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ABSTRACT

Although Large Language Models (LLMs) have demonstrated impressive formal
reasoning abilities, they often break down when problems require complex proof
planning. One promising approach for improving LLM reasoning abilities involves
translating problems into formal logic and using a logic solver. Although off-
the-shelf logic solvers are in principle substantially more efficient than LLMs at
logical reasoning, they assume that all relevant facts are provided in a question
and are unable to deal with missing commonsense relations. In this work, we
propose a novel method that uses feedback from the logic solver to augment a logic
problem with commonsense relations provided by the LLM, in an iterative manner.
This involves a search procedure through potential commonsense assumptions
to maximize the chance of finding useful facts while keeping cost tractable. On
a collection of pure-logical reasoning datasets, from which some commonsense
information has been removed, our method consistently achieves considerable
improvements over existing techniques, demonstrating the value in balancing
neural and symbolic elements when working in human contexts.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated impressive abilities to reason formally, often
via chain-of-thought reasoning (Wei et al., 2022). However, despite substantial efforts, there are
increasing signs that such neural methods will never scale to problems that require complex proof
planning (Saparov and He, 2023; Dziri et al., 2023). Such problems are exactly the type on which
symbolic logical solvers excel: such solvers have a long history and were for a long time considered
a key component of any path to artificial intelligence (Nilsson, 1991). Nevertheless, they are greatly
restricted by their need for problems to be stated in symbolic language and for every relevant fact to be
provided as input. These constraints have ultimately limited them to highly specialized applications,
and they have never had the broad impact that was hoped for (Crevier, 1993).

These complimentary strengths of neural and symbolic methods have motivated a revival of interest
in neuro-symbolic methods, where an LLM incorporates a logic solver to improve its reasoning
abilities (Ye et al., 2023; Lee and Hwang, 2024; Lyu et al., 2023; Olausson et al., 2023). In these
approaches, the LLM translates problems formulated in natural language into symbolic language,
addressing one of the key deficiencies of a purely symbolic approach. Nonetheless, these hybrid
systems remain impractical because they are ultimately purely deductive: that is, every relevant
fact must be provided as input. This means that the symbolic solvers are often unable to reach a
conclusion simply because obvious, commonsense assumptions are left unstated, and it is often
difficult to predict which should be included until one is presented with a failed reasoning chain.

For example, consider the problem in Figure 1. A logic solver would return “unknown” for the target
query as, formally speaking, neither its truth nor its falsehood is implied by the premises. A human,
however, would easily solve this problem by supplying the additional commonsense fact that white
surfaces reflect light (turns_white(fox,winter) → reflects(fox, sun)). This ability to supply
missing information is usually themed abductive reasoning, and is a key mark of human intelligence.

The limitation of current neuro-symbolic LLM systems to deductive reasoning means that they have
mostly been so far of theoretical interest, since they tend to break down when confronted with more
complex problems where enumerating every possible background fact is not realistic. However,
besides their translation skills, LLMs possess also another striking ability: their training on prodigious
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Context: Some animals tough winter out. 
They do not leave. They do not hide. They 
must survive. Sometimes nature helps 
them out. Some animals grow thicker 
coats in the winter. Other animals change 
color. The arctic fox is brown in the 
summer. His coat turns white in the winter.

Question: The arctic fox?s coat turns white 
in the winter because white absorbs the 
sun and is warmer.

Figure 1: An example from a children’s comprehension exercise booklet 1. Left: the problem phrased
in human language. Right: the same problem translated to first-order-logic.

amounts of internet data has made them very adept at recognizing commonsense statements, to the
point where they have been regarded as potential universal databases (Petroni et al., 2019). In a way,
LLMs seem to have internalized most commonsense knowledge.

Linguistic
(neural)

Symbolic
(logical)

Logic of 
Thought

LLM
Tres

COT
Semantic 
Parsers

ARGOS

Figure 2: Symbolic-Linguistic Spectrum depicting
the positioning of LLM-Tres (Toroghi et al., 2024),
Logic-of-Thought (Liu et al., 2024), and Chain-of-
Thought (COT) (Wei et al., 2022) relative to our
approach.

This realization has led some works to use
an LLM itself to supply missing but relevant
clauses when reasoning. Notably, Toroghi et al.
(2024) proposed a method that operates an ex-
haustive search over a heavily restrained set
of rules in the symbolic space, whereas Liu
et al. (2024) proposed a method that uses LLM
prompting to produce new rules which might
be deducible from the given logical context.
Whiel these methods lie on opposite ends of
the symbolic-linguistic reasoning spectrum (Fig-
ure 2), they both limit themselves to searching
over such a restricted space of possible common-
sense that they cannot solve practical problems.

In this work, we seek to improve AI reasoning abilities by using an LLM to provide relevant unstated
commonsense clauses to a logic solver, but unlike previous works, without imposing significant
constraints on the shape or content of such clauses. Furthermore, and most importantly, our method
ARGOS (Abductive Reasoning with Generalization Over Symbolics) can abduce clauses which
contain variables not previously mentioned in the input problem. To compensate for the far more
general search space, we guide the search using feedback from the logic solver in the form of the
SAT problem backbone, another novel contribution. The resulting system strikes a balance between
linguistic and symbolic approaches, allowing us to use both their strengths while minimizing their
weaknesses to achieve true abductive reasoning.

The contributions of this paper are as follows.

• We propose a novel framing of the commonsense logical reasoning problem founded upon classical
logical principles and an aim towards more realistic use-cases.

• We introduce a novel algorithm that (i) searches over larger spaces of commonsense facts; and (2)
uses logic solver feedback in the form of the backbone graph to increase practicality and efficiency.

• We demonstrate empirically on multiple benchmarks and large language models that our method
improves substantially over existing symbolic and neural methods on abductive reasoning problems
where background information is missing.

1Taken from https://www.ereadingworksheets.com/worksheets/reading/nonficti
on-passages/wintertime. We selected a choice from multiple choice question 3 and re-phrased it as a
True/False question, according to the logic-problem framing.
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2 RELATED WORK

Previous LLM-related logical reasoning methods combine symbolic and neural approaches, but
usually rely much more on one or the other. Appendix E provides an extended review.

Neural Methods Wei et al. (2022) were the first to present a framework for LLM-based reasoning,
showing that providing examples of rationales for answers to questions can induce the LLM to do the
same, leading to improved accuracy. Kojima et al. (2022) showed that this can be induced without
any few-shot examples by prepending the sentence “Let’s think step by step” before generating an
answer. This is known as “Chain of Thought” (COT). Following this, Wang et al. (2023) proposed
self-consistency (SC), using COT multiple times and taking the mode as the prediction. However,
Saparov and He (2023) observed that COT and SC suffer from challenges in proof planning —
rationale steps tend to be factual but of low value. This motivated guidance of the LLM at a step-level.
Yao et al. (2023) proposed Tree of Thoughts (TOT), which explores hand-crafted trees using an LLM
to solve reasoning tasks. TOT is poorly suited to logical reasoning settings as logic problems have
highly variable tree-structures. Kazemi et al. (2023) and Lee and Hwang (2024) proposed more
logic-focused methods, with reverse reasoning, starting at the answer and ending at the problem.
These back-chaining methods, however, underperform symbolic approaches.

Symbolic Methods Acknowledging that LLMs are poor proof-planners, a series of methods,
including F-COT (Lyu et al., 2023) and SAT-LM (Ye et al., 2023), proposed to offload the reasoning
burden from the LLM to more specialized tools. In these works, the LLM converts the text to
symbolic logic, and a solver is then employed. Logic-LM (Pan et al., 2023) extended this to include a
self-refinement step. While these methods perform well on simple datasets, they fail to account for
ambiguity and the exclusion of common knowledge. Addressing this, Liu et al. (2024) and Wang et al.
(2022) proposed algorithms that produce new clauses via logical deduction and then add the logic
back to the text for an LLM to solve. While this might help the LLM, it does not add information to
the problem, because any added relations are already deducible. Instead of producing clauses via
deduction, Toroghi et al. (2024) proposed a method that exhaustively searches for new single-variable
modus-ponens clauses. However, the search is conducted only over variables from the question, and
repeated until the problem is solvable by classical logic, diminishing robustness. This search space is
highly restricted and leaves out nearly all necessary information for some logic problems.

