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ABSTRACT

The performance of information retrieval (IR) systems is heavily influenced by
the quality of training data. Manually labeled datasets often contain errors due
to subjective biases of annotators, and limitations of retrieval models. To address
these challenges, we propose CLEAR, a novel framework that leverages large lan-
guage models (LLMs) to automatically correct incorrect labels and extract more
accurate and true positive documents. CLEAR estimates the reliability of existing
annotations using LLMs and rectifies potential labeling errors, thereby improving
overall data quality. Furthermore, we conduct a systematic investigation of how
utilizing true positive documents affects retrieval model performance. We evaluate
CLEAR on several widely-used IR benchmarks, including MS MARCO Passage,
MS MARCO Document, Natural Questions, and TriviaQA. Experimental results
demonstrate that CLEAR consistently outperforms existing baseline models, val-
idating the effectiveness of the proposed approach.

1 INTRODUCTION

Natural language processing (NLP) tasks, such as question answering (QA) and information retrieval
(IR), typically rely on manually annotated datasets. However, the manual annotation process is
inherently susceptible to labeling errors and noise, arising from various factors such as annotator
subjectivity, ambiguous annotation guidelines, cognitive biases, and occasional lapses in attention
Northcutt et al. (2021); Sheng et al. (2008); Snow et al. (2008); Paullada et al. (2021).

The issue becomes even more pronounced in crowd-sourced annotations involving non-expert work-
ers, where label noise and inconsistencies are substantially more prevalent compared to expert-
generated annotations Zhang et al. (2025); Jamison & Gurevych (2015). In tasks such as informa-
tion retrieval (IR), which require relevance judgments, crowd workers often apply divergent criteria,
leading to highly inconsistent labeling Guo et al. (2023). Numerous studies have demonstrated that
crowd-sourced annotations are significantly noisier than those produced by trained assessors Chong
et al. (2022). Furthermore, several widely used benchmark datasets have been shown to contain a
non-negligible number of incorrect labels. Therefore, enhancing dataset quality is essential for the
development of robust and reliable natural language processing (NLP) and information retrieval (IR)
systems Klie et al. (2023); Agro & Aldarmaki (2023).

Figure 1 illustrates a comparison between a mislabeling example by a human annotator in the MS
MARCO dataset Bajaj et al. (2016) and the corrected labeling generated by the proposed CLEAR
method. Whereas the human-annotated passage does not explicitly contain the correct answer, the
passage labeled by CLEAR clearly provides a precise and direct response to the query.

Incorrect labels can significantly distort the evaluation of retrieval models and impede the training
of optimal models. Therefore, ensuring label accuracy is a critical prerequisite for the development
of reliable and effective retrieval models. To address this issue, we take inspiration from the human
process of labeling documents. In manual annotation, annotators commonly select as positive the
document that most clearly provides the correct answer to a given query among those retrieved by
a search model. The labeling process can be interpreted as an assessment of how explicitly each
document presents the answer to the query. Building on this insight, we propose CLEAR, a novel
pipeline that leverages LLMs to efficiently and accurately identify positive documents. CLEAR
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Query : accn average starting salary of rns?
Answer : $66,620

📄📄📄📄📄

Relevant Documents📄 📄 📄 📄 📄
✅ ❌ ❌ ❌ ❌

Selected Passed Passed PassedPassed

The starting salary of a Registered Nurse can range from around 
$28,000–$50,000 per year on average. The starting hourly wage of 
an RN can range from $16.50–26.00 per hour. This salary will 
increase over time, as nurses gain experience, certifications, 
and specialize in a specific area. Registered nurses can also 
advance their career to management positions, in addition to 
regular raises oFered by employers. According to the Bureau of 
Labor Statistics latest data, the average salary of a registered 
nurse in the United States is $69,790. The average hourly wage of 
a registered nurse is $33.55.

Human-Selected Relevant Document

American Association of Colleges of Nursing (AACN) statistics 
from January 2014 revealed that the average salary for an RN was 
$66,620, while the average for BSN-educated RNs was 
$75,484.0590. 78060.
Salaries for RNs with BSNs vary according to the industry in which 
they are employed, reported the Bureau of Labor Statistics.
As of May 2013, RNs in the U.S. earned an annual mean salary of 
$68,910, with the top 10 percent earning more than $96,320.

LLM-Selected Relevant Document

📄 📄 📄 📄 📄
❌ ✅ ❌ ❌ ❌

SelectedPassed Passed PassedPassedHuman LLM

⚡Speed
Human  <    LLM
🔋Stamina

Human   <   LLM
🎯 Accuracy

Human   <    LLM

Re-labeling

Figure 1: An example from the MS MARCO dataset comparing human-annotated and LLM-annotated positive
documents for the query ”AACN average starting salary of RNs.” The ground truth answer is $66,620. The
human-annotated document provides general salary ranges for registered nurses but does not explicitly mention
the exact answer. In contrast, the LLM-annotated document explicitly states the answer, referencing AACN
statistics

is designed to replicate the human labeling process while remaining model-agnostic and broadly
applicable across diverse retrieval and LLM configurations.

