similarity between the two quantization schemes is observed, laying the foundation of QSPEC.
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Figure 3: A mini-sample of QSPEC, where green, red, and purple tokens represent draft tokens,
rejected tokens, and tokens generated directly by W4A16, respectively.

3 METHOD

Targeting an efficient quantization scheme without sacrificing performance or increasing memory
consumption, we propose a new quantization paradigm called speculative decoding with comple-
mentary quantization execution (QSPEC). As shown in Figure 1, QSPEC employs a draft-verify
pipeline for next-token prediction with varying activation precisions and shared low-precision quan-
tized weights, instead of a single quantization scheme. The details are elaborated below, adhering to
the core component breakdown of regular speculative decoding (Leviathan et al., 2023).

3.1 QSPEC

Draft Phase. Current LLMs typically utilize an autoregressive process for next-token prediction,
where a new token is drawn from a probability distribution conditioned on all previously generated
tokens. This process can be formulated as:

ti+1 ∼ pi+1(t) := M(ti+1|T≤i), (1)
where M denotes the model including the weight and activation configurations, while ti+1 and T≤i

represent the next predicted token and the preceding token sequence (t0, t1, . . . , ti), respectively.

Compared with previous research (Leviathan et al., 2023; Chen et al., 2023), on one hand, we
employ a weight-shared quantization scheme with low-precision activations, rather than one stan-
dalone small-sized model, to speculate the next γ tokens T̂i+1:i+γ and their associated distri-
butions p̂i+1:i+γ(t). In T̂i+1:i+γ , each token t̂j is sampled from Ml(t̂j |T≤i, T̂i+1:j−1), where
j ∈ [i+1, i+ γ] and Ml represent our quantized model executed with low-precision activation. On
the other hand, our low-precision quantization scheme shares similar attributes as the draft model in
Leviathan et al. (2023), as both can generate tokens rapidly, though with reduced quality.

Verify Phase. To compensate for the performance decline incurred by excessive quantization,
we employ a high-precision weight-only quantization scheme to verify the proposed draft token
sequence. This ensures that the final generation quality aligns with that of a high-precision activation
quantization scheme. All drafted tokens are verified in parallel for higher efficiency.

Formally, the high-precision quantization scheme Mh receives as input the concatenation of T≤i

and T̂i+1:i+γ , producing high-quality prediction probabilities pi+1:i+γ+1(t) through a single for-
ward pass. Following this, an acceptance policy A, which will be detailed later, is applied to rectify
each drafted token sequentially. Once a token t̂i+j is rejected, all subsequent tokens are discarded,
and token ti+j is resampled according to the distribution pi+j(t). In the optimal scenario, all drafted
tokens from the low-precision quantized model are accepted by the high-precision model. Subse-
quently, an additional token ti+γ+1 is sampled from pi+γ+1(t). From this point, a new draft-verify
cycle commences, persisting until the sequence is finalized.

Acceptance Policy. To maintain high reproducibility, both low-precision and high-precision acti-
vation quantization schemes utilize greedy decoding throughout the generation process. This means

5
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that one drafted tokens t̂i+j is accepted as ti+j only when the top-1 tokens from pi+j and p̂i+j

coincide; otherwise, this token is rejected. Nonetheless, we claim that alternative strategies, as out-
lined in Leviathan et al. (2023), can be directly applied to our method due to the similarities in the
framework. Figure 3 illustrates a mini-sample of this cycle with the draft token length γ = 4. The
model initially speculates four tokens using W4A4 scheme. Subsequently, adhering to a predefined
acceptance policy, it accepts all drafted tokens after verifying them through the W4A16 scheme. In
the second loop, however, only the first two tokens are accepted. A new token “is” is directly derived
from the prediction probability of W4A16 scheme, and another draft-verify cycle will commence
from the ninth token.

