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ABSTRACT

Post-hoc explanations aim at understanding which input features (or groups
thereof) are the most impactful toward certain model decisions. Many such meth-
ods have been proposed (ArchAttribute, Occlusion, SHAP, RISE, LIME, Inte-
grated Gradient) and it is hard for practitioners to understand the differences be-
tween them. Even worse, faithfulness metrics, often used to quantitatively com-
pare explanation methods, also exhibit inconsistencies. To address these issues,
recent work has unified explanation methods through the lens of Functional De-
composition. We extend such work to scenarios where input features are par-
titioned into groups (e.g. pixel patches) and prove that disagreements between
explanation methods and faithfulness metrics are caused by between-group in-
teractions. Crucially, getting rid of between-group interactions leads to a single
explanation that is optimal according to all faithfulness metrics. We finally show
how to reduce the disagreements by grouping features on tabular/image data.

1 INTRODUCTION

With the rise in complexity of Machine Learn-
ing models, there has also been a rise in con-
cerns regarding the black-box nature of the
most performant models. As a result, the field
of eXplainable Artificial Intelligence (XAI) has
rapidly grown and now proposes a myriad
of techniques to “explain” model predictions
(Molnar, 2025}).

One of the main roadblocks to XAl is the so- @ (b)
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between explanation methods. Due to lack of . .
. .. (b) By grouping features, we increase agreement
ground truth in XAI, practitioners cannot de- .
between the techniques.

cide which explanation, if any, is the correct
one when they disagree. To address this issue, methods like Shapley Values (Lundberg & Lee,
2017) and the Integrated Gradient (Sundararajan et al.l 2017)) have been motivated as the unique
explanations satisfying a set of theoretical properties. As such, they are advertised as a form of
ground-truth. Still, in the case of Shapley Values, it was demonstrated that their “Dummy” property
can be violated in practice (Sundararajan & Najmil, 2020). Regarding the Integrated Gradient, its
properties were proven to be insufficient at specifying a unique explanation (Lerma & Lucas}, 2021)).
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Alternatively, some works benchmark explainability methods using unfaithfulness metrics : for ex-
ample the F-score (Tomsett et al.,[2020), u-Fidelity (Bhatt et al.|[2020), INFD (Dai et al.| [2022), and
Shapley-Weighted Fidelity (SWF) (Muschalik et al., 2025). Unfortunately, unfaithfulness metrics
were previously shown to be inconsistent : an explanation can be ranked first by a metric and ranked
last by another (Tomsett et al., 2020)).

Recent work has unified the various explanation techniques through the lens of Functional Decom-
position (Fumagalli et al., [2025; Deng et al., [2024). We extend these efforts to scenarios where
features are partitioned into groups (e.g. pixel patches for images), we identify the root cause of
disagreements between explainers and faithfulness metrics: between-group interactions, and we
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Figure 2: Explaining the “White Wolf” prediction of a ResNet18 using several saliency map meth-
ods. (Top), When considering 14 x 14 patches, the saliency maps highlight different parts of the
image. (Middle) To minimize a disagreement objective function L, AGREED fuses the various
patches. For example, the initial patches covering the wolf’s eyes and nose are fused. (Bottom),
Eventually, AGREED leads to large patches where agreement among saliency map techniques is
increased.

minimize it by adaptively grouping features. Our framework, called Adaptive Grouping to REduce
Explanation Disagreements (AGREED), is empirically assessed on tabular and image datasets. Fig-
ures [T and 2] illustrate AGREED on the California and ImageNet datasets respectively. To resume,
our contributions are

1. Unifying group importance methods and faithfulness metrics through Functional Decom-
position and demonstrate that disagreements are caused by between-groups interactions.

2. Proposing the AGREED algorithm to discover feature groups and assessing its performance
on tabular and image datasets.

2 BACKGROUND

2.1 FUNCTIONAL DECOMPOSITIONS

All notation used throughout the paper is enumerated in Appendix [B.1} We let [d] := {1,...,d} be
a set of d features, X C R? be the input domain, x € X be an arbitrary input, f : X — Rbea
model, and D be the data distribution of inputs (x ~ D). Given a feature subset u C [d], we denote
its cardinality by |u|. Functional Decomposition aims to represent f as a sum of 2¢ sub-functions

f@) =" ful@), ¢))

uCl[d]

where f, only depends on (x;);e,. The term fj is a constant, the terms f,, for |u| = 1 are called
main-effect while the terms |u| > 2 are referred to as |u|-way interactions. Functional Decomposi-
tions are not unique and their definition is often based on a heuristic for removing feature x;. One
heuristic consists of freezing x; at a baseline value b; using the replace-functionr, : X x X — X
defined as

ru(b,x); = x; if j € u otherwise b;. (2)

Treating the baseline b ~ B as random leads to the Marginal Decomposition (Fumagalli et al.,
2025)).

Definition 2.1 (Marginal Decomposition). Given a distribution B, the Marginal Decomposition is

Jup(®) = Bou[f (ru(b,@))] = Y fos(@). A3)

vCu
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When B = §j is a Dirac delta centered at b, the decomposition falls back to the so-called Anchored-

Decomposition (Kuo et al.,|2010). If B = By := szl B; (i.e. input features are independent), the
Marginal Decomposition becomes the ANOVA Decomposition (Hooker| [2004) (see Appendix [B.2).
Since the Marginal Decomposition is relative to a distribution B, it cannot explain model prediction
f() in isolation. Rather, the main effects and interactions explain the Gap f(x) — Epp[f ()]
between a specific prediction and the average prediction. For Tabular data, it is common to let
B = D be the data distribution (Lundberg & Lee, 2017)), while for Images it is common to use a

single baseline image b : the average color (Ribeiro et al., 2016)) or O (Petsiuk et al., 2018)).

2.2 EXPLAINING FEATURE GROUPS

Many explainability methods explain the joint effect of feature groups, instead of their individual
effects. This is the case for saliency maps that first group pixels into super-pixels (Ribeiro et al.,
2016; Tsang et al., 2020) or square patches (Zeiler & Fergus| 2014; Petsiuk et al.,[2018)). Assuming
d features are fed to the model, consider a partition of [d] into D disjoint groups. This partition can
be described with a function P : [d] — [D] that associates each feature j € [d] to its group index
P(j) € [D]. We will employ the mapping P(u) := {P(j) : j € u} for u C [d] to enumerate all
groups indices within a |u|-way interaction and the inverse map P~*(U) := {j € [d] : P(j) € U}
for U C [D] to list all features that are part of certain groups. Finally, P’ is a super-partition of P if
P(j) = P(k) = P'(j) = P'(k).

When investigating the effect of feature groups on the gap f(x) — Ep5[f ()], the ideal scenario is
that of a Groupwise Additive Model.

Definition 2.2 (Groupwise Additive Model (Sivill & Flach| 2023)). Let R C X be a hyperrectangle
region. A model f : X — R is called Groupwise additive in R w.r.t P if there exists D functions
gp-1({s}) that each only depend on features in group i and such that

D
f(®) =wo + Z gp-1qiy(x) Ve € R. 4)

i=1

In this ideal scenario, the contribution of group i toward the gap f(x)—Ep~5[f(b)] is unambiguous:
gp-14i})(®) — Epuplgp-1(1iy)(b)]. If Equation E] does not hold however, there is no longer a
unique group attribution. This has caused the development of a myriad of post-hoc explainers:
o(f,x,B,P) € RP that estimate the contribution to each group i € [D]. Many methods are
conveniently defined in terms of a coalitional game.

Definition 2.3 (Grouped Coalitional Game). Define the coalitional game vy 5 5 p
VfwB,p(U) :=Epslf(rp-11)(b,x))] VU C[D]. ®)

that applies the replace-function simultaneously to all features within the same group.

Various explainability methods can be expressed as a weighted sum of marginal contributions for
group %

‘b?(fvm?B?,P) = Z /‘(U)[Vf,m,B,P(UU {i}) - Vf@.,B,P(U)]v (6)

UC[DI\{i}

with u(U) € R* such that 3~ py ;3 #(U) = 1. The joint-PDP (Friedman, 2001) and ArchAt-
tribute (Tsang et al, 2020) employs () = 1 and zero otherwise. The joint-PFI (Au et al. [2022)
and Patch-Occlusion (Zeiler & Fergus,[2014) consider p([D]\ {¢}) = 1 and zero otherwise. Finally,
the SHAP(Lundberg & Lee, 2017) uses u(U) = (1|)I;|1)—1/D’ while RISE (Petsiuk et al.l [2018)
defines pu(U) = 2P~1.