Recent advances in information retrieval have increasingly emphasized the use of hard negative
documents to enhance model performance Zhan et al. (2021); Xiong et al. (2020); Karpukhin et al.
(2020); Ren et al. (2021). However, in real-world scenarios, a query is typically associated with
multiple relevant documents rather than a single positive instance. This observation underscores the
importance of identifying and leveraging a diverse set of positive documents during training Dong
et al. (2024); Xu et al. (2019). In this study, we investigate several training strategies designed to
effectively incorporate multiple positive documents and conduct systematic experiments to evaluate
their impact on retrieval performance. Our findings highlight the critical roles of both the quality
and diversity of positive samples, offering practical insights into the development of more robust
learning paradigms for information retrieval models.

Our contributions are summarized as follows:

1. We introduce CLEAR, a novel pipeline that leverages LLMs to automatically correct noisy labels
in existing information retrieval datasets and construct diverse sets of high quality positive docu-
ments. CLEAR emulates the human annotation process to enhance both the accuracy and reliability
of training data, and it is designed to be readily applicable across different models and retrieval
settings.

2. While prior research has predominantly focused on enhancing retrieval performance through the
selection of hard negative documents, we underscore the complementary role of positive document
quality and diversity. We propose several training strategies for the effective utilization of multiple
positive documents and demonstrate their efficacy through systematic empirical evaluation.

3. We evaluate the effectiveness of CLEAR across a range of widely used benchmark datasets,
including MS MARCO Passage, MS MARCO Document, Natural Questions, and TriviaQA. Exper-
imental results show that CLEAR consistently achieves competitive performance relative to strong
baselines across all datasets.
2 METHOD

Figure 2 presents the overall pipeline of the proposed CLEAR methodology. The CLEAR frame-
work consists of five sequential stages, each of which is described in detail in this section. We par-
ticularly emphasize the process of re-labeling Information Retrieval (IR) datasets utilizing LLMs,
along with the training strategies designed to effectively leverage the re-labeled data for improving
retrieval model performance.

2.1 STAGE 1: FINE-TUNING USING HUMAN-LABELED TRAIN DATA

In the first stage, we fine-tune a dense retrieval (DR) model using human-labeled data. Specifically,
the DR model is optimized via in-batch negative sampling and the InfoNCE loss Oord et al. (2018);
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Human-Labeled 

Train Data
LLM-Labeled 

Train Data

Retriever

Initialize

Stage 5: 

Fine-tuning using 

LLM-labeled Train data

Stage 1:

Fine-tuning using 

Human-labeled Train data

Stage 3: 

Filtering for Extracting Potential 

False Negatives

Stage 2: 

Inference using training data queries

Retriever

Query in Training Set:

U.S. President's name?

Stage 4: 

Re-labeling using LLMs

Fine-tuning

Inference

Fine-tuning

Re-labelingFiltering

Positive Negative Negative

PositiveNegative Negative

Retriever

Initialize

Top N Relevant 

Documents

Potential False Negatives

Retriever

Figure 2: The CLEAR pipeline is designed to improve retriever training through LLM-based re-
labeling. The process consists of five stages: (1) fine-tuning an initial retriever using human-labeled
training data, (2) running inference on training queries, (3) filtering potential false negatives, (4)
LLM-based re-labeling of retrieved documents, and (5) fine-tuning the retriever with the LLM-
labeled dataset. The CLEAR framework enhances retrieval quality by correcting label errors and
refining training data.

Bertram et al. (2024); Wu et al. (2021). Contrastive learning (CL), a widely adopted framework for
training DR models, encourages the model to effectively distinguish positive document pairs from
negative ones. The model is trained to minimize the following InfoNCE loss:

LCL = − log

(
exp(sim(q, d+))

exp(sim(q, d+)) +
∑N

j=1 exp(sim(q, d−j ))

)
(1)

where q denotes the input query, d+ represents a positive document relevant to the query, d− in-
dicates a negative document, and sim(·, ·) denotes the dot product between the embeddings of the
query and the document.

This initial step establishes the foundation for the subsequent LLM-based automatic re-labeling
process, thereby improving both the effectiveness and stability of the CLEAR framework.

2.2 STAGE 2: INFERENCE USING TRAINING DATA QUERIES

In the second stage, we perform inference over the entire document collection using the dense re-
trieval (DR) model fine-tuned in Stage 1. For each query in the training set, the model retrieves the
top-N candidate documents with the highest predicted relevance scores.

Let D denote the set of documents retrieved during Stage 2 inference, where D =
{di,1, di,2, . . . , di,N}mi=1. Here, m is the number of training queries, and for each query qi, the
documents di,j correspond to the top-N candidates retrieved by the DR model according to their
similarity scores.

2.3 STAGE 3: FILTERING FOR EXTRACTING POTENTIAL FALSE NEGATIVES

Re-labeling all top-N documents retrieved in Stage 2 with LLMs is computationally intensive. To
make this tractable, we first select candidate documents that are highly likely to be true positives;
we refer to these candidates as Potential False Negatives (PFNs). We use a query-specific threshold
defined as Threshold = τ · s+, where s+ is the similarity between the query and its human-labeled
positive document. Unless otherwise noted, we set τ = 0.95, which we found most suitable based
on a discrete sweep over τ ∈ {0.70, 0.85, 0.90, 0.95} on the development set (see Appendix A).

