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ABSTRACT

Pretraining RL models on offline datasets is a promising way to improve their
training efficiency in online tasks, but challenging due to the inherent mismatch
in dynamics and behaviors across tasks or data domains. We present Vid2Act, a
model-based RL method that learns to transfer potentially useful dynamics and
action demonstrations from various offline datasets to a novel task. The main idea
is to use the world models not only as simulators for behavior learning but also
as tools to measure the task relevance for both dynamics representation transfer
and policy transfer. Specifically, we build a time-varying, task-selective distillation
loss to generate a set of offline-to-online similarity weights. These weights serve
two purposes: (i) adaptively transferring the task-agnostic knowledge of physical
dynamics to facilitate world model training, and (ii) learning to replay relevant
source actions to guide the target policy. We demonstrate the advantages of Vid2Act
over the state-of-the-art methods in Meta-World and DeepMind Control Suite.

1 INTRODUCTION

Reinforcement learning (RL) approaches have made significant advancements in solving a wide
range of sequential control problems (Ebert et al., 2018; Sekar et al., 2020; Laskin et al., 2020b).
In the realm of visual RL, agents need to not only conduct representation learning from raw image
inputs but also perform behavior learning in the learned state space, which requires a large number
of interactions with an online environment and limits the applications in the real world. Recently,
model-based RL algorithms have greatly improved sample efficiency by concurrently learning a
differentiable simulator of the environment (i.e., the world model), and using imagined rollouts
generated by the world model for policy optimization (Kaiser et al., 2019; Hafner et al., 2020).
Nevertheless, the process of training an effective world model from scratch remains a time-consuming
and challenging pursuit, often yielding less generalizable representations.

To address this problem, many recent approaches (Stooke et al., 2021; Sun et al., 2023; Xu et al.,
2023; Taiga et al., 2023) adopt the pretraining and finetuning paradigm to pre-learn representation
models on off-the-shelf offline datasets and transfer the learned prior knowledge to a novel online RL
domain. For example, SMART (Sun et al., 2023) exploits a Transformer model to learn generalizable
visual representations from reward-free, offline interaction data under a control-centric pretraining
objective. Similarly, our focus lies in leveraging multi-task offline data without reward to improve the
visual RL performance in a novel online task. However, it is crucial to recognize that, despite the
effectiveness of the pretraining method, a straightforward finetuning method may still suffer from the
potential discrepancy in visual observations, physical dynamics, or even action spaces across task
domains. Therefore, unlike SMART, our approach aims to:

1. Adaptively identify the relevance between offline and online tasks in an unsupervised manner,
allowing for positive domain transfer even when some offline data may seem unrelated.

2. Exploit relevant actions from the offline datasets to guide policy optimization for the new task.

As shown in Figure 1, we propose a new task-selective transfer RL approach called Vid2Act to
reduce the potential discrepancies between the pretraining stage and the transferring stage. In the
pretraining stage, we exploit reward-free offline trajectories of image-action pairs to train task-specific
world models, which learn the observation-to-state mapping functions and state-to-state transition
functions for different source tasks. In the transferring stage, instead of performing direct finetuning,
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Figure 1: We aim to build an offline-to-online transfer RL agent for visual control problems, which
is challenging due to the discrepancies between the target task and the source tasks from which the
offline datasets are collected. The key idea of our approach is to leverage the world models to enable
positive knowledge transfer through task-selective dynamics distillation and behavior guidance.

we leverage the source world models as teacher models to provide flexible regularization to the
representation learning process of the target-domain agent. This is achieved through a task-selective
distillation loss, where we learn a set of importance weights over the teacher models to adaptively
transfer the prior knowledge of physical dynamics gathered from the offline data to the target world
model.

In addition to their impact on representation learning, the importance weights also directly contribute
to the policy optimization process conducted over the imaginations of the target world model.
Specifically, Vid2Act incorporates a “generative action replay” module. During behavior learning,
it serves to reproduce source-domain actions based on the target-domain states, which have been
aligned to the corresponding source-domain state spaces by the distillation loss. By reusing the
importance weights, we can dynamically select the most relevant source task at different time steps
and replay its source expert behaviors to provide effective guidance for target policy improvement.
We claim the proposed method to be “task-agnostic” because our experimental results show that it
consistently enables Vid2Act to achieve positive domain transfer even when the available source
offline data appears less relevant to the target task.

We evaluate Vid2Act on the Meta-World benchmark (Yu et al., 2020) and the DeepMind Control
Suite (Tassa et al., 2018). Our approach shows remarkable performance improvements over both the
vanilla model-based RL baselines like DreamerV2 (Hafner et al., 2021) and existing unsupervised
pretraining methods for transfer RL, such as APV (Seo et al., 2022) and SMART (Sun et al., 2023).