KV Cache Overwriting. To further reduce memory consumption, QSPEC overwrites KV caches
of low-precision activation quantization with those of high-precision method. Specifically, com-
pared to W4A4, W4A16 is expected to yield a higher quality FP16 KV cache due to higher activa-
tion precision. Alongside the shared weights, this naturally allows overwriting the low-quality KV
caches generated by W4A4 with those from W4A16 for accepted tokens after each validation phase.
This enables W4A4 to condition on high-quality KV caches for subsequent autoregressive gener-
ation, and saves the memory occupation of W4A4 KV caches, despite requiring negligible buffer
space for temporarily storing. To some extent, this operation aligns with the settings of attention ker-
nels in prior works (Zhao et al., 2024b; Shao et al., 2024a; Ashkboos et al., 2024), where INT4 KV
caches are typically dequantized to FP16 before or during precision-sensitive attention operations to
ensure accurate computations.

3.2 ADVANTAGE ANALYSIS

As shown in Table 2, we compare QSPEC with individual quantization schemes (i.e., W4A4 and
W4A16) as well as speculative decoding across the dimensions of memory, computation, and gen-
eration. QSPEC offers several key advantages over these methods, detailed as follows:

• Memory-efficient. Quantization is often motivated by memory constraints, rendering regu-
lar speculative decoding unsuitable due to the additional memory allocation for the weights
and KV caches of the draft model. However, QSPEC addresses these memory overheads
by sharing weights and overwriting KV caches, aligning with the costs associated with
standalone high-precision activation quantization.

• No efficiency-efficacy trade-off. Leveraging the speculative decoding framework, QSPEC
achieves efficiency gains without any quality sacrifice, thereby avoiding the trade-off be-
tween efficiency and efficacy. In contrast, individual quantization methods either endure
significant performance degradation or accept reduced inference speed.

• High acceptance rate. The shared weights inherently enable a strong similarity between
the two quantization methods. Besides, the KV cache overwriting further enhances the
consistency of subsequent predictions. Both factors collectively contribute to a high token
acceptance rate of QSPEC.

• Plug-and-play compatibility. Compared to individual quantization schemes, QSPEC sim-
ply integrates an acceptance policy and a KV cache overwriting operation. This allows
QSPEC to be swiftly implemented based on existing quantization codes without extensive
modifications. Furthermore, QSPEC operates without additional training or classifiers, en-
abling its direct application to any existing model for enhanced inference efficiency.

Table 2: Comparison of individual quantization schemes, regular speculative decoding, and QSPEC
across memory, computation, and generation aspects.

Method Memory Computation Generation

Draft Weight Draft KV W4A4 Kernel Draft-Verify High Acceptance Rate High Fidelity

W4A16 ✗ ✗ ✗ ✗ - ✓
W4A4 ✗ ✗ ✓ ✗ - ✗
Speculative Decoding ✓ ✓ ? ✓ ? ✓
QSPEC ✗ ✗ ✓ ✓ ✓ ✓
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Table 3: Performance of different quantization methods across multiple general and reasoning
benchmarks: PIQA, WinoGrande, GSM8K, MATH, MBPP, and HumanEval. The quality degra-
dation ratio is calculated by W4A4

W4A16 − 1.

Method Quantization WikiText-25 PIQA WinoGrande GSM8K MATH MBPP HumanEval
PPL ↓ EM (%) ↑ EM (%) ↑ EM (%) ↑ EM (%) ↑ Pass@1 (%) ↑ Pass@1 (%) ↑

Atom
W16A16 7.73 76.8 61.4 76.2 24.9 42.5 53.0
W4A16 7.87 74.8 62.0 73.4 24.3 42.0 52.4
QSPEC 7.87 75.0 62.0 73.4 24.3 40.5 52.4
W4A4 8.6 (+9.58%) 65.8 (-12.03%) 56.2 (-9.35%) 54.7 (-25.47%) 15.5 (-36.21%) 33.0 (-21.43%) 31.7 (-39.50%)

QuaRot
W16A16 7.73 76.8 61.4 76.2 24.9 42.5 53.0
W4A16 8.58 74.2 59.4 70.5 24.7 40.0 45.7
QSPEC 8.58 74.4 59.2 71.0 24.7 40.5 47.6
W4A4 10.2 (+19.24%) 62.6 (-15.63%) 53.8 (-9.43%) 42.0 (-40.43%) 12.3 (-51.11%) 28.5 (-28.75%) 28.0 (-38.73%)

4 EXPERIMENTS

Our evaluation answers three key questions:

