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ABSTRACT

The recent success in using human preferences to align large language models
(LLMs) has significantly improved their performance in various downstream
tasks, such as question answering, mathematical reasoning, and code generation.
However, achieving effective LLM alignment depends on high-quality human
preference datasets. Collecting these datasets requires human preference annotation,
which is costly and resource-intensive, necessitating efficient active data selection
methods. Existing methods either lack a strong theoretical foundation or depend on
restrictive reward function assumptions, such as linear latent reward functions. To
this end, we propose an algorithm, ActiveDPO, that uses a theoretically grounded
data selection criterion for non-linear reward functions while directly leveraging the
LLM itself to parameterize the reward model that is used for active data selection.
As a result, ActiveDPO explicitly accounts for the influence of the LLM on data
selection, unlike methods that select the data without considering the LLM that
is being aligned, thereby leading to more effective and efficient data collection.
Our extensive experiments demonstrate that ActiveDPO outperforms existing
methods across various models and real-life preference datasets.

1 INTRODUCTION

Large language models (LLMs) (Google, 2023; OpenAI, 2023; Touvron et al., 2023; Anthropic, 2023)
have demonstrated impressive performance across various tasks, including question-answering (Taori
et al., 2023), mathematical reasoning (Wei et al., 2022), code generation (Chen et al., 2021), and
many others (Zhao et al., 2023). However, LLMs often fall short when required to produce responses
that conform to specific formats or align with human values (Ji et al., 2023; Anwar et al., 2024). To
address this, methods such as Reinforcement Learning from Human Feedback (RLHF) (Ouyang et al.,
2022; Bai et al., 2022) and Direct Preference Optimization (DPO) (Rafailov et al., 2023), use binary
preference feedback collected from human annotators, who indicate which of two LLM responses
they prefer, to better align LLM outputs with human preferences in real-world applications. Both
RLHF and DPO require high-quality human preference datasets to achieve effective LLM alignment.
However, collecting these datasets requires skilled human annotators, making this process both costly
and resource-intensive (Liu et al., 2024; Carvalho Melo et al., 2024; Muldrew et al., 2024).

To overcome these challenges, recent works (Mehta et al., 2023; Das et al., 2024; Liu et al., 2024;
Muldrew et al., 2024) have proposed methods for actively selecting a smaller subset of preference
data (i.e., triplets consisting of a prompt and two responses) for human preference annotation while
maintaining alignment performance. Specifically, some existing works (Liu et al., 2024; Muldrew
et al., 2024) have proposed heuristic methods for actively selecting preference data to collect human
preference feedback. However, these methods lack a rigorous theoretical foundation and therefore
do not guarantee reliable performance across different tasks and LLMs (see Fig. 1 in Section 4). In
contrast, some works (Mehta et al., 2023; Das et al., 2024) have developed methods with theoretical
guarantees to achieve sample-efficient LLM alignment. However, these methods require strong
assumptions about the underlying latent reward function (e.g., linearity), which may not hold in the
context of LLM alignment. Furthermore, another potential limitation of some existing works (Mehta
et al., 2023; Das et al., 2024; Liu et al., 2024; Muldrew et al., 2024) is their dependence on a separate
reward model or a selection method that works independently of the LLM being aligned.
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These limitations naturally lead to the following question: How can we develop an active preference
data selection algorithm that is both theoretically grounded and practically effective? To answer
this, we propose ActiveDPO, a novel active preference data selection algorithm. ActiveDPO
is built on DPO, which has shown comparable or superior empirical performance to RLHF while
avoiding the complexity of reward model training and the reinforcement learning process, making it
a compelling choice for aligning LLMs with human preferences (Rafailov et al., 2023). Furthermore,
ActiveDPO uses a theoretically grounded preference data selection criterion for complex non-linear
reward functions while leveraging the LLM itself as a reward model to guide preference data selection.

Specifically, we establish an upper bound on the error in estimating the reward difference between any
pair of responses and their ground-truth reward for a given prompt, expressed in terms of the gradient
of the current aligned LLM (Proposition 1 in Section 3). This result enables us to leverage the
LLM’s gradient to derive an uncertainty measure as a criterion for preference data selection, thereby
explicitly accounting for the LLM’s influence on the data selection process. To improve the efficiency
and practicality of ActiveDPO, we introduce novel techniques, such as batch selection and random
projection with LoRA gradients (more details are in Section 3.3), to reduce computational cost and
storage requirements. These additional techniques make ActiveDPO both theoretically grounded
and practically effective. Finally, extensive experiments demonstrate that ActiveDPO consistently
outperforms existing methods across various LLMs and datasets.

The key contributions can be summarized as follows:

• In Section 3, we propose a novel algorithm, ActiveDPO, that uses a theoretically grounded
active preference data selection criterion for LLM alignment. By leveraging an implicit
reward function parameterized by the LLM itself, ActiveDPO ensures that the selected
preference data is better suited to the specific LLM being aligned.

• In Section 3.3, we introduce techniques such as batch selection and random gradient
projection to reduce the computational and storage requirements of ActiveDPO, making it
more practical for large-scale models.

