

000 001 002 003 004 005 006 007 008 009 010 A BALANCED NEURO-SYMBOLIC APPROACH FOR COM- MONSENSE ABDUCTIVE LOGIC

011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
Anonymous authors
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Paper under double-blind review

ABSTRACT

011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Although Large Language Models (LLMs) have demonstrated impressive formal reasoning abilities, they often break down when problems require complex proof planning. One promising approach for improving LLM reasoning abilities involves translating problems into formal logic and using a logic solver. Although off-the-shelf logic solvers are in principle substantially more efficient than LLMs at logical reasoning, they assume that all relevant facts are provided in a question and are unable to deal with missing commonsense relations. In this work, we propose a novel method that uses feedback from the logic solver to augment a logic problem with commonsense relations provided by the LLM, in an iterative manner. This involves a search procedure through potential commonsense assumptions to maximize the chance of finding useful facts while keeping cost tractable. On a collection of pure-logical reasoning datasets, from which some commonsense information has been removed, our method consistently achieves considerable improvements over existing techniques, demonstrating the value in balancing neural and symbolic elements when working in human contexts.

1 INTRODUCTION

011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Large Language Models (LLMs) have demonstrated impressive abilities to reason formally, often via chain-of-thought reasoning (Wei et al., 2022). While the state of the art modern LLM-based systems show impressive reasoning capabilities, it is unclear whether this comes from the LLM itself, or sophisticated post-learning refinement algorithms. At the same time, open-sourced LLMs still demonstrate an inability to naturally scale to problems that require complex proof planning (Saparov and He, 2023; Dziri et al., 2023). Such problems are exactly the type on which symbolic logical solvers excel: such solvers have a long history and were for a long time considered a key component of any path to artificial intelligence (Nilsson, 1991). Nevertheless, they are greatly restricted by their need for problems to be stated in symbolic language and for every relevant fact to be provided as input. These constraints have ultimately limited them to highly specialized applications, and they have never had the broad impact that was hoped for (Crevier, 1993).

011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
These complimentary strengths of neural and symbolic methods have motivated a revival of interest in neuro-symbolic methods, where an LLM incorporates a logic solver to improve its reasoning abilities (Ye et al., 2023; Lee and Hwang, 2024; Lyu et al., 2023; Olausson et al., 2023). In these approaches, the LLM translates problems formulated in natural language into symbolic language, addressing one of the key deficiencies of a purely symbolic approach. Nonetheless, these hybrid systems remain impractical because they are ultimately purely deductive: that is, every relevant fact must be provided as input. This means that the symbolic solvers are often unable to reach a conclusion simply because obvious, commonsense assumptions are left unstated, and it is often difficult to predict which should be included until one is presented with a failed reasoning chain.

011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
For example, consider the problem in Figure 1. A logic solver would return “unknown” for the target query as, formally speaking, neither its truth nor its falsehood is implied by the premises. A human, however, would easily solve this problem by supplying the additional commonsense fact that white surfaces reflect light ($turns_white(fox, winter) \rightarrow reflects(fox, sun)$). This ability to supply missing information is usually themed abductive reasoning, and is a key mark of human intelligence.

011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
The limitation of current neuro-symbolic LLM systems to deductive reasoning means that they have mostly been so far of theoretical interest, since they tend to break down when confronted with more

$\exists x : \text{tough_out}(x, \text{winter})$
 $\exists x : \neg \text{hide}(x) \wedge \neg \text{leave}(x) \wedge \text{survive}(x)$
 $\exists x : \text{helps}(\text{nature}, x)$
 $\exists x : \text{grow_coat}(x, \text{winter})$
 $\exists x : \text{change_color}(x, \text{winter})$
 $\text{brown}(\text{fox}, \text{summer})$
 $\text{turns_white}(\text{fox}, \text{winter})$

 $\text{absorbs}(\text{white}, \text{sun})$
 $\text{warmer}(\text{coat})$
 $\text{turns_white}(\text{fox}, \text{winter})$

Figure 1: An example from a children’s comprehension exercise booklet¹. Left: the problem phrased in human language. Right: the same problem translated to first-order-logic.

complex problems where enumerating every possible background fact is not realistic. However, besides their translation skills, LLMs possess also another striking ability: their training on prodigious amounts of internet data has made them very adept at recognizing commonsense statements, to the point where they have been regarded as potential universal databases (Petroni et al., 2019). In a way, LLMs seem to have internalized most commonsense knowledge.

This realization has led some works to use an LLM itself to supply missing but relevant clauses when reasoning. Notably, Toroghi et al. (2024) proposed a method that operates an exhaustive search over a heavily restrained set of rules in the symbolic space, whereas Liu et al. (2024) proposed a method that uses LLM prompting to produce new rules which might be deducible from the given logical context. **While** these methods lie on opposite ends of the symbolic-linguistic reasoning spectrum (Figure 2), they both limit themselves to searching over such a restricted space of possible common-sense that they cannot solve practical problems.

In this work, we seek to improve AI reasoning abilities by using an LLM to provide relevant unstated commonsense clauses to a logic solver, but unlike previous works, without imposing significant constraints on the shape or content of such clauses. Furthermore, and most importantly, our method ARGOS (**A**bductive **R**easoning with **G**eneralization **O**ver **S**ymbolics) can abduce [propositions](#) not previously [instantiated](#) in the input problem. To compensate for the far more general search space, we guide the search using feedback from the logic solver in the form of the SAT problem backbone, another novel contribution. The resulting system strikes a balance between linguistic and symbolic approaches, allowing us to use both their strengths while minimizing their weaknesses to achieve true abductive reasoning.

The contributions of this paper are as follows.

- We propose a novel framing of the commonsense logical reasoning problem founded upon classical logical principles and an aim towards more realistic use-cases.
- We introduce a novel algorithm that (i) searches over larger spaces of commonsense facts; and (2) uses logic solver feedback in the form of the backbone graph to increase practicality and efficiency.

Figure 2: Symbolic-Linguistic Spectrum depicting the positioning of LLM-Tres (Toroghi et al., 2024), Logic-of-Thought (Liu et al., 2024), and Chain-of-Thought (COT) (Wei et al., 2022) relative to our approach.

¹Taken from <https://www.ereadingworksheets.com/worksheets/reading/nonfiction-passages/wintertime>. We selected a choice from multiple choice question 3 and re-phrased it as a True/False question, according to the logic-problem framing.

108 • We demonstrate empirically on multiple benchmarks and large language models that our method
 109 improves substantially over existing symbolic and neural methods on abductive reasoning problems
 110 where background information is missing.

112 **2 RELATED WORK**

114 Previous LLM-related logical reasoning methods combine symbolic and neural approaches, but
 115 usually rely much more on one or the other. Appendix G provides an extended review.

117 **Neural Methods** Wei et al. (2022) were the first to present a framework for LLM-based reasoning,
 118 showing that providing examples of rationales for answers to questions can induce the LLM to do the
 119 same, leading to improved accuracy. Kojima et al. (2022) showed that this can be induced without
 120 any few-shot examples by prepending the sentence “Let’s think step by step” before generating an
 121 answer. This is known as “Chain of Thought” (COT). Following this, Wang et al. (2023) proposed
 122 self-consistency (SC), using COT multiple times and taking the mode as the prediction. However,
 123 Saparov and He (2023) observed that COT and SC suffer from challenges in proof planning —
 124 rationale steps tend to be factual but of low value. This motivated guidance of the LLM at a step-level.
 125 Yao et al. (2023) proposed Tree of Thoughts (TOT), which explores hand-crafted trees using an LLM
 126 to solve reasoning tasks. TOT is poorly suited to logical reasoning settings as logic problems have
 127 highly variable tree-structures. Kazemi et al. (2023) and Lee and Hwang (2024) proposed more
 128 logic-focused methods, with reverse reasoning, starting at the answer and ending at the problem.
 129 These back-chaining methods, however, underperform symbolic approaches.

130 **Symbolic Methods** Acknowledging that LLMs are poor proof-planners, a series of methods,
 131 including F-COT (Lyu et al., 2023) and SAT-LM (Ye et al., 2023), proposed to offload the reasoning
 132 burden from the LLM to more specialized tools. In these works, the LLM converts the text to
 133 symbolic logic, and a solver is then employed. Logic-LM (Pan et al., 2023) extended this to include a
 134 self-refinement step. While these methods perform well on simple datasets, they fail to account for
 135 ambiguity and the exclusion of common knowledge. Addressing this, Liu et al. (2024) and Wang et al.
 136 (2022) proposed algorithms that produce new clauses via logical deduction and then add the logic
 137 back to the text for an LLM to solve. While this might help the LLM, it does not add information
 138 to the problem, because any added relations are already deducible. Instead of producing clauses
 139 via deduction, Toroghi et al. (2024) proposed a method that exhaustively searches for new single-
 140 **proposition** modus-ponens clauses. However, the search is conducted only over **the propositions** from
 141 the question, and repeated until the problem is solvable by classical logic, diminishing robustness.
 142 This search space is highly restricted and leaves out nearly all necessary information for some logic
 143 problems.

144 **3 BACKGROUND**

146 **Propositional logic** is a logical system **built around propositions**, which are statements of fact such
 147 as “It is sunny” or “I need an umbrella” which can be true or false. Propositions are often denoted by
 148 single letter variables such as A or B , called a propositional variable, which can be tied together by
 149 logical connectives (such as \wedge , \vee or \rightarrow) to form further compound propositions.

150 A **deductive propositional logic problem** is **composed** of a set of propositional variables \mathcal{V} , a set of
 151 propositions (each represented by a propositional variable in \mathcal{V}) and compound propositions (built
 152 by using logical connectives to connect propositions by their representative propositional variables
 153 in \mathcal{V}) called the premises $\mathcal{P} = \{P_1, \dots, P_K\}$, and a proposition or compound proposition Q also
 154 **built from those variables**, called the **query**. The premises are given to be true ($\vdash \mathcal{P}$), and the goal of
 155 the problem is to determine whether they imply the query, $\mathcal{P} \vdash Q$, or its negation, $\mathcal{P} \vdash \neg Q$. Such
 156 problems are usually solved by translating them into two Boolean Satisfiability (SAT) problems, one
 157 for Q and one for $\neg Q$. Let $\mathcal{L}(\mathcal{V}) = \{A \mid A \in \mathcal{V}\} \cup \{\neg A \mid A \in \mathcal{V}\}$ denote the set of all so-called
 158 **literals** of the problem. The **backbone** of the problem is the collection of all those literals which
 159 are implied by the premises, $\text{backbone}(\mathcal{P}) = \{L \in \mathcal{L} \mid \mathcal{P} \vdash L\}$. In effect, they are values for the
 160 propositions represented by the variables in the problem which can be inferred from the premises. In
 161 an **abductive commonsense propositional logic problem** the premises \mathcal{P} entail neither the query Q
 nor its negation $\neg Q$: the problem is underdetermined. Instead, one must augment the premises with

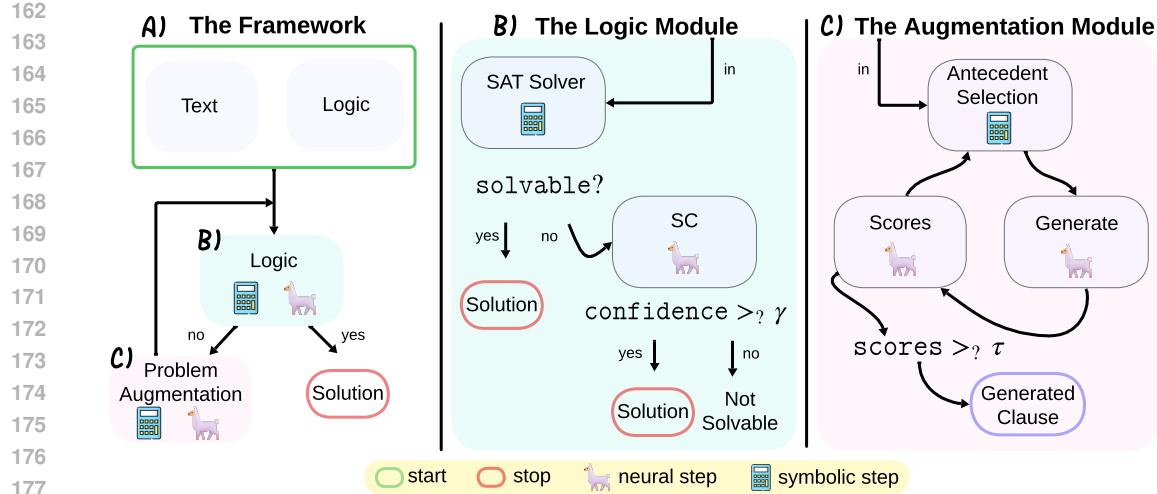


Figure 3: ARGOS at a glance. See Section 4.1 and Appendix F for details. (A) Given a propositional logic problem, we iteratively augment the problem with new propositions until it is solvable. (B) We attempt to solve the problem both with a logic solver, and with self-consistency (Wang et al., 2023). (C) If we fail, we attempt to add additional commonsense propositions by combining literals from the backbone as antecedents, and generating a right-hand-side using an LLM. We test the proposition for commonsense and relevance using this same LLM, and add it to the pool if it passes the tests.

additional commonsense propositions \mathcal{C} , which represent background facts or knowledge left unstated in the problem, until either $(\mathcal{P} \wedge \mathcal{C}) \vdash Q$ or $(\mathcal{P} \wedge \mathcal{C}) \vdash \neg Q$. Thus, the goal of an abductive problem is to not only find the truth-value of Q , but also a corresponding set of commonsense propositions \mathcal{C} to complete the problem. We assume that $\mathcal{P} \wedge \mathcal{C} \not\vdash \perp$, that is that the premises \mathcal{P} are not contradictory with commonsense (i.e. that \mathcal{P} and \mathcal{C} are consistent). One can show that, under this assumption, the answer to the problem will not depend on the choice of commonsense set \mathcal{C} : details are provided in Appendix A.