Q1: Does QSPEC preserve the quality of high-precision weight-only quantization? (Sec. 4.2)
Q2: Does QSPEC accelerate high-precision weight-only quantization methods? (Sec. 4.3)
Q3: What is the acceptance rate of QSPEC, and the impact of draft token length on it? (Sec. 4.3)

4.1 GENERAL SETUP

Benchmarks. We assess QSPEC with two primary criteria: (1) generation fidelity and (2) end-to-
end serving speedup. For fidelity evaluation, we adopt not only traditional tasks, including PIQA
(500, 10-shot) (Bisk et al., 2020), WinoGrande (500, 5-shot) (Sakaguchi et al., 2019), and Wiki-
Text2 (Merity et al., 2016), but also challenging multi-step reasoning tasks such as GSM8K (All, 8-
shot) (Cobbe et al., 2021), MATH (All, 4-shot) (Hendrycks et al., 2021), MBPP (200, 0-shot) (Austin
et al., 2021), and HumanEval (All, 0-shot) (Chen et al., 2021). To measure the acceleration, we use
all the above reasoning tasks and two additional chatbot datasets, namely ShareGPT (RyokoAI,
2021) and LMsys-1K (Zheng et al., 2023). Following the setup of Atom (Zhao et al., 2024b), we
randomly sampled the dataset for the request prompts to reduce the workload. Due to memory limi-
tations, we vary the batch size from 8 to 32 and serve all requests in a first-come, first-served (FCFS)
manner. Once any request is finished, we refill the batch, adhering to the continuous batching ap-
proach of ORCA (Yu et al., 2022). We use greedy sampling for token generation.

Base Models. To assess the effectiveness and scalability of our approach, we conduct experiments
using multiple models from the Llama family (Dubey et al., 2024)1 with varying scales and capaci-
ties: Llama3.2-3b, Llama2-7b, Llama3-8b-instruct, and Llama2-13b.

Implementation. All experiments are performed on a node equipped with four NVIDIA A100
GPUs (40GB HBM each) running CUDA 12.5. For the results on NVIDIA L20 GPUs, please refer
to Appendix A. To demonstrate the versatility of QSPEC, we implement two SOTA 4-bit quantiza-
tion methods, namely Atom (Zhao et al., 2024b) and QuaRot (Ashkboos et al., 2024). For W4A16
configurations, we incorporate AWQ-style (Lin et al., 2024a) weight dequantization logic for run-
time inference. We select Atom to showcase the acceleration of QSPEC. We use these Group-wise
quantization schemes with a group size of 128. With the draft token length γ as 3, we simulate the
performance of QSPEC by initially employing fake quantization to fully emulate the execution flow,
encompassing both the draft and verify stages of QSPEC. Subsequently, we replay the collected
traces with real kernel execution to accurately reproduce the latency.2

4.2 FIDELITY EVALUATION

QSPEC effectively maintains the generation quality of W4A16, whereas W4A4 does not. As
listed in Table 3, with the draft verification of W4A16, QSPEC exhibits only minimal performance

1https://www.huggingface.co/meta-llama
2Atom’s kernel only supports shape-specific models. We modify the model structure to meet requirements

while maintaining the original model size.
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Table 4: Comparison of token generation throughput across different model sizes, quantization con-
figurations, and batch sizes for various datasets. All values are measured in token/s. “Avg.” denotes
the average speedup ratio for the corresponding row or column.

Model Method Batch GSM8K MATH MBPP HumanEval ShareGPT LMsys-1k Avg.

3B1

W4A16
8 326.1 360.2 429.0 392.4 434.7 401.7 –
16 529.1 653.8 820.3 673.2 882.2 772.9 –
32 679.2 906.8 1261.4 848.4 1439.3 1103.6 –

QSPEC

8 501.5 (1.54×) 537.2 (1.49×) 640.4 (1.49×) 593.1 (1.51×) 646.6. (1.49×) 592.7 (1.48×) 1.50×
16 731.9 (1.38×) 837.8 (1.28×) 863.2 (1.17×) 875.9 (1.30×) 1081.4 (1.23×) 945.0 (1.22×) 1.24×
32 950.3 (1.40×) 1175.8 (1.30×) 1371.0 (1.09×) 1052.3 (1.24×) 1645.9 (1.14×) 1347.6 (1.22×) 1.23×