• In Section 4, we empirically demonstrate that ActiveDPO achieves efficient and effective
active preference learning across diverse LLMs and datasets.

2 PROBLEM SETTING

In LLM alignment, we start with a preference dataset D in which each data point contains a triplet
(x, y1, y2) where x ∈ X is a prompt and y1, y2 ∈ Y are two responses (which can be written by
humans or generated from LLMs). The X and Y are prompt space and response space respectively.
Denote n as the number of data points in D. We aim to find a k-sized subset Ds ⊆ D and ask human
annotators to provide binary preference feedback on the responses denoted as yw ≻ yl | x where yw
and yl denote the preferred and rejected response respectively. Note that y is not the human preference
label but the corresponding response for the prompt. We train the LLM to generate responses that
better align with human preference on the labeled data subset Dl using DPO. The objective is to
obtain an LLM that gives the most desirable responses (defined by win-rate and reward score as we
will discuss later) given the fixed labeling budget of k.

Direct preference optimization (DPO). We first start by discussing the DPO method, as introduced
in Rafailov et al. (2023). DPO starts by training a LLM through supervised fine-tuning (SFT) on a
carefully curated, high-quality dataset that is specifically tailored to a particular downstream task,
resulting in a model, denoted by πSFT. The objective of the SFT is to enable the LLM to effectively
follow instructions for a specific downstream task. Let πθ(y | x) denote the conditional log-likelihood
of generating y given the prompt x, where the model is parameterized by θ. Within DPO, an implicit
reward function is defined as follows:

rθ(x, y) = β
πθ(y | x)
πref(y | x)

,

where πref is the reference LLM, which is usually chosen to be the SFT LLM πSFT and β is the
regularization hyper-parameter used in DPO. Based on this implicit reward function, DPO uses
Bradley-Terry-Luce (BTL) to model the preference feedback. Specifically, BTL assumes that the
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probability of response y1 being preferred over y2, conditioned on the prompt x, is given by:

p(y1 ≻ y2 | x) =
exp

(
rθ(x, y1)

)
exp

(
rθ(x, y1)

)
+ exp

(
rθ(x, y2)

) = σ
(
rθ(x, y1)− rθ(x, y2)

)
, (1)

where σ(x) = 1/(1+exp(−x)). DPO uses the following training objective to train the LLM:

LDPO(πθ, πref) = −E(x,yw,yl)∼Dl

[
log σ

(
rθ(yw | x)− rθ(yl | x)

)]
. (2)

3 METHODOLOGY

Overview of ActiveDPO. ActiveDPO starts with generating responses from an initial data D,
which consists of instructions/prompts tailored to a specific task. We use the initial LLM model (i.e.,
πSFT) to obtain the responses to form the dataset Dt which forms the pool of selection (Section 3.1).
After that, we select a batch of triplets (x, y1, y2) with size b according to our selection criterion
(Section 3.2). Then, we ask the human annotator to provide preference feedback on the responses
for the selected batch of data to obtain the labeled dataset. Finally, we train the LLM with the DPO
training objective on the newly labeled dataset. We do this process for T iterations and obtain the
final trained LLM which can generate responses that align with human preference.

ActiveDPO Active Direct Preference Optimization

1: Input: Initial dataset D; Reference LLM πref = πSFT; Initial LLM πθ0 = πSFT; parameterized
by θ0; Iteration T ; Batch size B;

2: for t = 1, . . . , T do
3: Generate m pairs of responses from previous LLM y1, y2 ∼ πθt−1(y | x) for each x ∈ D to

obtain the dataset Dt.
4: Ds

t = ∅
5: for b = 1, . . . , B do
6: Select the (xt

b, y
t
b,1, y

t
b,2) using Eq. (3)

7: Ds
t = Ds

t ∪ {(xt
b, y

t
b,1, y

t
b,2)}

8: Update Vt−1 according to Eq. (4).
9: end for

10: Obtain the preference feedback yw ≻ yl | x for each data point in Ds
t to get the labeled dataset

Dl
t

11: Update the LLM πθt−1
using Dl

t with the DPO training objective in Eq. (2) to obtain πθt
12: end for
13: Return the trained LLM πθT

3.1 GENERATION OF THE PROMPT-RESPONSES DATASET

In each iteration of ActiveDPO, we regenerate the responses for each instruction/prompt in the
dataset for two main reasons. Firstly, even though there are some tasks that already have responses
written by humans or generated by powerful LLMs, most tasks do not have good responses for
each instruction at the start. Generating responses is necessary for these tasks before asking human
annotators to provide preference feedback on these responses. Secondly, even though some tasks
already have responses for each instruction, these responses are not updated as the LLM improves
over time. This is undesirable since the LLM will not be able to learn to generate better responses
(compared to the responses provided in the original dataset) as the LLM improves. Consequently, we
generate new responses for all the instructions using the latest model obtained from ActiveDPO, so
that ActiveDPO training is able to further improve the LLM with higher-quality responses.