3 BACKGROUND

Propositional logic is a logical system that involves propositions about variables. A variable is a
statement of fact, such as A=“It is sunny" or B=“I need an umbrella”, which can be true or false. A
literal is either a variable A or the negation ¬A of a variable. A proposition, such as A → ¬B, is
some statement about literals tied together by logical connectives (such as ∧, ∨ or→). Like variables,
literals and propositions can be true or false.

A deductive propositional logic problem is composed of a set of propositions, called the premises
P = {P1, . . . , PK}, which are given to be true (i.e. ⊢ P), and a proposition Q, called the query. The
goal of the problem is to determine whether the premises imply the query, P ⊢ Q, or its negation,
P ⊢ ¬Q. Such problems are usually solved by translating them into two Boolean Satisfiability (SAT)
problems, one for Q and one for ¬Q. The backbone of a propositional logic problem is the collection
of all literals that are entailed by the premises, backbone(P) = {literal L | P ⊢ L}. In effect, they
are values for the variables which can be inferred from the propositions.

In an abductive commonsense propositional logic problem the premises P entail neither the query
Q nor its negation ¬Q: the problem is underdetermined. Instead, one must augment the premises with
additional commonsense propositions C, which represent background facts or knowledge left unstated
in the problem, until either (P ∧ C) ⊢ Q or (P ∧ C) ⊢ ¬Q. Thus, the goal of an abductive problem
is to not only find the truth-value of Q, but also a corresponding set of commonsense propositions
C to complete the problem. We assume that ¬(P ∧ C → ⊥), that is that the premises P are not
contradictory with commonsense. One can show that, under this assumption, the answer to the
problem will not depend on the choice of commonsense set C: details are provided in Appendix A.

In practice, the problems we encounter in real life are often stated in terms of first-order logic. First-
order logic is a logical system that involves statements about predicates. A predicate is a function,
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Figure 3: ARGOS at a glance. See Section 5.1 and Appendix D for details. (A) Given a propositional
logic problem, we iteratively augment the problem with new propositions until it is solvable. (B) We
attempt to solve the problem both with a logic solver, and with self-consistency (Wang et al., 2023).
(C) If we fail, we attempt to add additional commonsense propositions by combining literals from the
backbone as antecedents, and generating a right-hand-side using an LLM. We test the proposition for
commonsense and relevance using this same LLM, and add it to the pool if it passes the tests.

such as MotherOf (x, y), which becomes true or false when entities, such as Alice and Bob, are
substituted in its variables x and y. A statement, such as ∀(x, y)MotherOf (x, y)→ ¬Male(x), is
composed of predicates tied together using logical connectives (such as ∧, ∨, ¬ or→) and quantifiers
(∃ and ∀). Just like predicates, statements can also be true or false.

First-order logic problems over a finite set of entities can always be unrolled into propositional logic,
by declaring a variable F (A) for every predicate F (x) and entity A, and expanding ∀xF (x) into the
proposition (F (A)∧ F (B)∧ . . . ) and ∃xF (x) into (F (A)∨ F (B)∨ . . . ). Given two propositional
literals stemming from such an unrolling, we will declare them related in first-order logic if they
have an entity in common. For example, MotherOf (Alice,Bob) and ¬Male(Alice) are related
because both involve the entity Alice.

4 PROBLEM STATEMENT

We are given an abductive propositional logic problem in both textual and logical form, as defined in
Section 3, and we are also provided with a large language model and a SAT solver. As described, the
task is to determine whether the target query is true or false given the premises and some additional
commonsense propositions which must be found. Four annotated examples are provided, intended
for few-shot prompting. In particular, the task is inference-only and no training phase is involved. We
evaluate performance based on the number of correctly answered questions on a test dataset.

5 METHODOLOGY

We now describe our novel algorithm to tackle the problem described in Section 4. This algorithm is
described by the diagram in Figure 3, and formally as Algorithm 1 in Appendix C.

5.1 ALGORITHM

We start the algorithm by initializing our set of commonsense propositions as empty, C = {}. As
shown in module B of Figure 3, we first try to solve the problem using the SAT Solver (sat_solve)
to test whether (P ∧ C) = P ⊢ Q or ¬Q. If it reaches one of these conclusions, our job is finished;
if not, we at least obtain from our call the backbone B = {literal L | P ⊢ L}.
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Next, still in module B of Figure 3, we attempt to solve the problem using the LLM (llm_solve)
by k-shot self-consistency (we use k = 5 in our experiments). We ask the LLM whether the query is
true or false, providing it the premises and the commonsense found so far. Details can be found in
Appendix D.1. If the fraction of votes pass a certain threshold γ, we also conclude (P ∧C) = P ⊢ Q
or ¬Q respectively, and the algorithm is finished. This parameter γ (initialized at γ = 1 in our
experiments) is reduced by a fixed amount γ ← γ−α at every iteration (α = 0.1 in our experiments).

If neither solving method succeeds in establishing Q or ¬Q, we try to add a new commonsense
proposition to our pool C, as illustrated in module C of Figure 3. In practice, we define a proposition
to be commonsense if it seems true to a large language model without any context. To guarantee that
the added proposition will grow the problem’s backbone, we search for commonsense propositions
of the form L1 ∧ L2 → Lright, where L1 and L2 are literals in the backbone B, and Lright is a new
literal suggested by the LLM. This search routine (find_new_commonsense) is described in
Algorithm 2 in the Appendix. In detail, we start by iterating over pairs of literals in the backbone. We
iterate by prioritizing the literals that share the most entities with others in the backbone, rankB(L) =
#{L′ ∈ B |L′ has an entity in common with L}, which gives a measure of relevance of the literal
to the problem. Next, for a given pair of literals L1, L2, we prompt the LLM (llm_generate) to
generate a right-hand-side literal Lright for L1 ∧ L2 → Lright. In doing so, the LLM might introduce
new variables not previously involved in the problem. Details can be found in Appendix D.2.

Finally, for each generated Lright, we use the LLM (llm_score) twice to evaluate it. First, we
use the LLM (llm_commonsense_score) to score whether L1 ∧ L2 → Lright is likely to be
commonsense. Second, we use the LLM again (llm_relevance_score) to score whether
L1 ∧ L2 → Lright is likely to be relevant to our current context. Each procedure returns a probability
between 0 and 1. Details can be found in Appendices D.3 and D.4, respectively.

We stop the search at the first new proposition L1 ∧ L2 → Lright whose commonsense and relevance
scores are both above a given threshold τ (we use τ = 0.3 in our experiments). When this happens, we
update the commonsense set C with this new proposition, and restart the process. If not, running new
iterations will not change anything and we fall back on our best guess, namely the self-consistency
estimate. In addition, if after multiple iterations the self-consistency threshold reaches zero, we also
exit with the self-consistency estimate.

5.2 EXAMPLE

Consider again the winter fox problem from the introduction section. Let us describe in Figure 4 a
hypothetical run of our ARGOS algorithm to illustrate how it could solve the problem. To simplify
the illustration, let us use only the SAT solver, and not self-consistency. We start with the premises
(in black) and the query (in purple) on the top left-hand-side.

We first run the logic solver, which fails to reach any conclusion, but returns an initial back-
bone. The algorithm chooses the antecedents L1 = L2 = turns_white(fox,winter) from
this backbone, generating a new proposition turns_white(fox,winter) → reflects(fox, sun).
It is commonsensical and relevant to the question, so we add it to the question. We call the
SAT solver again, which adds reflects(fox, sun) to the backbone. Next, the algorithm se-
lects the antecedent L1 = L2 = reflects(fox, sun) from the new backbone and generates
reflects(fox, sun)→ ¬absorbs(fox, sun), which is similarly commonsensical and relevant. The
SAT solver is called again and adds ¬absorbs(fox, sun) to the backbone. Finally, in the third itera-
tion ARGOS picks L1 = ¬absorbs(fox, sun) and L2 = turns_white(fox,winter) from the back-
bone and generates ¬absorbs(fox, sun) ∧ turns_white(fox,winter)→ ¬absorbs(white, sun),
which is a logical conclusion it deems consistent with commonsense and relevant to the question.
At this point, we call the SAT solver again, which concludes that ¬absorbs(white, sun) is true and
therefore that the query must be false, returning P ∪ C ⊢ ¬Q as conclusion.
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Some animals tough winter out. They do not leave. They do not hide. They must survive.
Sometimes nature helps them out. Some animals grow thicker coats in the winter. Other animals

change color. The arctic fox is brown in the summer. His coat turns white in the winter.
Query: The arctic fox’s coat is white in the winter because white absorbs the sun and is warmer.