Avg. 1.44× 1.36× 1.25× 1.35× 1.29× 1.31× 1.33×

7B

W4A16
8 126.8 144.1 165.0 170.4 177.1 157.0 –
16 213.1 267.2 314.9 344.6 358.6 300.8 –
32 257.6 347.1 409.7 478.9 509.1 402.0 –

QSPEC

8 203.7 (1.61×) 239.9 (1.66×) 234.8 (1.42×) 281.5 (1.65×) 274.4 (1.55×) 241.4 (1.54×) 1.57×
16 312.3 (1.47×) 377.6 (1.41×) 380.1 (1.21×) 459.6 (1.33×) 455.2 (1.27×) 379.5 (1.26×) 1.33×
32 496.2 (1.54×) 488.5 (1.41×) 473.4 (1.16×) 620.2 (1.30×) 633.1 (1.24×) 498.3 (1.24×) 1.31×

Avg. 1.54× 1.50× 1.26× 1.43× 1.35× 1.35× 1.40×

8B

W4A16
8 121.8 131.2 155.2 153.4 163.8 152.4 –
16 210.3 247.0 300.7 293.5 365.6 311.2 –
32 277.1 355.3 425.1 398.7 619.1 486.5 –

QSPEC

8 191.7 (1.57×) 200.4 (1.53×) 214.4 (1.38×) 230.1 (1.50×) 241.0 (1.47×) 220.6 (1.45×) 1.48×
16 294.2 (1.40×) 333.4 (1.35×) 334.1 (1.11×) 373.0 (1.27×) 431.7 (1.18×) 373.4 (1.20×) 1.25×
32 368.8 (1.33×) 447.5 (1.26×) 478.1 (1.12×) 484.2 (1.21×) 687.3 (1.11×) 564.1 (1.16×) 1.20×

Avg. 1.43× 1.38× 1.21× 1.33× 1.25× 1.27× 1.31×

13B1

W4A16
8 74.0 85.1 103.7 100.5 104.1 92.3 –
16 128.6 163.0 185.8 177.7 222.8 173.1 –
32 195.1 206.9 323.7 327.8 330.1 241.6 –

QSPEC

8 127.8 (1.73×) 148.6 (1.75×) 173.4 (1.67×) 180.8 (1.80×) 173.5 (1.68×) 150.2 (1.63×) 1.71×
16 194.7 (1.51×) 235.4 (1.44×) 285.9 (1.54×) 292.5 (1.65×) 288.7 (1.30×) 222.9 (1.29×) 1.45×
32 247.1 (1.27×) 307.4 (1.49×) 399.9 (1.24×) 435.3 (1.33×) 407.1 (1.23×) 323.3 (1.34×) 1.31×

Avg. 1.50× 1.56× 1.48× 1.59× 1.40× 1.42× 1.49×

fluctuations compared to W4A16. This negligible variation may stem from the nondeterministic
algorithms of PyTorch3 or occasional cases where two tokens have the same maximum prediction
probability. In contrast, W4A4 experiences a substantial performance decline exceeding 10% across
most tasks, with the reduction becoming more pronounced as task difficulty increases. For instance,
compared to GSM8K and MBPP, the performance drop for W4A4 is much greater on the more
challenging MATH and HumanEval tasks, showing declines of 51.11% and 38.73%, respectively.
On the other hand, this also highlights the higher sensitivity of multi-step reasoning tasks to the
negative effects of quantization compared to regular tasks, such as WikiText-24 and WinoGrande.
This observation aligns with our earlier analysis in Sec. 2, encouraging incorporating multi-step
reasoning tasks into quantization evaluation.

4.3 ACCELERATION EVALUATION

QSPEC exhibits a substantial efficiency boost compared to W4A16. In Table 4, we present the
token generation throughput for both QSPEC and W4A16 across different model sizes, quantization
configurations, and batch sizes on diverse datasets. On average, QSPEC achieves a throughput
increase of 1.38× over W4A16 across all settings, with a peak improvement of 1.80×.