3.2 SELECTION OF DATA TO GET HUMAN PREFERENCE ANNOTATIONS

The selection strategy of our ActiveDPO is designed by drawing inspiration from the principled
neural dueling bandits (Verma et al., 2025), which has derived an uncertainty quantification on the
human preference for the reward function that is modeled using the neural network (NN). Inspired by
this, we derived the uncertainty quantification on human preference for our LLM trained by DPO and
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show its empirical effectiveness in Section 4. Consequently, our selection strategy is theoretically
grounded and provides empirical effectiveness instead of using the heuristic-based method (Muldrew
et al., 2024).

Proposition 1 (Estimation error of the reward difference (informal version of Proposition 2)). Let
rθ denote a fully connected neural network with a width of m in each layer and depth of L. Let
δ ∈ (0, 1). Assume that there is a ground true reward function r and that human preference is
sampled from BTL preference modeling. As long as m ≥ M , then with a probability of at least 1− δ,∣∣∣∣[rθt−1(x, y1)− rθt−1(x, y2)

]
−

[
r(x, y1)− r(x, y2)

]∣∣∣∣ ≤
νT ∥

1

m
(∇rθt−1(x, y1)−∇rθt−1(x, y2))∥V −1

t−1
+ ε

for all x ∈ X and y1, y2 ∈ Y, t ∈ [T ] when using the DPO objective defined
in Eq. (2) with an additional regularization term to train this reward function rθt−1

. Vt−1 =∑t−1
p=1

∑
x,y1,y2∼Ds

p
φt−1(x, y1, y2)φt−1(x, y1, y2) and φt−1(x, y1, y2) = 1√

m
(∇rθt−1(x, y1) −

∇rθt−1(x, y2)). The definition of M,νT , ε can be found in the Appendix A.

Proposition 1 is based on the theoretical results from neural dueling bandits (Verma et al., 2025).
This result suggests that if ∥ 1

m (∇rθt−1
(x, y1)−∇rθt−1

(x, y2))∥V −1
t−1

is smaller, the estimation error
of the reward difference will be smaller. Note that the reward difference directly decides the human
preference according to the BTL preference modeling as shown in Eq. (1). Consequently, the reward
function rθt−1

will have a more accurate estimation of the human preference on the two responses
y1, y2 given x. On the other hand, if ∥ 1

m (∇rθt−1
(x, y1)−∇rθt−1

(x, y2))∥V −1
t−1

is large, this indicates
that the reward model will potentially have an inaccurate estimation of the human preference for the
responses and hence a higher uncertainty on the human preference. Therefore, a natural selection
criterion arises with the uncertainty defined in Proposition 1. Based on this selection criterion, our
selection strategy selects a triplet context and pair of arms (x, y1, y2) as follows:

x, y1, y2 = argmaxx,y1,y2∼Dt\Ds
t
∥∇rθt−1

(x, y1)−∇rθt−1
(x, y2)∥V −1

t−1
(3)

The selection strategy in Eq. (3) uses the implicit reward function rθt−1
which is parameterized by

the current LLM πθt−1
. Note that we remove 1/

√
m from the selection criterion and φt−1 since

it only affects the scale of the gradient, and the depth m is undefined for the LLM. The selection
criterion quantifies how uncertain the current implicit reward function is on the human preference
of the response y1, y2. Specifically, a larger value of selection criterion in Eq. (3) means that the
prompt-response triplet (x, y1, y2) is more different from the previously selected triplets. Therefore,
by using this selection criterion, our selection strategy encourages the selection of responses that are
very different from the previous data and hence achieves exploration of the prompt-response domain
to get more informative human preference feedback. This exploration helps improve the implicit
reward function as the reward function is trained on human feedback on diverse data in the domains.
Although Proposition 1 is derived for a fully connected neural network, we argue in Section A that its
conclusions extend to the transformer architecture used in our experiments.

Note that, in addition to being theoretically grounded, our selection strategy enjoys two other
advantages. Firstly, our uncertainty criterion is defined using the LLM that we are training instead of
some other external models used in the existing methods (Carvalho Melo et al., 2024; Das et al., 2024).
Using uncertainty defined without the LLM implicitly assumes that different LLMs need the same
data for preference alignment which does not hold practically (as we will show in the experiments).
Therefore, our selection strategy is specific to the LLM used and hence is able to select data that
better suits the LLM for human preference alignment. Secondly, our selection strategy selects data
that directly improves the reward function defined by the LLM and hence directly improves the
LLM generation, due to the use of DPO. This strategy is in contrast to prior work that focuses on
selecting the data points to improve the reward function that will be used in RLHF. An additional
reinforcement learning process needs to be done to obtain the final LLM. This complication makes
the data points selected not necessarily helpful for the LLM alignment performance as having a better
reward function does not always result in a better RL-trained LLM.

4
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3.3 PRACTICAL CONSIDERATION

Our selection criterion in Eq. (3) requires the computation of gradients of the implicit reward function
with respect to the LLM parameters for each prompt-response pair, as well as updating the LLM
using the DPO training in every iteration. These steps are computationally expensive and require a
lot of storage for storing the gradients. To address these computational inefficiencies, we propose two
accelerations to make our selection strategy efficient which we will describe in detail respectively.