Query is FALSE

Query
New

Legend

Backbone

Backbone

Backbone

Backbone

Figure 4: Overview of ARGOS with the winter fox example. We iteratively add to the logic problem
and query a logic solver to look for conflicts within the backbone compared to the query. Eventually,
we find that absorbs(white, sun) is False, contradicting the query.

6 EXPERIMENTS

Models We employ Llama3-8B (L8B), Llama3-70B (L70B), and Mistral 7B (M7B) as LLMs. Our
method is dependent on access to logit-level outputs, so closed-source models are excluded. 2

Benchmarks Unfortunately, there are few natural language reasoning datasets that are strongly
logically-structured and commonsense-abductive. However, given a dataset of classical
commonsense-based logic problems, data transformations to introduce the need for abductions
are typically achievable. For a list of common datasets which have proven unsuitable for our setting,
and corresponding explanation, see Appendix G. For our experiments, we use abductive versions of
ProntoQA (Saparov and He, 2023), CLUTRR (Sinha et al., 2019), and FOLIO (Han et al., 2024).
CLUTRR is not originally True/False, but it is multiple-choice. We modify it to be True/False output
by making the question randomly either ask if the correct or an incorrect choice is True. To test our
method’s generalizability, we also include some datasets that are not strictly logical. CosmosQA
(Huang et al., 2019) and QUAIL (Rogers et al., 2020) are reading comprehension MCQA datasets.
ESNLI (Camburu et al., 2018) is a short-form natural-language-inference dataset. Each of these
datasets requires some form of reasoning, but the structure of both the text and the necessary reasoning
is generally fuzzy, requiring subjective interpretation. For the MCQA datasets, we process them into
True/False questions similarly to how it was done for CLUTRR. We note that ProntoQA, CosmosQA
and ESNLI performances are already saturated by self-consistency. Despite this, the results are
valuable as they demonstrate that on these apparently simple tasks ARGOS is able to compare with

2Experiments are each conducted on 1 or 2 NVIDIA Tesla V100 GPUs, depending on the LLM’s GPU
memory requirement.
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Figure 5: (a) The number of CLUTRR problems for which ARGOS flips SC predictions correctly
and incorrectly. (b) SC and ARGOS accuracies on CLUTRR subsets, partitioned by the number of
ARGOS iterations each datapoint receives.

purely neural methods, avoiding the performance collapse that more symbolic methods encounter.
For more details, please see Appendix F.

Evaluation We compare against COT (Wei et al., 2022), Self-Consistency Wang et al. (2023),
SAT-LM (Ye et al., 2023), Logic-of-Thoughts (Liu et al., 2024) and LLM-Tres (Toroghi et al., 2024).
For a fair comparison with 20-shot self-consistency and LOT, we set ARGOS’s hyperparameters such
that it makes no more than 20 COT calls per problem on average. Details are provided in Appendix
B. We report accuracy on the abduction-modified evaluation sets and report results in Table 1.

6.1 RESULTS AND DISCUSSION

As can be seen in Table 1, ARGOS provides significant performance improvements over existing
methods (up to +13%). Of the datasets, FOLIO is the most representative of human-generated logical
reasoning problems. ARGOS outperforms the baselines for FOLIO, improving performance by
3-10%. For more structured problems (CLUTRR), the symbolic components of ARGOS become
more reliable, and we see more consistent gains of 6-8%. On QUAIL, a highly ambiguous dataset
that is also formatted in strange ways due to it being constructed by scraping forums and wikis,
ARGOS improves compared to self-consistency by up to 13%, demonstrating its ability to adapt
to even non-logical contexts. On ProntoQA, ESNLI and CosmosQA, despite the very competitive
neural baseline performances, ARGOS performs comparably. Symbolic baselines (SAT-LM, LoT-20,
LLM-Tres) see large performance gaps, at times being reduced to guessing.

RQ1: How useful are the scoring and backbone-tracking elements? In Table 2, we test the
importance of two elements of ARGOS: (i) score thresholding and (ii) backbone computation. The
ablation of each element in isolation results in a decrease in performance. In addition, the ablation of
both results in a larger performance drop than even the sum of the two single ablations’ decreases.
The fully-ablated method, however, still shows strong performance relative to the next strongest
baseline (SC-20), highlighting the strength of the general concept behind the method.

RQ2: Are ARGOS’ added clauses corruptive? An important criterion when adding clauses is
that they do not corrupt the logic of the problem, undesirably changing the outcome of the logic. It
can be shown (see Appendix A) that so long as clauses are commonsensical, their addition will not
corrupt the problem. However, it is possible that our method adds non-commonsensical clauses, since
the commonsense scoring is not perfectly reliable. Given CLUTRR’s strict structure, since we know
the full knowledge base from which it was constructed, we can re-construct the full problems and
test if ARGOS’ added clauses corrupt the logical arithmetic such that a different answer is found
for the logic problem. We find that on CLUTRR, ARGOS never corrupts a problem. It is then not
surprising that ARGOS sees significant performance gains: added information should in principle
never negatively affect a wholly rational reasoner’s solution and so performance should only improve.
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Table 1: Binary classification accuracy (True/False) of all methods on the datasets, using the chosen
language models. Bolded text indicates that the method has the best performance, and that its
performance is better than the next-best-performing method in a statistically significant way (p-value
< 0.005 according to a Wilcoxon pair-wise rank test). Small-font numbers to the right indicate the
bounds of the 95% confidence interval, derived via a bootstrap approach.

FOLIO CLUTRR PQA

M
7B

L
8B

L
70

B

M
7B

L
8B

L
70

B

M
7B

L
8B

L
70

B

SC20 66% 66.4
65.5 71% 71.7

70.1 77% 77.7
75.9 59% 59.3

58.8 69% 69.5
68.8 69% 69.4

68.8 97% 97.2
95.6 95% 95.6

94.4 93% 94.1
92.4

COT 66% 66.4
65.5 68% 69.1

67.2 72% 72.5
71.8 59% 59.3

58.8 68% 68.4
67.8 66% 66.3

65.6 82% 82.9
81.7 90% 91.2

89.6 93% 94.1
92.4

SAT-LM 43% 43.2
42.8 43% 43.2

42.8 43% 43.2
42.8 50% 50.4

49.9 50% 50.4
49.9 50% 50.4

49.9 50% 50.3
49.8 50% 50.3

49.8 50% 50.3
49.8

LoT-20 57% 57.3
56.6 69% 69.5

68.7 70% 70.4
69.5 71% 71.6

70.7 70% 70.2
69.7 69% 69.3

68.7 88% 88.4
87.5 97% 98.2

96.3 95% 95.7
94.3

LLM-Tres 66% 66.6
65.9 63% 63.2

62.4 63% 63.2
62.4 51% 51.5

50.8 51% 51.6
50.8 53% 53.2

52.8 80% 81.4
79.2 83% 83.8

82.3 76% 76.6
75.2

ARGOS 70% 70.6
69.8 81% 81.8

80.0 80% 80.5
78.8 78% 78.4

77.7 76% 76.3
75.8 78% 78.2

77.7 98% 98.7
97.9 97% 98.2

96.3 97% 98.1
96.2
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SC20 84% 84.3
82.9 81% 81.3