The similarity scores between each query and its retrieved documents are defined as S =
{si,1, si,2, . . . , si,N}mi=1.

Based on the similarity scores si,j , each document di,j is classified according to the following crite-
ria:

di,j =

{
Potential False Negative, if si,j > Threshold
Hard Negative, otherwise

(2)
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for i = 1, 2, . . . ,m, j = 1, 2, . . . , N

We define the final set of Potential False Negative (PFN) documents as follows:

PFN =
{
d∗i,1, d

∗
i,2, . . . , d

∗
i,k−1, d

+
i,k

}m
i=1

(3)

where
{
d∗i,1, . . . , d

∗
i,k−1

}
represents the documents identified as Potential False Negatives, and d+i,k

is the human-labeled positive document for query i. By incorporating the Potential False Nega-
tives alongside the human-labeled positive documents, the overall reliability of the training set is
enhanced. The filtered PFN documents are subsequently forwarded to the next stage, where they
are re-labeled using a large language model (LLM). This selective filtering strategy substantially
reduces computational overhead compared to re-labeling all retrieved candidates.

2.4 STAGE 4: RE-LABELING USING LLMS

In the fourth stage, we re-label the Potential False Negative documents identified in Stage 3 by
leveraging LLMs. We utilize the LLM to generate an answer based on each Potential False Negative
document and subsequently compute a confidence score that measures how accurately the LLM
generates the correct answer.

Specifically, for each query qi, we construct an input set comprising pairs of PFN documents
from Stage 3 and the corresponding answer ai. Formally, this input set is defined as I =
{(qi, d∗i,1, ai), . . . , (qi, d

+
i,k, ai)}mi=1.

Each input tuple is provided to the LLM, which computes a document-specific confidence score
as cs = 1 − d(GT, p(y | T, q, d)), where T denotes the prompt template, GT represents a binary
vector that indicates the ground-truth answer tokens, and p(y | T, q, d) refers to the LLM’s predicted
probability distribution over the output sequence y, conditioned on the prompt T , query q, and
document d.

The function d(·, ·) computes the distance between the distributions using the length-normalized L2
norm, defined as follows:

d(p, q) =

√√√√ 1

L

L∑
h=1

(ph − qh)2 (4)

where ph and qh represent the h-th elements of the probability distributions p and q, respectively,
and L is the number of tokens in the ground-truth answer. This normalization ensures that the
distance measure remains consistent across different sequence lengths.

A higher confidence score indicates that the document allows the LLM to predict the answer with
greater accuracy. The complete set of confidence scores is defined as C = {csi,1, . . . , csi,k}mi=1.

2.5 STAGE 5: FINE-TUNING USING LLM-LABELED TRAIN DATA

In the fifth stage, we propose several re-labeling strategies utilizing the confidence scores C ob-
tained in Stage 4. Furthermore, we detail the corresponding fine-tuning methodologies designed to
effectively exploit the re-labeled samples for improved model performance.

2.5.1 FINE-TUNING USING ONLY LLM-LABELED DATA

The first strategy focuses on fine-tuning the model exclusively using positive documents that have
been re-labeled by the LLM.

For each query, we select the document with the highest confidence score from the candidate set C
and designate it as the new positive document. Formally, this selection is defined as follows:

d(LLM+)
i = argmax

k
csi,k, ∀i ∈ {1, . . . ,m} (5)

where d(LLM+)
i denotes the newly selected positive document, determined according to the confi-

dence scores assigned by the LLM. Subsequently, the model is fine-tuned on these re-labeled docu-
ments using the InfoNCE loss function as defined in Equation (1).
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2.5.2 AUGMENTING HUMAN-LABELED DATA WITH LLM-LABELED DATA

The second strategy entails augmenting human-labeled data with data annotated by an LLM to
enhance model performance. The primary motivation for this approach is to address potential omis-
sions or inaccuracies in the human annotations, thereby improving both the quality and the diversity
of the dataset.

To this end, we construct an augmented dataset, denoted as DAug by combining the human-labeled
dataset DHuman with the LLM-labeled dataset DLLM. The human-labeled dataset is formally defined
as:

DHuman =
{
(qi, d

(Human+)
i , d−i )

}m

i=1
(6)

The LLM-labeled dataset is defined as:
DLLM =

{
(qi, d

(LLM+)
i , d−i )

}z

i=1
, z ≤ m (7)

where d(Human+)
i and d(LLM+)

i represent the positive documents selected by the human annotators and
the LLM, respectively. To avoid redundancy, any sample in DLLM that overlaps with the human-
labeled positives in DHuman is excluded.

The final augmented dataset is defined as DAug = DHuman ∪ DLLM, and the model is subsequently
fine-tuned on this augmented dataset using the InfoNCE loss function (Equation 1).