Batch selection. In each iteration, we select a batch of data with size B to be labeled by the human
annotators. We keep TB = k to keep the annotation budget the same. The batch selection accelerates
the selection in two ways: 1) We only need to recalculate the gradient for each prompt-response pair
(i.e., ∇rθt−1(x, y)) every B selections of data instead of every selection; 2) We only need to update
the model via DPO training every B selections.

Batch selection dramatically reduces the computational cost of our selection strategy, however, at the
cost of the loss of information. Specifically, the data selected in the current batch will be different
from previous batches but the selection within the batch may not enjoy similar results. To remedy this,
we propose to update Vt−1 within the batch. Specifically, after a data point is selected, we update
Vt−1 using the new data point (xt

b, y
t
b,1, y

t
b,2)

Vt−1 = Vt−1 + φt−1(x
t
b, y

t
b,1, y

t
b,2)φt−1(x

t
b, y

t
b,1, y

t
b,2) . (4)

Consequently, the next data point to be selected will also be different from the current one even
though they are in the same batch, hence further encouraging exploration.

LoRA gradient with random projection. The computation of gradients in our selection criterion
is expensive and requires a large storage space. Specifically, the full gradient of the LLM is the same
size as the LLM model weight and we need to calculate and store the gradients for all data points.
To reduce both computational cost and storage requirement, we propose to use LoRA (Hu et al.,
2022) to obtain the gradient efficiently. However, the LoRA gradient is still 1− 2% percent of the
full model weight which still requires a lot of storage and computation for our selection criterion.
Consequently, we apply random projection to further reduce the gradient to a fixed dimension. This
random projection is justified by the Johnson-Lindenstrauss lemma (Dasgupta and Gupta, 2003)
which shows that the inner product of the original vector can be approximated by the inner product of
the projected vector via random projection. Consequently, we can reduce both the computational
and storage costs dramatically without sacrificing too much on the selection performance (as shown
in Section 4). Similar techniques have been used in Xia et al. (2024). The random projection also
reduces the computational cost of the matrix inverse in Vt−1 in our selection criterion.

Gradient normalization. Existing work (Xia et al., 2024) has demonstrated that the LLM gradients
will have lower magnitudes in their l2 norms when the training data are longer in their length (i.e.,
sentence length). This means if we use the selection criterion defined in Eq. (3), we will have a
higher chance of selecting training data with shorter lengths. This is undesirable, especially for the
application of question-answering in which humans may prefer medium to long answers that contain
more elaboration on the response. To remedy this, we propose to normalize all the gradients to the
unit norm (i.e., l2 norm being 1) before we use these gradients to calculate the selection criterion,
consequently avoiding the criterion favoring shorter sentences. We have empirically shown the
effectiveness of normalization before calculating the selection criterion in Section 4.

4 EXPERIMENTS

In our experiments, we show the effectiveness of our selection criterion in terms of selecting data to
train an LLM that can generate responses that better align with human preference. We compare with
multiple existing baselines using two widely-used LLMs across two preference alignment tasks.

Datasets. We consider two tasks that require human preference alignment: 1) TLDR summarization
dataset (Liu et al., 2020; Völske et al., 2017) which contains posts from Reddit and the corresponding
summarization written by humans; 2) WebGPT dataset (Nakano et al., 2021) which is a long-form
question-answering dataset that is marked suitable for human preference alignment. These two

5
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datasets contain human preference feedback from human annotators and will be used later as an
oracle to obtain real human preference feedback.

Models. We performance experiments using 3 different LLMs: Llama-2-7B (Touvron et al., 2023),
Gemma-2B (Team et al., 2024) and Qwen3-4B (Yang et al., 2025). Using these LLMs is able to show
the effectiveness of alignment on 3 different model families (i.e., Llama, Gemma, and Qwen) and
3 different model sizes (i.e., models with 7 billion parameters, 2 billion parameters, and 4 billion
parameters).

Baselines. We compare 4 different selection criteria in our experiments: 1) Random: randomly
select data points from the dataset to get human preference feedback; 2) APO (Das et al., 2024): a
theoretically grounded method in the setting of RLHF alignment. Their theoretical results are based
on the assumption of a linear reward function and is designed for RLHF training; 3) APLP (Muldrew
et al., 2024), an active learning method for DPO that uses heuristic uncertainty/certainty quantification
to select the data to be labeled; 4) Our proposed method ActiveDPO. Note that, for fair comparisons,
we only vary the way to select data points to be labeled for different methods and share the same
model training and data labeling pipeline among different baselines. Consequently, the only variable
that leads to different performance is the way to select data among different methods.1

Obtaining human preference feedback. As new responses are generated by the updated model in
each iteration, these responses are not part of the original preference dataset and hence do not have
human preference feedback. To make our experiments feasible, we train a reward model using the
original human preference feedback and use this reward model as an oracle to provide the preference
feedback for newly generated responses in each iteration.2

Evaluation. The reward model can be used to evaluate the extent to which the LLM generates
responses that align with human preference. To evaluate the performance, we use the trained LLM to
generate multiple responses for 100 prompts sampled from the dataset for each task. After that, we
use the reward model to obtain the average reward for all the prompt-response pairs and report the
performance. Ideally, if the LLM can generate responses with higher rewards, it aligns better with
human preference since the reward model is trained on real human preference.