79.7 90% 91.1
89.9 97% 97.7

97.1 96% 97.0
96.3 99% 99.5

99.2 70% 71.0
67.9 68% 69.1

65.6 75% 75.6
72.4

COT 81% 81.4
80.1 76% 77.5

74.2 88% 88.7
86.9 96% 95.8

96.4 88% 86.9
88.4 99% 98.9

99.4 71% 71.9
68.8 65% 66.2

63.6 75% 75.6
72.4

SAT-LM 35% 37.5
34.8 35% 37.5

34.8 35% 37.5
34.8 49% 50.0

47.7 49% 50.0
47.7 49% 50.0

47.7 53% 55.0
51.6 53% 55.0

51.6 53% 55.0
51.6

LoT-20 77% 77.2
76.8 75% 75.9

74.2 85% 85.7
84.3 71% 72.1

70.4 76% 77.5
75.7 75% 76.1

74.4 62% 63.6
59.9 56% 57.1

53.8 72% 73.1
69.9

LLM-Tres 73% 72.1
74.0 72% 72.7

70.9 71% 71.5
69.8 51% 52.5

50.8 51% 52.5
50.8 51% 52.5

50.8 63% 65.9
62.8 60% 62.1

58.8 58% 60.1
57.1

ARGOS 84% 84.3
82.7 83% 84.0

82.6 90% 90.7
89.4 95% 95.6

94.9 96% 96.2
95.5 98% 98.0

97.4 82% 83.4
80.6 82% 83.4

80.7 80% 81.8
78.5

RQ3: Does ARGOS attribute more compute to harder problems? How does this affect the
solution of harder problems? In Figure 5 (b), we examine the proportion of CLUTRR problems
that are solved correctly by SC and ARGOS, over subsets of the dataset grouped by the number
of ARGO iterations before termination. The error bars are 5/95% confidence intervals. As the
number of ARGOS iterations increases, the problems become harder for SC to solve (indicated by
a lower proportion of correct solutions by SC). This tells us that ARGOS’ method of evaluating
solvability is working as intended; harder problems are being assigned more computation. Another
interpretation of this result is that problems which have more missing information, or for which
the missing information is more difficult to infer, are attributed more ARGOS iterations (in order
for ARGOS to find the necessary information). This is supported by the fact that the decrease in
proportion seen in SC is not present for ARGOS: if SC’s performance is dropping due to missing
information, then ARGOS is successfully recovering the necessary missing information.

This ability to address the obstacles which cause SC performance to drop contribute to a large number
of answers being flipped from incorrect (when solved by self-consistency) to correct (when solved
by ARGOS). Changes to the answers caused by new information are more often than not in the
right direction. On CLUTRR L70B, we find 112 correct and 35 incorrect flips. Figure 5 (a) shows
the number of correct and incorrect flips ARGOS achieves. As the number of ARGOS iterations
increases, both the correct and incorrect flip counts increase, but the correct flip counts increase much
faster. For a closer look at confidence-score vs. iteration behavior, see Appendix I.

Figure 6 provides an example of a question from CLUTRR that is misclassified by self-consistency
but flipped to correct by ARGOS. The COT seems confused, displaying its characteristic inability to
plan out a proof: in steps 1-3 it provides disjoint pieces of information that neither follow from each

8
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Table 2: Ablations. We ablate ele-
ments of ARGOS: (i) the score thresh-
olding, taking the first clause sampled
at each iteration (ARGOS - No T),
(ii) the backbone-tracking, generating
prompts by randomly selecting two
variables (ARGOS - No BB).

FOLIO L8B

SC-20 71% 71.7
70.1

ARGOS - No T 79% 79.8
78.5

ARGOS - No BB 79% 79.4
78.4

ARGOS - No Both 76% 75.2%
77.2%

ARGOS 81% 81.8
80.0

Context:
Antonio is the father of Laura. 
Pedro is the son of Harold. 
Antonio is the son of Harold.
Shantel is the mother of Pedro. 
Question: Is Shantel Laura's grandmother?
Label True 

COT: Let's think step by step. 
1. Shantel is Pedro's mother.
2. Antonio is Harold's son.
3. Antonio is Laura's father.
4. Shantel is Laura's aunt.
Therefore, the answer to the question is No

ARGOS: Here are some additional facts
Antonio is the brother of Pedro.
Shantel is the mother of Antonio.
Harold is the husband of Shantel. 
Let's think step by step. 
1. Antonio is Shantel's son. 
2. Laura is Antonio's daughter. 
3. Shantel is Laura's grandmother.
Therefore, the answer to the question is Yes

wrong

right

ARGOS

Figure 6: COT vs ARGOS on a CLUTRR problem.

other nor move towards the target conclusion. This confusion eventually leads to an incorrect step:
“Shantel is Laura’s aunt”, resulting to an incorrect conclusion. ARGOS, after 3 iterations, provides
several pieces of key information which would require at least one additional reasoning step to find,
halving the necessary chain-length. For some examples in which ARGOS fails, see Appendix H.

6.2 IMPACT OF IMPERFECT LOGICAL TRANSLATION

In our experiments, we assumed that we started from a propositional logic formulation. Some datasets
came with an official formulation, while for the others we translated from text using Claude Opus
4, filtering to remove failed translations. This was done to fairly evaluate the methods on abductive
reasoning, regardless of the quality of translation. In general, logical translation is an orthogonal
problem and intrinsically simpler for LLMs, since it is linguistic rather than cognitive. LLMs have
already demonstrated strong abilities at logic translation (Yang et al., 2024), and are expected to
continue improving faster than at reasoning. To validate this claim in our context, we re-tested
ARGOS with Llama 8B on FOLIO using a translator, but including failed translations. Performance
only decreased marginally, from 80% to 78%, still outperforming the next best method (SC at 71%).

7 CONCLUSION

We have presented a method for addressing realistic natural-language logic problems, where “realistic”
entails a need for abduction and commonsense. Whether neural or symbolic, we demonstrate
empirically that existing methods struggle in this setting. The method we present addresses this
weakness by (a) balancing neural and symbolic elements and allowing them to speak to each-other;
and (b) avoiding the commonplace design choice of heavily restricting the abduction-clause search
space. On both general and highly structured logic problems, our method demonstrates the power of
a balanced neuro-symbolic approach, outperforming all existing work meaningfully.

Limitations A limitation of our work is that it is currently restricted to problems which are strictly
True or False, eliminating cases where logic might be used to select an option from a list of choices, or
cases where the correct answer is “Maybe”. In our experimental work, we addressed the consequences
this had on dataset selection by converting datasets to be True/False. The method could however be
extended to multiple-choice questions by asking each question as an individual True/False question,
combined with a decision heuristic for when no/multiple choices are determined True.

9
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REPRODUCIBILITY STATEMENT

In the supplementary material, we provide our full code which was used to implement and benchmark
our method as well as the baselines. The code also includes data processing steps. We took great care
to include in the Appendix, as well, detailed descriptions of our algorithm and our prompts. While
our human modification of FOLIO text is not provided, the process for generating it is described
carefully in the Appendix.

REFERENCES

Oana-Maria Camburu, Tim Rocktäschel, Thomas Lukasiewicz, and Phil Blunsom. 2018. e-SNLI:
Natural Language Inference with Natural Language Explanations. In Proc. Conf. Neural Informa-
tion Processing Systems, S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett (Eds.), Vol. 31. Curran Associates, Inc.

Peter Clark, Oyvind Tafjord, and Kyle Richardson. 2021. Transformers as soft reasoners over
language. In Proc. Int. Joint Conf. on Artificial Intelligence. 3882–3890.

Daniel Crevier. 1993. AI: The Tumultuous Search for Artificial Intelligence. Basic Books, Chapter 6:
The Tree of Knowledge.

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang (Lorraine) Li, Liwei Jiang, Bill Yuchen Lin, Sean
Welleck, Peter West, Chandra Bhagavatula, Ronan Le Bras, Jena Hwang, Soumya Sanyal, Xi-
ang Ren, Allyson Ettinger, Zaid Harchaoui, and Yejin Choi. 2023. Faith and Fate: Limits of
Transformers on Compositionality. In Proc. Conf. Neural Information Processing Systems, A. Oh,
T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (Eds.), Vol. 36. Curran Associates,
Inc., 70293–70332.