In practice, the problems we encounter in real life are often stated in terms of first-order logic. **First-order logic** is a logical system that extends propositional logic to entities and their predicates. An n -ary predicate is a symbol of a relation, such as *MotherOf*, that takes as arguments n terms such as *x* and *y* to become a formula *MotherOf(x, y)*, and becomes true or false when constants, such as *Alice* and *Bob*, are used as a grounding for its arguments. Predicates can be connected by logical connectors, and can also be quantified over a discrete or abstract set of entities with \forall and \exists , to form compound propositions such as $\forall x \forall y [\text{MotherOf}(x, y) \rightarrow \neg \text{Male}(x)]$.

First-order logic formulas over a finite set of entities can always be converted into equivalent propositional logic formulas, a process known as **grounding**, by instantiating a propositional variables for every predicate $F(x)$ and entity A , and expanding $\forall x F(x)$ into the compound proposition $(F(A) \wedge F(B) \wedge \dots)$ and $\exists x F(x)$ into $(F(A) \vee F(B) \vee \dots)$. Given two propositional literals, we will declare them **related in first-order logic** if they have an entity in common. For example, *MotherOf(Alice, Bob)* and $\neg \text{Male}(\text{Alice})$ are related because both involve the entity *Alice*.

3.1 PROBLEM STATEMENT

We are given an abductive propositional logic problem in both textual and logical form, as defined in Section 3, and we are also provided with a large language model and a SAT solver. As described, the task is to determine whether the target query is true or false given the premises and some additional commonsense propositions which must be found. Four annotated examples are provided, intended for few-shot prompting. In particular, the task is inference-only and no training phase is involved. We evaluate performance based on the number of correctly answered questions on a test dataset.

216 **4 METHODOLOGY**
 217

218 We now describe our novel algorithm to tackle the problem described in Section 3.1. This algorithm
 219 is described by the diagram in Figure 3, and formally as Algorithm 1 in Appendix D.
 220

221 **4.1 ALGORITHM**
 222

223 We start the algorithm by initializing our set of commonsense propositions as empty, $\mathcal{C} = \{\}$. As
 224 shown in module B of Figure 3, we first try to solve the problem using the SAT Solver (`sat_solve`)
 225 to test whether either $(\mathcal{P} \wedge \mathcal{C}) \vdash Q$ or $(\mathcal{P} \wedge \mathcal{C}) \vdash \neg Q$. If it reaches one of these conclusions, our job
 226 is finished; if not, we at least obtain from our call the backbone $\mathcal{B} = \{L \in \mathcal{L} \mid \mathcal{P} \vdash L\}$.
 227

228 Next, still in module B of Figure 3, we attempt to solve the problem using the LLM (`llm_solve`)
 229 by k -shot self-consistency (we use $k = 5$ in our experiments). We ask the LLM whether the query is
 230 true or false, providing it the premises and the commonsense found so far. Details can be found in
 231 Appendix F.1. If the fraction of votes pass a certain threshold γ , we also conclude either $(\mathcal{P} \wedge \mathcal{C}) \vdash Q$
 232 or $(\mathcal{P} \wedge \mathcal{C}) \vdash \neg Q$ respectively, and the algorithm is finished. This parameter γ (initialized at $\gamma = 1$
 233 in our experiments) is reduced by a fixed amount $\gamma \leftarrow \gamma - \alpha$ at every iteration ($\alpha = 0.1$ in our
 234 experiments). Thus, the maximum cost of our algorithm, in terms of number of COTs required,
 235 is bounded at $\text{cost} < k^{\frac{\gamma-0.5}{\alpha}}$, since when $\gamma = 0.5$, the fraction of votes is guaranteed to pass the
 236 threshold since the vote is over binary classes. For details on empirical cost, see Appendix B.
 237

238 If neither solving method succeeds in establishing Q or $\neg Q$, we try to add a new commonsense
 239 proposition to our pool \mathcal{C} , as illustrated in module C of Figure 3. In practice, we define a proposition
 240 to be commonsense if it seems true to a large language model without any context. To guarantee that
 241 the added proposition will grow the problem’s backbone, we search for commonsense propositions
 242 of the form $L_1 \wedge L_2 \rightarrow L_{\text{right}}$, where L_1 and L_2 are literals in the backbone \mathcal{B} , and L_{right} is a
 243 new literal suggested by the LLM. Note that L_1 and L_2 may be the same literal, in which case
 244 we in effect have a formula of the form $L_1 \rightarrow L_{\text{right}}$, thereby allowing both single and two-
 245 literal antecedents. In addition, by adding \emptyset to the set of backbone literals, we can also have
 246 $\emptyset \rightarrow L_{\text{right}}$, allowing 0-literal antecedents. This search routine (`find_new_commonsense`) is
 247 described in Algorithm 2 in the Appendix. In detail, we start by iterating over pairs of literals in
 248 the backbone. We iterate by prioritizing the literals that share the most entities with others in the
 249 backbone, $\text{score}_{\mathcal{B}}(L) = \#\{L' \in \mathcal{B} \mid L' \text{ has an entity in common with } L\}$, so that we take highly-
 250 scored literals first. This gives a measure of relevance of the literal to the problem. To understand
 251 the rationale behind this choice, consider an example in which six relations are known about John
 252 and only one is known about Jane. If asked to guess about whom the problem is about, the natural
 253 guess would be John, since while problems often include extraneous information, it is rare that the
 254 majority of the problem is extraneously included. Next, for a given pair of literals L_1, L_2 , we prompt
 255 the LLM (`llm_generate`) to generate a right-hand-side literal L_{right} for $L_1 \wedge L_2 \rightarrow L_{\text{right}}$. In
 256 doing so, the LLM might introduce new variables not previously involved in the problem. Details
 257 can be found in Appendix F.2. We choose this forward-chaining approach rather than a goal-oriented
 258 backwards-chaining for simplicity, since LLMs are much easier to prompt for forward-chaining
 259 (COT) than backwards chaining (recursive algorithms such as LAMBADA).
 260

261 Finally, for each generated L_{right} , we use the LLM (`llm_score`) twice to evaluate it. First, we
 262 use the LLM (`llm_commonsense_score`) to score whether $L_1 \wedge L_2 \rightarrow L_{\text{right}}$ is likely to be
 263 commonsense. Second, we use the LLM again (`llm_relevance_score`) to score whether
 264 $L_1 \wedge L_2 \rightarrow L_{\text{right}}$ is likely to be relevant to our current context. Each procedure returns a probability
 265 between 0 and 1. Details can be found in Appendices F.3 and F.4, respectively, and human evaluation
 266 in F.5.
 267

268 We stop the search at the first new proposition $L_1 \wedge L_2 \rightarrow L_{\text{right}}$ whose commonsense and relevance
 269 scores are both above a given threshold τ (we use $\tau = 0.3$ in our experiments). When this happens, we
 270 update the commonsense set \mathcal{C} with this new proposition, and restart the process. If not, running new
 271 iterations will not change anything and we fall back on our best guess, namely the self-consistency
 272 estimate. In addition, if after multiple iterations the self-consistency threshold reaches zero, we also
 273 exit with the self-consistency estimate.
 274

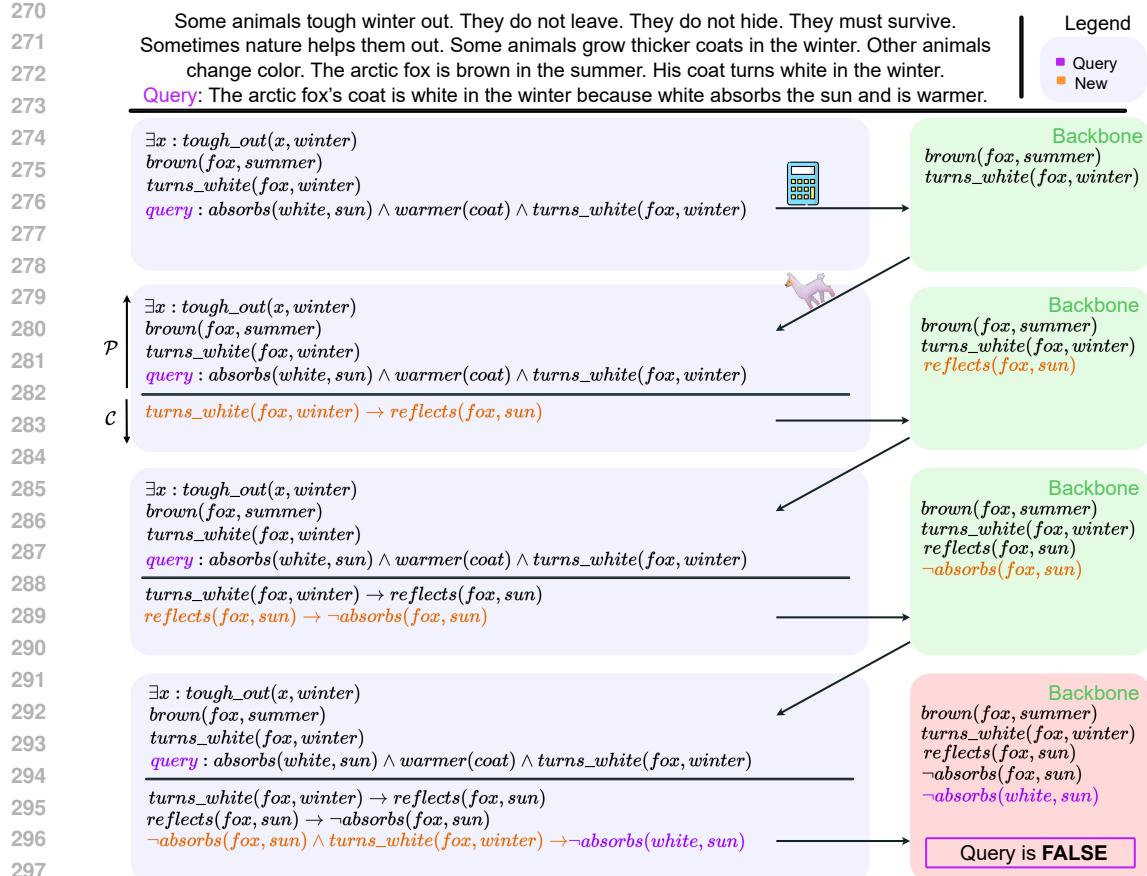


Figure 4: Overview of ARGOS with the winter fox example. We iteratively add to the logic problem and query a logic solver to look for conflicts within the backbone compared to the query. Eventually, we find that $\text{absorbs}(\text{white}, \text{sun})$ is *False*, contradicting the query.

4.2 EXAMPLE

Consider again the winter fox problem from the introduction section. Let us describe in Figure 4 a hypothetical run of our ARGOS algorithm to illustrate how it could solve the problem. To simplify the illustration, let us use only the SAT solver, and not self-consistency. We start with the premises (in black) and the query (in purple) on the top left-hand-side.

We first run the logic solver, which fails to reach any conclusion, but returns an initial backbone. The algorithm chooses the antecedents $L_1 = L_2 = \text{turns_white}(\text{fox}, \text{winter})$ from this backbone, generating a new proposition $\text{turns_white}(\text{fox}, \text{winter}) \rightarrow \text{reflects}(\text{fox}, \text{sun})$. It is commonsensical and relevant to the question, so we add it to the query. We call the SAT solver again, which adds $\text{reflects}(\text{fox}, \text{sun})$ to the backbone. Next, the algorithm selects the antecedent $L_1 = L_2 = \text{reflects}(\text{fox}, \text{sun})$ from the new backbone and generates $\text{reflects}(\text{fox}, \text{sun}) \rightarrow \neg \text{absorbs}(\text{fox}, \text{sun})$, which is similarly commonsensical and relevant. The SAT solver is called again and adds $\neg \text{absorbs}(\text{fox}, \text{sun})$ to the backbone. Finally, in the third iteration ARGOS picks $L_1 = \neg \text{absorbs}(\text{fox}, \text{sun})$ and $L_2 = \text{turns_white}(\text{fox}, \text{winter})$ from the backbone and generates $\neg \text{absorbs}(\text{fox}, \text{sun}) \wedge \text{turns_white}(\text{fox}, \text{winter}) \rightarrow \neg \text{absorbs}(\text{white}, \text{sun})$, which is a logical conclusion it deems consistent with commonsense and relevant to the question. At this point, we call the SAT solver again, which concludes that $\neg \text{absorbs}(\text{white}, \text{sun})$ is true and therefore that the query must be false, returning $\mathcal{P} \wedge \mathcal{C} \vdash \neg Q$ as conclusion.