Hyper-parameters. For each task, we train the initial LLM with supervised fine-tuning with the
SFT dataset provided in each task for 1 epoch with the learning rate of 2e− 05. In each iteration, we
randomly select 1000 prompts from the dataset to generate 3 responses for each prompt. Consequently,
each prompt will form 3 corresponding triplets (x, y1, y2) (i.e.,

(
3
2

)
number of pairwise combinations)

and hence 3000 data points in the dataset Dt. We select 50 data points in each iteration using different
selection strategies. We train the model using DPO objective based on the labeled dataset for 4 epochs
with the learning rate of 1e− 4. As for the LoRA gradient, we use the rank of 128 with α of 512. We
project all the LoRA gradients to 8192 dimensions, a dimensionality that balances performance and
computational costs as we will show later.

Results. We have provided the comparison of the average reward of the responses generated by the
LLM trained on the data selected by different selection strategies in Fig. 1. The LLM trained with
data selected by our ActiveDPO consistently generates responses with higher rewards compared
to other selection strategies across different LLMs and datasets. Consequently, our ActiveDPO
outperforms all other baselines in selecting data for a fixed number of labeling budgets3. APLP
performs well on the Gemma model, however, it performs even worse than random on Llama-2. This
is likely due to the heuristic design of the uncertainty quantification method in APLP, which does not
work consistently well in different settings. Specifically, APLP uses the difference of the estimated
rewards for two responses given a prompt as part of the selection criterion. This criterion allows
APLP to select triplets with incorrect human preference predicted by the estimated reward function
in the early stage when the reward function is inaccurate, hence improving the reward function

1Note that, for APO, we implement the original algorithm (Das et al., 2024) which does not regenerate
responses using the new models.

2We use the reward function that is already trained and available in HuggingFace. Specifically, we use the
model from OpenAssistant (2024a) for TLDR dataset and OpenAssistant (2024b) for WebGPT dataset.

3The result of DPO alignment training is problem-dependent (depending on the dataset and model). For
datasets that are very noisy, it is expected that different active learning methods will perform similarly. For
larger models, different selection methods also tend to perform more similarly than for smaller models (which
explains Fig. 1 (a) where our method performs similarly to other methods in the last iteration).
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(a) TLDR with Llama-2-7B (b) TLDR with Gemma-2B (c) TLDR with Qwen3-4B

(d) WebGPT with Llama-2-7B (e) WebGPT with Gemma-2B (f) WebGPT with Qwen3-4B

Figure 1: Comparison of average rewards for responses generated by the LLM using different
selection strategies.

estimation. This partially explains why APLP performs well in the first iteration for both TLDR
and WebGPT on the Llama-2 model. However, as more human preference is collected, the reward
function estimation is more accurate, and hence, the triplet with a large reward difference can be data
points with correct human preference predicted by the estimated reward function and with a large
reward margin, which do not help to improve the reward function. Consequently, APLP performs
badly in the later iterations. On the other hand, APO also performs inconsistently in different settings.
This is likely due to the unrealistic assumption of the reward function, which does not hold in real
applications (e.g., the implicit reward function in DPO is non-linear).

(a) Reward (b) Win-rate

Figure 2: Different models require different data to achieve good alignment performance. We train
the Gemma model using two different SFT datasets to obtain Model 1 and Model 2. We construct
3 different human preference datasets and perform DPO training on these 3 datasets for these two
models respectively.

The impact of LLM on data selection. We perform additional experiments to verify that different
LLMs indeed need different data to achieve better performance. Specifically, we train the Gemma-2B
model on two different SFT datasets to obtain two different LLMs: Model 1 and Model 2. The way
we construct the 2 SFT dataset is by using the sentence-BERT (Reimers and Gurevych, 2019) to
transform each data point to embedding and use k-means to cluster the dataset into two subsets using
the embeddings. We obtain 3 different DPO data subsets using the same approach. We train these

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

two LLMs on 3 DPO data subsets respectively, and evaluate their performance. From Fig. 2, Model 1
and Model 2 achieve very different performance using these 3 DPO data subsets. Specifically, Model
2 achieves the best performance on Dataset 2, while Model 1 achieves the worst performance on
the same dataset (i.e., in terms of the win-rate). Consequently, the choice of model has a substantial
impact on performance and must be considered when selecting data for achieving better model
performance. Intuitively, this is because Model 1 and Model 2 are trained on very different SFT
dataset, and hence require different new data to make up what they missed in the previous SFT
fine-tuning.

The effect of random projection on the performance. Our method uses random projection to
reduce the dimensionality of the LoRA gradients, reducing the storage requirement and computational
cost for our ActiveDPO (as described in Section 3). To further study the effect of random projection
to the performance of our ActiveDPO, we perform experiments on using different dimensionalities
for the random projection and evaluate the performance of our ActiveDPO. The results in Fig. 4
show that a lower dimensionality leads to poorer performance of ActiveDPO. However, when
the dimensionality is 8192 or above, the performance of ActiveDPO does not improve as a larger
dimensionality is used. Consequently, we use the dimensionality of 8192 across all our experiments
to achieve good performance while keeping the computational cost and storage requirement low. We
provide more analysis on the computational complexity and memory requirement for ActiveDPO
in Section A.