Speedup does not show an evident correlation with task difficulty. As shown at the bottom of
Table 4, we calculate the average acceleration ratios across all configurations for each dataset. When
comparing on simpler dialogue datasets (i.e., ShareGPT and LMsys-1k), QSPEC exhibits negligible
throughput variation on multi-step reasoning tasks, particularly on coding tasks, despite a more
pronounced performance decline of W4A4. Even on GSM8K and MATH tasks, a higher throughput
is observed, due to the application of 8-shot and 4-shot prompts, respectively. This finding supports

3https://pytorch.org/docs/stable/notes/randomness.html
4To measure perplexity, only a single prefill stage is necessary, bypassing the verify stage.
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Figure 4: Per-valid-token latency comparison of QSPEC and W4A16 across different models and
batch sizes. The latency of QSPEC is further decomposed into draft and verify categories.

(a) Llama3.2-3b (b) Llama3-8b-instruct

Figure 5: Acceptance rate and throughput of Llama3.2-3b (batch size 8) and Llama3-8b-instruct
(batch size 16) with respect to the draft token length γ.

our observations in Sec. 2, where we attribute the reduction in multi-step reasoning capabilities to
a few token changes that cause a worsening snowball effect, rather than numerous token prediction
errors.

Larger models tend to yield better speedup ratios. We compare the average acceleration on
all datasets across different models, and find a gradually-increasing acceleration as the base model
scales up5. This overall upward trend indicates a promising outlook for our approach with larger
models, although further experiments are needed for confirmation. Due to resource limitations, this
will be addressed in future work.

Latency Composition. As illustrated in Figure 4, we compute the per-valid-token latency by di-
viding the total latency by only the number of accepted tokens before averaging on all evaluation
datasets. Notably, QSPEC achieves remarkable latency savings ranging from 38.8% to 52.9%. Be-
sides, the per-token latency is further decomposed into two components: draft and verify latency.
Clearly, the primary gains of QSPEC arise from the rapid drafting capability and the reduced latency
achieved through the parallel verification of multiple tokens.

Ablation on Draft Token Length. To assess parameter sensitivity, we vary the draft token lengths
γ, the sole hyper-parameter of QSPEC, from 2 to 7 across all the benchmarks using Llama3.2-3b
and Llama3-8b-instruct models. As depicted in Figure 5, an increase in γ leads to a gradual de-
cline in the token acceptance rate, since all subsequent tokens are discarded once a token is rejected.
Nevertheless, even at γ = 7, the token acceptance rate remains relatively high, approximately 70%,
compared to 28 ∼ 58% in 160m-7b draft-target model pair under γ = 5 in conventional specula-

5It is noteworthy that Llama2-7B shows higher speedup than Llama3-8B. This stems from the size difference
primarily related to vocabulary, coupled with the introduction of Group-Query Attention (Ainslie et al., 2023),
reducing the computation workload.
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tive decoding (Liu et al., 2024). Additionally, a consistent improvement in throughput is observed
compared to W4A16, indicating the robustness of QSPEC with respect to γ.

5 RELATED WORK

Quantization is a common technique for deploying LLMs on resource-limited scenarios. Broadly,
recent quantization algorithms can be classified into two categories: weight-only W4A16 and
weight-activation joint W4A4. Notably, AWQ (W4A16) (Lin et al., 2024a) redistributes the quan-
tization burden by scaling salient weight channels to protect them from degradation. In contrast,
W4A4 aggressively quantizes activations to leverage low-precision hardware for improved speed at
the cost of model quality degradation. To address this challenge, Atom (Zhao et al., 2024b) proposes
reordering outlier channels in the activation through offline profiling. Similarly, QuaRot (Ashkboos
et al., 2024) employs Hadamard matrices to apply computational invariance on weights. Despite
these advancements, our observations indicate that W4A4 methods still exhibit substantial degra-
dation compared to weight-only quantization approaches across multi-step reasoning tasks. On the
other hand, adaptive quantization aims to optimize the trade-off between quantization-induced qual-
ity degradation and computational acceleration by mixed precision. LLM-PQ (Zhao et al., 2024a)
proposes an adaptive layer-wise bitwidth selection approach, while QAQ (Dong et al., 2024) focuses
on KV-cache bitwidth optimization. Other works operate at finer granularity to address outliers (Lee
et al., 2024). However, these methods cannot fully recover the generation quality of higher precision.