The Integrated Gradient (Sundararajan et al.| |2017) is an alternative feature importance that is not
easily expressed in terms of a coallitional game. Nevertheless, it is naturally extended to feature
groups

K aBP) = Y E s | (b oL

1-t)b+t , 7
17 t~Uniform(0,1) T (( ) 517) @)
JEP-1({i})
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by summing over all features within group 7 (Tsang et al. |2020). The calculation of post hoc
explanations can require evaluating expectations involving B. Throughout our experiments, all ex-
pectations were estimated via Monte Carlo (MC) with N samples.

2.3 DISAGREEMENT PROBLEM

Many post-hoc explainers have been proposed, each with different motivations. So, it is not surpris-
ing that they often disagree in practice (Krishna et al., 2022)). To characterize said disagreements,
we use the Lo metric (Laberge et al., [2024)

Dr,(¢,¢') == Egnll|o(f, 2, B,P) — ¢'(f,2,B,P)|?]- (8)

The current literature tackles disagreements between explanation methods by benchmarking them
using unfaithfullness metrics. Many such metrics take the form

F(6.0) =Ea| 3 w0)( L ou(7,0.5.P) = rap([D) - vrmsr (DD ) |

UC|D] icU
©)

or

2
F(¢,f,w>:Ew~D[ T w(U)(Z¢i<f,w,B7P)—[uf,m,s,p(U)—uf,m,g,p«a)]) } (10)

UC(D] i€U

using a specific weight w(U) € RY for any U € [D] e.g. Sensitivity-n (Ancona et al., 2017), INFD
(Yeh et al., |2019), p-Fidelity (Bhatt et al.| 2020), Shapley-Weighted Fidelity (SWF) (Muschalik
et al.l 2025). We refer to Appendix [B.3|for the complete definition of each metric. Note that the
choice of weighing scheme impacts which explanation is considered optimal: minimizing F' with
w(U) = 2D as done in LIME (Ribeiro et al.,[2016)) leads to the Banzhaf index (Tsai et al., [2023),

minimizing F with w(U) = m leads to SHAP(Lundberg & Lee, [2017).

3 METHODOLOGY

Because of the aforementioned inconsistencies, practitioners do not have a mean of determining
which unfaithfulness metric, and by extend which explanation method, is correct. Each method
employs a different weighting scheme /1 to aggregate marginal contributions (cf Equation [6) or a
different weight w to aggregate errors of additive reconstructions (cf. Equations [9] & [I0). Our next
objective is to lessen the impact of the choices for p and w.

Theorem 3.1. The Arch/Occ/LIME/SHAP/RISE Attributions can be expressed via the Marginal De-
composition

¢ii(w>f?677)) = Z fu,B(w)+ Z h(lp(u)|)fu,8(w)7 (11)

uCld]:{i}=P(u) uCld):iCP (u)

where h is different for each . Different explainability methods disagree on how to redistribute
between-group interactions ( f,, g(x) with |P(u)| > 2) among the groups involved.

Theorem 3.2. Let R C X be a hyperrectangle region such that supp(D) C R and supp(B) C
R. Let P be a feature partition. Whenever the model f is groupwise additive in R w.r.t P, any
unfaithfulness metrics that follow Equations[9and[I0 are all simultaneously optimized

F(¢", fw)=0 (12)

for any weight function w and attribution ¢*.

The proofs are presented in Appendix[C.2} Both theorems imply that if there were no between-group
interactions (i.e. f, g = 0 whenever |P(u)| > 2), then all explanation method would agree on the
group importance and all unfaithfulness metrics be minimized. Therefore, the Disagreement Prob-
lem can potentially be tackled by searching for a partition P with respect to which f is group-wise
additive, or “almost” group-wise additive. This is trivially achieved by considering a single group
containing all features, so we must trade-off explanation agreement with group sizes. Similarly to
recent work, we frame this search as an optimization w.r.t P using a special class of loss functions.
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Definition 3.1. A partition loss function L (D, B, P) € R should respect:

1. If f is groupwise additive in R w.r.t P, such that supp(D) C R and supp(B) C X, then
Ly(D,B,P)=0.

2. If f is additive w.r.t to group i (i.e. f(x) = gp-1({iy)(T) +9gp-1(D)\{i}) (T)), fusing group
1 with another one does not impact the loss.

3. If P is a super-partition of P, L(Bina, Bina, P') < Lt (Bina, Bina, P).

These properties ensure that L is a sensible objective to minimize w.r.t P. Property 1 guarantees
convergence once the optimal P is found. Property 2 encourages the minimization algorithm to only
fuse groups that interact with some other. Property 3 suggests that, on tabular data where B = D,
an iterative algorithm monotonically decreases its loss if features are independent.

Theorem 3.3. The Lo disagreements Dyp,(¢d%C ¢') between Occlusion and the
Arch/LIME/RISE/SHAP explainers respect Definition[3.1] Proof in Appendix

Some pairings of explainers (e.g. LIME vs. SHAP) are not considered since they might break
Property 3. Theorem [3.3]suggests leveraging the L, disagreements between explanation methods to
infer feature groups. The following disagreements among the PDP/ArchAttribute and PFI/Occlusion

D D
L)OREED(D, B, P) = Egp [Zwﬁ””’*”h(ﬁ 2,B,P) — o1 (f, @, B, P))ﬂ = > w)
i=1

i=1

13)
were considered since these explanations are the cheapest to compute. Our minimization of equation
w.r.t P follows: 1) start with a granular partition {{1},...,{d}}; 2) select the group i with
highest potential ¥(7); 3) compute its pair-wise interactions with a set of candidate groups ¢'; 4) fuse
group 4 with the group ¢’ that yields the maximal pairwise interaction; 5) repeat until the objective
(cf. Equation falls below e. We refer to Appendix [D]for the technical details.

Solving minp E‘}GREED (D, B, P) yields a feature partition that is valid over the support of the distri-
butions D and B passed as parameters. In the tabular setting, we set D and B to the data distribution
so solving minp [,‘?GREED (D, D, P) leads to a partition useful to explain any data point. For image
data, we set D = §, and B = d, to Dirac measures over an image of interest and the baseline. Ac-
cordingly, solving minp L3R (8, 0, P) leads to a partition P that is only valid for this single
image x. The partitioning algorithm must be run separately on each image.

4 RELATED WORK

There are multiple existing methods for grouping input features. The Pairwise algorithm advocated
by|Tsang et al.{(2020) groups features in three-steps: 1) computes all d(d—1)/2 pairwise interactions
between features; 2) Retain only the interaction whose strength is above a threshold € and organize
them in a graph; 3) define groups as the cliques of said graph. The Recursive algorithm proposed by
Sivill & Flach|(2023)) was demonstrated to scale as O(d log d) on tabular data [d] into two sets {1}
and {2...,d}. Finally, the iGreedy algorithm introduced by Xu et al.|(2024) starts from a granular
partition {{1},...,{d}}, and progressively fuses pairs of groups until convergence.

Laberge et al.|(2024) recently identified feature interactions as the root-cause of disagreement be-
tween PDP/SHAP/PFI and minimized them by restricting the baseline distribution B to rule-based
regions. Although promising for tabular data, rule-based regions do not work on pixels. AGREED,
in contrast, minimizes disagreements by partitioning features into disjoint groups, a methodology
that works for tabular data and images.