Simeng Han, Hailey Schoelkopf, Yilun Zhao, Zhenting Qi, Martin Riddell, Wenfei Zhou, James
Coady, David Peng, Yujie Qiao, Luke Benson, Lucy Sun, Alexander Wardle-Solano, Hannah
Szabó, Ekaterina Zubova, Matthew Burtell, Jonathan Fan, Yixin Liu, Brian Wong, Malcolm Sailor,
Ansong Ni, Linyong Nan, Jungo Kasai, Tao Yu, Rui Zhang, Alexander Fabbri, Wojciech Maciej
Kryscinski, Semih Yavuz, Ye Liu, Xi Victoria Lin, Shafiq Joty, Yingbo Zhou, Caiming Xiong,
Rex Ying, Arman Cohan, and Dragomir Radev. 2024. FOLIO: Natural Language Reasoning
with First-Order Logic. In Proc Conf. on Empirical Methods in Natural Language Processing.
22017–22031.

Lifu Huang, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. 2019. Cosmos QA: Machine
Reading Comprehension with Contextual Commonsense Reasoning. In Proc. Conf. Empirical
Methods in Natural Language Processing and Int. Joint Conf. on Natural Language Processing
(EMNLP-IJCNLP). Hong Kong, China, 2391–2401.

Mehran Kazemi, Najoung Kim, Deepti Bhatia, Xin Xu, and Deepak Ramachandran. 2023. LAM-
BADA: Backward Chaining for Automated Reasoning in Natural Language. In Proc. Conf. Associ-
ation for Computational Linguistics. 6547–6568.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. 2022.
Large language models are zero-shot reasoners. In Proc. Conf. Neural Informations Processing
Systems. 22199–22213.

Jinu Lee and Wonseok Hwang. 2024. SymBa: Symbolic Backward Chaining for Structured Natural
Language ReasoningSymBa: Symbolic Backward Chaining for Structured Natural Language
Reasoning. arXiv:2402.12806 [cs.CL]

Jian Liu, Leyang Cui, Hanmeng Liu, Dandan Huang, Yile Wang, and Yue Zhang. 2021. LogiQA: a
challenge dataset for machine reading comprehension with logical reasoning. In Proc. Int. Joint
Conf. on Artificial Intelligence. 3622–3628.

Tongxuan Liu, Wenjiang Xu, Weizhe Huang, Yuting Zeng, Jiaxing Wang, Xingyu Wang, Hailong
Yang, and Jing Li. 2024. Logic-of-thought: Injecting logic into contexts for full reasoning in large
language models. In arXiv preprint arXiv:2409.17539.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang, Delip Rao, Eric Wong, Marianna Apidianaki,
and Chris Callison-Burch. 2023. Faithful Chain-of-Thought Reasoning. In Int. Joint Conf. Natu-
ral Language Processing and Conf. Asia-Pacific Chapter of the Association for Computational
Linguistics.

Nils J. Nilsson. 1991. Logic and artificial intelligence. Artificial Intelligence 47, 1 (1991), 31–56.

Theo Olausson, Alex Gu, Ben Lipkin, Cedegao Zhang, Armando Solar-Lezama, Joshua Tenenbaum,
and Roger Levy. 2023. LINC: A Neurosymbolic Approach for Logical Reasoning by Combining
Language Models with First-Order Logic Provers. In Proc. Conf. on Empirical Methods in Natural
Language Processing. 5153–5176.

Liangming Pan, Alon Albalak, Xinyi Wang, and William Wang. 2023. Logic-LM: Empowering
Large Language Models with Symbolic Solvers for Faithful Logical Reasoning. In Findings of the
Association for Computational Linguistics, Houda Bouamor, Juan Pino, and Kalika Bali (Eds.).
3806–3824.

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel, Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and
Alexander Miller. 2019. Language Models as Knowledge Bases?. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Kentaro Inui, Jing Jiang,
Vincent Ng, and Xiaojun Wan (Eds.). Association for Computational Linguistics, Hong Kong,
China, 2463–2473.

Aske Plaat, Annie Wong, Suzan Verberne, Joost Broekens, Niki van Stein, and Thomas Back. 2024.
Reasoning with large language models, a survey. In arXiv preprint arXiv:2407.11511.

Anna Rogers, Olga Kovaleva, Matthew Downey, and Anna Rumshisky. 2020. Getting closer to
AI complete question answering: A set of prerequisite real tasks. In Proc. AAAI Conf. Artificial
Intelligence, Vol. 34. 8722–8731.

Abulhair Saparov and He He. 2023. Language Models Are Greedy Reasoners: A Systematic Formal
Analysis of Chain-of-Thought. In Proc. Int. Conf. Learning Representations.

Koustuv Sinha, Shagun Sodhani, Jin Dong, Joelle Pineau, and William L. Hamilton. 2019. CLUTRR:
A Diagnostic Benchmark for Inductive Reasoning from Text. In Proc. Conf. Empirical Methods of
Natural Language Processing.

Oyvind Tafjord, Bhavana Dalvi, and Peter Clark. 2021. ProofWriter: Generating Implications, Proofs,
and Abductive Statements over Natural Language. In Proc. Conf. Association for Computational
Linguistics: ACL-IJCNLP. 3621–3634.

Jidong Tian, Yitian Li, Wenqing Chen, Liqiang Xiao, Hao He, and Yaohui Jin. 2021. Diagnosing
the first-order logical reasoning ability through LogicNLI. In Proc. Conf. Empirical Methods in
Natural Language Processing. 3738–3747.

Armin Toroghi, Willis Guo, Ali Pesaranghader, and Scott Sanner. 2024. Verifiable, Debuggable, and
Repairable Commonsense Logical Reasoning via LLM-based Theory Resolution. In Proc. Conf.
on Empirical Methods in Natural Language Processing. 6634–6652.

Siyuan Wang, Wanjun Zhong, Duyu Tang, Zhongyu Wei, Zhihao Fan, Daxin Jiang, Ming Zhou, and
Nan Duan. 2022. Logic-Driven Context Extension and Data Augmentation for Logical Reasoning
of Text. In Proc. Conf. Association for Computational Linguistics, Smaranda Muresan, Preslav
Nakov, and Aline Villavicencio (Eds.). 1619–1629.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. 2023. Self-Consistency Improves Chain of Thought Reasoning in
Language Models. In Proc. Int. Conf. on Learning Representations.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. 2022. Chain-of-thought prompting elicits reasoning in large language models. In Proc.
Conf. Neural Information Processing Systems. 24824–24837.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jundong Xu, Hao Fei, Liangming Pan, Qian Liu, Mong-Li Lee, and Wynne Hsu. 2024. Faithful
Logical Reasoning via Symbolic Chain-of-Thought. In Proc. Conf. Association for Computational
Linguistics. 13326–13365.

Shangzi Xue, Zhenya Huang, Jiayu Liu, Xin Lin, Yuting Ning, Binbin Jin, Xin Li, and Qi Liu. 2024.
Decompose, analyze and rethink: Solving intricate problems with human-like reasoning cycle. In
Proc. Conf. Neural Information Processing Systems. 357–385.

Yuan Yang, Siheng Xiong, Ali Payani, Ehsan Shareghi, and Faramarz Fekri. 2024. Harnessing the
Power of Large Language Models for Natural Language to First-Order Logic Translation. In Annual
Meeting of the Association for Computational Linguistics 2024. Association for Computational
Linguistics (ACL), 6942–6959.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
2023. Tree of thoughts: Deliberate problem solving with large language models. In Proc. Conf.
Neural Information Processing Systems. 11809–11822.

Xi Ye, Qiaochu Chen, Isil Dillig, and Greg Durrett. 2023. SatLM: Satisfiability-Aided Language
Models Using Declarative Prompting. In Proc. Conf. Neural Information Processing Systems.

Weihao Yu, Zihang Jiang, Yanfei Dong, and Jiashi Feng. 2020. ReClor: A Reading Comprehension
Dataset Requiring Logical Reasoning. In Proc. Int. Conf. on Learning Representations.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A ABDUCTIVE LOGIC PROBLEMS ARE WELL-DEFINED

In this section we prove that the solution of an abductive propositional logic problem, given in Section
3, does not depend on the choice of commonsense set C.
Proposition 1. Let P be a set of premises, and C1 and C2 sets of commonsense propositions, that is
C1, C2 ⊆ C such that ⊢P, C. Then the logical expressions P ∧C1 and P ∧C2 cannot be contradictory,
i.e. ∀C1,C2⊆C : ¬ ⊢ ¬(P ∧ C1) ∧ (P ∧ C2).