Speculative Decoding leverages a draft model to generate candidate tokens, which are then vali-
dated by a target model (Leviathan et al., 2023). Recent research has primarily focused on improv-
ing the acceptance rate and generation speed of candidate tokens. SpecInfer (Miao et al., 2024)
introduces a boost-tuned small language model to generate candidate tokens in tree structures, en-
abling single-pass verification. In contrast, EAGLE (Li et al., 2024) adopts an aggressive pruning
strategy for the draft model’s architecture, allowing penultimate layer feature prediction with mini-
mal computational overhead. Self-speculative decoding, a subset of this technique, employs a single
model for both draft generation and verification. LayerSkip (Elhoushi et al., 2024) introduces a
training methodology for early exit with layer drop, subsequently verifying partially generated to-
kens through full model inference. Medusa (Cai et al., 2024) constructs a generation tree of multiple
candidate continuations by augmenting the original LLM with additional heads atop the final hidden
state while relaxing the acceptance policy. However, these approaches inevitably require retraining
of the original model, which can be computationally expensive and time-consuming.

Parameter Sharing has been extensively applied for various purposes in previous research. Tar-
geting parameter savings, Universal Transformer (Dehghani et al., 2018) shares all layers within a
transformer model, while Subformer (Reid et al., 2021) shares its middle layers without sacrificing
performance. Similarly, DictFormer (Lou et al., 2021) reparameterizes the model using a shared
dictionary alongside unshared coefficients and indices, achieving reduced parameter redundancy
and faster computations. Pires et al. (2023) enhances both accuracy and latency by implementing
a single, larger shared feed-forward network across the encoder. In a different domain, Wang et al.
(2024b;a) and Kopiczko et al. (2023) leverage parameter sharing in low-rank adaptation (LoRA) (Hu
et al., 2021) to improve parameter efficiency. Unlike these methods, our focus is on sharing low-
precision weights from two quantization schemes to maintain memory overhead.

6 CONCLUSION

In this paper, we begin by validating that multi-step reasoning tasks can capture performance degra-
dation incurred by activation quantization more sensitively and consistently than current evaluation
protocols, advocating for their incorporation for a more comprehensive assessment. With nearly
cost-free execution switching and high token-level similarities, we introduce QSPEC, a novel quanti-
zation paradigm that seamlessly synergizes two complementary weight-shared quantization schemes
with speculative decoding. Empirically, QSPEC achieves up to 1.80× acceleration without any qual-
ity sacrifice across diverse settings. Alongside consistent memory consumption and a plug-and-play
property, these advantages distinguish QSPEC from any existing solution, promising it for high-
fidelity quantization deployment, particularly in memory-constrained scenarios.
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A SUPPLEMENTARY EXPERIMENTS

We further extend our experiments on NVIDIA L20 GPUs, and complement additional analysis of
W16A16 (Wolf et al., 2020), Atom-based W4A16 (Lin et al., 2024a), W4A4 (Zhao et al., 2024b),
and QSPEC.

Consistent Efficiency Enhancement of QSPEC over W4A16. As presented in Table 5, we detail
the token generation throughput for both QSPEC and WXAX methods across various model sizes,
quantization configurations, batch sizes, and datasets. Compared to W4A16, QSPEC achieves a
throughput increase of 1.33× across all the settings on average, with a peak improvement of 1.64×.
These results, along with those in Table 4, validate the consistent efficiency superiority of QSPEC
over W4A16 on different GPU platforms. Additionally, QSPEC consistently outperforms W16A16
in terms of efficiency across all the settings.

Preserved Generation Quality of QSPEC Compared to W4A16. As illustrated in Figure 6, we
visualize the generation quality (i.e., accuracy) and efficiency (i.e., throughput). Aligning with the
analysis of Table 1, W4A4 experiences a significant performance decline, ranging from 18.5% to
39.5%, on multi-step reasoning benchmarks when compared to W4A16. In contrast, QSPEC not
only maintains the performance of W4A16 (slightly lower than that of W16A16 due to weight
quantization for memory saving), but also offers much higher throughput.