Prior work has already unified most explainability methods through Functional Decomposition.
(Deng et al.l 2024) have previously unified 14 saliency maps while (Fumagalli et al.l 2025) de-
veloped a categorization of explanations along three axes: conditional-marginal-anchored decom-
positions, pure-partial-full explanations, and individual-joint-interactions effects. Unlike ours, these
existing frameworks do not consider disjoint feature groups. Moreover, while prior frameworks
also highlight interactions as the root-cause of disagreements, ours is the first to propose a practical
methodology to minimize said disagreements.
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Figure 3: Synthetic tabular data. (a) RandIndex comparing ground-truth partitions to each grouping
method. (b) Scalability of each method w.r.t the number of features d. (c) Scalability of each method
w.r.t the number of Monte Carlo samples N. Confidence bands range from 5" percentile to the 95"
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5 EXPERIMENTS

5.1 TABULAR DATASETS
5.1.1 KNOWN GROUND-TRUTHS ON SYNTHETIC DATA

We compared AGREED with iGreedy, Recursive, and Pairwise on synthetic data where the model
f is known to be groupwise additive over X’ w.r.t some ground-truth partition P*. The exact and
estimated partitions were compared using the RandIndex (Hubert & Arabie, |1985), a score between
0 and 1 that is maximized for identical partitions. We set B = D as the data distribution. For various
numbers of dimension d, MC samples N, and five random seeds, we generated random data/models
with correlated features (see Appendix . Since an optimal partition exists, we set ¢ = 10710,
All tabular experiments were run on a laptop with an 11th Gen Intel(R) Core(TM) i7-11850H CPU,
16 threads, and 32 GiB of RAM.

Figure [3| presents the results aggregated over five seeds. According to Figure [3] (a), only iGreedy
fails to consistently find the optimal partition. We suspect this is because its termination criterion
assumes its objective function monotonically decreases. From Figures [3|(b) and (c¢), AGREED and
Pairwise have a similar performance, but it is the recursive method that scales best with d and N.

5.1.2 REAL DATASETS

When studying real-world black-boxes, we no longer know the optimal partitions. We instead eval-
uate AGREED ability to reduce PDP/SHAP/PFI disagreements and Sensitivity-1, INFD, and SWF
unfaithfulness scores.

The Marketing|(d = 16), Default-Credif’] (d = 23), SPAMP|(d = 57), and NOMAQ] (d = 118)
datasets were investigated as they contain a large number of features, which renders computing all

https://archive.ics.uci.edu/dataset/222/bank+marketing

https://archive.ics.uci.edu/dataset/350/default+of+credit+card+clients

AL N —

https://archive.ics.uci.edu/dataset/94/spambase

https://archive.ics.uci.edu/dataset/227/nomao
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Figure 5: Tabular data: GBT fitted on Marketing. explanation Lo disagreement and unfaithfulness
metrics as a function of the number of feature groups.

pairwise interactions intractable. We split each dataset into train/test sets with ratio 0.9:0.1, and we
trained Explainable Boosting Machines (EBM) (Nori et al.,[2019) from the InterpretML library
and Histogram Gradient Boosted Trees (HGBT) from the ScikitLearn package (Pedregosaetal.
2011). Hyperparameters were tuned using 5-Fold CV and random search.

The AGREED partitioning algorithms requires a random subset of [V data samples to approximate
expectations w.r.t D. For the Marketing and Default-Credit, we considered N = 100 samples and
for the other two, we employed N = 50 samples. To account for the randomness that arises from
subsampling large datasets, we repeated the subsampling of N points five times using different
random seeds, ran the partitioning algorithms, and reported the Lo disagreements and Sensitivity-1,
INFD, SWF infidelity scores. The runtimes for AGREED ranged from 10 to 100 seconds. Note that
the partitioning only needs to be done once and can used to compute local explanation on any data
point.

Figures [ & [5] present the tradeoffs between disagreements/unfaithfulness and number of feature
groups on the Marketing dataset. Other datasets exhibit how a similar trend, see Appendix
From both Figures (left), we observe that AGREED is able to reduce disagreements between any
pairing of explainers although the algorithm is designed to minimize differences between PDP and
PFI. This highlights the role of between-group interactions in the disagreements between explain-
ability methods. Moreover, looking at the three unfaithfulness scores, we note inconsistencies with
their ranking. For instance, Sensitivity-1 claims that PFI is the most faithful explanation, while the
other two metrics claim that SHAP is most faithful. Also note that INFD and SWF disagree on
the ranking between PDP and PFI. However, by reducing the number of groups (i.e. grouping more
features together), all unfaithfulness metrics collectively converge to zero for either PDP/SHAP/PFI.

Grouping interacting features reduces the inconsistencies between the explainability methods and
unfaithfulness scores. Nevertheless, the resulting explanation must be interpreted with care since
the joint-attribution of a group is a multivariate function of all features involved. Appendix
presents practical examples of how to interpret the joint influence of groups containing at most three
features.

5.2 IMAGES

Convolutional Neural Networks (CNN) remain a strong baseline across a wide range of image do-
main tasks. Since these models involve the composition on multiple non-linear spatial filters, it is
unrealistic to find a single partition P w.r.t which f is groupwise additive across all images from the
dataset. Instead, by fixing an image of interest x, a baseline b, and setting D = §, and B = &,
AGREED will search for a partition w.r.t which the model is group-wise additive in the region

H?Zl[bj, x;] C X. While this could leads to explanations with reduced disagreements and in-
creased faithfulness, this also implies that AGREED must be rerun for each individual image x

leading to a partition that is only valid for this image.

Moreover, since pixels have an inherent sense of proximity, we further restrict the partition to de-
scribe D path-connected patches: any two pixels within a patch must be connected via a path span-
ning said patch. To produce such patches, group fusion is only performed in AGREED if two
patches share a boundary. Image experiments were run using a NVIDIA GeForce RTX 3090 GPU
with 25GiB of RAM.
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Figure 6: Synthetic image example. (a) A toy CNN can detect vertical and horizontal edges to
perfectly classify rectangles while being locally group-wise additive. (b) Comparing the scalability
of AGREED and Pairwise as the image size W increases.

5.2.1 KNOWN GROUND-TRUTHS ON SYNTHETIC DATA

We first experimented on a synthetic image dataset for which
ground-truth partitions are known. The dataset consisted of Arch Occlusion

W xW images with a random rectangle drawn into them. Each
image is labeled as y = 1 if the rectangle is tall and y = 0 if it
is wide. This classification problem can be solved exactly with
a CNN that composes a convolution layer (with 2 x 2 filters that :
detect left, right, up, and down edges), a ReL.U non-linearity,

and a linear layer (see Figure@(a)). Although this model is not
groupwise additive over its whole domain, it is groupwise ad-
ditive in the region szl[o, x;] and the optimal partition P*
that considers each of the four rectangle edges as a separate
group. Fixing the baseline b = 0, we ran the AGREED and
Pairwise methods (iGreedy and Recurse were not developed
for images), and confirmed that they each converge to the op-
timal partition (RandIndex is systematically 1.0).

=1

[AGREED

0.5

le-06

AGREED

[ AGREED

However, the Pairwise approach is much more computation-
ally expensive than AGREED, as evidenced by Figure [6] (b).
Indeed, Pairwise scales poorly w.r.t W compared to AGREED. .
This is because the nuﬁlberyof pairwise irrl)teractions to con- Tigure 7: . AGREED finds four
sider is O(W*). AGREED avoids this complexity by mak- patches to increase agreement be-
ing the assumption that pixel interactions in a CNN model are tween Arch and Occ on toy image
local. This assumption leads to efficient convergence on this data.

synthetic data, see Figure[7]for a qualitative example.

5.2.2 SALIENCY MAPS ON MINIIMAGENET

We studied VGG16 and ResNet18 pre-trained on ImageNet and explained their predictions on the
MinilmageNet subset containing 100 classes and 600 images per class (Ravi & Larochelle} [2017).
Given the lack of ground-truth partitions, we compared partitioning algorithms tradeoffs between
disagreement/unfaithfulness and patch size. The Pairwise grouping algorithm was not investigated
because, on a realistic ConvNet, the resulting patches are no longer guaranteed to be path-connected.
Instead, we compared AGREED with two algorithms previously used on ImageNet: the Quickshift
image segmentation algorithm used by LIME and ArchAttribute, and W x W squares patches im-
plicit to Occlusion and RISE. To accelerate AGREED, we started with a partition of small 14 x 14
patches. AGREED took on average 3-15 seconds per image to generate a partition.