2 RELATED WORK

Visual RL. In visual control tasks, the agent needs to learn policy from high-dimensional and
complex observations. Learning generalized representation by either unsupervised (Gelada et al.,
2019; Laskin et al., 2020a; Zhang et al., 2020; Schwarzer et al., 2020; Stooke et al., 2021; Yarats
et al., 2021) or self-supervised manners (Choudhary et al., 2022; Yang et al., 2022; Ze et al., 2023),
is a natural way to learn an auxiliary encoder of images for visual control tasks. Prior approaches
consist of model-based methods to optimize latent dynamics model (Hafner et al., 2020; 2019; 2021;
Pan et al., 2022), and model-free methods to utilize data augmentation (Laskin et al., 2020b; Yarats
et al., 2020; Hansen et al., 2021; Cho et al., 2022) and contrastive representation learning (Oord et al.,
2018; Anand et al., 2019; Mazoure et al., 2020; Laskin et al., 2020a; Nair et al., 2022; Li et al., 2023).
Similar to our work, there are several methods that pretrain RL models on offline datasets and then
finetune them on the online target task (Finn et al., 2016; Dwibedi et al., 2018; Zhan et al., 2020;
Laskin et al., 2020a; Stooke et al., 2021; Schwarzer et al., 2021; Seo et al., 2022). Except for not
bridging the domain gap between pretraining source data and RL tasks, they have shown attractive
performance on vision-based RL tasks. In our framework, we do not directly finetune the parameters
of the pretrained models, but rather learn more useful world models by distillation.

Transfer RL. Previous experiences across a diverse range of tasks can be beneficial in solving
online control tasks, even when encountering them for the first time. To quickly leverage the past
information to the new environments, many transfer learning approaches (Ng et al., 1999; Wiewiora
et al., 2003; Li et al., 2014; Hinton et al., 2015; Rusu et al., 2015; Long et al., 2015; Gupta et al.,
2016; Rebuffi et al., 2017; Yin & Pan, 2017; Zhang & Ma, 2018; Hester et al., 2018; Nair et al.,
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2018; Marom & Rosman, 2018; Rebuffi et al., 2018; Xuhong et al., 2018; Liu et al., 2019; Li et al.,
2019; Yao et al., 2020; Ma et al., 2019; Klissarov & Precup, 2020; Yang & Nachum, 2021; Zheng
et al., 2022; Kadokawa et al., 2023) are proposed to bridge the gap across different tasks or domains.
APV (Seo et al., 2022) employs action-free videos of multiple domains to pretrain an action-free
recurrent state-space model (RSSM), which focuses on learning visual representation from offline
datasets. Xu et al. (2023) trains a world model by using multiple offline tasks both in pretraining
and finetuning to overcome the challenges of catastrophical forgetting. Recently, some methods
leveraging Transformer have been proposed to facilitate transfer learning in control tasks (Xie et al.,
2023; Sun et al., 2023). SMART(Sun et al., 2023) designs a control-centric pretraining objective
for Decision Transformers(Chen et al., 2021) to captures the common essential information relevant
to short-term control and long-term control across tasks. A work closely related to our approach is
Knowledge Flow(Liu et al., 2019), which involves training multiple teacher models and distilling
knowledge from their layers to a student model. In our work, we propose a task-selective distillation
strategy to fully utilize both the dynamics and action information from the source tasks. It introduces
a more flexible way to adaptively transfer useful knowledge to help downstream tasks.

3 PROBLEM FORMULATION

In the visual control task, the agent learns the behavior policy directly from high-dimensional
observations, which is formulated as a partially observable Markov decision process (POMDP) with
a tuple (O,A, T ,R). Here, O is the observation space, A is the action space, R(st, at) is the reward
function, and T (st+1 | st, at) is the state-transition distribution. At each timestep t ∈ [1;T ], the
agent takes an action at ∈ A to interact with the environment and receives a reward rt = R(st, at).
The objective is to learn a policy that maximizes the expected cumulative reward Ep[

∑T
τ=1 rτ ].

To improve policy learning and sample efficiency of visual RL, we aim to transfer previous knowledge
from multiple offline tasks. The offline datasets are reward-free and exclusively consist of image-
action pairs {(ot, at)}. It is important to note that there might be substantial distribution shifts in
observations (O), state transition functions (T ), and behaviors (A) across task domains, which pose
significant challenges in transfer learning, providing strong motivation for the development of a
dynamic task-selective transfer RL approach. The primary goal of our approach is to efficiently bridge
the gap between tasks in terms of state representations, physical dynamics, and action behaviors.

