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Abstract—Despite achieving state-of-the-art rate-distortion
performance exceeding VVC in PSNR and MS-SSIM, recently
learned image compression (LIC) methods still exhibit significant
perceptual limitations at low bitrates. Reconstructed images often
suffer from blurring, inaccurate colors, and lack of textural
detail, highlighting the well-known divergence between conven-
tional metrics and human visual perception. Although several
perceptual LIC approaches have been proposed to bridge this
gap, many are hampered by unstable training that hinders their
practical applicability. To bridge this gap, we propose ST-LIC
(Stable Training for Perception-Oriented Learned Image Com-
pression). Our approach introduces two key innovations for stable
and effective perceptual optimization. First, during the initial
training phase, we analyze the gradient contribution of each loss
component to identify a balance point, preventing any single loss
from dominating or becoming negligible during updates. Second,
we integrate a UNet-based refiner module after the decoder.
This module applies distortion and perceptual losses to distinct
outputs, enabling a more precise and balanced optimization of
the Rate-Distortion-Perception trade-off. Experimental results
demonstrate that ST-LIC achieves significantly more stable train-
ing when incorporating adversarial loss while simultaneously
delivering reconstructions with superior subjective visual quality.
And we compete under the team name Evolve.

I. INTRODUCTION

Despite significant advances in traditional evaluation metrics
such as PSNR and MS-SSIM—where many Learned Image
Compression (LIC) methods [2]-[6] now outperform even
traditional standards like VVC [1]. Reconstructed images,
particularly at low bit rates, continue to exhibit blurring, color
shifts, and texture degradation that are poorly captured by
conventional distortion measures. Although several perception-
oriented methods [7], [8] have improved visual alignment with
human perception, many however suffer from unstable training
and limited robustness owing to the adversarial loss [9].

To address this issue, we propose an UNet-based refiner
module that operates on the output of the decoder. Our method
significantly improves the quality of subjective perception
with only a small impact on rate-distortion performance.
Experimental results demonstrate that the proposed approach
achieves pleasing perceptual quality while maintaining stable
and efficient training across diverse image contents.

In this paper, we contribute in two aspects:

o During the initial training phase, we analyze the gradient
contribution of each loss component to identify a balance
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point, preventing any single loss from dominating or
becoming negligible during updates.

o We introduce a UNet-based refiner module that processes
the decoder’s output. By applying distortion and percep-
tual losses to separate outputs, our model enables a more
precise and balanced optimization of the Rate-Distortion-
Perception trade-off [10].

II. PROPOSED METHODS

A. Framework Overview

The proposed ST-LIC is built upon LALIC [6]. We retain
the original encoder, decoder, and entropy model unchanged,
and introduce a UNet-based refiner module to post-process the
decoder’s output. An overview of the framework is illustrated
in Fig. 1.

B. Objective Optimization

We decompose the overall objective into two distinct com-
ponents: distortion loss and perceptual loss. The distortion
term comprises ¢; and /5 losses, which focus on pixel-
level fidelity and are applied only to the main network, i.e.,
the encoder, decoder, and entropy model. In contrast, the
perceptual term, including LPIPS [11], Wasserstein loss [12],
and adversarial loss [9] for visual realism, is applied globally,
encompassing both the main network and the UNet-based
refiner module.

Leveraging the properties of second-order optimizers, we
assign relatively small coefficients A to all perceptual losses.
This design encourages them to exert their primary influence
on the refiner while imposing only mild gradient updates on
the main network. As a result, we achieve a semi-decoupled
optimization between distortion and perceptual objectives —
effectively stabilizing training while preserving the distinct
roles of each module.

Our overall objective function is decomposed into:

ﬁtolal = ‘Cdistortion + Eperceptual + )\rate : Erate (1)

The distortion loss comprises pixel-level fidelity terms ap-
plied exclusively to the main compression network O, =
{encoder, decoder, entropy model}:

Ldislortion = )\ll . £€1 + )\Zg . Lég (2)
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Fig. 1. The framework overview of proposed ST-LIC.

where z is the original image and Z is the reconstructed image
from the main network.

The perceptual loss encompasses multiple criteria applied
globally to both the main network and the refiner module
@reﬁner:

Eperceptual :Alpips : LLPIPS + Awassef“stein : ‘CWasserstein (3)
+ /\adversarial L adversarial
We leverage second-order optimization properties by as-
signing relatively small coefficients to all perceptual losses.
This coefficient scheme encourages the perceptual losses to
primarily influence the refiner module while imposing only
mild gradient updates on the main network parameters.

v@m[‘mcr »Ctotal :V@,cﬁm ﬁperceptual (4)
VGmam Etotal ZVGW;“ ‘Cdistonion + V@,mi“ Lperceptual (5)
+ )\7'ate : v®mai" Lrate (6)

C. Gradient-Guided coefficient Initialization

During the initial training phase, we analyze the gradient
contribution of each loss component to identify a balance
coefficient strategy. Table I shows the gradient contribution of
each loss component to different modules in the early stage.

TABLE 1
GRADIENT CONTRIBUTION PERCENTAGES BY MODULE

Loss Component Main Network (%) Refiner Module (%)

rate 18.62 -
Lo 31.88 -
2 32.80 -
Ipips 11.29 56.14
wasserstein 1.56 11.62
adversarial 3.84 32.24

D. Absence of Explicit GAN Regularization

To stabilize adversarial training, previous methods often
incorporate explicit regularization techniques into the loss
function or the network architecture. Common approaches
include Spectral Normalization [13] and Wasserstein GAN
with Gradient Penalty (WGAN-GP) [14].