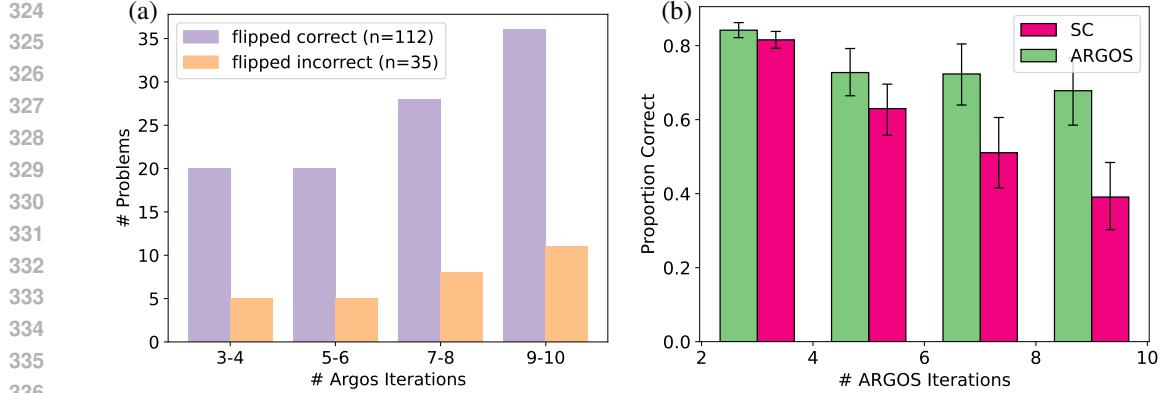


Figure 5: (a) The number of CLUTRR problems for which ARGOS flips SC predictions correctly and incorrectly. (b) SC and ARGOS accuracies on CLUTRR subsets, partitioned by the number of ARGOS iterations each datapoint receives.

5 EXPERIMENTS

Models We employ Llama3-8B (L8B), Llama3-70B (L70B), and Mistral 7B (M7B) as LLMs. Our method is dependent on access to logit-level outputs, so closed-source models are excluded.²

Benchmarks Unfortunately, there are few natural language reasoning datasets that are strongly logically-structured *and* commonsense-abductive. However, given a dataset of classical commonsense-based logic problems, data transformations to introduce the need for abductions are typically achievable. For a list of common datasets which have proven unsuitable for our setting, and corresponding explanation, see Appendix I. For our experiments, we use abductive versions of ProntoQA (Saparov and He, 2023), CLUTRR (Sinha et al., 2019), and FOLIO (Han et al., 2024). CLUTRR is not originally True/False, but it is multiple-choice. We modify it to be True/False output by making the question randomly either ask if the correct or an incorrect choice is True. While these datasets are better described with first-order logic, we render them propositional by unrolling their quantified formulas over all instantiated terms. While strongly logical and therefore obvious choices, these datasets are not representative of real-world application or generalizability of our method. To test our method’s generalizability as well as its broader applicability to real use-cases, we also include some datasets that are not strictly logical. CosmosQA (Huang et al., 2019) and QUAIL (Rogers et al., 2020) are reading comprehension MCQA datasets. Reading comprehension is key for general summarization and interactive QA tasks, which are certainly a common LLM use-case in practice. ESNLI (Camburu et al., 2018) is a short-form natural-language-inference dataset. Each of these datasets requires some form of reasoning, but the structure of both the text and the necessary reasoning is generally fuzzy, requiring subjective interpretation. For the MCQA datasets, we process them into True/False questions similarly to how it was done for CLUTRR. We note that ProntoQA, CosmosQA and ESNLI performances are already saturated by self-consistency. Despite this, the results are valuable as they demonstrate that on these apparently simple tasks ARGOS is able to compare with purely neural methods, avoiding the performance collapse that more symbolic methods encounter. For few-shot examples, we randomly remove four problems from each dataset and annotate them with COTs, using the same four examples and annotations for each method. For more dataset details, please see Appendix H.

Evaluation We compare against *COT* (Wei et al., 2022), *Self-Consistency* Wang et al. (2023), *SAT-LM* (Ye et al., 2023), *Logic-of-Thoughts* (Liu et al., 2024) and *LLM-Tres* (Toroghi et al., 2024). For a fair comparison with 20-shot self-consistency and LOT, we set ARGOS’s hyperparameters such that it makes no more than 20 COT calls per problem on average. Details are provided in Appendix B. We report accuracy on the abduction-modified evaluation sets and report results in Table 1.

²Experiments are each conducted on 1 or 2 NVIDIA Tesla V100 GPUs, depending on the LLM’s GPU memory requirement. As a logic solver, we use *Calculus* (Biere et al., 2024).

378
379

5.1 RESULTS AND DISCUSSION

380
381
382
383
384
385
386
387
388
389
390
391
392
393

As can be seen in Table 1, ARGOS provides significant performance improvements over existing methods (up to +13%). Of the datasets, FOLIO is the most representative of human-generated logical reasoning problems. ARGOS outperforms the baselines for FOLIO, improving performance by 3-10%. For more structured problems (CLUTRR), the symbolic components of ARGOS become more reliable, and we see more consistent gains of 6-8%. On QUAIL, a highly ambiguous dataset that is also formatted in strange ways due to it being constructed by scraping forums and wikis, ARGOS improves compared to self-consistency by up to 13%, demonstrating its ability to adapt to even non-logical contexts. On ProntoQA, ESNLI and CosmosQA, despite the very competitive neural baseline performances, ARGOS performs comparably. Symbolic baselines (SAT-LM, LoT-20, LLM-Tres) see large performance gaps, at times being reduced to guessing. **SAT-LM**, despite the fact that some datasets are strongly logically structured and that we filter out mis-translated problems, still can not answer problems. Even in the best case, it is impossible for purely symbolic methods to handle realistic reasoning scenarios. LLM-Tres, despite having abductive capabilities, is so restricted in its abduction space that it almost never capable of identifying the necessary rules to solve CLUTRR or ESNLI problems.

394
395
396
397
398
399

Table 1: Binary classification accuracy (True/False) of all methods on the datasets, using the chosen language models. Bolded text indicates that the method has the best performance, and that its performance is better than the next-best-performing method in a statistically significant way (p -value < 0.005 according to a Wilcoxon pair-wise rank test). Small-font numbers to the right indicate the bounds of the 95% confidence interval, derived via a bootstrap approach.

	FOLIO			CLUTRR			PQA			
	M7B	L8B	L70B	M7B	L8B	L70B	M7B	L8B	L70B	
SC20	66% 65.5	66.4 71% 70.1	71.7 77% 75.9	77.7 59% 58.8	77.7 69% 68.8	77.7 69% 68.8	97% 95.6	97.2 95% 94.4	95.6 93% 92.4	
COT	66% 65.5	66.4 68% 67.2	69.1 72% 71.8	72.5 59% 58.8	72.5 68% 67.8	72.5 66% 65.6	82% 81.7	82.9 90% 89.6	91.2 93% 92.4	
SAT-LM	43% 42.8	43% 42.8	43.2 43% 42.8	43.2 50% 49.9	43.2 50% 49.9	43.2 50% 49.9	50% 49.8	50.3 50% 49.8	50.3 50% 49.8	
LoT-20	57% 56.6	57.3 69% 68.7	69.5 70% 69.5	70.4 71% 70.7	70.4 70% 69.7	70.4 69% 68.7	88% 87.5	88.4 97% 96.3	98.2 95% 94.3	
LLM-Tres	66% 65.9	66.6 63% 62.4	63.2 63% 62.4	63.2 51% 50.8	63.2 51% 50.8	63.2 53% 52.8	80% 79.2	81.4 83% 82.3	83.8 76% 75.2	
ARGOS	70% 69.8	70.6 81%	81.8 80%	80.5 78%	78.4 77.7	76% 75.8	76.3 78%	78.2 77.7	98.7 97%	
	CosmosQA			ESNLI			QUAIL			
	M7B	L8B	L70B	M7B	L8B	L70B	M7B	L8B	L70B	
SC20	84% 82.9	84.3 81%	81.3 79.7	90% 89.9	91.1 97% 97.1	97.0 96% 96.3	99% 99.5 99.2	70% 67.9	71.0 68% 65.6	69.1 75% 72.4
COT	81% 80.1	81.4 76%	77.5 74.2	88% 86.9	88.7 96% 96.4	88.7 88% 88.4	98.9 99% 99.4	71% 68.8	71.9 65% 63.6	66.2 75% 72.4
SAT-LM	35% 34.8	37.5 35%	37.5 35%	37.5 35% 34.8	37.5 49% 47.7	37.5 49% 47.7	50.0 49% 47.7	50.0 50% 47.7	55.0 53% 51.6	55.0 53% 51.6
LoT-20	77% 76.8	77.2 75%	75.9 74.2	85% 84.3	85.7 71% 70.4	85.7 76% 75.7	75.6 75% 74.4	76.1 76% 74.4	57.1 62% 59.9	73.1 72% 53.8
LLM-Tres	73% 74.0	72.1 72%	72.7 70.9	71% 69.8	71.5 51% 50.8	71.5 51% 50.8	52.5 51% 50.8	52.5 51% 50.8	65.9 63% 62.8	62.1 60% 58.8
ARGOS	84% 82.7	84.3 83%	84.0 90%	90.7 89.4	95% 94.9	95.6 96% 95.5	96.2 98% 97.4	98.0 98% 97.4	83.4 82% 80.7	81.8 80% 78.5

425

426

427
428
429
430
431

RQ1: How useful are the scoring and backbone-tracking elements? In Table 2, we test the importance of two elements of ARGOS: (i) score thresholding and (ii) backbone computation. The ablation of each element in isolation results in a decrease in performance. In addition, the ablation of both results in a larger performance drop than even the sum of the two single ablations’ decreases. The fully-ablated method, however, still shows strong performance relative to the next strongest

432 baseline (SC-20), highlighting the strength of the general concept behind the method. For further
 433 ablations, see Appendix E.
 434

435 **RQ2: How often are ARGOS’ added clauses useful or harmful?** An important criterion when
 436 adding clauses is that they do not corrupt the logic of the problem, undesirably changing the
 437 outcome of the logic. It can be shown (see Appendix A) that so long as clauses are commonsensical,
 438 their addition will not corrupt the problem. However, it is possible that our method adds non-
 439 commonsensical clauses, since the commonsense scoring is not perfectly reliable. Given CLUTRR’s
 440 strict structure, since we know the full knowledge base from which it was constructed, we can
 441 re-construct the full problems and test if ARGOS’ added clauses corrupt the logical arithmetic such
 442 that a different answer is found for the logic problem. We find that on CLUTRR, ARGOS *never*
 443 corrupts a problem. It is then not surprising that ARGOS sees significant performance gains: added
 444 information should in principle never negatively affect a wholly rational reasoner’s solution and so
 445 performance should only improve. **It is also, of course, important that the added clauses contribute**
 446 **to the (correct) solution of the problem.** In order to identify what information is important to the
 447 solution of the problem, we add the full relational reasoning rules to the SAT problem representing
 448 each CLUTRR example. We then extract the proof, taking all variables mentioned in the proof as
 449 important to solving the problem. We can then measure the number of problems for which at least
 450 one new variable is added, which is important to the proof. We find that ARGOS, on Llama 8B,
 451 identifies important new variables for 65% of the CLUTRR questions we test on.

452 **RQ3: Does ARGOS attribute more compute to harder problems? How does this affect the**
 453 **solution of harder problems?** In Figure 5 (b), we examine the proportion of CLUTRR problems
 454 that are solved correctly by SC and ARGOS, over subsets of the dataset grouped by the number
 455 of ARGO iterations before termination. The error bars are 5/95% confidence intervals. As the
 456 number of ARGOS iterations increases, the problems become harder for SC to solve (indicated by
 457 a lower proportion of correct solutions by SC). This tells us that ARGOS’ method of evaluating
 458 solvability is working as intended; harder problems are being assigned more computation. Another
 459 interpretation of this result is that problems which have more missing information, or for which
 460 the missing information is more difficult to infer, are attributed more ARGOS iterations (in order
 461 for ARGOS to find the necessary information). This is supported by the fact that the decrease in
 462 proportion seen in SC is not present for ARGOS: if SC’s performance is dropping due to missing
 463 information, then ARGOS is successfully recovering the necessary missing information.