Figures [§] & [0] present the tradeoffs between disagreement/unfaithfulness and patch sizes for the
AGREED, Quickshift, Square partitioning algorithms methods using the zero baseline b = 0. To
compute a single disagreement score, we averaged disagreements between 100 randomly chosen test
images x and also averaged disagreements between all pairings of the Arch/Occ/IG/LIME/SHAP
explainers. RISE was excluded because it is equivalent to LIME. Unfaithfulness metrics were also
estimated using the same 100 test set images. From both figures, we see that AGREED offers the
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Figure 8: ResNetl8 pretrained on ImageNet. We report the average Arch/Occ/LIME/SHAP/IG
Disagreement and the INFD unfaithfulness metric of Arch, Occ, and IG.
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Figure 9: VGGI16 pretrained on ImageNet. We report the average Arch/Occ/LIME/SHAP/IG Dis-
agreement and the INFD unfaithfulness metric of Arch, Occ, and IG.

most competitive tradeoffs. We also conclude that, the more the different saliency map agree with
each other, the more faithful they are to the model.

Appendix presents saliency maps yielded by AGREED, which tend to generate one large im-
portant patch that covers the object being classified, although there are exceptions. This observation
suggests that, when explaining the function f that maps pixels to class logit, it might be unrealis-
tic to expect saliency maps that are simultaneously unambiguous (all saliency maps agree), faithful
(unfaithfulness metrics are minimized) and granular (the patches highlight distinct object parts). In
future work, we envision using AGREED to explain the function f that maps input pixels to con-
cept activations in hidden layers (Fel et al.l [2023)) instead of logits in the hopes of obtaining more
granular and semantically meaningful saliency maps.

6 CONCLUSION

We unified feature groups explanation methods through Functional Decomposition. We identified
the culprit that prohibits agreement among the methods and unfaithfulness metrics: between-group
features interactions, and minimized it using an algorithm that iteratively fuses feature groups when
they strongly interact. On two data modalities, our algorithm named AGREED was demonstrated
to efficiently reduce inconsistencies between explanation techniques and unfaithfulness metrics.
AGREED is broadly applicable to Tabular and Image data although both structures are treated dif-
ferently in the algorithm. Future efforts could extend it to other modalities where groups are natural
e.g. time-series, text.

For tabular data, the remaining challenge is to provide an automatic methodology for visualizing
the joint attribution of large feature groups. We envision combining AGREED with regional based
explanations (Laberge et al., [2024) to interpret these high-dimensional functions regionally. For
images, we managed to make the ArchAttribute/Occlusion/IG/RISE/LIME/SHAP saliency maps
agree on “where” the network is looking. Yet, it is not clear “what” the network is seeing. Combining
AGREED along a concept-based technique (Fel et al.l 2023)) could address this issue as well as
making the saliency maps more granular. Finally, future work should apply AGREED on image-
based Transformers.
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7 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our empirical results, we are engaged to make the source code
public upon acceptance. All Machine Learning packages employed are open-source (e.g. Scikit-
Lean, InterpretML, Pytorch), with access to the code could rerun our scripts.
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A BROADER IMPACTS

The penultimate goal of explainability is to provide confidence (or lack thereof when necessary) into
a model before its deployment. For instance, we want to make sure that the model has learned the
intended patterns to solve the task and is not relying on “shortcuts” e.g. using the background or
image artifacts to predict a given class.

However, explainability techniques come with their own issues which inhibits their use in practice.
Notably the Disagreement Problem, which refers to inconsistencies between the existing saliency
maps, makes it hard to derive insights from explanations. Looking at Figure[2] on the top row, the
Occ/LIME/RISE/SHAP method highlight the wolf face, suggesting the model is relying on facial
features to classify this wolf. An engineer who is only shown these saliency maps would be tempted
to trust the model. However, other techniques like Arch and IG highlight the animal and the snowy
background. What should an engineer conclude from these contradictory claims? Should the model
be deployed? Given the current state of affairs, we encourage practitionners to always report a
variety of saliency map techniques to avoid falling into confirmation bias.

Our work aims at reducing ambiguities between saliency map techniques by finding patches w.r.t
which the model is almost additive so that Arch/Occ/IG/RISE/LIME/SHAP all agree on the impor-
tance of each patch. This can potentially increase the use of explainability techniques in real-world
settings. Nevertheless, since a ConvNet is never perfectly patch-wise additive, the explanations
yielded by AGREED are still imperfect and should still be treated with skepticism.

12
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B EXTENDED BACKGROUND

B.1 NOTATION TABLE

Notation Definition

Sets and Partitions

d Number of input features.

[d] :={1,2,...,d} Set of all features indices.

j €[d Jj is an input feature index.

u C [d] w is a subset of input features indices.

D Number of features groups.

[D]:={1,2,...,D} Set of all groups indices.

i € [D] i is a group index.

U C [D] U is a subset of groups indices.

P :[d] — [D] Partition of [d] into D disjoint groups.

P(u ) ={P(j):jcu} Partition mapping of feature subset .
PHU):={j€eld:P()eU} Partition inverse map of the group subset U.
Explanations and Cooperative Game

X C R? Input domain.

rekX Input to explain.

D Probability distribution for & ~ D.

beX Baseline used as a reference.

B Probability distribution for b ~ B. Sometimes equal to D.
f: X =R Model to explain.

Ty : XXX > X Replace-function.

f(®) =2 uca ful@) Functional Decomposition.

fus(®) Marginal Decomposition.

¢(h,x,B,P) ¢ RP Group Importance toward the gap f(x) — Ep5[f()].
Vix BP Coalitional game.

At 2Bp Harsanyi Dividend.

Ly(D,B,P) e Ry Grouped Lack of Additivity of f w.r.t D, B, and P.

Table 1: All notation used throughout the paper.

B.2 ANOVA DECOMPOSITION

When the baseline distribution represents independent features (i.e. B = Bijyg := Hle B;), the
Marginal Decomposition (cf. Def falls back to the ANOVA decomposition (Hooker} |2004).
This functional decomposition enjoys additional theoretical properties that do not necessarily hold
for the Marginal Decomposition. Notably, the components f, 3, are zero mean and uncorrelated

uF# 0= Exn B [fU7Bind (.’1})] =0. (14)
UF V= Eenpy, [fu,Bmd (33) Jo,Bua ($)] =0. (15)
Letting 02 := Eg5,, [ fu.5,,()?]. the total variance of the model can be decomposed
Bt (f(®) = fo,, )1 = ) ob (16)
uCl[d]
Ju|>1

This property is where the terminology ANalysis Of VAriance comes from. Note that this elegant
decomposition of model variance is not guaranteed to holds if features are non-independent. In that
case, Equation [I6] can potentially involve negative/positive correlation terms between f,, and f,.
Since feature independence is unlikely to hold on realistic Machine Learning datasets, the ANOVA
decomposition will be of solely theoretical interest : it is used to derive Property 3 of Definition[3.1]

13
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B.3 UNFAITHFULNESS METRICS

Many unfaithfulness metrics proposed in the literature can be framed as Equations [9] & [I0] using a
distinct weight w(U) for every coalition U C [D].

The Sensitivity-n metric proposed by |/Ancona et al. (2017) and the p-Fidelity of Bhatt et al.| (2020)
report the F' metric using the weight w(U) = (\3|) ~ for |U| = n and w(U) = 0 otherwise. The
INFD metric of [Yeh et al. (2019) also employs the F' metric but it weights the various coalition
uniformly: w(U) = 1/2%.

The Shapley-weighted Fidelity (Muschalik et al., [2025) reports the F score using the weights
w() = w(D) = oo and w(U) o< (lg‘_j)il. The infinite weights can be seen as a hard con-
straint that the attribution should respect the efficiency axiom: they should sum up to the model
prediction (Tsai et al} 2023). Nevertheless, for the purpose of comparing different explanations
quality, we will be ignoring the edge cases U = (), D when computing this faithfulness score.

14
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C PROOFS

C.1 HARSANYI DIVIDENDS

Before unifying the various post-hoc explainers proposed in the litterature, we must introduce an
additional definition.

Definition C.1 (Harsanyi Dividends (Harsanyi, |1963)). Given a coallitional game vy 5 g p involv-
ing D players, its Harsanyi Dividend A ¢ o 3 p is defined recursively

AtaprU):=viasp(U)= Y AranpV), (7
vcu
for any coallition U C [D].
The base cases are A 5 g p(0) = vy e pp(0) and Af p g p({i}) = viespr({i}) — Ve (D).