4 METHOD

In this section, we present a comprehensive overview of the pretraining process in the source datasets
and the subsequent transfer learning process in the target task. The transfer learning process consists
of two stages, i.e., task-selective dynamics transfer and behavior learning with generative action
replay, as shown in Figure 2 and described in detail in Algorithm 1.

4.1 PRELIMINARY: WHY MODEL-BASED RL FOR DOMAIN TRANSFER?

Our overall pipeline is built upon model-based RL, which involves learning the underlying dynamics
from a buffer of past experiences, optimizing the control policy through future rollouts of compact
model states, and executing actions in the environment to append the experience buffer. More
precisely, we introduce a transfer RL approach based on the model-based DreamerV2 method (Hafner
et al., 2021). Unlike previous work, the world model in our approach serves not only as a simulator
for policy learning but also provides a measure of task relevance for both dynamics representation
transfer and behavior transfer discussed in the following sections. Additionally, after pretraining the
world models, subsequent algorithms can rely on the fixed parameters of the source models, making
it more universal in real-world scenarios and decoupled from the source data.

4.2 MULTI-TASK OFFLINE PRETRAINING OF WORLD MODELS

As illustrated in Figure 2, we consider multiple reward-free, action-conditioned datasets denoted
as D. These datasets comprise expert data that has been previously collected from N tasks and is
readily available for our use. Our initial step involves pretraining a batch of action-conditioned video
prediction models with independent model parameters, denoted as {F iϕ}Ni=1. In contrast to APV (Seo
et al., 2022), an existing model-based pretraining-finetuning transfer RL method, our approach
incorporates actions during the pretraining phase, which is reasonable in learning the consequences
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Figure 2: Left: We employ multiple offline action-conditioned video datasets to train multiple teacher
models, whose parameters are frozen during the subsequent transfer learning process. Right: We
dynamically distill prior knowledge from the teacher models for dynamics representation learning,
and acquire a set of task-similarity weights W . These weights are further used to reproduce the most
relevant source actions to guide the target policy through a generative action replay model Gθ.

of state transitions. Similar to Dreamer (Hafner et al., 2020), the pretrained models consist of three
main components as follows:

Representation model: q(st | st−1, at−1, ot)

Dynamics model: p(ŝt | st−1, at−1)

Decoder model: p(ôt | st).
(1)

The representation model extracts posterior latent states st from observations ot, previous states st−1,
and previous actions at−1. The dynamics model follows the Recurrent State Space Model (RSSM)
architecture from PlaNet (Hafner et al., 2019) to predict the prior latent states ŝt without access to the
corresponding ot. The decoder reconstructs ôt given the latent states. All components are optimized
jointly using the following loss function:

Lsource = E {
T∑
t=1

− ln p(ot | st)︸ ︷︷ ︸
Image reconstruction

+β KL[q(st | st−1, at−1, ot) ∥ p(st | st−1, at−1)]︸ ︷︷ ︸
KL divergence

}, (2)

where β is a hyperparameter of the Kullback-Leibler (KL) divergence that regularizes the approximate
posterior learned from the representation model toward the prior learned from the dynamics model.

4.3 TASK-SELECTIVE DYNAMICS TRANSFER

It is important to note that, even though the pretraining method is effective, a simple finetuning
approach may encounter challenges due to the potential discrepancy in visual observations, physical
dynamics, or even action spaces across task domains. Therefore, when a novel target task emerges,
we initialize a student world model Fφ from scratch, while freezing the parameters of {F iϕ}Ni=1 and
using them as teacher models to transfer the dynamics representations from the source domains
(see Figure 2). In addition to the model components outlined in Equation (1), Fφ also incorporates
a reward model represented as r̂t ∼ p(rt | st). To avoid confusion of notations, we use sit to
denote the state of i-th pretrained teacher model, and et to denote the state of the target student
model. Given a latent state denoted by et−1 and a corresponding action at−1, we first transit this
state to the next time step individually using the teacher models and the student model, obtaining
{sit ∼ p(et−1, at−1;ϕ)}Ni=1 and et ∼ p(et−1, at−1;φ).

To close the distance between the marginal distributions of state transitions produced by the source
world model and the dynamics estimated by each teacher model, we incorporate a distillation network
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Algorithm 1: Vid2Act with improved dynamics learning, behavior learning & policy deployment
1 Hyperparameters: H: Imagination horizon
2 Initialize the offline replay buffer D with multiple tasks.
3 Initialize the online replay buffer B with random episodes.
4 while not converged do
5 for update step c = 1 . . . C do
6 Draw data sequences {(ot, at, rt)}Tt=1 ∼ B.
7 // Dynamics learning and source action replay
8 Compute distillation loss using Equation (4) and update world model parameters using Equation (5)
9 Draw data sequences {(ot, at)}Tt=1 ∼ D from each source task.