2.5.3 JOINT TRAINING OF HUMAN-LABELED AND LLM-LABELED DATA VIA CONFIDENCE
THRESHOLDING

The third strategy is based on the hypothesis that a single query may correspond to multiple positive
documents. Under this assumption, all documents whose confidence scores exceed a predefined
threshold ϕ are regarded as positive examples. Formally, the positive document assignment is de-
fined as follows:

di,j =

{
Labeled as Positive, if csi,j > ϕ

Labeled as Negative, otherwise
(8)

where ϕ denotes the predefined confidence threshold, and csi,j is the confidence score of the j-th
document for query i. The dataset DLLM, comprising up to u positive documents selected based on
the confidence threshold, is formally defined as:

DLLM =
{
(qi, d

(LLM+)
i,1 , . . . , d(LLM+)

i,u , d−i )
}m

i=1
(9)

• Averaging multi-positive (AMP) loss

We introduce a novel loss function, termed Averaging Multi-Positive (AMP) Loss, which is specifi-
cally designed to facilitate effective learning from multiple positive documents. AMP Loss promotes
balanced optimization by assigning equal importance to all positive samples. Assuming a batch size
of 1 for simplicity, the AMP Loss is formally defined as follows:

LAMP = − 1

u

u∑
i=1

log

(
exp(sim(q, d+i ))

exp(sim(q, d+i )) +
∑N

j=1 exp(sim(q, d−j ))

)

where u is the number of positive documents exceeding the threshold ϕ, d+i represents the i-th
positive document, and d−j denotes a negative document.

• Confidence-guided multi-positive (CMP) loss

Although AMP Loss assigns equal weights to all positive samples, this approach may not be optimal
because some documents provide much more relevant or clearer answers to the query than others.

To address this limitation, we propose the Confidence-Guided Multi-Positive (CMP) Loss, which
assigns dynamic weights to positive samples based on their confidence scores predicted by an LLM.

The CMP loss is formally defined as follows:

5
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LCMP = −
u∑

i=1

wi × log

(
exp(sim(q, d+i ))

exp(sim(q, d+i )) +
∑N

j=1 exp(sim(q, d−j ))

)

where the confidence-based weight wi is given by:

wi =
exp(csi)∑u

k=1 exp(csk)
(10)

In this formulation, each positive sample’s contribution to the loss is modulated by its associated
confidence score, allowing the model to more effectively leverage soft supervision signals generated
by the LLM.

3 EXPERIMENTAL SETUP

3.1 COMPARISON SYSTEMS

To assess the effectiveness of our proposed method, we conduct a comparative evaluation against
the following three representative dense retrieval models:

• DPR : DPR adopts a dual-encoder architecture that independently encodes queries and
documents Karpukhin et al. (2020). The similarity between a query and a document is
measured via the dot product of their respective embeddings.

• CoCondenser: CoCondenser builds upon the Condenser model by enhancing pretraining
with unsupervised learning techniques Gao & Callan (2021). A central contribution is the
introduction of corpus-level contrastive learning, which strengthens the semantic repre-
sentations of documents and significantly improves retrieval performance across various
benchmarks.

• DRAGON: DRAGON advances dense retrieval by employing aggressive data augmenta-
tion strategies, including both query augmentation and label augmentation, to generate a
broader diversity of training examples Lin et al. (2023).

• GTE: GTE focuses on providing lightweight yet high-performing embedding models for
retrieval and semantic similarity Li et al. (2023). GTE emphasizes training efficiency and
scalability, using diverse text corpora and optimized objectives to balance performance and
computational cost.

• BGE: BGE is a family of embedding models developed by BAAI, designed for high-quality
text retrieval and semantic representation tasks Xiao et al. (2024). These models leverage
contrastive learning with large-scale multilingual corpora and introduce efficient training
strategies that make them strong baselines in retrieval benchmarks.

• LG-ANNA-Embedding: LG-ANNA-Embedding is a Mistral-7B–based family of general-
purpose text embedders designed for both IR and non-IR tasks. The model follows an
instruction-based framework that combines in-context prompting with soft labeling and
adaptive margin–based hard-negative mining, enabling strong, scalable semantic repre-
sentations without architectural changes. Evaluated on MTEB (English, v2), it ranks as the
second-best model overall on the leaderboard by Borda score Choi et al. (2025).

3.2 LLMS USED FOR RE-LABELING

To generate confidence scores and re-label training samples, we leverage a diverse set of LLMs with
varying scales and architectural characteristics. Specifically, we utilize LLaMA-3.1-70B, LLaMA-
3.1-8B Touvron et al. (2023), EXAONE 3.5-32B Research et al. (2024), Gemma-7B Team et al.
(2024), and Qwen 2.5-7B Yang et al. (2024). Among these models, we conduct our experiments
using LLaMA-3.1-70B.