Harsanyi dividends A ¢ 5 5 »(U) can be interpreted as the excess gain of a coallition v 5 3. p(U) —
Vs« 8,p(0) that cannot be explained by any cooperation between strict non-empty subsets V' C U.
We can reorganise Equation [I7|to express any coalitional game in terms of its dividends

Viwsp(U) =Y Apapp(V) forany U C[D]. (18)
VCU

Similarily, we can reexpress the definition of the Marginal Decomposition (cf. Definition [2.1)

Eps[f(r.(b,x))] = Z fu.B(x) forany u C [d]. (19)

vCu

The ressemblance between Equations (18| and [19]is striking and suggests a deeper connection be-
tween the Marginal Decomposition and the Harsanyi Dividend. Our goal with this subsection is to
highlight the link between these two related (but different) concepts.

Lemma C.1. Given a partition P : [d] — [D), the following holds
uC PN U) < Pu) CU, (20)

where u C [d] and U C [D] are subsets of features and feature groups respectivelly.

Proof. We start from this simple consequence of the definitions of P
jePHU) < P(j) eU. 1)

The goal of the lemma is to translate this equivalence to feature subsets v and not just a single feature
j. Letting u C [d], we have

uCP ) <= Vicu:ieP (U) <= Vicu: P@H)elU < Plu)CU. (22
O

Lemma C.2. The Harsanyi Dividend A 5 g p can be expressed in terms of the Marginal Decom-
position

ArapprU)= > fus®), (23)

wC[d]:P(u)=U

under the convention that P(()) = (.

Proof. The proof proceeds by induction. The base case covers all dividends A , 5 p(U) such that
|U| < 1. Indeed, we have:

Afapr0) = viesp0) = Epuslf(b)] = fos(@). (24)
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and

Afapr{i}) =viasr{i}) —viesr0)

Z:EbNB[f(’I“p—l({i})(b, :l:))] — EbNB[f(b)] (cf. Deﬁnition@)

= Z JuB(x) — fo,5(x) (cf. Equation[T9)
WP ({i)

= Y fus@) — fos(=@) (cf. Lemmal[C.)

uC[d]:P(u){i}

> fusl@).

uCld)P (u)={i}

Now fixing U C [D] and assuming the premise holds for all V' C U, we have

ApaspU)=viesrU)= Y Arasr(V) (cf. Definition[CT)
VcUu
= Epslf(rp-11)( Z Afznp( (cf. Definition 23]
vcuU

= Z JuB(T Z Ay zpp(V (cf. Equation[T9)
uCP-1(U) vcu

= Z fuB(x Z At zp( (cf. LemmalC.T))
wC[d):P(u)CU vcu

= > fus@-> Y fus@)
wC[d]:P(w)CU VCU uC[d]:P(u)=V

(By the recursion Assumption)

Yoo fus@ - Y fusl@)

uC[d]:P(u)CU uC[d]:P(u)CU

= Z fu,B(m)

uC[d)P(u)=U

concluding the proof.
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C.2 UNIFICATION

Theorem C.1 (Theorem 3.1). The Arch/Occ/LIME/SHAP/RISE Attributions following can be ex-
pressed via the Marginal Decomposition

@, f,B,P)= Y fus@).+ > hP@)fuslx), 295

uCld]: (i} =P (u) uCld]:{i} P (u)

where h is different for each p. Different explainability method result disagree on how to redistribute
between-group interactions f,, g(x) with P(u) > 2 among the groups involved.

Proof. The proof of the theorem consists of expressing the attributions in terms of the Harsanyi
Dividend Ay 5 5 p (cf. Definition [C.1]), 2) Use Lemma [C.2Jto express the Dividend in terms of the
Marginal Decomposition.

ArchAttribute/Joint-PDP can be expressed in terms of the Harsanyi Dividend

o (fox, B,P) = Apwsp({i}). (26)
Following Lemma|C.2)its holds that
o fwB,P) = Y fus(@) @7)

uCld]P(u)={i}

Patch-Occlusion/joint-PFI is also easily expressed in terms of Harsanyi Dividends

$(f,2,B,P) = v1.25p([D]) = vfanp (D] \ {i})
= Z At pppU)— Z At p(U) (cf. Equation[I8)

UC(D) UC[DI\{i}
= Z Az ppr(U)
UC[DieU

> > fus(@) (cf. Lemma[C.2)

UC[D):ieU uC[d]:P(u)=U

Z fu,B(w)~

uCl[d]:i€P(u)

Shapley Values are known to redistribute the Harsanyi Dividends evenly between all players in-
volved (Shapley, |1953))

A (fa,BP) = Y AgaspU)/|U] ((Shapley} [1953))
UC[D]:ieU
= Z U=t Z fuB(x) (cf. LemmalC.2)
UC[D]:ieU wC[d]:P(u)=U

> > fus@)/|P) (Since |U] = [P (u)])

UC[D]:€U uCld]):P(u)=U

S fus(@)/[P()].

uCld]:i€P(u)

RISE computes

1 .
(2 BP) =55 D, vraspUU{) -~ viespU), (28)
UC[D]\ {4}
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which is actually the Banzhaf Index (Marichal et al.; 2007). It is well-established that this attribution
method assigns a score to each player by sharing Harsanyi Dividends using a power-of-two rule

E(f 2, B, P) = Z Afzpp(U)/2V171 (See Page 8 from (Marichal et al, 2007))

UC[D]:ieU

= Z 1/21V1-1 Z fu(x) (cf. Lemmal|C.2)
UC[D]:ieU uC[d):P(u)=U

= > > f (@) /2P (Since [U| = [P(u)])

UC[DJ:ieU uC[d]:P(u)=

Z u,B(-’B)/zlp u)|71.

uCl[d]:i€P(u)

LIME advocates fitting a linear model on the function output evaluated on masked inputs

2
3 3 P - - - 7,]1 e U . 29
(wo, w1, wa wp) = irfﬂgrgi? 5 U%;)} Viawnp(U) —wy Zw [i ) (29)

and reporting the coefficients (wy,ws, ..., wp) as the local feature-groups attributions. This mini-
mization problem is an alternative formulation of the Banzhaf Index (Tsai et al.l[2023)) so LIME is
equivalent to RISE.

We have thus proven that Arch/Occ/LIME/RISE/SHAP can be expressed as
oi(fwBP)= > fus@+ Y h(P@Dfus@), (G0
uC[d]:P(u)={i} uC[d]:{i} CP(u)
where h(|P(u)|) = 0 for ArchAttribute, h(|P(u)|) = 1 for Occlusion, h(|P(u)|) = 1/|P(u)]| for
SHAP, and h(|P(u)|) = 1/2/7®I=1 for RISE/LIME.
O

Before highlighting the critical role of between-group interactions in the unfaithfulness metrics, we
first recall the Minimality property of the Marginal Decomposition.

Corollary C.2 (Corollary A.1 from (Laberge et al., 2024)). Let R C R be a hyperrectangle and
let f: R* — R be a function that can be written f(x) = >ucid Yu(®@) Y& € R, where g, only

depends on x,,. Also, assume that a subset v C [d] exists such that

udv=VeeR g,(x)=0.

Then, for any probability distribution B such that supp(B) C R, the Marginal Decomposition re-
spects
udv=VeeR f,p(x)=0.

Minimality implies that the Marginal Decomposition will not contain interactions that are not present
in the model in the first place. This theorem induces an important corollary.

Lemma C.3. Let R be a hyperrectangle region such that supp(B) C R. If f is groupwise additive
in R w.r.t partition P, then it holds that

P(v)| = 2,@€ R= f,p(x)=0.

Proof. Let f be groupwise additive in R w.r.t P. Thus there exists a rectangular region R such that
supp(B) C R, and f can be written as

f@)=wo+ > gp-r(ip(@) Vo €R.

i=1
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Thus, f can be written in the form }, —; gu Where [P(u)| > 2 = g, = 0.

Now, letting € R be an input and v C [d] be any feature subset such that |P(v)| > 2. Any superset
u 2 v respects |[P(u)] > |P(v)] > 2and sou 2 v = g,(x) = 0. By minimality (cf. Theorem

(C.2)), this implies that f, z(x) = 0 and so
|P(v)] > 2,2z € R= f,5(x) =0.
O

With this Corollary now proven, we can demonstrate how group-wise additive models have faithful
explanations according to the various unfaithfulness metrics.