Proof. Let us assume that P ∧ S1 and P ∧ S2 have contradictory outcomes, say

⊢ (P ∧ S1 → q), (1)
⊢ (P ∧ S2 → ¬q), (2)

where q is some logical expression. Since C1, C2 ⊆ C, and ⊢ C, we have ⊢ C1 and ⊢ C2, so

⊢ (C1 ↔ C2). (3)

Substituting C1 for C2 in Eq. 1 we have

⊢ (P ∧ C2 → q). (4)

Since ⊢→ A allows us to infer ⊢ A, and since we have ⊢ (P ∧ C2), Eq. 2, 4 allow us to infer both
⊢ q and ⊢ ¬q, which is impossible so long as q ̸= ∅ and thus shows by contradiction the impossibility
of the initial conditions Eq. 1, 2. Therefore, we can say that if C1, C2 ⊆ C, P ∧ C2 can not be
contradictory

∀C1,C2⊆C : ¬ ⊢ ¬(P ∧ C1) ∧ (P ∧ C2) (5)

B COST DISCUSSION

While in theory COT generation is meant to be done until an answer is found, in practice it is
necessary that an upper-limit on number of tokens generated is enforced. This is in case (a) the LLM
continues generating past its answer, or (b) the LLM goes off-track and never answers the question.
In any case, this means that each COT generation will be, at worst-case-assumption, equal in cost. In
addition, the various method-specific LLM generations that are employed require small token-limits
relative to COT, and so the number of COT calls made dominates the total number of tokens generated
by any method. Given this, budgeting method costs in terms of COT calls is well-justified. For SC
and COT, the cost evaluation is trivial: COT always makes 1 COT call and SC makes a fixed number
of COT calls, specified as a hyper-parameter. Similarly, LOT makes some small generative calls
followed by SC, so its number of COT calls is fixable. LLM-Tres makes no COT calls, and neither
does SAT-LM. ARGOS’ cost varies according to the entry, but its hyper-parameters (number of COT
calls per-iteration and threshold/annealing constants) can be set such that its average number (or
worst-case) number of calls is less than a budget. A summary of method cost in terms of COT calls is
provided in Table 3.

Table 3: Average number of COT calls required by each method.

Cost (Avg # COT)

COT 1
SC 20

LOT 20
SAT-LM 0

LLM-Tres 0
ARGOS 18.4
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C ALGORITHM DESCRIPTION

In this section we provide a detailed description of our ARGOS algorithm. The main procedure is
summarized as Algorithm 1, which uses the find_new_commonsense subroutine in Algorithm
2.

Algorithm 1 ARGOS

Require: premises P , query Q, SC sample-count k, scoring threshold τ ∈ (0, 1],
self-consistency threshold γ ∈ (0, 1] and decay α ∈ (0, 1]

1: commonsense set C ← {}
2: while γ > 0 do
3: // Attempt solving with SAT solver
4: sat_conclusion, backbone B ← sat_solve(P ∧ C ⊢ Q,¬Q)
5: if sat_conclusion is (P ∧ C) ⊢ Q or (P ∧ C) ⊢ ¬Q then
6: return C, sat_conclusion
7: end if
8: // Else attempt solving with the LLM (k-shot self-consistency)
9: llm_conclusion, llm_confidence← llm_solve(P ∧ C ⊢ Q,¬Q)

10: if llm_confidence > γ then
11: return C, llm_conclusion
12: end if
13: // Else find a new commonsense proposition to add to the pool
14: C ← find_new_commonsense(P, C,B, τ)
15: if C is not None then
16: // New commonsense has been found, we try again with an enlarged C and smaller γ
17: C ← C ∧ {C}
18: γ ← γ − α
19: else
20: // We failed, return best guess
21: return C, LLM_conclusion
22: end if
23: end while
24: // We ran out of time, return best guess
25: return C, LLM_conclusion

Algorithm 2 find_new_commonsense
Require: premises P , commonsense C, backbone B = backbone(P ∧ C), scoring threshold τ ∈

(0, 1]
1: for L1 ∈ B from highest to lowest rankB(L1) do
2: for L2 ∈ B from highest to lowest rankB(L2) do
3: for Lright in llm_generateP∧C(L1 ∧ L2 →?) do
4: commonsense_score← llm_commonsense_score(L1 ∧ L2 → Lright)
5: relevance_score← llm_relevance_scoreP∧C(L1 ∧ L2 → Lright)
6: if commonsense_score > τ and relevance_score > τ then
7: // We found a new relevant commonsense clause
8: return L1 ∧ L2 → Lright
9: end if

10: end for
11: end for
12: end for
13: // We failed to find a new relevant commonsense clause
14: return None
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D ALGORITHM LLM DETAILS

In this section we provide details about the parts of the algorithm that involve interactions with the
large language model.

D.1 SOLVING WITH 5-ROUND SELF-CONSISTENCY (LLM_SOLVE)

This subroutine aims to establish whether the premises and commonsense entails the query, i.e.
(P ∧ C) ⊢ Q or (P ∧ C) ⊢ ¬Q. This routine always returns an answer, but can make mistakes. We
few-shot prompt the LLM 5 times with the prompt in Table 4.

Table 4: COT prompt

Here are some facts and rules: [premises P]
Here is some additional info we found: [commonsense C]
True or false: [query Q]?
Answer:

Each call returns an answer a1, . . . , a5 ∈ {True,False}, with a certain confidence c1, . . . , c5 ∈ (0, 1].
The algorithm returns the most common answer (True or False), and a total confidence score given by
the sum of confidences of the most common answer a∗, divided by 5:

c∗ =
1

5

5∑
i=1

ci1
[
ai = a∗

]
.

D.2 GENERATING NEW COMMONSENSE LITERALS LRIGHT (LLM_GENERATE)

This subroutine aims to find a plausible right-hand-side literal Lright for a proposition L1∧L2 → Lright.
The new literal might potentially involve new variables not previously seen in the problem. We use
a slightly different prompt for CLUTRR and for the others, because of CLUTRR’s more distinct
structure.

Table 5: Clause generation prompt for all datasets but CLUTRR. e is an entity appearing in L1 or L2.

Fill in the blank with a known predicate: [L1 ∧ L2] implies
___([e]).
Known predicates are: [all predicates appearing in the premises
P and the commonsense C]
Answer:

Table 6: Clause generation prompt for CLUTRR. e1 and e2 are entities appearing in L1 or L2.

If [L1 ∧ L2] then ___([e1],[e2]). Fill in the blank.
Answer:

Thus, for example, in FOLIO if L1 = drinksCoffee(Rina) and L2 = Loves(Mary, Sam),
then we would make three calls, one for drinksCoffee(Rina) ∧ Loves(Mary, Sam) →
F (Rina), drinksCoffee(Rina) ∧ Loves(Mary, Sam) → F (Mary) and drinksCoffee(Rina) ∧
Loves(Mary, Sam) → F (Sam) respectively. With such calls, the method might return the set
{productive(Rina), hasFeelings(Mary), isLoved(Sam)}, for example.

D.3 SCORING PROPOSITIONS L1 ∧ L2 → LRIGHT FOR COMMONSENSE
(LLM_COMMONSENSE_SCORE)

This procedure uses the LLM to score how much our new proposition L1 ∧ L2 → Lright
is likely to be commonsense. In detail, we ask the LLM whether, without any context, the
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rule seems contradictory (FOLIO/ProntoQA) or true (CLUTRR). We record the logits of the
“Yes” and “No” tokens following the prompt, and we return as commonsense score P [No] =
exp(logitNo)/(exp(logitYes) + exp(logitNo)), except for CLUTRR where we return P [Yes] =
exp(logitYes)/(exp(logitYes) + exp(logitNo)) since the question is inverted.

Table 7: Commonsense scoring prompt for FOLIO/ProntoQA.

Does the following rule seem contradictory?
Rule: [L1 ∧ L2 → Lright]
Answer:

Table 8: Commonsense scoring prompt for CLUTRR.