4 EXPERIMENTS

Table 1 summarizes the retrieval performance of our proposed CLEAR pipeline compared to strong
baselines across four benchmark datasets: Natural Questions Kwiatkowski et al. (2019), TriviaQA

6
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Models Natural Questions TriviaQA MS-MARCO (Pas) MS-MARCO (Doc)

R@5 R@20 R@5 R@20 R@5 R@20 R@5 R@20

DPR - Human-only (Pos=1, InfoNCE) 65.6 77.5 69.4 78.1 40.4 61.6 40.1 65.4

DPR - LLM-only (Pos=1, InfoNCE) 66.1 79.3 69.5 78.4 40.5 61.7 40.0 65.4

DPR - Human+LLM Aug (Pos=1, InfoNCE) 67.1 80.2 70.6 79.9 41.4 62.9 41.1 66.2

DPR - Human+LLM Thresh (Pos=N, AMP) 67.6 80.5 71.1 81.1 41.9 63.7 42.0 67.0

DPR - Human+LLM Thresh (Pos=N, CMP) 68.8 81.1 72.8 81.6 42.4 64.2 42.5 67.5
[CLEAR] (+3.2%) (+3.6%) (+3.4%) (+3.5%) (+2.0%) (+2.1%) (+2.4%) (+2.5%)

CoCondenser - Human-only (Pos=1, InfoNCE) 72.8 80.1 73.4 80.2 45.0 68.9 43.4 71.1

CoCondenser - LLM-only (Pos=1, InfoNCE) 73.0 80.9 73.4 80.6 45.2 68.2 43.6 71.3

CoCondenser - Human+LLM Aug (Pos=1, InfoNCE) 74.1 81.2 74.8 81.1 45.9 68.6 44.0 72.0

CoCondenser - Human+LLM Thresh (Pos=N, AMP) 74.7 82.6 75.5 82.6 46.9 69.1 44.9 72.5

CoCondenser - Human+LLM Thresh (Pos=N, CMP) 75.7 82.9 76.6 83.3 47.1 70.1 45.5 73.5
[CLEAR] (+2.9%) (+2.8%) (+3.2%) (+3.1%) (+2.1%) (+1.9%) (+2.1%) (+2.4%)

DRAGON - Human-only (Pos=1, InfoNCE) 71.5 81.8 73.9 82.3 53.1 74.7 48.1 74.3

DRAGON - LLM-only (Pos=1, InfoNCE) 71.9 82.1 74.1 82.4 53.7 74.9 48.6 74.9

DRAGON - Human+LLM Aug (Pos=1, InfoNCE) 72.5 82.7 75.4 84.0 54.0 75.5 49.2 75.4

DRAGON - Human+LLM Thresh (Pos=N, AMP) 72.9 83.6 75.7 84.2 54.1 76.0 49.5 75.9

DRAGON - Human+LLM Thresh (Pos=N, CMP) 73.9 84.4 76.1 84.6 54.9 76.6 50.1 76.6
[CLEAR] (+2.4%) (+2.6%) (+2.2%) (+2.3%) (+1.8%) (+1.9%) (+2.0%) (+2.3%)

GTE - Human-only (Pos=1, InfoNCE) 72.0 82.3 74.2 83.0 53.4 75.1 48.6 75.0

GTE - LLM-only (Pos=1, InfoNCE) 72.3 82.6 74.4 83.3 53.9 75.4 49.0 75.4

GTE - Human+LLM Aug (Pos=1, InfoNCE) 72.9 83.2 75.7 84.3 54.2 76.0 49.6 76.0

GTE - Human+LLM Thresh (Pos=N, AMP) 73.5 84.0 76.0 84.6 54.6 76.6 49.9 76.5

GTE - Human+LLM Thresh (Pos=N, CMP) 74.4 85.0 76.8 85.3 55.5 77.4 50.8 77.3
[CLEAR] (+2.4%) (+2.7%) (+2.6%) (+2.3%) (+2.1%) (+2.3%) (+2.2%) (+2.3%)

BGE - Human-only (Pos=1, InfoNCE) 72.4 82.6 74.6 83.3 53.7 75.4 48.9 75.3

BGE - LLM-only (Pos=1, InfoNCE) 72.7 82.9 74.8 83.6 54.0 75.7 49.2 75.7

BGE - Human+LLM Aug (Pos=1, InfoNCE) 73.3 83.6 75.9 84.6 54.5 76.3 49.8 76.3

BGE - Human+LLM Thresh (Pos=N, AMP) 73.9 84.4 76.3 84.9 55.0 76.9 50.1 76.8

BGE - Human+LLM Thresh (Pos=N, CMP) 74.6 85.0 77.0 85.5 55.8 77.7 51.0 77.3
[CLEAR] (+2.2%) (+2.4%) (+2.4%) (+2.2%) (+2.1%) (+2.3%) (+2.1%) (+2.0%)

LG-ANNA-Embedding - Human-only (Pos=1, InfoNCE) 72.8 82.9 75.0 83.6 54.0 75.6 49.2 75.6

LG-ANNA-Embedding - LLM-only (Pos=1, InfoNCE) 73.1 83.2 75.2 83.9 54.3 75.9 49.5 75.9

LG-ANNA-Embedding - Human+LLM Aug (Pos=1, InfoNCE) 73.8 83.9 76.3 85.0 54.9 76.6 50.1 76.6

LG-ANNA-Embedding - Human+LLM Thresh (Pos=N, AMP) 74.4 84.8 76.8 85.3 55.5 77.3 50.8 77.1

LG-ANNA-Embedding - Human+LLM Thresh (Pos=N, CMP) 75.2 85.6 77.6 86.1 56.4 78.4 51.7 78.0
[CLEAR] (+2.4%) (+2.7%) (+2.6%) (+2.5%) (+2.4%) (+2.8%) (+2.5%) (+2.4%)

Table 1: Performance comparison of various retrieval models across four datasets, evaluated using
Recall@5 and Recall@20 metrics. Models are trained with InfoNCE Loss (InfoNCE), Averag-
ing Multi-Positive Loss (AMP), and Confidence-guided Multi-Positive Loss (CMP). Our proposed
method, CLEAR, which leverages LLM-generated positives selected based on confidence scores,
consistently outperforms the baselines. Percentage improvements over the baselines are reported in
parentheses.