464 This ability to address the obstacles which cause SC performance to drop contribute to a large number
 465 of answers being flipped from incorrect (when solved by self-consistency) to correct (when solved
 466 by ARGOS). Changes to the answers caused by new information are more often than not in the
 467 right direction. On CLUTRR L70B, we find 112 correct and 35 incorrect flips. Figure 5 (a) shows
 468 the number of correct and incorrect flips ARGOS achieves. As the number of ARGOS iterations
 469 increases, both the correct and incorrect flip counts increase, but the correct flip counts increase much
 470 faster. For a closer look at confidence-score vs. iteration behavior, see Appendix K.

471 Figure 6 provides an example of a question from CLUTRR that is misclassified by self-consistency
 472 but flipped to correct by ARGOS. The COT seems confused, displaying its characteristic inability to
 473 plan out a proof: in steps 1-3 it provides disjoint pieces of information that neither follow from each
 474 other nor move towards the target conclusion. This confusion eventually leads to an incorrect step:
 475 “Shantel is Laura’s aunt”, resulting to an incorrect conclusion. ARGOS, after 3 iterations, provides
 476 several pieces of key information which would require at least one additional reasoning step to find,
 477 halving the necessary chain-length. For some examples in which ARGOS fails, see Appendix J. **For**
 478 **results, evaluated by a human, on ARGOS and COT faithfulness on FOLIO, see Appendix C.**

479 5.2 IMPACT OF IMPERFECT LOGICAL TRANSLATION

480 Here, we test if the assumption of perfect logical translation we make in our experimental procedure
 481 is justified via empirical result. In our experiments, we assumed that we started from a propositional
 482 logic formulation. Some datasets came with an official formulation, while for the others we translated
 483 from text using Claude Opus 4, filtering to remove failed translations. This was done to fairly evaluate
 484 the methods on abductive reasoning, regardless of the quality of translation. In general, logical
 485 translation is kept as a separate module to the proof planning/execution module in logical reasoning

486
 487
 488 Table 2: Ablations. We ablate ele-
 489 ments of ARGOS: (i) the score thresh-
 490 holding, taking the first clause sampled
 491 at each iteration (ARGOS - No T),
 492 (ii) the backbone-tracking, generating
 493 prompts by randomly selecting two
 494 variables (ARGOS - No BB).

FOLIO L8B		
SC-20	71%	71.7 70.1
ARGOS - No T	79%	79.8 78.5
ARGOS - No BB	79%	79.4 78.4
ARGOS - No Both	76%	75.2% 77.2%
ARGOS	81%	81.8 80.0

506
 507
 508 systems. Also, the translation task is intrinsically simpler for LLMs, since it is linguistic rather
 509 than cognitive. LLMs have already demonstrated strong abilities at logic translation (Yang et al.,
 510 2024), and are expected to continue improving faster than at reasoning. To validate this claim in
 511 our context, we re-tested ARGOS with Llama 8B on FOLIO using a translator, but including failed
 512 translations. Performance only decreased marginally, from 80% to 78%, still outperforming the next
 513 best method (SC at 71%). On QUAIL, ARGOS performance dropped from 82% to 73%, which while
 514 large relative to the drop on FOLIO still keeps ARGOS as the best performing method on QUAIL.

6 CONCLUSION

518 We have presented a method for addressing realistic natural-language logic problems, where “realistic”
 519 entails a need for abduction and commonsense. Whether neural or symbolic, we demonstrate
 520 empirically that existing methods struggle in this setting. The method we present addresses this
 521 weakness by (a) *balancing neural and symbolic elements and allowing them to speak to each-other*;
 522 and (b) *avoiding the commonplace design choice of heavily restricting the abduction-clause search*
 523 *space*. On both general and highly structured logic problems, our method demonstrates the power of
 524 a balanced neuro-symbolic approach, outperforming all existing work meaningfully.

525 **Limitations** A limitation of our work is that it is currently restricted to problems which are strictly
 526 True or False, eliminating cases where logic might be used to select an option from a list of choices, or
 527 cases where the correct answer is “Maybe”. In our experimental work, we addressed the consequences
 528 this had on dataset selection by converting datasets to be True/False. The method could however be
 529 extended to multiple-choice questions by asking each question as an individual True/False question,
 530 combined with a decision heuristic for when no/multiple choices are determined True. Another
 531 limitation is that we restrict ARGOS to generating rules with up to two literals in the antecedent.
 532 While many-literal propositional formulas can often be decomposed into smaller ones, this may
 533 not always be the case and an ideal method would allow for large-antecedent generation. Thirdly,
 534 while our goal was to develop methods for open-source LLMs, the method would be more easily
 535 applicable if it did not require logit-level access. A potential future direction might be to convert
 536 the scoring system from a logit-based one to a verbalized score. Additionally, most benchmarks
 537 employed were modified to our setting, making the evaluated tasks at times artificial. Also, ARGOS
 538 sometimes depends upon self-consistency for problem solution. So, there are times when unfaithful
 539 or hallucinatory COTs will impact ARGOSs’ final prediction. Finally, this work focuses on forward
 chaining. A future direction may be backwards-chaining approaches to abductive reasoning.

540 REPRODUCIBILITY STATEMENT
541

542 In the supplementary material, we provide our full code which was used to implement and benchmark
543 our method as well as the baselines. The code also includes data processing steps. We took great care
544 to include in the Appendix, as well, detailed descriptions of our algorithm and our prompts. While
545 our human modification of FOLIO text is not provided, the process for generating it is described
546 carefully in the Appendix.

548 REFERENCES
549

550 Armin Biere, Tobias Faller, Katalin Fazekas, Mathias Fleury, Nils Froleyks, and Florian Pollitt. 2024.
551 CaDiCaL 2.0. In *Proc. Int. Conf. on Computer Aided Verification*. Springer, 133–152.

552 Oana-Maria Camburu, Tim Rocktäschel, Thomas Lukasiewicz, and Phil Blunsom. 2018. e-SNLI:
553 Natural Language Inference with Natural Language Explanations. In *Proc. Conf. Neural Infor-
554 mation Processing Systems*, S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
555 R. Garnett (Eds.), Vol. 31. Curran Associates, Inc.

556 Peter Clark, Oyvind Tafjord, and Kyle Richardson. 2021. Transformers as soft reasoners over
557 language. In *Proc. Int. Joint Conf. on Artificial Intelligence*. 3882–3890.

559 Daniel Crevier. 1993. *AI: The Tumultuous Search for Artificial Intelligence*. Basic Books, Chapter 6:
560 The Tree of Knowledge.

561 Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang (Lorraine) Li, Liwei Jiang, Bill Yuchen Lin, Sean
562 Welleck, Peter West, Chandra Bhagavatula, Ronan Le Bras, Jena Hwang, Soumya Sanyal, Xi-
563 ang Ren, Allyson Ettinger, Zaid Harchaoui, and Yejin Choi. 2023. Faith and Fate: Limits of
564 Transformers on Compositionality. In *Proc. Conf. Neural Information Processing Systems*, A. Oh,
565 T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (Eds.), Vol. 36. Curran Associates,
566 Inc., 70293–70332.

568 Simeng Han, Hailey Schoelkopf, Yilun Zhao, Zhenting Qi, Martin Riddell, Wenfei Zhou, James
569 Coady, David Peng, Yujie Qiao, Luke Benson, Lucy Sun, Alexander Wardle-Solano, Hannah
570 Szabó, Ekaterina Zubova, Matthew Burtell, Jonathan Fan, Yixin Liu, Brian Wong, Malcolm Sailor,
571 Ansong Ni, Linyong Nan, Jungo Kasai, Tao Yu, Rui Zhang, Alexander Fabbri, Wojciech Maciej
572 Kryscinski, Semih Yavuz, Ye Liu, Xi Victoria Lin, Shafiq Joty, Yingbo Zhou, Caiming Xiong,
573 Rex Ying, Arman Cohan, and Dragomir Radev. 2024. FOLIO: Natural Language Reasoning
574 with First-Order Logic. In *Proc Conf. on Empirical Methods in Natural Language Processing*.
575 22017–22031.

576 Lifu Huang, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. 2019. Cosmos QA: Machine
577 Reading Comprehension with Contextual Commonsense Reasoning. In *Proc. Conf. Empirical
578 Methods in Natural Language Processing and Int. Joint Conf. on Natural Language Processing
(EMNLP-IJCNLP)*. Hong Kong, China, 2391–2401.

580 Mehran Kazemi, Najoung Kim, Deepti Bhatia, Xin Xu, and Deepak Ramachandran. 2023. LAM-
581 BADA: Backward Chaining for Automated Reasoning in Natural Language. In *Proc. Conf. Associa-
582 tion for Computational Linguistics*. 6547–6568.

584 Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. 2022.
585 Large language models are zero-shot reasoners. In *Proc. Conf. Neural Informations Processing
586 Systems*. 22199–22213.

587 Jinu Lee and Wonseok Hwang. 2024. SymBa: Symbolic Backward Chaining for Structured Natural
588 Language ReasoningSymBa: Symbolic Backward Chaining for Structured Natural Language
589 Reasoning. arXiv:2402.12806 [cs.CL]

590 Jian Liu, Leyang Cui, Hanmeng Liu, Dandan Huang, Yile Wang, and Yue Zhang. 2021. LogiQA: a
591 challenge dataset for machine reading comprehension with logical reasoning. In *Proc. Int. Joint
592 Conf. on Artificial Intelligence*. 3622–3628.

594 Tongxuan Liu, Wenjiang Xu, Weizhe Huang, Yuting Zeng, Jiaxing Wang, Xingyu Wang, Hailong
 595 Yang, and Jing Li. 2024. Logic-of-thought: Injecting logic into contexts for full reasoning in large
 596 language models. In *arXiv preprint arXiv:2409.17539*.

597

598 Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang, Delip Rao, Eric Wong, Marianna Apidianaki,
 599 and Chris Callison-Burch. 2023. Faithful Chain-of-Thought Reasoning. In *Int. Joint Conf. Natural
 600 Language Processing and Conf. Asia-Pacific Chapter of the Association for Computational
 601 Linguistics*.

602 Nils J. Nilsson. 1991. Logic and artificial intelligence. *Artificial Intelligence* 47, 1 (1991), 31–56.

603

604 Theo Olausson, Alex Gu, Ben Lipkin, Cedegao Zhang, Armando Solar-Lezama, Joshua Tenenbaum,
 605 and Roger Levy. 2023. LINC: A Neurosymbolic Approach for Logical Reasoning by Combining
 606 Language Models with First-Order Logic Provers. In *Proc. Conf. on Empirical Methods in Natural
 607 Language Processing*. 5153–5176.

608 Liangming Pan, Alon Albalak, Xinyi Wang, and William Wang. 2023. Logic-LM: Empowering
 609 Large Language Models with Symbolic Solvers for Faithful Logical Reasoning. In *Findings of the
 610 Association for Computational Linguistics*, Houda Bouamor, Juan Pino, and Kalika Bali (Eds.).
 611 3806–3824.

612 Fabio Petroni, Tim Rocktäschel, Sebastian Riedel, Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and
 613 Alexander Miller. 2019. Language Models as Knowledge Bases?. In *Proceedings of the 2019
 614 Conference on Empirical Methods in Natural Language Processing and the 9th International
 615 Joint Conference on Natural Language Processing (EMNLP-IJCNLP)*, Kentaro Inui, Jing Jiang,
 616 Vincent Ng, and Xiaojun Wan (Eds.). Association for Computational Linguistics, Hong Kong,
 617 China, 2463–2473.

618 Aske Plaat, Annie Wong, Suzan Verberne, Joost Broekens, Niki van Stein, and Thomas Back. 2024.
 619 Reasoning with large language models, a survey. In *arXiv preprint arXiv:2407.11511*.

620

621 Anna Rogers, Olga Kovaleva, Matthew Downey, and Anna Rumshisky. 2020. Getting closer to
 622 AI complete question answering: A set of prerequisite real tasks. In *Proc. AAAI Conf. Artificial
 623 Intelligence*, Vol. 34. 8722–8731.

624 Abulhair Saparov and He He. 2023. Language Models Are Greedy Reasoners: A Systematic Formal
 625 Analysis of Chain-of-Thought. In *Proc. Int. Conf. Learning Representations*.

626

627 Koustuv Sinha, Shagun Sodhani, Jin Dong, Joelle Pineau, and William L. Hamilton. 2019. CLUTRR:
 628 A Diagnostic Benchmark for Inductive Reasoning from Text. In *Proc. Conf. Empirical Methods of
 629 Natural Language Processing*.

630 Oyvind Tafjord, Bhavana Dalvi, and Peter Clark. 2021. ProofWriter: Generating Implications, Proofs,
 631 and Abductive Statements over Natural Language. In *Proc. Conf. Association for Computational
 632 Linguistics: ACL-IJCNLP*. 3621–3634.

633

634 Jidong Tian, Yitian Li, Wenqing Chen, Liqiang Xiao, Hao He, and Yaohui Jin. 2021. Diagnosing
 635 the first-order logical reasoning ability through LogicNLI. In *Proc. Conf. Empirical Methods in
 636 Natural Language Processing*. 3738–3747.