Does the following rule seem true?
Rule: [L1 ∧ L2 → Lright]
Answer:

D.4 SCORING PROPOSITIONS L1 ∧ L2 → LRIGHT FOR CONTEXT-RELEVANCE
(LLM_RELEVANCE_SCORE)

This procedure uses the LLM to score how much our new proposition L1 ∧ L2 → Lright is likely
to be relevant to the context. This helps eliminate propositions, like “The sky is blue”, that are
true and commonsense but unlikely to help prove our query. In this case, we use the same prompt
for all datasets. We record the logits of the tokens “Yes” and “No” following the text, and return
P [Yes] = exp(logitYes)/(exp(logitYes) + exp(logitNo)) as relevance score.

Table 9: Context scoring prompt for all datasets.

Here are some facts and rules: [premises P and commonsense C]
Does the following new rule seem contextually relevant to the
facts and rules? [L1 ∧ L2 → Lright]
Answer:

E IN-DEPTH LITERATURE REVIEW

Since 2022, when Wei et al. (2022) found that models had the capacity to solve (at the time) difficult
reasoning problems by simply prompting the model to output a detailed rationale (a “chain of thought”
(COT)) before making a decision, there has been significant interest in leveraging/improving LLMs’
capacity for reasoning.

Semantic Logic Parsers More recently, a series of methods were proposed which effectively by-
passed the reasoning process by prompting LLMs to translate the given input to symbolic language
(parsing the logic) and then using external, programmatic solvers to solve the problem in the symbolic
space. F-COT, proposed by Lyu et al. (2023) and SAT-LM, proposed by Ye et al. (2023) are two
contemporaneous works which prompt the LLM to translate the given problem into its corresponding
symbolic language, to be solved by the appropriate solver. Logic-LM, proposed by Pan et al. (2023),
also published around the same time, includes a self-refinement step in order to catch mistranslations
and to re-translate them, but this module provided only minor improvements.

The logic-parsing strategy proved extremely effective, converting reasoning tasks into the more
linguistic translation task. Since the algorithmic tools never make mistakes, if the translation is
accurate, then the solution will be too. These methods, however, rely upon the strong assumption
which goes widely unacknowledged that all necessary information is provided at input. By motivation,
this assumption implies a well-informed, precise, and careful end-user. This critical assumption
greatly injures the applicability and generalizability of these symbolic methods. In order to address
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this, ARGOS aims specifically to provide missing information by exploring the logical space and
leveraging logical tools. Xu et al. (2024), argue that using external solvers is not relevant to the
LLM’s actual reasoning capacity and present a method which still parses the text into symbolic
language, but uses the LLM as the symbolic solver by inputting the symbolic expressions directly to
the LLM. In fact, this was an alternative presented in SAT-LM, and was shown to be weaker than
directly using an external solver in cases where the problems are fully defined (which is the case in
the setting chosen by both works).

Deductive Logical Algorithms Given the findings discussed above that LLMs were efficient
logic-parsers, the door was opened to more agentic algorithms which operate in the logic-space (as
opposed to the textual space). Algorithms were proposed by Kazemi et al. (2023) and Lee and Hwang
(2024) which attempted to reason backwards through the problem in logic space, using the LLM after
each deduction step to choose the next deduction. These methods proved to perform worse than the
previous parsing methods as they relied on the same assumptions of completeness in the input, but
also required the LLM to greedily trace a reasoning path, opening another avenue for errors. This
step is unnecessary since logic tools are able to search exhaustively over the solution space at very
low cost.

Clause-generative Algorithms (Abduction) In response to the literature’s inability to address
cases where the completeness assumption fails, some work was proposed which explicitly aims to
generate logical clauses in the textual space. The very similar algorithms proposed by Liu et al.
(2024) and Wang et al. (2022) first translate the text to logic and then produce some new clauses
which are deducible via classical logic given the logical translation of the input. By then translating
the newly deduced logic back to text, the textual representation of the logic is now richer from a
linguistic point of view (although no new information was added to the underlying logic), and then
COT is used to solve the augmented problem in text-space. In the logical sense, this method is not
truly abductive as no new logical information is produced.

Instead of producing clauses via deduction on the input, Toroghi et al. (2024) proposed a method
which leverages LLMs’ knowledge of commonsense to supply missing clauses during the reasoning
process. Given the logical translation of the input text, the space of all 2-variable clauses which are
possible to construct using the variables given in the question is explored exhaustively, with each rule
being given a probability of being true by the LLM. Reasoning paths are formed with the various
rules.

This method suffers from a rigidity regarding the search space: due to the exhaustive search the space
must be restricted to only 2-variable rules constructible from the input. Often the missing information
from logic problems may include variables which are not named in the problem and so are unseen
in the abduction input. In other cases, the necessary rules might be of different sizes. These cases
are easily seen even in the commonly used datasets for logic-reasoning evaluation. For example,
CLUTRR Sinha et al. (2019), which is a dataset of reasoning problems related to family relationships,
requires 3-variable rules of the form mom(A,B) ∧ sister(B,C)→ mom(A,C). This algorithm is
by construction incapable of producing such information. The evaluation procedures presented by
Toroghi et al. (2024) use simple and rigidly structured data such that only simple 2-variable rules
constructed from existing variables are required.

Since the algorithm output is dependent on the logical proof, if the necessary clauses cannot be
found then a full proof will never be found, and the algorithm is forced to provide either no output
or a guess. In contrast to these works, ARGOS aims to introduce logical clauses which provide
new information about potentially unseen variables and which can be of varying sizes. In order to
accommodate the very large search space, we introduce several innovative methods to dynamically
select sub-spaces and to efficiently search them. Our proposed method aims to build its solution from
both the language-reasoning space and the logic space in order to leverage the exactness of logical
tools while remaining robust to failures to find the necessary logical clauses.

Generalist Reasoners Despite much research, Chain-of-Thought (COT), proposed by Wei et al.
(2022), remains one of the most generally applicable and robust reasoning approaches Plaat et al.
(2024). Thus, much research has been done on how to augment the COT process (the previously
discussed work by Liu et al. (2024) could be viewed as part of this category). While the focus of our
paper is logical algorithms, there are some generalist methods which cannot be ignored. A simple but

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

highly effective approach known as self-consistency (SC), proposed by Wang et al. (2023), prompts
via COT several times and takes the mode of the outputs as the prediction. This method benefits
from adding further robustness by smoothing potential outlier errors which might be present in a
few chains, and is easily scalable according to computational budget by choosing the appropriate
number of samples to take. However, the marginal return decreases as the number of sampled chains
increases, as is shown in the original paper Wang et al. (2023). COT and SC’s poor performance in
proof planning (Saparov and He, 2023) motivated Tree of Thoughts (TOT), proposed by Yao et al.
(2023), in which a reasoning tree is hand-crafted for a problem and then the LLM is prompted to
explore this tree for likely paths. This method demands a very specific tree topology and exploration
designs for each task and so is more of a general framework than an explicit method applicable to
logical reasoning. The tree structure of logical reasoning problems even in the same dataset are highly
varied. Given this, TOT is poorly suited to logical reasoning settings. There are many works which
go beyond TOT in terms of exploring potential chains. Most recently, Xue et al. (2024) proposed a
recursive method which also conducts a tree-like search, but allows for dynamically-structured trees.

F USED DATASETS

The following is a description of the datasets which we have used in our experiments.

ProntoQA (Saparov and He, 2023) ProntoQA is a dataset which comes in three types of ground-
ings over the same symbolic structure, which is a string of single-variable modus ponens operations.
One of these types is a hand-crafted grounding designed to be true according to commonsense. This
dataset is, at this point, fairly easy for language models to handle. However, it remains a common
dataset in logical reasoning, and comes with the convenience that a simple random removal of
inference rules included in the problem will build abduction cases, as all rules are commonsense.
There are 59 problems in the dataset.