Spectral Normalization stabilizes training by constraining
the Lipschitz constant of the discriminator. It achieves this
by normalizing the weight matrices in the discriminator using
their largest singular value, effectively controlling the gradient
flow and preventing the explosive growth that leads to mode
collapse.

WGAN-GP explicitly enforces the Lipschitz constraint re-
quired by the Wasserstein distance by adding a gradient
penalty term to the loss function.

Although these techniques are widely adopted, explic-
itly constraining the discriminator’s Lipschitz constant may
limit its learning capacity and expressive power. An over-
constrained discriminator can fail to provide sufficiently in-
formative gradients to the generator, potentially leading to
suboptimal convergence and a loss of fine-grained texture
details.

In our framework, we deliberately forgo these explicit
regularization techniques. We posit that the proposed semi-
decoupled optimization strategy inherently ensures training
stability. The refiner module, dedicated to perceptual enhance-
ment, receives strong and clear gradients from the perceptual
loss, while the main network is shielded from their potentially
disruptive effects by the small coefficient. This architectural
separation of concerns, combined with the properties of
second-order optimizers, creates a stable training environment
without the need for additional, costly constraints on the dis-
criminator. Consequently, our adversarial component is free to
learn with greater flexibility, ultimately contributing to higher
visual realism without the common pitfalls of adversarial
training instability.

E. Adversarial Loss

Fig. 2 presents the training dynamics of both the generator
and discriminator adversarial losses, smoothed using a sliding
window for clarity. The curves reveal that the adversarial
training process remains highly stable throughout optimiza-
tion, with both losses converging to values consistent with
theoretical equilibrium.

The adversarial objective is formulated as a two-player
minimax problem. Let G denote the generator and D the
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Fig. 2. Training dynamics of adversarial losses. The sudden loss shift due to
training dataset switching.

discriminator. Given real images X ~ pgu, and generated
images X ~ pg, the adversarial losses are defined as:

1 1

Lp = §]EXNPduw [ - logD(X)] + iE*NI)g [ —log(1 — D(i))]
(7N

L6 = Esp, [~ log D(%)] ®

At the Nash equilibrium, the optimal discriminator satisfies
D(x) = D(x) = 0.5 for all inputs. Substituting into the loss
functions yields:

1 1
Ly = 5(7 log 0.5) + 5(7 log 0.5) ~ 0.693 )
L = —log0.5 ~ 0.693 (10)

As shown in Fig. 2, both the discriminator and generator
losses stabilize near 0.693, with only minor fluctuations. This
behavior confirms that neither player dominates the other, and
the training has settled into a stable adversarial equilibrium
within the optimal regime.

FE. Variable Rate Framework

To align with the target bitrates of the CLIC2025 challenge,
we implement the variable rate framework proposed in [15].

III. EXPERIMENTS
A. Training settings

We train our models using the Openlmages dataset [16]
and images sourced from Pexels [19]. To align with the target
bitrates specified by the challenge, we train three separate
models, each optimized using the AdamW optimizer. All
models are trained with an initial learning rate of 1 x 1074,
which is reduced to 1 x 107> for final finetuning. We employ
a progressive training strategy where the patch size starts at
256 x 256 and increases to 512 x 512 for final finetuning.
Training converged after approximately 600,000 to 800,000
iterations, depending on the target bitrate. Table II summarizes
the detailed training configurations for all models.

TABLE II
TRAINING CONFIGURATIONS

Parameter 0.075 bpp 0.15 bpp 0.30 bpp
Aey 3.0 3.6 4.0
Aty 40 50 50
Alpips 0.55 0.24 0.24

wasserstein 0.03 0.012 0.008
Aa,d'ue'rsaria,l 0.5 0.5 0.32
Arate [0.55,6.40]  [0.135,1.70]  [0.055,0.63]

B. Quantitative Results

We evaluate the proposed method at the target bitrates using
four quality metrics: PSNR, MS-SSIM [18], LPIPS [11], and
FID [17]. It should be noted that our PSNR is computed by
averaging the per-image PSNR values over the CLIC2025
test set (30 images). This differs from the official CLIC
leaderboard practice, which computes PSNR by first averaging
the pixel-level MSE across the entire dataset.

TABLE III
QUANTITATIVE EVALUATION ACROSS DIFFERENT BITRATES

Bitrate (bpp) PSNR1 MS-SSIM{ LPIPS| FID |
0.075 27.07 0.914 0.206 39.88
0.150 29.47 0.952 0.163 27.56
0.300 3278 0.977 0.114 23.17

C. Visualization

This section presents visual comparisons between our
method and HiFiC [7] at low bitrates. Results are shown in
Fig. 3 and Fig. 4.

IV. CONCLUSION

In this whitepaper, we presented a semi-decoupled optimiza-
tion framework for learned image compression that effectively
balances distortion and perceptual quality. Our key innovation
lies in the architectural separation of roles: a main network
dedicated to pixel-level fidelity and a refiner module focused
on perceptual enhancement. Crucially, by leveraging second-
order optimizers and strategically weighting loss components,
we achieve stable training without relying on explicit GAN
regularization techniques.
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