637 Armin Toroghi, Willis Guo, Ali Pesaranghader, and Scott Sanner. 2024. Verifiable, Debuggable, and
 638 Repairable Commonsense Logical Reasoning via LLM-based Theory Resolution. In *Proc. Conf.
 639 on Empirical Methods in Natural Language Processing*. 6634–6652.

640

641 Siyuan Wang, Wanjun Zhong, Duyu Tang, Zhongyu Wei, Zhihao Fan, Dixin Jiang, Ming Zhou, and
 642 Nan Duan. 2022. Logic-Driven Context Extension and Data Augmentation for Logical Reasoning
 643 of Text. In *Proc. Conf. Association for Computational Linguistics*, Smaranda Muresan, Preslav
 644 Nakov, and Aline Villavicencio (Eds.). 1619–1629.

645 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H Chi, Sharan Narang, Aakanksha
 646 Chowdhery, and Denny Zhou. 2023. Self-Consistency Improves Chain of Thought Reasoning in
 647 Language Models. In *Proc. Int. Conf. on Learning Representations*.

648 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
649 Zhou, et al. 2022. Chain-of-thought prompting elicits reasoning in large language models. In *Proc.*
650 *Conf. Neural Information Processing Systems*. 24824–24837.

651 Jundong Xu, Hao Fei, Liangming Pan, Qian Liu, Mong-Li Lee, and Wynne Hsu. 2024. Faithful
652 Logical Reasoning via Symbolic Chain-of-Thought. In *Proc. Conf. Association for Computational*
653 *Linguistics*. 13326–13365.

654 Shangzi Xue, Zhenya Huang, Jiayu Liu, Xin Lin, Yuting Ning, Binbin Jin, Xin Li, and Qi Liu. 2024.
655 Decompose, analyze and rethink: Solving intricate problems with human-like reasoning cycle. In
656 *Proc. Conf. Neural Information Processing Systems*. 357–385.

657 Yuan Yang, Siheng Xiong, Ali Payani, Ehsan Shareghi, and Faramarz Fekri. 2024. Harnessing the
658 Power of Large Language Models for Natural Language to First-Order Logic Translation. In *Annual*
659 *Meeting of the Association for Computational Linguistics 2024*. Association for Computational
660 Linguistics (ACL), 6942–6959.

661 Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
662 2023. Tree of thoughts: Deliberate problem solving with large language models. In *Proc. Conf.*
663 *Neural Information Processing Systems*. 11809–11822.

664 Xi Ye, Qiaochu Chen, Isil Dillig, and Greg Durrett. 2023. SatLM: Satisfiability-Aided Language
665 Models Using Declarative Prompting. In *Proc. Conf. Neural Information Processing Systems*.

666 Weihsiao Yu, Zihang Jiang, Yanfei Dong, and Jiashi Feng. 2020. ReClor: A Reading Comprehension
667 Dataset Requiring Logical Reasoning. In *Proc. Int. Conf. on Learning Representations*.

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

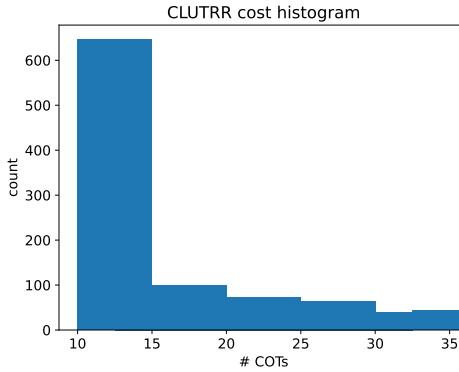
700

701

702 A ABDUCTIVE LOGIC PROBLEMS ARE WELL-DEFINED
703704 In this section we prove that the solution of an abductive propositional logic problem, given in Section
705 3, does not depend on the choice of commonsense set \mathcal{C} .
706707
708 **Proposition 1.** *Let \mathcal{P} be a set of premises, Q a query proposition, and $\mathcal{C}_1, \mathcal{C}_2$ subsets from com-
709 monsense set \mathcal{C} of additional propositions such that $(\mathcal{P} \wedge \mathcal{C}_1) \vdash L_1$ and $(\mathcal{P} \wedge \mathcal{C}_2) \vdash L_2$ for literals
710 $L_1, L_2 \in \{Q, \neg Q\}$. If \mathcal{P} is consistent with \mathcal{C} ($\mathcal{P} \wedge \mathcal{C} \not\vdash \perp$) then $L_1 \leftrightarrow L_2$.*
711712 *Proof.* Let's say $L_1 \not\leftrightarrow L_2$: without loss of generality we can take $(\mathcal{P} \wedge \mathcal{C}_1) \vdash Q$ and $(\mathcal{P} \wedge \mathcal{C}_2) \vdash \neg Q$.
713 So, $(\mathcal{P} \wedge \mathcal{C}_1 \wedge \mathcal{C}_2) \vdash (Q \wedge \neg Q) \vdash \perp$. But $\mathcal{C}_1, \mathcal{C}_2 \subset \mathcal{C}$, so therefore $(\mathcal{P} \wedge \mathcal{C}) \leftrightarrow (\mathcal{P} \wedge \mathcal{C}_1 \wedge \mathcal{C}_2 \wedge$
714 $[\mathcal{C} \setminus (\mathcal{C}_1 \cup \mathcal{C}_2)])$, so $\mathcal{P} \wedge \mathcal{C} \leftrightarrow \perp \wedge [\mathcal{C} \setminus (\mathcal{C}_1 \cup \mathcal{C}_2)]$, so $\mathcal{P} \wedge \mathcal{C} \vdash \perp$. This contradicts our assumption
715 that $\mathcal{P} \wedge \mathcal{C} \not\vdash \perp$. \square
716717 B COST DISCUSSION
718719 While in theory COT generation is meant to be done until an answer is found, in practice it is
720 necessary that an upper-limit on number of tokens generated is enforced. This is in case (a) the
721 LLM continues generating past its answer, or (b) the LLM goes off-track and never answers the
722 question. In any case, this means that each COT generation will be, at worst-case-assumption, equal
723 in cost. In addition, the various method-specific LLM generations that are employed require small
724 token-limits relative to COT, and so the number of COT calls made dominates the total number of
725 tokens generated by any method. Additionally, as problems get harder and more logically complex,
726 necessary COT generation length increases, making this even more true. So, we can say that cost for
727 each method scales in proportion to the number of COTs generated. For example, Self-Consistency
728 takes two hours longer to run than AROGS on FOLIO with Llama 8B, despite requiring more total
729 LLM calls (where we include scoring and literal-generaiton calls in our count). This is because
730 the average number of COT-specific calls is lower for ARGOS than SC, and the scoring and literal
731 generation calls are much shorter than COT calls. In our implementation, we generate at most 25
732 tokens for literal-generation, 1 token maximum for scoring, and 300 tokens maximum for COT
733 generation. Given this, budgeting method costs in terms of COT calls is well-justified. For SC and
734 COT, the cost evaluation is trivial: COT always makes 1 COT call and SC makes a fixed number
735 of COT calls, specified as a hyper-parameter. Similarly, LOT makes some small generative calls
736 followed by SC, so its number of COT calls is fixable. LLM-Tres makes no COT calls, and neither
737 does SAT-LM. ARGOS' cost varies according to the entry, but its hyper-parameters (number of COT
738 calls per-iteration and threshold/annealing constants) can be set such that its average number (or
739 worst-case) number of calls is less than a budget. A summary of method cost in terms of COT calls
740 is provided in Table 3. In Figure 7, we show a histogram of the individual problem costs incurred
741 by ARGOS with Llama 8B, expressed in terms of the number of COTs required per problem. For
742 most problems, only 10 COTs are required. This allows ARGOS to exceed the on-average cap for
743 problems requiring more ablation or deeper search. If we compose a new dataset of only the hardest
744 problems, for example the CLUTRR problems for which ARGOS takes 8-10 ARGOS steps (the final
745 bar in Figure 5(b)). Testing ARGOS, limited at 20 COTs per-problem (strictly, not on average), we
746 see that its performance drops from 65% to 54% on these problems, whereas SC performs at 40%
747 with these problems. This indicates a clear and steep cost-performance tradeoff for ARGOS, but even
748 with strict cost limitations ARGOS outperforms SC.
749
750
751
752
753
754
755

756
757
758 Table 3: Average number of COT calls required by each method.
759
760
761
762
763
764

	Cost (Avg # COT)
COT	1
SC	20
LOT	20
SAT-LM	0
LLM-Tres	0
ARGOS	18.4

779 Figure 7: Histogram of individual problem costs to ARGOS-Llama 8B on CLUTRR
780
781782 C MANUAL HUMAN FAITHFULNESS EVALUATION
783

784 For COT, we manually checked the chains which result in the correct final answer, generated with
785 Llama 8B. For ARGOS, if ARGOS made the correct final prediction using the SC output, we will
786 check one of the chains from the final SC call. If ARGOS made the final prediction using the symbolic
787 solver, the reasoning is considered correct if none of the added clauses are incorrect (the reasoning
788 itself must be beyond reproach as it is executed by a solver). Additionally, for ARGOS, we evaluate
789 the usefulness of the added information in solving the problem, and whether the added information is
790 new to the problem. We find that Llama 8B generates faithful COT reasoning processes when it gets
791 the answer right 72% of the time. We find that ARGOS-L8B generates a faithful reasoning process
792 when it gets the answer right 85% of the time, showing that in general ARGOS-L8B is more faithful
793 than pure-COT based methods (i.e. COT, SC). Three potential explanations for this result, in order
794 from least to most in terms of their strength in justifying our method, are that (1) The logical content
795 of ARGOS’s augmented prompt, regardless of content, incites a more logical structure in the LLM
796 generation. (2) ARGOS successfully extracts the key elements of the problem, stabilizing the LLM
797 and making it less likely to become unfaithful or to hallucinate. (3) ARGOS adds new information
798 which allows us to solve otherwise difficult problems. Empirically, we find that ARGOS-L8B adds
799 at least one piece of information necessary for the generating the faithful proof 85% of the time.
800 This seems to lend credibility to explanation (2). Additionally, ARGOS adds new information to the
801 text-problem 72% of the time, which lends some credibility to explanation (3), which would strongly
802 justify the extend of our method, whose goal is explicitly stated as searching for new and crucial
803 commonsense. Most interestingly, we find that 100% of the time in which we solve symbolically, the
804 information added by ARGOS is faithful, useful and novel. This is perhaps not surprising, since to
805 achieve the contrary, we would have to either add exactly contradictory information to the true proof.
806 Nonetheless, it is an extremely satisfying finding, as it shows that when we are able to avoid typical
807 symbolic robustness issues such as symbol mismatch, ARGOS maintains the rigour characteristic of
808 symbolic methods.
809

810 D ALGORITHM DESCRIPTION

811

812 In this section we provide a detailed description of our ARGOS algorithm. The main procedure is
 813 summarized as Algorithm 1, which uses the `find_new_commonsense` subroutine in Algorithm
 814 2.

815 **Algorithm 1** ARGOS

816

817 **Require:** premises \mathcal{P} , query Q , SC sample-count k , scoring threshold $\tau \in (0, 1]$,
 818 self-consistency threshold $\gamma \in (0, 1]$ and decay $\alpha \in (0, 1]$

819 1: commonsense set $\mathcal{C} \leftarrow \{\}$

820 2: **while** $\gamma > 0$ **do**

821 3: *// Attempt solving with the SAT solver*

822 4: $\text{sat_conclusion, backbone } \mathcal{B} \leftarrow \text{sat_solve}(\mathcal{P} \wedge \mathcal{C} \vdash Q, \neg Q)$

823 5: **if** sat_conclusion is $(\mathcal{P} \wedge \mathcal{C}) \vdash Q$ or $(\mathcal{P} \wedge \mathcal{C}) \vdash \neg Q$ **then**

824 6: **return** \mathcal{C} , sat_conclusion

825 7: **end if**

826 8: *// Else attempt solving with the LLM (k-shot self-consistency)*

827 9: $\text{llm_conclusion, llm_confidence} \leftarrow \text{llm_solve}(\mathcal{P} \wedge \mathcal{C} \vdash Q, \neg Q)$

828 10: **if** $\text{llm_confidence} > \gamma$ **then**

829 11: **return** \mathcal{C} , llm_conclusion

830 12: **end if**

831 13: *// Else find a new commonsense proposition to add to the pool*

832 14: $\mathcal{C} \leftarrow \text{find_new_commonsense}(\mathcal{P}, \mathcal{C}, \mathcal{B}, \tau)$

833 15: **if** \mathcal{C} is not None **then**

834 16: *// New commonsense has been found, we try again with an enlarged \mathcal{C} and smaller γ*

835 17: $\mathcal{C} \leftarrow \mathcal{C} \wedge \{C\}$

836 18: $\gamma \leftarrow \gamma - \alpha$

837 19: **else**

838 20: *// We failed, return best guess*

839 21: **return** \mathcal{C} , llm_conclusion

840 22: **end if**

841 23: **end while**

842 24: *// We ran out of time, return best guess*

843 25: **return** \mathcal{C} , llm_conclusion

844 **Algorithm 2** `find_new_commonsense`

845

846 **Require:** premises \mathcal{P} , commonsense \mathcal{C} , backbone $\mathcal{B} = \text{backbone}(\mathcal{P} \wedge \mathcal{C})$, scoring threshold $\tau \in$
 847 $(0, 1]$