Joshi et al. (2017), and MS MARCO Bajaj et al. (2016). All datasets used in our study are in
English and primarily cover web-based passages and open-domain questions. MS MARCO consists
of real anonymized Bing queries and passages retrieved from web documents. Natural Questions
consists of real, anonymized queries issued to the Google search engine, paired with Wikipedia
articles retrieved at the time of the query. Our re-labeled dataset inherits these properties. For
the Natural Questions and TriviaQA datasets, we use the same train/dev/test splits as provided in
the original benchmark releases Karpukhin et al. (2020). For MS MARCO, we use the publicly
available dataset without any modification. Retrieval performance is measured using Recall@5 and
Recall@20 metrics.
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Figure 3: Retriever performance across differ-
ent LLMs on the Natural Questions dataset, mea-
sured by Recall@20. The heatmap compares
the retrieval effectiveness of three retrievers when
paired with various LLMs, including Llama-3.1-
70B, EXAONE-3.5-32B, and others. Higher re-
call scores are indicated in red, while lower scores
are in blue.

Figure 4: Impact of confidence score threshold
ϕ on Recall@20 for the Natural Questions devel-
opment set. The plot compares the performance
of three models as the confidence threshold varies
from 0.1 to 0.9.

4.1 EFFECT OF LLM-BASED LABELING (LLM-ONLY)

Training on LLM-only labels yields small but consistent gains across all six retrievers (DPR, Co-
Condenser, DRAGON, GTE, BGE, LG-ANNA-Embedding). While a few metrics show marginal
regressions, the overall trend is positive, indicating that LLMs both correct a fraction of noisy human
labels and surface answer-bearing documents missed by annotators. These improvements appear
without any architectural changes, underscoring that the quality of supervision—rather than model
capacity alone—is the main driver. A label-level audit further shows that roughly 10% of documents
are re-labeled by the LLMs, whereas about 90% match human judgments.

4.2 IMPACT OF AUGMENTING DATA WITH BOTH HUMAN AND LLM LABELS
(HUMAN+LLM)

Augmenting human-annotated data with labels generated by LLMs consistently improves retrieval
performance. This finding suggests that human-labeled and LLM-labeled documents serve com-
plementary functions, jointly contributing to enhanced retrieval effectiveness.In many cases, both
human-annotated and LLM-labeled documents can be considered valid positive examples, reflect-
ing the multiplicity of relevance judgments.These findings underscore the value of combining human
and LLM supervision to construct richer and more semantically diverse training signals, ultimately
leading to more robust retrieval models.

4.3 EFFECTIVENESS OF MULTI-POSITIVE TRAINING (JOINT TRAINING, AMP LOSS)

Training with multiple positive documents consistently outperforms training with a single positive
document. These findings indicate that leveraging multiple positive examples facilitates more stable
and robust model learning. We hypothesize that this improvement stems from the increased diversity
and coverage provided by multi-positive supervision. In contrast to single-positive training, where
the model is optimized to match a narrow view of relevance, multi-positive training exposes the
model to a wider semantic spectrum of valid answers. This helps the model generalize better to
unseen queries by reducing overfitting to a limited set of lexical or structural patterns. Additionally,
averaging over multiple positives during loss computation smooths the learning signal and mitigates
the influence of outlier examples, further contributing to optimization stability and performance
robustness.

4.4 EFFECTIVENESS OF CONFIDENCE-GUIDED WEIGHTING (JOINT TRAINING, CMP LOSS)

In multi-positive training, uniformly assigning weights to all positive documents may not always
yield optimal performance because not all positives contribute equally to a given query. To address
this, we employ a confidence-guided weighting strategy that dynamically adjusts each positive’s
contribution based on LLM-provided confidence scores. This is particularly beneficial when some
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LLM-labeled positives are only weakly relevant or noisy: by down-weighting low-confidence ex-
amples, the model avoids overfitting to uncertain supervision signals and allows high-confidence
positives to exert greater influence during training. Empirically, across all retrievers we tested (DPR,
CoCondenser, DRAGON, GTE, BGE, and LG-ANNA-Embedding), CMP loss yielded the best per-
formance among the compared objectives (InfoNCE, AMP, CMP).