(a) Reward (b) Win-rate

Figure 3: Effect of normalizing LoRA gradients on the performance of ActiveDPO.

(a) Reward (b) Win-rate

Figure 4: Effect of Random Projection Dimensionality of LoRA gradients.

The effect of the normalization of the gradient on the performance. We perform experiments
to verify the effect of normalizing the gradient in our ActiveDPO. Specifically, as described
in Section 3, we normalize LoRA gradients to unit-norm before we use them to calculate the
selection criterion. We perform the selection of data using our selection strategy with gradient
normalization compared to the one without gradient normalization. Fig. 3 shows the performance
of our ActiveDPO with/without the gradient normalization on WebGPT dataset using Gemma-2B
model. These results show that normalizing the LoRA gradients helps to improve the performance of
our selection strategy. As described in Section 3 our method will not favor the data points with shorter
responses compared to the ones without normalization. Long responses with clear reasoning may
sometimes be preferred by humans instead of shorter ones. Consequently, our ActiveDPO with
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gradient normalization performs better. We have included additional results for the TLDR dataset in
the Appendix in which normalization does not affect the performance by much.

5 RELATED WORK

Learning from human preference feedback has been extensively studied for over a decade (Yue and
Joachims, 2009; Fürnkranz et al., 2012; Christiano et al., 2017; Zhu et al., 2023; Verma et al., 2025).
In this section, we review work on dueling bandits, active preference learning, LLM alignment, and
active LLM alignment, which are most relevant to our problem.

Dueling Bandits. One of the earliest works (Yue and Joachims, 2009; 2011; Yue et al., 2012)
considers finite-armed dueling bandit problem in which the learner’s goal is to find the best action
using available pairwise preference between two selected actions. Several follow-up works considers
different settings involving different criteria for selecting the best action (Zoghi et al., 2014b;a; Ailon
et al., 2014; Komiyama et al., 2015; Gajane et al., 2015) and we refer readers to Bengs et al. (2021)
for a compressive survey covering these details. The standard dueling bandits has been extended to
different settings, such as contextual dueling bandit setting (Saha, 2021; Bengs et al., 2022; Di et al.,
2023; Li et al., 2024; Verma et al., 2025).

Reinforcement Learning with Human Feedback. Preference feedback has also been extensively
studied in reinforcement learning (Fürnkranz et al., 2012; Akrour, 2014; Christiano et al., 2017;
Zhu et al., 2023) introduced preference-based policy iteration, a method that relies solely on
preference feedback to guide reinforcement learning, with subsequent developments by (Akrour,
2014). (Christiano et al., 2017) demonstrated the effectiveness of human preference feedback in
training agents for Atari games and simulated robot locomotion. On the theoretical side, research
has progressed from bandit settings to reinforcement learning (Zhu et al., 2023), providing deeper
insights into the optimal use of preference feedback for decision-making and policy optimization.
For a more comprehensive overview, we refer readers to a survey on preference-based reinforcement
learning (Wirth et al., 2017).

LLM Alignment. Recent works have introduced methods like Reinforcement Learning from Human
Feedback (RLHF) (Christiano et al., 2017; Stiennon et al., 2020; Ouyang et al., 2022; Bai et al., 2022;
Lee et al., 2024) and Direct Preference Optimization (DPO) (Rafailov et al., 2023) to align LLMs
with specific formats or human values. For a comprehensive overview of various aspects of LLM
alignment, we refer readers to surveys on the topic (Ji et al., 2023; Anwar et al., 2024).

Active LLM Alignment. Actively select preference queries for a human to provide relative
preferences between two queries allows efficiently learn reward functions that capture human intent.
Some of works has already considered actively selecting queries in domain like autonomous (Sadigh
et al., 2017; Biyik and Sadigh, 2018). Recent work on active preference data selection for LLM
alignment has explored both heuristic methods (Carvalho Melo et al., 2024; Muldrew et al., 2024)
and approaches with theoretical guarantees (Mehta et al., 2023; Das et al., 2024). A key distinction
among these recently proposed theoretical methods lies in their data selection strategies. On the other
side, existing methods with theoretical guarantees (Mehta et al., 2023; Das et al., 2024) are based on
the assumption of a linear latent reward function, which may not hold in real-world applications such
as LLM alignment in which reward functions are often highly non-linear and complex.

6 CONCLUSION

In this paper, we propose a data selection method for actively selecting data to obtain human
preference feedback for LLM alignment, aiming to achieve better alignment performance with as few
annotations as possible. To this end, we introduce a theoretically grounded method, ActiveDPO, and
demonstrate that it achieves superior alignment performance under the same labeling budget across
different models and datasets. Notably, the selection criterion in ActiveDPO requires computing the
gradient of the LLM with respect to model parameters for each data point, which is computationally
expensive and demands substantial storage for storing gradients. We propose several techniques to
improve the efficiency of our method. Although further efforts could be made to accelerate gradient
computation, this is beyond the scope of the current work and is left for future research.