Theorem C.3 (Theorem . Let R C X be a hyperrectangle region such that supp(D) C R and
supp(B) C R. Let P be a feature partition. Whenever the model f is groupwise additive in R w.r.t
P, any unfaithfulness metrics that follow Equations[9and[I0 are all simultaneously minimized

F(¢", f,w) =0 €1y

for any weight function w and attribution ¢*.

Proof. Fix the set U C [D]. Unfaithfulness metrics F' and F are simply weighted aggregates of the
difference between ), .., ¢! (f, , B, P) and either vs o 5 p(U) — vf,a8p(0) or vy e pp([D]) —
vf,2.8,7([D] \ U). By Theorem 3.1 and Lemma|C.3] the first term is equal to

S (faBP)=> > fus(x)

ieU 1€U uC[d]:{:}=P(u)
= > fus(z).
uC[d]:P(u)CU,|P(u)|=1
By Corollary[C.2] the other two terms are also equal to this quantity

ViaBPU) —vizpp(l)= Z Ajasp(V)—Arasr) (cf. Eq[T8)
veu
= Z Afzpr(V)
VCU:V#D

= Z Z fup(@) (cf. LemmalC.2)

VCU:V#£D uC[d]:P(u)=V

= Z fu,B(m)

uC[d]:P(u)CU,P(u)#0

= Z fuB(x) (cf. LemmalC.3)

uC[d]:P(u)CU,|P(u)[=1

ViwBp(D) = vrasp(DINU) = > Apaspr(V)— Y. vrasp(V) (of Eq[l8)

VC[D] VC[DN\U
= > ApaspV)
VCU:VAUAD

Z Z JuB(x) (cf. Lemma[C.2)

VCU:VNU#D uC[d]:P(u)=V

= Z fu,B(w)

uC[d]:P(u)NU#D

= Z JuB() (cf. LemmalC.2)

uC[d]:P(uw)NU#D,| P (u)|=1

= Z fu,B(m)'

uC[d]:P(u) CU,|P(u)|=1
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C.3 GROUPED LACK OF ADDITIVITY

In this section, we demonstrate the various properties of GLoA loss functions, which will be used
to infer feature partitions. We start by presentng a link between the cardinalities |P(u)| and |P’(u)|
when P’ is a superpartition of P

Lemma C.4. Let P’ be a superpartition of P, then for any subset w C [d] is holds that

[P(w)| = [P’ (u)]. (32)

Proof. Recall the definition of superpartition: P’ is a superpartition of P if P(i) = P(j) = P'(i) =
P’ (j). Conversly, P’(i) # P'(j) = P(i) # P(j) must hold. This implies that |P(u)| > |P’(u)| for
any u C [d]. To prove it, assume the opposite holds: |P(u)| < |P’(u)|. This implies the existence
of |P’(u)| points 4,5 € w such that P'(i) # P’(j). However, by definition of superpartition,
P(i) # P(j) must also hold for these |P’(u)| points which contradicts the assumption that P (u)
has smaller cardinality than P’ (u). O

Lemma C.5. Define the objective

DB P =B X w(PW PO fus@his@)] G
Pl Sa T 22

for some function w such that w(P(u), P(u)) > w(P’'(u), P'(u)) > 0 for any interaction u. Then
Ly respects Definition

Proof. We prove the function £ ; from Equation respects the three properties of Definition @

Property 1 Let f be group-wise additive w.r.t P, D, and 5. By Lemma|C.3] there exists a rectan-
gular region R such that supp(B) C R, supp(D) C R, and f can be written as

[P(v)| > 2,2 € R= f,5(x) =0.

Sampled inputs & ~ D are guaranteed to land in R (since supp(D) C R) and so

£DEP)=Ern| X w(P).P0)fus(@)fn(e) | = Bavold] =
PSP 2

Property 2 Given a partition P of [d] into D groups, assume w.l.o.g that f is additive w.r.t group
D. Also, assume we wish to fuse group D with group D — 1, which will lead to a super partition P’
such that

P'(i)=P@) VieP '({1,2,...,D—1}), (34)
but P'(i) =D —1 Vi€ P~1({D}). The GLoA under partition PP can be written

LH(DEP) =Fon| X w(P).PW) fus(@)os(a) |
(P ) STy 22

=Egzp |: § : ’LU(’P(’U,), P(U))fu,li‘(m)fv,l?(m)
u,vC[d] (35)
[P (w)]|22,|P(v)|>2
DeP(u)or DEP(v)

LY wmwmmmﬂ@mmﬂ
w,vC[d]
[P (u)]|>2,|P(v)[>2
DgP () and DEP ()
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We prove that L;(D,B,P) = L#(D,B,P’) by rewritting both summation terms of Equation
For the first term, we exploit the fact that f is additive w.r.t group D, implying the existence of a
rectangular region R such that supp(B) C R, supp(D) C R, and

f(®) =gp-1qpy(®) + gp-1(f1,2...0-11(T) VT € R.
Hence, f can be written in the form 3~ ; gu where [[P(u)| = 2 and D € P(u)] = g, = 0.
Assuming € R and v C [d] is some feature subset such that |P(v)| > 2 and D € P(v). Any

superset w O v respects |P(u)| > |P(v)] > 2and D € P(u), thusu O v = g,(x) = 0. By
minimality (cf. Theorem|C.2), the component f, g(x) = 0 is null and so

|P(v)| >2,D € P(v),z € R= f,5(z)=0. (36)

Accordingly, the first summation term of Equation [33]is null

EM[ ) w<P<u>,P(v))fu,zs(m)fu,B(m)}=Em[01=0. o7
w,vC[d]
|P(u)|>2,|P(v)|>2
DeP(u)or DEP(v)

By Lemma|[C.4] we also have that [P’(u)| > 2 implies [P (u)| > 2 and so

EM[ 3 w(P/(u»P’(v))fu,zs(w)fv,zg(x)}Emmo. (38)
w,vC[d]
[P/ (u)|>2,|P’ (v)|>2
DeP(u)or DEP(v)

As a result, the left-most terms of Equations[37)and [38] are equal.

Now tackling the second term of Equation |35 By Equation for any u C [d] such that D ¢ P(u)
it holds that P(u) = P’(u). So for any = we have

Y. wP@,PO)fus@) @) = Y w(P'(u),P'()fus()fos@).
u,vC[d] u,vC[d]
[P (u)[>2,|P(v)|>2 [P (u)|22,| P’ (v)|>2
D¢P(u)and DEP(v) D¢P(u)and DEP(v)
(39

Thus we have proven that L (D, B,P) = L;(D,B,P’).
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Property 3 When features are independent, the Marginal Decomposition falls back to the ANOVA
decomposition (see Appendix [B.2). In this case, the functional components become zero-mean,
uncorrelated, and have variance o7;;. Using Equation and setting Bipg = D

LBt Bnas P)= Y w(P(u),P(u)) o} (40)
uCl[d]:[P(u)| 22
and
L (Bind, Bing, P') = Z w(P'(u), P’ (u)) o2.
uCld]:[P! (u)|22
We define the sets
Sp={uCI[d]:|Pu)|>2} and Spr = {u C [d] : |P'(u)| > 2}.
By Lemma|[C.4} we have that Sp» C Sp and so
L (Bind, Bina, P) = L (B, Bua, P') = Y w(P(u), P(w) os = Y w(P'(w),P'(u)) o

ueESP ue Sp/

= > w(P),P)a,

u€Sp\Sps
+ Y [w(P), P(w) — w(P'(u),P'(w)] o
UESps
>0 (Since w(P(u), P(u)) > w(P’'(u), P'(u)) > 0)
[

Theorem C.4 (Theorem . The Ly disagreements Dy,,(¢p%, ¢') between Occlusion and the
Arch/LIME/RISE/SHAP explainers respect Definition[3.1] Proof in Appendix|C.3|

Proof. We must prove that the Lo disagreements between the post-hoc explanation methods respect
the premise of Lemma|C.5]

D

Dy (6, &) = E%D[ 3 ( 3 (h(|P(w)]) — b (|P(w)])) fu,s(m)>2]

i=1 NuCldlHieP (u),|P(u)]>2 (P

=Em~p[; 3 b(IP(u))b(lp(v)l)fu,zs(w)fw(w)]

wwCld]
i€P(u),|P(u)|>2
1EP(v),|P(v)|>2

= EM[ ) P ) NP BIP())b(P©)) fus (@) fu,3<w>}
w,wC[d]:|P(u)|22,|P(v)[>2

The corresponding interaction penalization is w(P(u), P(v)) := |P(u) NP (v)| b(|P(w)])b(|P(v)]).