848 1: **for** $L_1 \in \mathcal{B}$ from highest to lowest $\text{score}_{\mathcal{B}}(L_1)$ **do**

849 2: **for** $L_2 \in \mathcal{B}$ from highest to lowest $\text{score}_{\mathcal{B}}(L_2)$ **do**

850 3: **for** L_{right} in $\text{llm_generate}_{\mathcal{P} \wedge \mathcal{C}}(L_1 \wedge L_2 \rightarrow ?)$ **do**

851 4: $\text{commonsense_score} \leftarrow \text{llm_commonsense_score}(L_1 \wedge L_2 \rightarrow L_{\text{right}})$

852 5: $\text{relevance_score} \leftarrow \text{llm_relevance_score}_{\mathcal{P} \wedge \mathcal{C}}(L_1 \wedge L_2 \rightarrow L_{\text{right}})$

853 6: **if** $\text{commonsense_score} > \tau$ **and** $\text{relevance_score} > \tau$ **then**

854 7: *// We found a new relevant commonsense clause*

855 8: **return** $L_1 \wedge L_2 \rightarrow L_{\text{right}}$

856 9: **end if**

857 10: **end for**

858 11: **end for**

859 12: **end for**

860 13: *// We failed to find a new relevant commonsense clause*

861 14: **return** None

862

863

864 **E ABLATIONS**
865

	FOLIO 8B	CLUTRR 8B
ARGOS-Symbolic	59%	72%
ARGOS	81%	76%
SC	71%	69%
LLM-Tres	63%	51%

872 Table 4: Ablating the SC-solver on ARGOS. ARGOS-Symbolic denotes the ablated version of
873 ARGOS.
874875 In Table 4, we ablate the SC-solver, solving problems with only a symbolic solver. We impose
876 a threshold of 100 proposed rules, since the previous bounding system was in terms of SC confi-
877 dence. We find that removing the SC option only somewhat hurts ARGOS performance on CLUTRR,
878 but has a catastrophic effect on FOLIO. This is not at all surprising, since CLUTRR is far simpler and
879 more logically structured than FOLIO. Interestingly, we find that LLM-Tres performs slightly better
880 than ARGOS-Symbolic on FOLIO. On investigation, we found that propositions with a single-literal
881 antecedent were generally enough to solve FOLIO problems, and so LLM-Tres’ methodological
882 restriction to such rules benefits it, whereas in CLUTRR where nearly all necessary propositions
883 have two literals in the antecedent, LLM-Tres is reduced to guessing. This massive performance gap
884 which we see on ARGOS in the more linguistic and more logical datasets illustrates the need for
885 balanced, neuro-symbolic approaches.
886

	FOLIO 8B
No Commonsense	79%
No Contextual	80%
Full AROGS	81%

891 Table 5: Ablating individual score thresholds
892893 In Table 5, we ablate separately the commonsense and contextualness scoring components. We find
894 that both are necessary. This makes sense, since while they may have some overlap in terms of the
895 rules which they serve to reject (for example, gibberish output would be neither commonsensical nor
896 contextually relevant), it is easily conceivable that the sets of proposed propositions which they reject
897 correctly is not totally overlapping.
898900 **F ALGORITHM LLM DETAILS**
901902 In this section we provide details about the parts of the algorithm that involve interactions with the
903 large language model.
904905 **F.1 SOLVING WITH 5-ROUND SELF-CONSISTENCY (LLM_SOLVE)**
906907 This subroutine aims to establish whether the premises and commonsense entails the query, i.e.
908 $(\mathcal{P} \wedge \mathcal{C}) \vdash Q$ or $(\mathcal{P} \wedge \mathcal{C}) \vdash \neg Q$. This routine always returns an answer, but can make mistakes. We
909 few-shot prompt the LLM 5 times with the prompt in Table 6.
910Table 6: COT prompt
911

 912 Here are some facts and rules: [premises \mathcal{P}]
 913 Here is some additional info we found: [commonsense \mathcal{C}]
 914 True or false: [query Q]?
 915 Answer:

916 Each call returns an answer $a_1, \dots, a_5 \in \{\text{True}, \text{False}\}$, with a certain confidence $c_1, \dots, c_5 \in (0, 1]$.
917 The algorithm returns the most common answer (True or False), and a total confidence score given by

918 the sum of confidences of the most common answer a^* , divided by 5:
 919

$$920 \quad 921 \quad 922 \quad c^* = \frac{1}{5} \sum_{i=1}^5 c_i \mathbb{1}[a_i = a^*].$$

923 **F.2 GENERATING NEW COMMONSENSE LITERALS L_{RIGHT} (`LLM_GENERATE`)**

925 This subroutine aims to find a plausible right-hand-side literal L_{right} for a proposition $L_1 \wedge L_2 \rightarrow L_{\text{right}}$.
 926 The new literal might potentially involve new variables not previously seen in the problem. We use
 927 a slightly different prompt for CLUTRR and for the others, because of CLUTRR’s more distinct
 928 structure. **Anecdotally, we found that CLUTRR’s more consistent linguistic structure allowed for**
 929 **prompt formats which were very straightforward.** For more linguistically complex datasets, however,
 930 more robust prompt formatting was required. For example, asking if a rule seems contradictory was
 931 more robust in situations where a rule was ambiguous without context (i.e. `student(Rina)` implies
 932 `like_coffee(Rina)`, vs. `Mom(Hannah, Sam)` and `Sibling(Sam, Mary)` implies `Mom(Hanna, Mary)`).

933 Table 7: Clause generation prompt for all datasets but CLUTRR. e is an entity appearing in L_1 or L_2 .
 934

935 Fill in the blank with a known predicate: $[L_1 \wedge L_2]$ implies
 936 $\underline{\quad}([e])$.

937 Known predicates are: [all predicates appearing in the premises
 938 \mathcal{P} and the commonsense \mathcal{C}]

939 Answer:

941 Table 8: Clause generation prompt for CLUTRR. e_1 and e_2 are entities appearing in L_1 or L_2 .
 942

943 If $[L_1 \wedge L_2]$ then $\underline{\quad}([e_1], [e_2])$. Fill in the blank.
 944 Answer:

946 Thus, for example, in FOLIO if $L_1 = \text{drinksCoffee}(Rina)$ and $L_2 = \text{Loves}(Mary, Sam)$,
 947 then we would make three calls, one for $\text{drinksCoffee}(Rina) \wedge \text{Loves}(Mary, Sam) \rightarrow F(Rina)$,
 948 $\text{drinksCoffee}(Rina) \wedge \text{Loves}(Mary, Sam) \rightarrow F(Mary)$ and $\text{drinksCoffee}(Rina) \wedge$
 949 $\text{Loves}(Mary, Sam) \rightarrow F(Sam)$ respectively. With such calls, the method might return the set
 950 $\{\text{productive}(Rina), \text{hasFeelings}(Mary), \text{isLoved}(Sam)\}$, for example.
 951

952 **F.3 SCORING PROPOSITIONS $L_1 \wedge L_2 \rightarrow L_{\text{RIGHT}}$ FOR COMMONSENSE**
 953 (`LLM_COMMONSENSE_SCORE`)
 954

955 This procedure uses the LLM to score how much our new proposition $L_1 \wedge L_2 \rightarrow L_{\text{right}}$
 956 is likely to be commonsense. In detail, we ask the LLM whether, without any context, the
 957 rule seems contradictory (FOLIO/ProntoQA) or true (CLUTRR). We record the logits of the
 958 “Yes” and “No” tokens following the prompt, and we return as commonsense score $P[\text{No}] =$
 959 $\exp(\text{logit}_{\text{No}}) / (\exp(\text{logit}_{\text{Yes}}) + \exp(\text{logit}_{\text{No}}))$, except for CLUTRR where we return $P[\text{Yes}] =$
 960 $\exp(\text{logit}_{\text{Yes}}) / (\exp(\text{logit}_{\text{Yes}}) + \exp(\text{logit}_{\text{No}}))$ since the question is inverted.
 961

962 Table 9: Commonsense scoring prompt for FOLIO/ProntoQA.
 963

964 Does the following rule seem contradictory?
 965 Rule: $[L_1 \wedge L_2 \rightarrow L_{\text{right}}]$
 966 Answer:

967 **F.4 SCORING PROPOSITIONS $L_1 \wedge L_2 \rightarrow L_{\text{RIGHT}}$ FOR CONTEXT-RELEVANCE**
 968 (`LLM_RELEVANCE_SCORE`)
 969

970 This procedure uses the LLM to score how much our new proposition $L_1 \wedge L_2 \rightarrow L_{\text{right}}$ is likely
 971 to be relevant to the context. This helps eliminate propositions, like “The sky is blue”, that are

972 Table 10: Commonsense scoring prompt for CLUTRR.
973

974 Does the following rule seem true?
975 Rule: $[L_1 \wedge L_2 \rightarrow L_{\text{right}}]$
976 Answer:

977
978
979 true and commonsense but unlikely to help prove our query. In this case, we use the same prompt
980 for all datasets. We record the logits of the tokens “Yes” and “No” following the text, and return
981 $P[\text{Yes}] = \exp(\text{logit}_{\text{Yes}}) / (\exp(\text{logit}_{\text{Yes}}) + \exp(\text{logit}_{\text{No}}))$ as relevance score.
982
983 Table 11: Context scoring prompt for all datasets.
984

985 Here are some facts and rules: [premises \mathcal{P} and commonsense \mathcal{C}]
986 Does the following new rule seem contextually relevant to the
987 facts and rules? $[L_1 \wedge L_2 \rightarrow L_{\text{right}}]$
988 Answer:

989
990 F.5 MANUAL EVALUATION OF SCORING MODULE
991
992 We have conducted a human review of 50 ARGOS-proposed rules and their corresponding scores, for
993 Llama 8B on FOLIO. We found that, by classifying with the decision rule of thresholding at 0.3 for
994 commonsense-ness and contextual-ness separately, the commonsense binary classification is correct
995 76% of the time, and the contextualness classification accuracy is correct 91% of the time. We find
996 that the scores are not in general well-calibrated, but this is not needed for the thresholding that we
997 do.
998
999 G IN-DEPTH LITERATURE REVIEW
1000
1001 Since 2022, when Wei et al. (2022) found that models had the capacity to solve (at the time) difficult
1002 reasoning problems by simply prompting the model to output a detailed rationale (a “chain of thought”
1003 (COT)) before making a decision, there has been significant interest in leveraging/improving LLMs’
1004 capacity for reasoning.
1005

1006 **Semantic Logic Parsers** More recently, a series of methods were proposed which effectively by-
1007 passed the reasoning process by prompting LLMs to translate the given input to symbolic language
1008 (parsing the logic) and then using external, programmatic solvers to solve the problem in the symbolic
1009 space. F-COT, proposed by Lyu et al. (2023) and SAT-LM, proposed by Ye et al. (2023) are two
1010 contemporaneous works which prompt the LLM to translate the given problem into its corresponding
1011 symbolic language, to be solved by the appropriate solver. Logic-LM, proposed by Pan et al. (2023),
1012 also published around the same time, includes a self-refinement step in order to catch mistranslations
1013 and to re-translate them, but this module provided only minor improvements.
1014

1015 The logic-parsing strategy proved extremely effective, converting reasoning tasks into the more
1016 linguistic translation task. Since the algorithmic tools never make mistakes, if the translation is
1017 accurate, then the solution will be too. These methods, however, rely upon the strong assumption
1018 which goes widely unacknowledged that all necessary information is provided at input. By motivation,
1019 this assumption implies a well-informed, precise, and careful end-user. This critical assumption
1020 greatly injures the applicability and generalizability of these symbolic methods. In order to address
1021 this, ARGOS aims specifically to provide missing information by exploring the logical space and
1022 leveraging logical tools. Xu et al. (2024), argue that using external solvers is not relevant to the
1023 LLM’s actual reasoning capacity and present a method which still parses the text into symbolic
1024 language, but uses the LLM as the symbolic solver by inputting the symbolic expressions directly to
1025 the LLM. In fact, this was an alternative presented in SAT-LM, and was shown to be weaker than
1026 directly using an external solver in cases where the problems are fully defined (which is the case in
1027 the setting chosen by both works).
1028

1026 **Deductive Logical Algorithms** Given the findings discussed above that LLMs were efficient
 1027 logic-parsers, the door was opened to more agentic algorithms which operate in the logic-space (as
 1028 opposed to the textual space). Algorithms were proposed by Kazemi et al. (2023) and Lee and Hwang
 1029 (2024) which attempted to reason backwards through the problem in logic space, using the LLM after
 1030 each deduction step to choose the next deduction. These methods proved to perform worse than the
 1031 previous parsing methods as they relied on the same assumptions of completeness in the input, but
 1032 also required the LLM to greedily trace a reasoning path, opening another avenue for errors. This
 1033 step is unnecessary since logic tools are able to search exhaustively over the solution space at very
 1034 low cost.