CLUTRR (Sinha et al., 2019) CLUTRR is a dataset of family-relational reasoning problems in
which some family relations (i.e. “Sam is the mother of John”) are given in the form of simple
stories (i.e. “John went with his mom Sam to the mall”). Traditionally, the task in CLUTRR is to
deduce the relationship between two people, given the context. In order to structure the problem as a
true/false classical logic problem, however, we restructure the task to determine if a given relationship
between two people is true or not. Practically, we construct the labels by taking the ground-truth
relationship as the query 50% of the time (so the new label is “True”), and taking a random other
relationship between the given two people (“False”) the other 50% of the time, in order to balance
the dataset. While the task is naturally abductive in that the input contexts do not include abstract or
even grounded relational inference rules (i.e. “if A is the mother of B then B is the child of A”), most
symbolic methods rely upon a practitioner to hand-craft a knowledge base of relational rules which
are appended to each problem in the dataset. Simply by forbidding this provision, the task becomes
truly abductive for the reasoning model. There are 1000 problems in the dataset.

FOLIO (Han et al., 2024) FOLIO is a dataset of logic problems which were hand-crafted by “expert
annotators”. The dataset is the most diverse of the three we use, both linguistically and structurally.
While not perfectly commonsensical, it is generally based in commonsense simply because the
annotators were humans who exist in and tend to operate within real-world contexts. Given this
pseudo-commonsensicality, random removal of rules to introduce commonsense abduction is not an
option, as non-commonsense may be removed from the context. Thus, we engaged human annotators
to replace randomly selected phrases from problems with semantically equivalent expressions, so
that each replacement would require a minimum of one new rule, indicating that the replaced phrase
is implied by its replacement. For example, “NBA Player”→ “Pro Basketball Player”. Annotators
were instructed to reject problems where no replacement could easily be found, and some annotations
failed to impact the problem due to either weak replacements or non-interaction with the solve-path
of the problem. These problems were discarded, leaving us an abduction-variant of FOLIO with 108
True-or-False problems.

ESNLI (Camburu et al., 2018) ESNLI is a dataset of premise-conclusion pairs, stemming from the
human-explanation NLI field. A machine is asked to explain how the premise yields or contradicts the
conclusion. We adopted this dataset by inverting the task, so that given the premise and conclusion
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the machine must determine whether the conclusion is entailed (True) or contradicted (False). The
task naturally ensures that abduction is necessary, as we leave out the human explanation with which
the pairs are annotated. The dataset, on inspection, is mostly common-sensical.

CosmosQA (Huang et al., 2019) CosmosQA is an MCQA dataset designed to test machine reading
comprehension. We adapt it to our setting by constructing problems for which the answer is “False”
by taking questions for which "None of the Above" is the correct answer and randomly selecting
another of the answer choices to be the query (for problems for which the answer is “True”, the
process is obvious). The dataset is mostly commonsensical.

QUAIL (Rogers et al., 2020) QUAIL is an MCQA dataset also designed to test machine reading
comprehension. It is derived primarily by scraping wiki and forum pages on online, and so it
often contains artifacts such as timestamps or CSS formatting quirks. We adopt it from MCQA to
True/False in an identical fashion to CosmosQA. Becasue of its provenance, questions are often
extremely vague; the larger context of the webpage from which the problem comes is not included
but is often key to answering the problem. On manual solution of QUAIL problems, the intuitive
approach is often to start by inferring the original context of the scraping, making the dataset of high
value for abductive settings and for robust evaluation of commonsense flexibility.

G UNUSED DATASETS

While there are many logical-reasoning-related datasets available, many are unsuitable because they
are either not truly logically-structured or are not commonsensical. Here, we will list some of the most
commonly used datasets for logic-adjacent applications and explain their weaknesses/unsuitability
for our setting.

LogiQA While LogiQA (Liu et al., 2021) is generally commonsensical and logically themed, its
questions do not in fact impose an immediate logical problem. In fact, many of the questions are
in fact meta-logical, in that they ask questions about the underlying logic of the text. For example:
“Which of the following makes the same logical mistake as above”. These questions could indeed have
a formal-logical re-framing, but this would require far more logical aptitude than is currently held by
language models, and hand-translating LogiQA questions to logic problems is too time-consumptive.

RECLOR RECLOR (Yu et al., 2020) suffers the same weakness as LogiQA. Questions are meta-
logical or ask for subjective qualifications regarding some described commonsense logic. Again,
this type of question both fails to evaluate true logical reasoning in real-world contexts, and proves
problematic for careful evaluation given the inconsistency of the task in that different questions ask
different things of the reasoner.

Soft Reasoner The Soft Reasoner dataset (Clark et al., 2021) is strictly logical, but is plainly
non-commonsensical by construction. The logical problems are constructed without considera-
tion of commonsense or real-world contexts. The dataset is constructed by building clauses from
variables/predicates which are randomly selected from a hand-selected bag of words.

LogicNLI LogicNLI (Tian et al., 2021) suffer from the Soft Reasoner dataset’s weakness to an
even greater degree - while the problems are also randomly generated and do not comply with
commonsense, they also often do not comply with grammar. For example, phrases such as “Quinlan
does not entire” appear frequently. While this may suit the authors’ aims of producing arbitrary text
as a stand-in for symbolic logic, it is not amenable to the evaluation of real-world logical reasoning
in human contexts.

ProofWriter ProofWriter (Tafjord et al., 2021) again suffers from the same weakness which all
semi-random auto-generated datasets suffer: non-commonsenseness. By picking clauses randomly by
sampling bags of predicates, no guarantees can be made on the realism of the data. Examination of the
dataset will show that the “facts” described in problem contexts range from unlikely to non-sensical
- the very first problem includes a rule “All red things are rough”. Within the real world this is
obviously not true, as we can find examples of red things which are not rough. Of course, it was not
the dataset creators’ aim to build a commonsensical dataset and so this is of little surprise.
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H CONFUSING PROBLEMS FOR ARGOS

Here’ we give some examples of problems which confused ARGOS. Note that all of the prob-
lems provided are examples in which the given premises are at least somewhat contradictory with
commonsense, breaking the setting.

Table 10: Confusing since Fido is typically specifically a dog’s name (and not a cat’s). If we ask the
LLM if Fido is a dog, with no context, it will say yes.

All tigers are cats. No cats are dogs. All Bengal tigers are
tigers. All huskies are dogs. Fido is either a Bengal tiger or a
cat.
True or False: Fido is a husky animal.

Table 11: Confusing since Detroit City is probably not a horse according to commonsense.

Detroit City is a horse. Some horses are racehorses. If a horse
falls in a race, it poses risks to its rider. Detroit City fell
in a race. A horse is a racehorse if it is in a race.
True or False: Detroit City has been in multiple races.

Table 12: Confusing because (1) edible can refer to beverages when the contextual distinction is
between safe and unsafe for consumption, but not when the distinction is between eating and drinking;
(2) Coke is not apple juice.

All drinks on the counter are edible. All juices on the counter
are drinks. Orange juice is a type of juice. Everything on the
counter is either orange juice or apple juice. All apple juices
on the counter are sweet. The coke is on the counter and if the
coke is apple juice, then the coke is a drink. If the coke is
not apple juice, then the coke is not edible.
True or False: The coke is edible and sweet.

I SOLVABILITY PROGRESSION ILLUSTRATION

In this section we provide figures for CLUTRR, CosmosQA and QUAIL, illustrating how ARGOS’
SC-solvability measure progresses per-question, over a 100-question clipping from each dataset.
Positive % values indicate a positive classification, and negative the like.
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Figure 7: CosmosQA: This dataset, being mostly solved by vanilla SC, sees little fluctuation and exits
from ARGOS early. With that said, we still see a flip from low-confidence negative to high-confidence
positive.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

SC 1 2 3 4 5 6 7 8 9 10
Number of Iterations

Qu
es

tio
n 

ID

Confidence progression

terminated

-100%

-50%

0%

50%

100%

Figure 8: CLUTRR: We see a significant amount of confidence fluctuation and flipping, indicating
that meaningful elements within the logic of the problem are being modified by ARGOS in order to
affect the answer. This is not surprising, since our construction of generated propositions as taking
purely backbone variables as antecedents ensures that added ARGOS propositions will be effectual.
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Figure 9: QUAIL: despite ARGOS’s strong performance on QUAIL relative to SC, we find that in
fact few ARGOS iterations are necessary. While QUAIL is made complicated for language models
by its irregular form and often disjoint nature, its logical structure (while very ambiguous) is simple,
meaning that we can solve QUAIL problems with only a small number of well-chosen propositions.
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