Detailed Latency Decomposition of Per Valid Token. As shown in Figure 7, we calculate the
per-valid-token latency by dividing the total latency by the number of accepted tokens in each sam-
ple, which is then averaged across all samples and evaluation datasets. Notably, the decode stage
accounts for the majority of the time latency when compared to the prefill stage. With the rapid draft-
ing capability and parallel verification, QSPEC achieves significantly lower latency than W4A16,
ranging from 28.5% to 39.7%. In detail, QSPEC spends more time in the draft phase than in the
high-precision verify phase. This may be attributed to the high acceptance rate of QSPEC, which
resulted in less verify requests.

Ablation on Draft Token Length. To assess parameter sensitivity, we vary the draft token length
γ, the sole hyperparameter of QSPEC, from 2 to 7 across all benchmarks with Llama3.2-3b and
Llama3-8b-instruct models. For a thorough comparison, we also include the throughput of W16A16
and W4A16 as references. As depicted in Figure 8, an increase in γ results in a gradual decrease in
the token acceptance rate, since the rejection of any token leads to the discarding of all subsequent
tokens. Nevertheless, even at γ = 7, the token acceptance rate remains relatively high at approx-
imately 70%, compared to the 28%–58% observed in the 160m–7b draft-target model pair under
γ = 5 in conventional speculative decoding (Liu et al., 2024). Additionally, we observe a continu-
ous improvement in throughput compared to W4A16, indicating the hyperparameter robustness of
QSPEC. With an appropriate choice of γ (i.e., γ ≤ 5), QSPEC consistently outperforms W16A16 in
both memory consumption and efficiency.

(a) Batch Size 8 (b) Batch Size 16

Figure 6: Comparison of accuracy and efficiency among W16A16, W4A16, W4A4, and QSPEC
across various datasets with batch sizes of 8 and 16, respectively. The bars and lines represent the
accuracy and throughput of each method.
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Figure 7: Per-valid-token latency decomposition of W16A16, W4A16, QSPEC and W4A4 across
different models and batch sizes. The latency of QSPEC is further decomposed into draft and verify
categories for details.

(a) Llama3.2-3b (b) Llama3-8b-instruct

Figure 8: Acceptance rate and throughput of Llama 3.2-3b (with a batch size of 8) and Llama 3-8b-
instruct (with a batch size of 16) with respect to the draft token length γ.
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Table 5: Comparison of token generation throughput across different model sizes, quantization con-
figurations, and batch sizes for various datasets. All values are measured in token/s. “Avg.” denotes
the average speedup ratio for the corresponding row or column. “†” indicates the failure of W4A16
kernels to support these batch sizes together with long sequences and the large models.

Model Method Batch GSM8K MATH MBPP HumanEval ShareGPT LMsys-1k Avg.

3B1

W16A16
8 511.1 588.7 756.6 647.2 785.7 711.2 –
16 666.5 845.6 1171.0 948.3 1292.2 1126.4 –
32 833.4 1081.5 1697.7 1111.6 1975.6 1553.3 –

W4A4
8 804.7 921.2 1002.0 892.6 1091.6 990.3 –

16 1109.1 1374.5 1548.0 1289.8 1763.5 1581.0 –
32 1424.3 1899.3 2300.6 1488.2 2777.3 2194.4 –

W4A16
8 420.0 476.7 604.5 535.7 610.4 559.8 –

16 578.5 715.9 989.7 804.4 1080.2 925.8 –
32 726.3 933.8 1536.7 954.4 1704.5 1336.4 –

QSPEC

8 594.1 (1.41×) 648.2 (1.36×) 760.1 (1.26×) 723.6 (1.35×) 787.5 (1.29×) 738.8 (1.32×) 1.33×
16 811.5 (1.40×) 936.0 (1.31×) 1157.8 (1.17×) 1042.1 (1.30×) 1294.5 (1.20×) 1171.4 (1.27×) 1.27×
32 1030.4 (1.42×) 1240.2 (1.33×) 1617.4 (1.05×) 1248.5 (1.31×) 1969.6 (1.16×) 1576.0 (1.18×) 1.24×