1035 **Clause-generative Algorithms (Abduction)** In response to the literature’s inability to address
 1036 cases where the completeness assumption fails, some work was proposed which explicitly aims to
 1037 generate logical clauses in the textual space. The very similar algorithms proposed by Liu et al.
 1038 (2024) and Wang et al. (2022) first translate the text to logic and then produce some new clauses
 1039 which are deducible via classical logic given the logical translation of the input. By then translating
 1040 the newly deduced logic back to text, the textual representation of the logic is now richer from a
 1041 linguistic point of view (although no new information was added to the underlying logic), and then
 1042 COT is used to solve the augmented problem in text-space. In the logical sense, this method is not
 1043 truly abductive as no new logical information is produced.

1044 Instead of producing clauses via deduction on the input, Toroghi et al. (2024) proposed a method
 1045 which leverages LLMs’ knowledge of commonsense to supply missing clauses during the reasoning
 1046 process. Given the logical translation of the input text, the space of all 2-variable clauses which are
 1047 possible to construct using the variables given in the question is explored exhaustively, with each rule
 1048 being given a probability of being true by the LLM. Reasoning paths are formed with the various
 1049 rules.

1050 This method suffers from a rigidity regarding the search space: due to the exhaustive search the space
 1051 must be restricted to only 2-variable rules constructible from the input. Often the missing information
 1052 from logic problems may include variables which are not named in the problem and so are unseen
 1053 in the abduction input. In other cases, the necessary rules might be of different sizes. These cases
 1054 are easily seen even in the commonly used datasets for logic-reasoning evaluation. For example,
 1055 CLUTRR Sinha et al. (2019), which is a dataset of reasoning problems related to family relationships,
 1056 requires 3-variable rules of the form $mom(A, B) \wedge sister(B, C) \rightarrow mom(A, C)$. This algorithm is
 1057 by construction incapable of producing such information. The evaluation procedures presented by
 1058 Toroghi et al. (2024) use simple and rigidly structured data such that only simple 2-variable rules
 1059 constructed from existing variables are required.

1060 Since the algorithm output is dependent on the logical proof, if the necessary clauses cannot be
 1061 found then a full proof will never be found, and the algorithm is forced to provide either no output
 1062 or a guess. In contrast to these works, ARGOS aims to introduce logical clauses which provide
 1063 new information about potentially unseen variables and which can be of varying sizes. In order to
 1064 accommodate the very large search space, we introduce several innovative methods to dynamically
 1065 select sub-spaces and to efficiently search them. Our proposed method aims to build its solution from
 1066 both the language-reasoning space and the logic space in order to leverage the exactness of logical
 1067 tools while remaining robust to failures to find the necessary logical clauses.

1068 **Generalist Reasoners** Despite much research, Chain-of-Thought (COT), proposed by Wei et al.
 1069 (2022), remains one of the most generally applicable and robust reasoning approaches Plaat et al.
 1070 (2024). Thus, much research has been done on how to augment the COT process (the previously
 1071 discussed work by Liu et al. (2024) could be viewed as part of this category). While the focus of our
 1072 paper is logical algorithms, there are some generalist methods which cannot be ignored. A simple but
 1073 highly effective approach known as self-consistency (SC), proposed by Wang et al. (2023), prompts
 1074 via COT several times and takes the mode of the outputs as the prediction. This method benefits
 1075 from adding further robustness by smoothing potential outlier errors which might be present in a
 1076 few chains, and is easily scalable according to computational budget by choosing the appropriate
 1077 number of samples to take. However, the marginal return decreases as the number of sampled chains
 1078 increases, as is shown in the original paper Wang et al. (2023). COT and SC’s poor performance in
 1079 proof planning (Saparov and He, 2023) motivated Tree of Thoughts (TOT), proposed by Yao et al.
 (2023), in which a reasoning tree is hand-crafted for a problem and then the LLM is prompted to

1080 explore this tree for likely paths. This method demands a very specific tree topology and exploration
 1081 designs for each task and so is more of a general framework than an explicit method applicable to
 1082 logical reasoning. The tree structure of logical reasoning problems even in the same dataset are highly
 1083 varied. Given this, TOT is poorly suited to logical reasoning settings. There are many works which
 1084 go beyond TOT in terms of exploring potential chains. Most recently, Xue et al. (2024) proposed a
 1085 recursive method which also conducts a tree-like search, but allows for dynamically-structured trees.
 1086

1087 H USED DATASETS

1089 The following is a description of the datasets which we have used in our experiments.
 1090

1091 **ProntoQA (Saparov and He, 2023)** ProntoQA is a dataset which comes in three types of groundings
 1092 over the same symbolic structure, which is a string of single-variable modus ponens operations.
 1093 One of these types is a hand-crafted grounding designed to be true according to commonsense. This
 1094 dataset is, at this point, fairly easy for language models to handle. However, it remains a common
 1095 dataset in logical reasoning, and comes with the convenience that a simple random removal of
 1096 inference rules included in the problem will build abduction cases, as all rules are commonsense.
 1097 There are 59 problems in the dataset.

1098 **CLUTRR (Sinha et al., 2019)** CLUTRR is a dataset of family-relational reasoning problems in
 1099 which some family relations (i.e. “Sam is the mother of John”) are given in the form of simple
 1100 stories (i.e. “John went with his mom Sam to the mall”). Traditionally, the task in CLUTRR is to
 1101 deduce the relationship between two people, given the context. In order to structure the problem as a
 1102 true/false classical logic problem, however, we restructure the task to determine if a given relationship
 1103 between two people is true or not. Practically, we construct the labels by taking the ground-truth
 1104 relationship as the query 50% of the time (so the new label is “True”), and taking a random other
 1105 relationship between the given two people (“False”) the other 50% of the time, in order to balance
 1106 the dataset. While the task is naturally abductive in that the input contexts do not include abstract or
 1107 even grounded relational inference rules (i.e. “if A is the mother of B then B is the child of A”), most
 1108 symbolic methods rely upon a practitioner to hand-craft a knowledge base of relational rules which
 1109 are appended to each problem in the dataset. Simply by forbidding this provision, the task becomes
 1110 truly abductive for the reasoning model. There are 1000 problems in the dataset.

1111 **FOLIO (Han et al., 2024)** FOLIO is a dataset of logic problems which were hand-crafted by “expert
 1112 annotators”. The dataset is the most diverse of the three we use, both linguistically and structurally.
 1113 While not perfectly commonsensical, it is generally based in commonsense simply because the
 1114 annotators were humans who exist in and tend to operate within real-world contexts. Given this
 1115 pseudo-commonsensicality, random removal of rules to introduce commonsense abduction is not an
 1116 option, as non-commonsense may be removed from the context. Thus, we engaged human annotators
 1117 to replace randomly selected phrases from problems with semantically equivalent expressions, so
 1118 that each replacement would require a minimum of one new rule, indicating that the replaced phrase
 1119 is implied by its replacement. For example, “NBA Player” → “Pro Basketball Player”. Annotators
 1120 were instructed to reject problems where no replacement could easily be found, and some annotations
 1121 failed to impact the problem due to either weak replacements or non-interaction with the solve-path
 1122 of the problem. These problems were discarded, leaving us an abduction-variant of FOLIO with 108
 1123 True-or-False problems.

1124 **ESNLI (Camburu et al., 2018)** ESNLI is a dataset of premise-conclusion pairs, stemming from the
 1125 human-explanation NLI field. A machine is asked to explain how the premise yields or contradicts the
 1126 conclusion. We adopted this dataset by inverting the task, so that given the premise and conclusion
 1127 the machine must determine whether the conclusion is entailed (True) or contradicted (False). The
 1128 task naturally ensures that abduction is necessary, as we leave out the human explanation with which
 1129 the pairs are annotated. The dataset, on inspection, is mostly common-sensical.
 1130

1131 **CosmosQA (Huang et al., 2019)** CosmosQA is an MCQA dataset designed to test machine reading
 1132 comprehension. We adapt it to our setting by constructing problems for which the answer is “False”
 1133 by taking questions for which “None of the Above” is the correct answer and randomly selecting

1134 another of the answer choices to be the query (for problems for which the answer is “True”, the
 1135 process is obvious). The dataset is mostly commonsensical.
 1136

1137 **QUAIL (Rogers et al., 2020)** QUAIL is an MCQA dataset also designed to test machine reading
 1138 comprehension. It is derived primarily by scraping wiki and forum pages on online, and so it
 1139 often contains artifacts such as timestamps or CSS formatting quirks. We adopt it from MCQA to
 1140 True/False in an identical fashion to CosmosQA. Because of its provenance, questions are often
 1141 extremely vague; the larger context of the webpage from which the problem comes is not included
 1142 but is often key to answering the problem. On manual solution of QUAIL problems, the intuitive
 1143 approach is often to start by inferring the original context of the scraping, making the dataset of high
 1144 value for abductive settings and for robust evaluation of commonsense flexibility.
 1145

1146 I UNUSED DATASETS

1147 While there are many logical-reasoning-related datasets available, many are unsuitable because they
 1148 are either not truly logically-structured or are not commonsensical. Here, we will list some of the most
 1149 commonly used datasets for logic-adjacent applications and explain their weaknesses/unsuitability
 1150 for our setting.
 1151

1152 **LogiQA** While LogiQA (Liu et al., 2021) is generally commonsensical and logically themed, its
 1153 questions do not in fact impose an immediate logical problem. In fact, many of the questions are
 1154 in fact *meta-logical*, in that they ask questions about the underlying logic of the text. For example:
 1155 “Which of the following makes the same logical mistake as above”. These questions could indeed have
 1156 a formal-logical re-framing, but this would require far more logical aptitude than is currently held by
 1157 language models, and hand-translating LogiQA questions to logic problems is too time-consuming.
 1158

1159 **RECLOR** RECLOR (Yu et al., 2020) suffers the same weakness as LogiQA. Questions are meta-
 1160 logical or ask for subjective qualifications regarding some described commonsense logic. Again,
 1161 this type of question both fails to evaluate true logical reasoning in real-world contexts, and proves
 1162 problematic for careful evaluation given the inconsistency of the task in that different questions ask
 1163 different things of the reasoner.
 1164

1165 **Soft Reasoner** The Soft Reasoner dataset (Clark et al., 2021) is strictly logical, but is plainly
 1166 non-commonsense by construction. The logical problems are constructed without considera-
 1167 tion of commonsense or real-world contexts. The dataset is constructed by building clauses from
 1168 variables/predicates which are randomly selected from a hand-selected bag of words.
 1169

1170 **LogicNLI** LogicNLI (Tian et al., 2021) suffer from the Soft Reasoner dataset’s weakness to an
 1171 even greater degree - while the problems are also randomly generated and do not comply with
 1172 commonsense, they also often do not comply with grammar. For example, phrases such as “Quinlan
 1173 does not entire” appear frequently. While this may suit the authors’ aims of producing arbitrary text
 1174 as a stand-in for symbolic logic, it is not amenable to the evaluation of real-world logical reasoning
 1175 in human contexts.
 1176

1177 **ProofWriter** ProofWriter (Tafjord et al., 2021) again suffers from the same weakness which all
 1178 semi-random auto-generated datasets suffer: non-commonsense. By picking clauses randomly by
 1179 sampling bags of predicates, no guarantees can be made on the realism of the data. Examination of the
 1180 dataset will show that the “facts” described in problem contexts range from unlikely to non-sensical
 1181 - the very first problem includes a rule “All red things are rough”. Within the real world this is
 1182 obviously not true, as we can find examples of red things which are not rough. Of course, it was not
 1183 the dataset creators’ aim to build a commonsensical dataset and so this is of little surprise.
 1184

1185 J CONFUSING PROBLEMS FOR ARGOS

1186 Here’ we give some examples of problems which confused ARGOS. Note that all of the prob-
 1187 lems provided are examples in which the given premises are at least somewhat contradictory with
 1188 commonsense, breaking the setting.
 1189

1188 Table 12: Confusing since Fido is typically specifically a dog’s name (and not a cat’s). If we ask the
 1189 LLM if Fido is a dog, with no context, it will say yes.

1190

1191 All tigers are cats. No cats are dogs. All Bengal tigers are
 1192 tigers. All huskies are dogs. Fido is either a Bengal tiger or a
 1193 cat.

1194 True or False: Fido is a husky animal.

1195

1196

1197 Table 13: Confusing since Detroit City is probably not a horse according to commonsense.

1198

1199 Detroit City is a horse. Some horses are racehorses. If a horse
 1200 falls in a race, it poses risks to its rider. Detroit City fell
 1201 in a race. A horse is a racehorse if it is in a race.

1202 True or False: Detroit City has been in multiple races.

1203

1204

1205 Table 14: Confusing because (1) edible can refer to beverages when the contextual distinction is
 1206 between safe and unsafe for consumption, but not when the distinction is between eating and drinking;
 1207 (2) Coke is not apple juice.