4.5 COMPARATIVE ANALYSIS OF RETRIEVER PERFORMANCE WITH VARIOUS LLM
LABELERS

Figure 3 illustrates the impact of LLM-based re-labeling on the training of retrieval models. In the
proposed framework, an LLM receives a query and a document as input and generates a binary
judgment indicating whether the document contains the correct answer. Larger-parameter LLMs
possess greater parametric knowledge, enabling them to produce more accurate and reliable labels.

Experimental setup. For this analysis, we restrict the retriever backbone to one of three representa-
tive models—DPR, CoCondenser, DRAGON—and train each exclusively with labels produced by
a given LLM, while holding all other configurations fixed.

Results. Retrieval performance improves as the labeler’s parameter scale increases. Notably,
DRAGON achieves the highest Recall@20 when trained with labels from LLaMA-3.1-70B, closely
followed by EXAONE-3.5-32B. In contrast, relatively smaller labelers—such as LLaMA-3.1-8B,
Qwen2.5-7B, and Gemma-7B—yield comparable outcomes, whereas Mistral-7B consistently pro-
duces the lowest Recall@20 across the three retrievers. This suggests that lower-quality answers
from smaller LLMs can degrade label quality and, in turn, negatively affect downstream training.

The same monotonic trend with labeler quality is observed across all three retrievers (DPR, Co-
Condenser, DRAGON), underscoring the importance of selecting a sufficiently large LLM for re-
labeling: high-quality supervision from high-capacity models substantially enhances retrieval effec-
tiveness.

4.6 IMPACT OF CONFIDENCE SCORE THRESHOLD ON RETRIEVAL PERFORMANCE

Figure 4 presents the impact of the confidence score threshold (ϕ) on retrieval performance. The fig-
ure compares Recall@20 across three models—DPR, CoCondenser, and DRAGON—under varying
threshold values, highlighting how filtering based on LLM-generated confidence scores affects re-
trieval quality.

Overall, increasing the confidence score threshold leads to a decrease in Recall@20. This trend
indicates that overly aggressive filtering based on high confidence scores may inadvertently exclude
valuable positive samples, thereby impairing retrieval effectiveness.

The highest performance is observed at ϕ = 0.3, suggesting that removing low-confidence, poten-
tially noisy positive samples can contribute to improved model training. At ϕ = 0.3, an average
of 3.5 positive documents are retained per query. These results suggest that maintaining a lower
confidence threshold, which allows for a greater diversity of positive documents during training, can
further enhance retrieval performance.

5 CONCLUSION

In this work, we propose CLEAR, a novel pipeline that improves the quality of IR training datasets
via LLM-based re-labeling. By correcting noisy labels and identifying diverse, high-quality posi-
tives, CLEAR enhances both the accuracy and coverage of supervision.

Experiments on four benchmark datasets show that CLEAR consistently improves retrieval perfor-
mance across multiple retrievers. We also demonstrate that confidence-guided weighting in multi-
positive training stabilizes optimization and enhances generalization.

These results underscore the value of LLMs as effective tools for constructing reliable IR datasets
and motivate future research on automated label refinement and soft-supervision in retrieval tasks.
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6 ETHICAL CONSIDERATIONS

Data Source Transparency We use only publicly available datasets—MS MARCO, Natural
Questions, TriviaQA, and others—which were released for academic use and contain no person-
ally identifying information. No additional human data was collected or annotated.

Bias and Fairness Concerns While CLEAR aims to improve label quality, it inherits potential
biases from both the original human annotations and the LLM used for re-labeling. For example,
LLM-generated answers may reinforce patterns present in web-scale pretraining data, leading to
unintentional biases in re-labeled datasets.

Responsible Use Our re-labeled data and pipeline are intended strictly for academic research.
Practitioners adopting CLEAR should be cautious about unintended consequences of relying on
LLM-generated pseudo-labels, especially in sensitive application domains. Future work should ex-
plore mechanisms to verify or calibrate LLM-generated outputs for better safety and transparency.

7 REPRODUCIBILITY STATEMENT

We release anonymized code, configuration files, and logs (URL omitted for review). All results are
averaged over three random seeds {13, 21, 42} and reported as mean ± std. Experiments are run
on a single NVIDIA A100-SXM4-40GB GPU with Python v3.8, PyTorch v1.9.0, CUDA v11.1, and
Transformers v4.22.1.

For fair comparison, we keep the retrieval depth, input lengths, and the number of hard negatives
fixed (one per query) across all baselines and our method. We adopt each model’s recommended
batch size, and we use the officially recommended hyperparameters (optimizer, scheduler, learning
rate, weight decay, dropout, gradient clipping, precision, and maximum sequence lengths).

During training we select the checkpoint with the highest dev Recall@20 using early stopping (pa-
tience=3) and then evaluate once on the test set. LLM-based labeling uses fixed decoding settings
(temperature=0.0, top-p=1.0, max new tokens=32) and released prompt templates.
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A IMPACT OF FILTERING THRESHOLD ON RETRIEVAL PERFORMANCE

Model : DPR Llama-3.1-70B Llama-3.1-8B
Threshold : 0.95 66.1 65.4
Threshold : 0.90 66.3 65.1
Threshold : 0.85 66.3 65.0
Threshold : 0.80 66.5 64.7
Threshold : 0.75 66.4 64.5
Threshold : 0.70 66.2 64.6

Table 2: Recall@5 for DPR LLM-only under different thresholds on the NQ dataset

In Stage 3, we apply similarity-based filtering to identify potential positive candidates via a thresh-
olding strategy. Because re-labeling every retrieved document with LLMs is computationally ex-
pensive and often unnecessary, we first narrow the candidate pool to reduce labeling overhead.
Concretely, we compute similarity between each candidate and the human-labeled positive(s) for
the same query and retain only those above a threshold τ ; LLM-based re-labeling is then applied
solely to this filtered subset.