9
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A APPENDIX

A.1 COMPUTATIONAL RESOURCES, DATASETS AND MODELS

Experiments are run on a server with AMD EPYC 7763 64-Core Processor, 1008GB RAM, and 8
NVIDIA L40 GPUs.

Dataset license. TLDR dataset: MIT License; WebGPT dataset: Apache License 2.0.

Model license. Llama-2: LLAMA 2 Community License Agreement. Gemma: Gemma License.
Qwen3: Apache License 2.0.

A.2 ADDITIONAL DISCUSSION ON PROPOSITION 1

Although our results in Proposition 1 rely on neural tangent kernel (NTK) theory, which is primarily
developed for fully connected networks, recent works (Lin et al., 2024; Chen et al., 2025) have shown
promising directions for partially extending NTK theory to transformers. Furthermore, recent studies
(Lin et al., 2024) have demonstrated that sufficiently large transformer models, when pre-trained on
offline interaction sequences, can approximate near-optimal online reinforcement learning algorithms
such as LinUCB (Li et al., 2010) and Thompson Sampling in multi-armed bandits (Agrawal and
Goyal, 2013), as well as UCB value iteration for tabular Markov decision processes (Azar et al., 2017).
In addition, transformers have been shown to effectively handle non-stationary RL environments,
achieving near-optimal performance by minimizing dynamic regret (Chen et al., 2025).

Our analysis relies on two standard results from Neural Tangent Kernel (NTK) theory: (i) Kernel
constancy: along training, the NTK remains (asymptotically) constant (i.e., it converges to a
deterministic kernel independent of the training step); (ii) GP limit of the predictor: the trained
predictor converges to the Gaussian process induced by that kernel. Result (i) has been established
for transformer architectures via the tensor programs framework (Yang, 2020). By contrast, a general
proof of (ii) for transformers is not yet available; however, extensive empirical evidence supports
Gaussian process behavior in large-width networks (Malladi et al., 2023). Accordingly, the principal
theoretical gap in our analysis is a formal proof of (ii) for transformers, which is a challenging
problem that we leave as future work. Nonetheless, these assumptions align with existing theory
and are corroborated by the strong empirical performance of our method, which together provide a
credible justification for applying our theoretical insights to transformer-based LLMs. Equipped with
these ideas and existing results, we could potentially extend Proposition 1 to transformer architectures;
however, this is beyond the scope of the current paper and is therefore left for future work.

A.3 ADDITIONAL ANALYSIS ON THE COMPUTATIONAL COMPLEXITY OF ACTIVEDPO

We provide a theoretical calculation of the computational complexity and memory requirement
for ActiveDPO.

Assume that we have n number of prompts with m number of responses, the number of parameters
is k and the projection dimension is d. Calculating the gradient for all the data points requires
O(nm2k). Projecting all the gradients to d dimensions requires O(nm2kd), and hence a total of
O(nm2kd). Assume that we have selected s number of data points. The calculation of gradient and
projection for these s number of selected data points with the new model is O(skd). Calculating
our acquisition function for all data points is O(nm2d2 + d3). Therefore, for each iteration, we
have the complexity of O(nm2d2 + d3 + skd + nm2kd). Note that the projection dimension is
controllable and a hyperparameter, and m is chosen to be small in most applications. Therefore, the
overall computational complexity is small. The memory requirement is mainly dominated by storing
the projected gradient, which is O(nm2d) and is again reducible by reducing d and m.

A.4 ADDITIONAL EXPERIMENTAL RESULTS

Fig. 5 shows the win-rate of different selection strategies. In general, our ActiveDPO still
outperforms other selection strategies in the last few iterations.
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(a) TLDR with Llama-2 (b) TLDR with Gemma (c) TLDR with Qwen3-4B

(d) WebGPT with Llama-2 (e) WebGPT with Gemma (f) WebGPT with Gemma

Figure 5: Comparison of the win-rate of the responses generated by the LLM trained by DPO with
the responses generated by the initial LLM with different selection strategies.

A.5 PROOFS FOR PROPOSITION 1

Define the following objective function:

L(θ) = − 1

m

∑
(x,yw,yl)∼Dl

[
log σ

(
rθ(yw | x)− rθ(yl | x)

)]
+

λ∥θ − θ0∥
2

. (5)

Define H as the NTK matrix following the same definition in Verma et al. (2025). Define νT
following the same definition in Verma et al. (2025). Define K as the size of the selection dataset Ds

in each round.

We make the following assumption:
Assumption 1. Assume that

• κµ
.
= infx∈X ,y1,y2∈Y σ(r(x, y1)− r(x, y2)) > 0,

• the reward function is bounded: |r(x, y)| ≤ 1,∀x ∈ X , y ∈ Y ,

• there exists λ0 > 0 s.t.H ⪰ λ0I, and

• the reward function takes a vector z (which is the representation vector for the concatenation
of x and y) as input and z satisfies: ∥z∥2 = 1 and [z]j = [z]j+d/2 for all x ∈ X and y ∈ Y .