Now, obviously w(P(u), P(u)) = |P(u)|b(|P(u)])? > 0 but w(P(u),P(u)) > w(P'(u), P’ (u))

only holds for any superpartition P’ if we compare certain pairs of explainers : Occ-Arch, Occ-

SHAP, Occ-LIME, Occ-RISE. O
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D AGREED

The AGREED algorithm aims at minimizing the Lo disagreements between the joint-
PDP/ArchAttribute and joint-PFI/Occlusion explanations

LACRED(D 5 ) . Eﬁ? with W(i) = Egup [(62°"(f, 2, B, P) — 67°(f,, B, P))?].

(4D
Starting from a granular partition {{1},. .., {d}}, we greedily minimize Equation [41]
1. Select the group 7 with highest potential W(%).
2. Compute its pair-wise interaction with other groups j.
3. Fuse group ¢ with the group j of maximal pairwise interaction.

4. Repeat until the disagreements fall below .

The implementation details of the algorithm depend on whether B = D or not.

D.1 CASES WHEREB =D

It is common to set B = D on Tabular data so that x and b can both be interpreted as a random
sample from the dataset. This assumption introduces a symmetry between x and b that makes
statistical estimates more efficient.

Step 1. Computing the Group Potential The building blocks of AGREED are the following
D x N x N tensors

Definition D.1. Let P be a partition of [d] into D disjoint groups, D be the data distribution and
{x®}N_ be N points sampled from it. We define the D x N x N tensor G

Gipe = flrp-rp (@, ™)) — f(z®). (42)

These tensors are of interest because averaging them along their second and third axis leads to
consistent estimate of the joint-PDP/ArchAttribute and joint-PFI/Occlusion respectively

~ ZGT ke 2 oM (f, 2, D, P) 43)
1 N

— 2 Gike B 07 (.2, D, P). (44)
k=1

Given G, we can efficiently compute the potential of group ¢
1NN 2
o <N > (Gike+ Gisk )) 5 W(i), (45)
k=1 =1

2. Computing Interaction Between Groups At any point in the iterative algorithm, we will have
access to the G tensor of the current partition. Thus, a good between-group interaction score should
leverage this precomputed tensor to avoid unnecessary model inferences.

Definition D.2. Let P be a partition of [d] into D disjoint groups, i € [D] be a group that we want

to extend, D be the data distribution and {w(k)}ff:l be N points sampled from it. We define the
(D —1) x N x N matrix I such that

Lige = f(rp-i iy @, ™) = f(rp-1 iy (@9, ™) = f(rp-1 ) (2 (k)))+f(wzi)6)j
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Crucially, I can be computed efficiently by querying G
Like = f(rpoigigy @, a™) = f(@9) = Gire — G 47

Averaging this tensor along the third axis yields

N

1

3L d S fun(a®), (48)
(=1

uC [d] :’P(U):{ivj}

a pure measure of interactions only involving features from groups ¢ and j. Averaging the tensor
along its second axis leads to

N

1

S et Y fun@), (49)
k=1

uC[d]:{i,j} SP(u)

a full measure of interactions involving features from groups ¢, j, and possibly other groups. To
compute the strength of the interaction between two groups ¢ and j, we could report the pure inter-
action, the full interaction, or a weighted average. Like (Tsang et al., 2020), we average the pure
and full interactions with weights 0.5.

3. Fusing Groups After having identified two groups ¢ and j that interact, we define a superparti-
tion P’ of size D — 1 where 4, j are fused into a single group. The D — 2 groups k # 4, j are simply
re-indexed from 1 to D — 2, while 5 and j are considered the (D — 1)™ group. Since the G tensor
is relative to the current partition, it must be updated to G’ when performing group fusion. For the
D — 2 groups that were not fused, we copy their G . . values. For the 2 groups that were fused, we
store the joint effect

Y f(TP—l({m})(fB(z)a ™)) — f(@9) = I 0+ Gige + G, (50

that is computed without additional model inference. Here is the pseudocode for updating the parti-
tion.

Algorithm 1 Update Partition P by fusing 4, j € [D] into a new group

1: procedure UPDATE_PARTITION(P, G, I,1, j)
2: Initialize new partition map P’;

3 G’ < zeros(D —1,N,N);

4: % Counter Variable

5: c+1

6: for k € [D] such that k # 4, j do

7 Define P'(¢) :== ¢, V¢ € P 1({k});
8: G/ Gy
9: e e+ 1;
10: % Groups ¢ and j are fused

11:  Define P'(¢):= D —1, ¥ € P 1({i,j});
12: /D_17;7; < Ij,:,: + G'L,:,: + Gj,:,:;

13: return P’, G’

77’

This partition update requires no model inference since all relevant computations are queried from
the G and I tensors. Putting everything togheter, we end up with Algorlthm@ AGREED requires
O(d?>N?) model inferences since line 5 calls f dN? times, then for each iteration of the while loop
(of which there are at most d — 1), I is computed which does not call f more than dN? times.

D.2 CASES WHERE B # D

When computing saliency maps for Image Classification, it is common to use a single baseline
B = dp (typically an image with no information). Also, there is no need to find a partition P that
works across all images a from the dataset. Finding a partition that works on a single image « is a
more realistic goal so we set D = {.
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Algorithm 2 Adaptive Grouping to ReducE Explanation Disagreements (requires D = B).

1
2
3
4:
5:
6.
7
8

9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:

21:

: procedure AGREED(f, {z(®}N_| ~ DN ¢)

% Initialization

Initialize partition P such that P(j) := 5 Vj € [d];

D+ d;

Compute the D x N x N tensor G (cf. Equation[2));

Compute the potentials ¥ (), ¢ = 1,2,..., D from G (cf. Equation ;
Obj « 2 (i)

while Obj > € do

9% Which group to extend
i4—argmax;—j, p W(i);
I+ zeros(D —1,N,N)
% Find the fuse candidate
for j € [D] suchthat j # i do
Compute Between-Group Interaction ;. . (cf. Equation ;
J=argmax;_ o  p_1 ﬁ Z}I:le [(% Zévzl ko) + (% Zévzl Ijvak)z];
% Fuse groups 7 and j leading to a superpartition
P, G < UPDATE_PARTITION(P, G, 1,1, j)
D+~ D-1
Compute the potentials ¥ (i), ¢ = 1,2,..., D from G (cf. Equation ;
Obj « S22 w(i);

return P, G;

Since AGREED expects B = D, we introduce a mixture distribution Q = %(% + 0p) and note that

E?GREED(dw’ 0p, P) =4 x L?GREED(Q, Q,P). (51)

Thus, we can apply AGREED on Images by feeding Algorithm [2] with two samples (x and b) from
a fictional data distribution Q. This will leadtoa D x 2 x 2 G tensoranda D — 1 x 2 x 2 I tensor.
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Figure 10: Tabular Data: EBM fitted on default credit. Explanation Lo Disagreement and unfaith-
fulness metrics as a function of the number of feature groups for each partitioning algorithm.
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Figure 11: Tabular Data: GBT fitted on default credit. Explanation Lo Disagreement and unfaith-
fulness metrics as a function of the number of feature groups for each partitioning algorithm.
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Figure 12: Tabular Data: EBM fitted on SPAM. Explanation Lo Disagreement and unfaithfulness
metrics as a function of the number of feature groups for each partitioning algorithm.