1208

1209 All drinks on the counter are edible. All juices on the counter
 1210 are drinks. Orange juice is a type of juice. Everything on the
 1211 counter is either orange juice or apple juice. All apple juices
 1212 on the counter are sweet. The coke is on the counter and if the
 1213 coke is apple juice, then the coke is a drink. If the coke is
 1214 not apple juice, then the coke is not edible.

1215 True or False: The coke is edible and sweet.

1216

1217

K SOLVABILITY PROGRESSION ILLUSTRATION

1219 In this section we provide figures for CLUTRR, CosmosQA and QUAIL, illustrating how ARGOS’
 1220 SC-solvability measure progresses per-question, over a 100-question clipping from each dataset.
 1221 Positive % values indicate a positive classification, and negative the like.

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

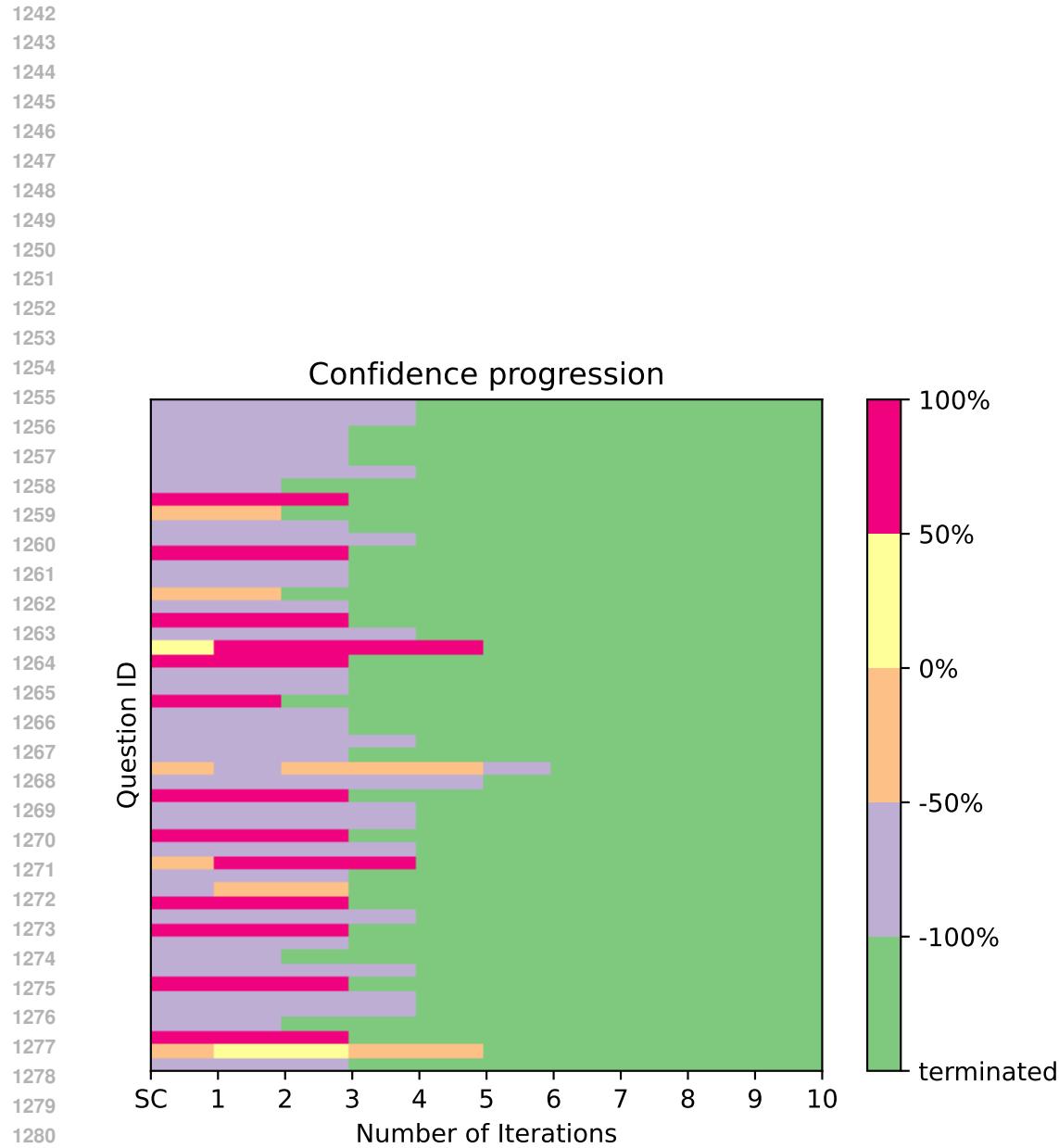


Figure 8: CosmosQA: This dataset, being mostly solved by vanilla SC, sees little fluctuation and exits from ARGOS early. With that said, we still see a flip from low-confidence negative to high-confidence positive.

1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

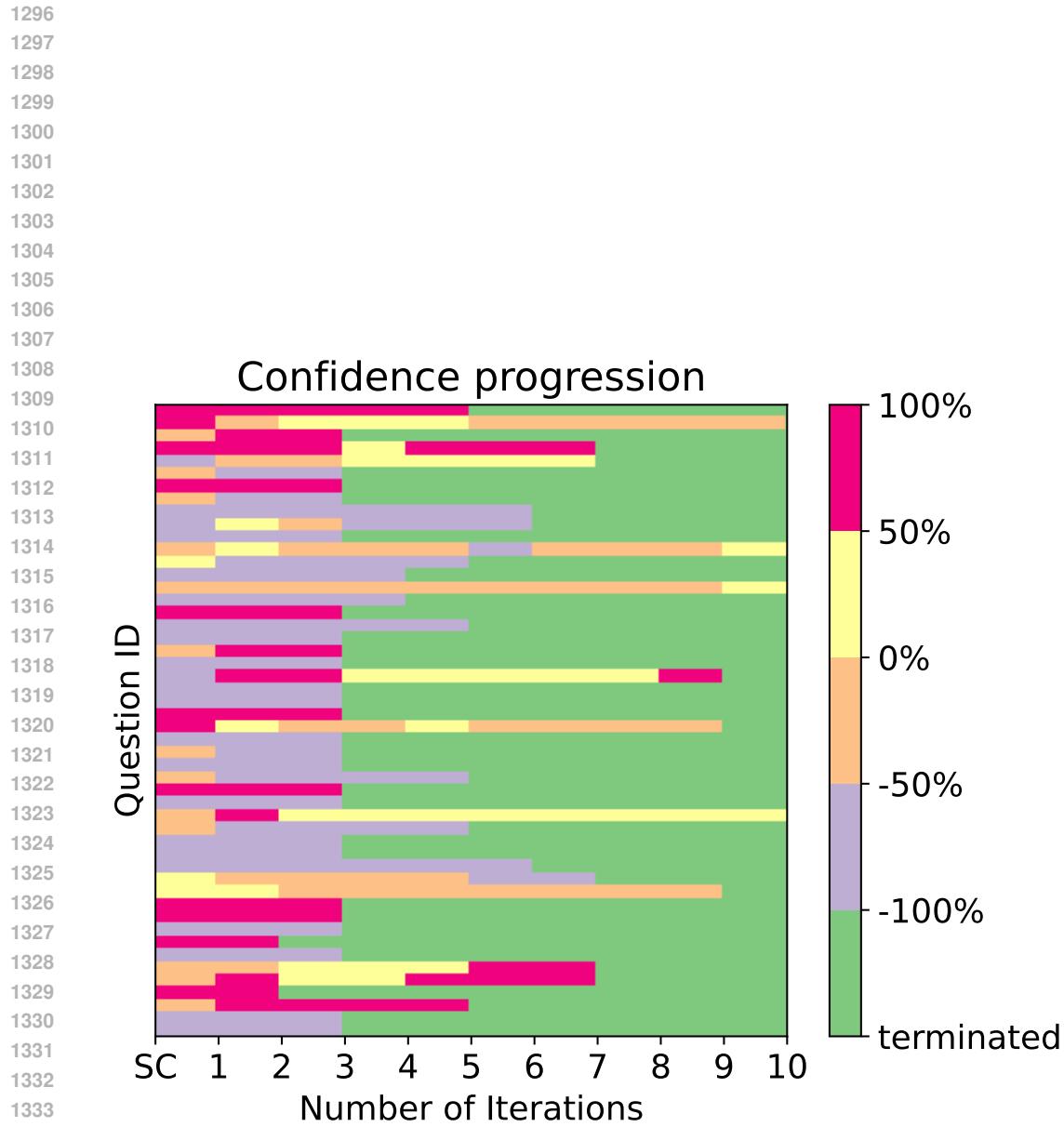


Figure 9: CLUTRR: We see a significant amount of confidence fluctuation and flipping, indicating that meaningful elements within the logic of the problem are being modified by ARGOS in order to affect the answer. This is not surprising, since our construction of generated propositions as taking purely backbone variables as antecedents ensures that added ARGOS propositions will be effectual.

1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

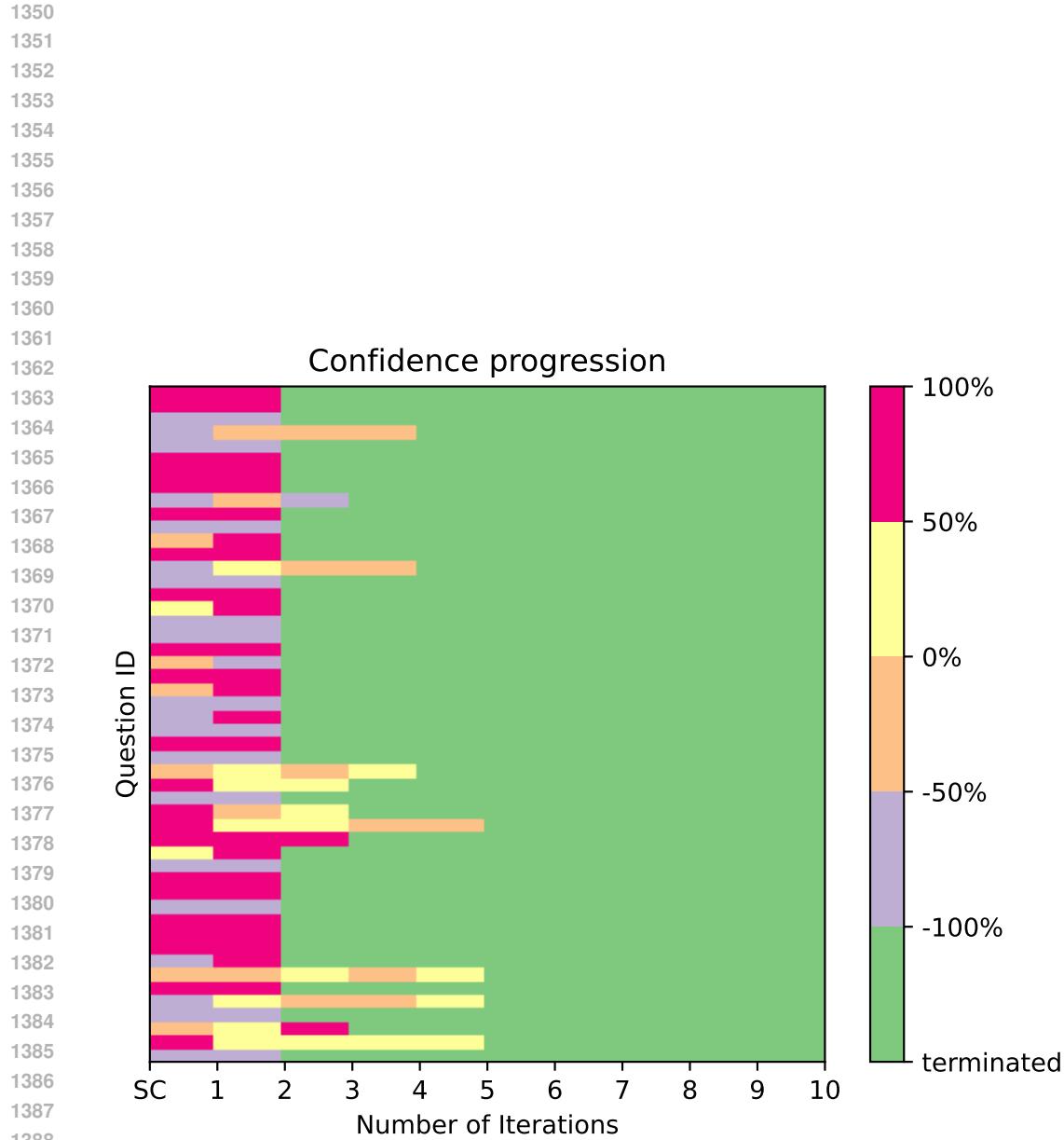


Figure 10: QUAIL: despite ARGOS’s strong performance on QUAIL relative to SC, we find that in fact few ARGOS iterations are necessary. While QUAIL is made complicated for language models by its irregular form and often disjoint nature, its logical structure (while very ambiguous) is simple, meaning that we can solve QUAIL problems with only a small number of well-chosen propositions.