Denote σt−1(x, y1, y2) = λ
κµ

∥φ(x, y1, y2)∥V −1
t−1

where φ(x, y1, y2) = 1√
m

(
∇rθ0(x, y1) −

∇rθ0(x, y2)
)

and V t−1 =
∑t−1

p=1

∑
x,y1,y2∼Ds

p
φ(x, y1, y2)φ(x, y1, y2) + λ

κµ
I. We give the

following Lemma, which is a direct extension from Theorem 1 of Verma et al. (2025):
Lemma 1. Given that Assumption 1 holds, let δ ∈ (0, 1), εm,t

.
= Cm−1/6

√
logmL3( t

λ )
4/3 for

some absolute constant C > 0. As long as m ≥ poly(T,L,K, 1/κµ, 1/λ0, 1/λ, log(1/δ)), then with
probability of at least 1− δ,∣∣∣∣[rθt−1

(x, y1)− rθt−1
(x, y2)

]
−

[
r(x, y1)− r(x, y2)

]∣∣∣∣ ≤ νTσt−1(x, y1, y2) + εm,t

for all x ∈ X and y1, y2 ∈ Y, t ∈ [T ] when using the objective defined in Eq. (5) to train this reward
function rθt−1 .
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Proof. This Proposition is immediately true by concatenating the prompt x and response y to replace
the input used in Theorem 1 of Verma et al. (2025) and instantiate the link function in Verma et al.
(2025) as the sigmoid function. Specifically, we assume that the reward takes the representation
vector z of the concatenation of x and y as input and assume that this z satisfies the corresponding
conditions in Assumption 1.

Denote σt−1(x, y1, y2) =
λ
κµ

∥φt−1(x, y1, y2)∥V −1
t−1

where φt−1(x, y1, y2) =
1√
m

(
∇rθt−1

(x, y1)−
∇rθt−1(x, y2)

)
and Vt−1 =

∑t−1
p=1

∑
x,y1,y2∼Ds

p
φt−1(x, y1, y2)φt−1(x, y1, y2) +

λ
κµ

I.

Lemma 2. Given that Assumption 1 holds, for some absolute constant C > 0, we have that:

|σt−1(x, y1, y2)− σt−1(x, y1, y2)| ≤ Cλ−5/6(t− 1)4/3m−1/6
√

logmL9/2 . (6)

Proof. Following the proof of Lemma B.4 in Zhang et al. (2021), we can show that

|σt−1(x, y1, y2)− σt−1(x, y1, y2)|

≤ 1√
λ

∥∥∥∥rθt−1(x, y1)− rθt−1(x, y2)√
m

− rθ0(x, y1)− rθ0(x, y2)√
m

∥∥∥∥
2

+
C̃2L√

λ

t−1∑
i=1

∥∥∥∥rθt−1
(xi, yi,1)− rθt−1

(xi, yi,2)√
m

− rθ0(xi, yi,1)− rθ0(xi, yi,2)√
m

∥∥∥∥
2

for some absolute constant C̃ > 0. In addition, according to Lemma 3 of Verma et al. (2025), we
have that

∥rθ0(x, y)− rθt−1
(x, y)∥2 ≤ C1m

1/3
√
logm

(
t− 1

λ

)1/3

L7/2, ∀x ∈ X , y ∈ Y, t ∈ [T ]

Consequently, we have that

|σt−1(x, y1, y2)− σt−1(x, y1, y2)|

≤ C̃2 L√
λ
(t− 1)× 2× 1√

m
× C1m

1/3
√
logm

(
t− 1

λ

)1/3

L7/2

= Cλ−5/6(t− 1)4/3m−1/6
√
logmL9/2

for some absolute constant C > 0.

The result of Lemma 2 says that as long as the width m of the NN is large enough, we can ensure that
the difference |σ(xt,1, xt,2)− σ(xt,1, xt,2)| is upper-bounded by a small constant. Consequently, we
can show the following formal version of Proposition 1.
Proposition 2 (Formal version of Proposition 1). Given that Assumption 1 holds, let δ ∈ (0, 1),
εm,t

.
= Cm−1/6

√
logmL3( t

λ )
4/3 + Cλ−5/6(t − 1)4/3m−1/6

√
logmL9/2 for some absolute

constant C > 0. As long as m ≥ poly(T,L,K, 1/κµ, 1/λ0, 1/λ, log(1/δ)), then with probability of
at least 1− δ,∣∣∣∣[rθt−1

(x, y1)− rθt−1
(x, y2)

]
−
[
r(x, y1)− r(x, y2)

]∣∣∣∣ ≤ νTσt−1(x, y1, y2) + εm,t

for all x ∈ X and y1, y2 ∈ Y, t ∈ [T ] when using the objective defined in Eq. (5) to train this reward
function rθt−1

.

Proof. Combining Lemma 1 and Lemma 2, we get that the proposition is true.

Remark 1. Note that the objective function of Eq. (5) is almost the same as Eq. (5), with Eq. (5)
scaling the Eq. (5) by a constant and having an additional regularization term. The design of Eq. (5) is
for the theoretical results. Empirically, we still use the standard Eq. (2) and adjust the regularization
by adjusting the β in Eq. (2).
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