E EXTENDED EXPERIMENTS

E.1 TABULAR Toy DATA

Tabular synthetic datasets are generated by first sampling N samples of d features « ~ N (0, B)
with a block-diagonal covariance matrix. The feature groups forming each block are chosen ran-
domly. Then, another random feature partition P is generated to defined a group-wise additive
model. Each component gp-1((;) of the model is generated from the following list

L. 97’*1({1‘})(‘”) = Hjepfl({i}) er'P*l({i}) LTk

2. gp1(ip () =exp [ — 0.5 Do jeP-1({ip 3]
3. gp-1gin(®) = 0 jep-1(piyp) w;%) where o is a Sine, Cosine, Tanh, ReLU.

E.2 TABULAR DATA

E.2.1 ADDITIONAL QUANTITATIVE RESULTS

Figures[I0}T4]show the trade-offs between explanation disagreement/unfaithfulness and and feature
group sizes for EBM and GBT models fitted on Default-Credit, Spam, and NOMAO. The insights
identical to those discussed in the main manuscript: as we group features together, disagreements
between PDP/SHAP/PFI are reduced and the Sensitivity-1, INFD, SWF unfaithfulness metrics also
increase in agreement.
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Figure 13: Tabular Data: GBT fitted on Spam. Explanation L, Disagreement and unfaithfulness
metrics as a function of the number of feature groups for each partitioning algorithm.
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Figure 14: Tabular Data: GBT fitted on Nomao. Explanation Lo Disagreement and unfaithfulness
metrics as a function of the number of feature groups for each partitioning algorithm.

The positive effects of feature grouping are most prominent on EBMs compared to GBTs. This is
because EBM are restricted to only model interaction of order 2, while GBTs with depth-T’ trees can
model interaction whose order at-most 7'. Apparently, the GBTs trained on the two largest datasets
(Figures (13| & have learned very high-order interactions that are extremely hard to minimize.
Although AGREED fails to find agreement in those two settings, the algorithm is still useful to warn
the user that the model might be too complicated to be explained with feature-based explanations.
Hence, it might be best to rely on a EBM if faithful and unambiguous explanations are desired.
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Figure 15: Marketing with no grouping. a) The global feature importance according to the PFI
(opaque), SHAP (semi-transparent), and PDP (transparent) explainers. b) The PDPs of three dis-
agreeing features (thick black line) along with the ICE (thin lines).
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Figure 16: Marketing with grouping. a) The global feature importance according to the PFI
(opaque), SHAP (semi-transparent), and PDP (transparent) explainers. b) The joint-PDP of the
month:day:contact feature group.

E.2.2 QUALITATIVE RESULTS

The challenge in interpreting joint-importance scores is that, when features j, k and ¢ are treated as a
group ¢, their joint-PDP (;SI;DP(h7 x, B, P) becomes a multivariate function of x;, x, and 2,. Humans
are notoriously bad at visualizing high-dimensional functions, so we advocate selecting 1-2 features
to plot while conditioning the remaining ones. When features are binary or categorical, condition
on their unique values. For numerical features, condition on their quantiles.

Marketing The Marketing dataset describes the marketing campaign of a Portuguese banking in-
stitution. Each instance corresponds to a distinct phone call and the binary label encodes whether
the client subscribed to a term deposit. We explain an EBM fitted on this dataset using the
PDP/SHAP/PFI explainers. From Figure [I3] (a), the three techniques attribute very different global
importances to the features month, day, and contact. Figure [I3](b) shows the PDP of these
three features along side their Individual Conditional Expectation (ICE) (Goldstein et al., [2015)).
The ICE curves can be interpreted as the local trend when varying x; while the PDP is the average
trend. It is apparent that the average trend is very different from local ones, especially at the value
contact="?. These disagreements are induced by strong feature interactions within the model.

To reduce the disagreements caused by feature interactions, we ran AGREED and obtained a group
month:day:contact, see Figure[I6] According to Figure[I6] (a), there are now almost no dis-
agreements between the global group importance reported by PDP/SHAP/PFI. The joint-PDP of
month:day:contact can be visualized using a scatter plot along month : day while condition-
ing on different values of contact € [?,cellular,telephone]. This is presented in Figure
[16] (b). When contact="?, there is a significant drop in model output during June and July com-
pared to other values of contact. Moreover, the trends along month and day hardly appear to
be additive : there is a sharp drop in late January that does not occur in other months. Therefore, it
is better to interpret them jointly as a single “date” feature group.
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Figure 17: Default-Credit with no grouping. a) The global feature importance according to the
PFI (opaque), SHAP (semi-transparent), and PDP (transparent) explainers. b) The PDPs of three
important features (thick black line) along with the ICE (thin lines).
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Figure 18: Default-Credit with grouping. a) The global feature importance according to the PFI
(opaque), SHAP (semi-transparent), and PDP (transparent) explainers. b) The joint-PDP of the
Delay-Aug:Delay-Sep:Bill-Sep feature group.

Default-Credit The Default-Credit dataset aims at predicting if clients of a Taiwanese bank will
default on their credit. The data contains records of 30K individuals and 23 features related to past
payments/bills/delays and demographic characteristics. We explain an EBM fitted on this dataset
using the PDP/SHAP/PFI explainers. Figure[T7](a) demonstrates that the three explainers provide
different global importances to the features Delay—-Sep, Delay—Aug, and Bill-Sep. Figure
[I7] (b) shows their PDP and ICE local attribution. By comparing the PDP and ICE, it clear that the
PDP of Delay-Aug is misleading since having a delayed payment in August sometimes increases
the model output and sometimes decreases it. This suggests that the effects of Delay—Aug cannot
be faithfully described using single feature importance score.

To faithfully explain the effects of interacting features, we ran AGREED and ob-
tained a group Delay-Aug:Delay-Sep:Bill-Sep. According to Figure [I§] (a),
PDP/SHAP/PFI now agree on the global importance of each feature group. The joint-PDP of
Delay-Aug:Delay-Sep:Bill-Sep is a multivariate function involving two binary features
and a numerical one. This function can be visualized by plotting four line charts w.r.t Bill-Sep
(one line for each configuration of the remaining two binary variables). See Figure [I§] (b) for
the results. Interestingly, the impact of August delays depends on whether there was a Septem-
ber delay. Comparing the yellow curve to the green one, and the red/blue curves, the effect of
Delay-Aug is completely reversed depending on Delay-Sep. The effect of Bi11-Sep also
depends on Delay—Sep. We are not sure why these trends are happening in the data, but at least
AGREED warns us that trends involving Delay-Aug:Delay—-Sep:Bill-Sep are inherently
high-dimensional and should be visualized accordingly.
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Figure 19: Explaining the “House Finch” prediction of a ResNet18. AGREED yields a partition
with increased agreement between the various saliency map methods.

RISE LIME

Figure 20: Explaining the “House Finch” prediction of a ResNet18. AGREED yields a partition
with increased agreement between the various saliency map methods.

E.3 MINIIMAGENET

Figures[T9|to 29| present the saliency maps resulting from the AGREED partitions. The model under
study is a ResNet18 pre-trained on ImageNet. We see that, in general, AGREED identifies a large
patch of great importance that covers the animal. However, there are exceptions: in Figures [21]
[26] 29] there are multiple patches that cover specific parts of the animal.
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Figure 21: Explaining the “House Finch” prediction of a ResNet18. AGREED yields a partition
with increased agreement between the various saliency map methods.
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Figure 22: Explaining the “Toucan” prediction of a ResNet18. AGREED yields a partition with
increased agreement between the various saliency map methods.
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Figure 23: Explaining the “Toucan” prediction of a ResNet18. AGREED yields a partition with
increased agreement between the various saliency map methods.
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Figure 24: Explaining the “Toucan” prediction of a ResNet18. AGREED yields a partition with

increased agreement between the various saliency map methods.
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Figure 25: Explaining the “Malamute” prediction of a ResNet18. AGREED yields a partition with

increased agreement between the various saliency map methods.
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Figure 26: Explaining the “Malamute” prediction of a ResNet18. AGREED yields a partition with

increased agreement between the various saliency map methods.
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Figure 27: Explaining the “White Wolf” prediction of a ResNet18. AGREED yields a partition with
increased agreement between the various saliency map methods.
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Figure 28: Explaining the “Lion” prediction of a ResNet18. AGREED yields a partition with in-
creased agreement between the various saliency map methods.
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Figure 29: Explaining the “Lion” prediction of a ResNet18. AGREED yields a partition with in-
creased agreement between the various saliency map methods.
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