Avg. 1.41× 1.33× 1.16× 1.32× 1.21× 1.25 × 1.28×

7B

W16A16
8 213.4 254.3 278.8 316.7 322.4 285.3 –

16 290.3 362.1 447.7 505.1 541.3 441.6 –
32 340.9 441.6 585.3 663.6 735.3 564.2 –

W4A4
8 349.5 411.7 396.1 471.2 471.8 419.4 –

16 496.6 612.2 614.3 749.5 760.9 642.6 –
32 620.0 793.6 801.5 1043.9 1083.2 865.5 –

W4A16
8 165.0 193.1 224.5 240.2 243.5 220.2 –

16 231.8 286.5 384.4 407.3 435.9 358.0 –
32 268.9 359.9 480.0 555.9 620.2 470.1 –

QSPEC

8 253.7 (1.54×) 291.5 (1.51×) 298.3 (1.33×) 350.9 (1.46×) 345.7 (1.42×) 310.3 (1.41×) 1.44×
16 359.8 (1.55×) 420.2 (1.47×) 466.7 (1.21×) 555.2 (1.36×) 557.8 (1.28×) 473.1 (1.32×) 1.37×
32 441.8 (1.64×) 527.2 (1.46×) 575.3 (1.20×) 749.4 (1.35×) 770.0 (1.24×) 628.4 (1.34×) 1.39×

Avg. 1.58× 1.48× 1.25× 1.39× 1.31× 1.36× 1.39×

8B

W16A16
8 189.4 211.5 256.0 259.1 290.7 265.8 –

16 262.0 311.2 408.7 401.2 511.0 447.4 –
32 303.8 390.8 566.3 522.6 820.0 649.8 –

W4A4
8 295.3 323.5 344.6 354.4 395.9 366.8 –

16 431.4 503.3 536.8 566.4 697.5 621.1 –
32 532.8 688.5 755.7 763.7 1167.9 956.8 –

W4A16
8 155.6 173.8 215.0 208.7 231.1 215.6 –

16 222.9 263.0 354.8 345.9 422.8 369.4 –
32 † † 509.8 468.7 706.0 580.5 –

QSPEC

8 222.6 (1.43×) 233.9 (1.35×) 256.7 (1.19×) 271.5 (1.30×) 285.0 (1.23×) 268.3 (1.24×) 1.29×
16 322.6 (1.45×) 362.5 (1.38×) 402.7 (1.14×) 438.5 (1.27×) 507.5 (1.20×) 453.5 (1.23×) 1.28×
32 400.2 (†) 362.5 (†) 578.1 (1.13×) 573.0 (1.22×) 798.8 (1.13×) 684.5 (1.18×) 1.27×

Avg. 1.44× 1.36× 1.15× 1.26× 1.19× 1.22× 1.27 ×

13B1

W16A16
8 121.9 146.6 183.1 182.0 187.1 160.1 –

16 169.6 211.2 304.4 291.0 311.0 243.0 –
32 202.4 253.8 426.0 423.5 311.0 334.2 –

W4A4
8 194.7 228.2 253.6 261.5 259.8 228.2 –

16 288.3 349.2 415.3 424.9 431.5 348.4 –
32 369.8 469.9 606.7 665.4 431.5 508.8 –

W4A16
8 94.8 112.9 143.4 140.0 146.7 127.9 –

16 136.1 171.9 250.8 236.9 255.9 207.2 –
32 † † 376.4 365.5 255.9 287.4 –

QSPEC

8 148.2 (1.56×) 167.9 (1.49×) 193.6 (1.35×) 201.2 (1.44×) 194.5 (1.33×) 174.0 (1.36×) 1.42×
16 212.8 (1.56×) 248.6 (1.45×) 316.8 (1.26×) 323.3 (1.36×) 327.4 (1.28×) 266.9 (1.29×) 1.29×
32 266.6 (†) 320.0 (†) 451.5 (1.20×) 483.0 (1.32×) 327.4 (1.28×) 379.3 (1.32×) 1.32×

Avg. 1.56× 1.47× 1.27× 1.37× 1.29× 1.32× 1.38×
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