To validate this design, we conducted a sweep over threshold values (e.g., τ ∈
{0.70, 0.75, 0.80, 0.85, 0.90, 0.95}) and found that τ = 0.95 offered a strong balance between re-
call of potential positives and exclusion of semantically close hard negatives. We also observed
that higher thresholds tend to yield slight performance gains, particularly when stronger LLMs are
used for re-labeling; larger-parameter models exhibit better semantic discrimination, enabling more
accurate re-labeling even as the filter is relaxed and a broader set of candidates is considered.

B HUMAN VS. LLM: KEY DIFFERENCES IN IR RELEVANCE LABELING

This appendix summarizes practical differences between human- and LLM-labeled data for informa-
tion retrieval (IR), focusing on quality/nuance, cost/speed, and error profiles in relevance judgments.
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1. Quality and Nuance

Human. Human assessors infer user intent (explicit/implicit), handle ambiguous or multi-intent
queries, and account for temporal freshness, credibility, redundancy, and graded relevance. They
can judge collection-specific policies (e.g., passage vs. document scope, near-duplicate handling,
novelty/diversity). Pros: high fidelity to guidelines; strong commonsense/domain reasoning; robust
to subtle intent shifts. Cons: subjectivity and assessor drift; fatigue reduces consistency; inter-
annotator agreement (IAA) can be modest on borderline cases.

LLM. LLMs apply instructions consistently at scale and can follow grading rubrics. However,
they may rely on surface similarity, underweight collection-specific rules, or miss latent/temporal
intent; outputs are sensitive to prompts and calibration. Pros: high procedural consistency; scalable
graded labeling; fast iteration for rubric refinement. Cons: over-reliance on lexical overlap or prior
knowledge; length/position biases; stale knowledge; difficulty with multi-intent/implicit queries and
source credibility.

2. Cost and Speed

Human. Expert judging is costly and time-consuming; throughput drops as pool depth and query
count increase. Pros: reliable gold labels for evaluation and model diagnosis. Cons: high mone-
tary/time cost; slower scaling to large corpora.

LLM. Batch/API-driven labeling scales to millions of pairs with low marginal cost; suitable for
pre-labeling and continuous refresh. Pros: low cost per instance; high throughput; easy to expand
pools. Cons: initial setup (prompt/rubric/tuning) and quality control still required.

3. Error Profiles

Human. Errors stem from inattentiveness, inconsistent application of guidelines, anchoring, and
coder drift. Examples: inconsistent use of graded scales; confusion between topical relatedness vs.
task utility; overlooking time-sensitivity.

LLM. Errors reflect prompt/rubric mismatch, calibration issues, training-data bias/leakage, and
granularity confusion (passage vs. document). Examples: rewarding lexical overlap despite low
utility; penalizing relevant but short snippets; temporal mistakes (outdated facts); inconsistent han-
dling of duplicates/near-duplicates.

C EFFECT OF THE NUMBER OF POSITIVE DOCUMENTS

Setup. We train a DPR retriever and use τ = 0.95 to select positive documents per query via our
PFN procedure with an LLM (Llama 3.1 70B). For each query, let k denote the number of positives
actually used for training. We evaluate four settings: k ∈ {1, 2, 3, 3.5}, where k = 3.5 indicates that
all documents passing the threshold τ = 0.95 were included; across queries this yields an average
of 3.5 positives per query. Performance is reported as Recall@20 on the development set under an
otherwise identical training protocol.

Results. As shown in Figure 5, we vary the number of positives used for training the DPR under our
PFN selection pipeline while keeping all other settings fixed. With the threshold set to τ = 0.95, the
PFN selector yields on average 3.5 positives per query. We then train with the Confidence-guided
Multi-Positive (CMP) loss while increasing k ∈ {1, 2, 3, 3.5}, where k = 3.5 denotes using all
documents that pass the τ = 0.95 threshold for each query (the average across queries is 3.5). Re-
call@20 improves monotonically with k: 79.4 (k=1), 80.0 (k=2), 80.9 (k=3), and 81.1 (k=3.5);
the gains over k=1 are +0.6, +1.5, and +1.7 points, respectively. The curve in Figure 5 peaks at
k = 3.5, indicating that—when trained with CMP—leveraging all threshold-qualified positives per
query is most effective; CMP can aggregate complementary evidence from multiple positives while
remaining robust to residual noise.
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Figure 5: DPR performance (Recall@20) as a function of the number of positives k. The vertical dashed line
marks the dataset mean k = 3.5. LLM for PFN selection: Llama 3.1 70B; threshold τ = 0.95.
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