10 Compute action generation model loss using Equation (7) and update model parameters.
11 // Behavior learning
12 for time step i = t . . . t+H do
13 Select the task label k with highest confidence according to Equation (3)
14 Imagine an action ai ∼ π(ai | ei, Gθ(ei, k)).
15 Predict rewards ri ∼ p(ri | ei) and values vψ(ei)
16 end
17 Update the policy and value models in Equation (8) using estimated rewards and values.
18 end
19 // Environment interaction
20 o1 ← env.reset()
21 for time step t = 1 . . . T do
22 Calculate the posterior representation et ∼ q (et | et−1, at−1, ot) from history.
23 Use the teacher models to obtain {ŝit ∼ p(et−1, at−1;ϕ) | i ∈ [1, N ]} and determine the task

label k with highest confidence according to Equation (3)
24 Compute ai ∼ π(ai | ei, Gθ(ei, k)).
25 rt, ot+1 ← env.step(at)
26 end
27 Add experience to the online replay buffer B ← B ∪ {(ot, at, rt)Tt=1}.
28 end

in Fφ, denoted as fdistill, which takes the form of a multilayer perceptron (MLP). The role of this
module is to extract transferable features from the predicted states of the teacher models. In other
words, it transforms the states sit predicted by the teacher models into a set of transferable features
{uit = fdistill(s

i
t)}Ni=1. These features are then used in the knowledge distillation loss.

Intuitively, each source task may hold varying impacts on the dynamics learning of the target visual
control task. We introduce the concept of task-similarity weights and propose to optimize these
weights through the knowledge distillation loss. By learning this set of weights, we can dynamically
transfer knowledge in an adaptive manner based on offline-online task relevance. To compute the
similarity weight W , we concatenate the predicted state sit of each teacher model and the predicted
state et of the student model. This concatenated representation is then fed into a fully-connected
layer fweight, followed by a softmax activation function:

Task selection weights: W = {wi}Ni=1 = Softmax({fweight(s
i
t ∗ et)}Ni=1), (3)

where ∗ denotes the operation of concatenation. We then minimize the Euclidean distance between
pairs of states as follows, taking into account the corresponding task-similarity weights:

Ldistill =

N∑
i=1

T∑
t=1

wi· ∥ et − uit ∥22 . (4)

The overall objective of the student model can be written as follows, where α is a hyperparameter:

Ltarget = E
[[ T∑

t=1

β KL
[
q(et | et−1, at−1, ot) ∥ p(et | et−1, at−1)

]︸ ︷︷ ︸
KL divergence

− ln p(ot | et)︸ ︷︷ ︸
Image reconstruction

− ln p(rt | et)︸ ︷︷ ︸
Reward prediction

]
+ α Ldistill

]
.

(5)
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Equation (4) is the fundamental basis for Vid2Act. When the dynamics of the source domain are
similar to the target task, the latter term of this loss naturally becomes smaller. On the other hand,
for source tasks with significantly different dynamics from the target task, the model will minimize
the weight term in order to minimize this loss. The use of the task-selective distillation loss allows
the student model to effectively learn from multiple teachers while considering their respective
importance weights. This approach grants the student model the ability to acquire significant prior
knowledge regarding intricate physical dynamics from the most relevant source tasks. By selectively
distilling knowledge from these source tasks, the student model can adapt and incorporate valuable
information to enhance its overall learning capabilities.

4.4 TASK-SELECTIVE BEHAVIOR TRANSFER

Generative replay of selected source actions. In the representation learning stage for the target
task, we reuse the offline source datasets to learn an action generation model with the explicit task
label k ∈ {1, . . . , N} to provide guidance for target behavior learning. Inspired by BCQ (Fujimoto
et al., 2019), which is an offline RL method, we design Gθ using a state-conditioned variational
auto-encoder (VAE) (Kingma & Welling, 2013; Sohn et al., 2015). The action generation model
Gθ consists of an encoder Eθ1 and a decoder Dθ2. The encoder takes a state-action pair and a task
label k, and outputs a Gaussian distribution N (µ, σ). The state s of a source task distilled by fdistill,
along with a latent vector z sampled from the Gaussian distribution and a task label k, is passed to
the decoder Dθ2(s, z) which outputs an action:

µ, σ = Eθ1(s, a, k), â = Dθ2(s, z, k), z ∼ N (µ, σ). (6)

The action generation model Gθ is optimized by

Lreplay = E
[ T∑
t=1

(a− â)2 +KL (N (µ, σ) ∥ N (0, 1))
]
. (7)

Behavior learning with generative action guidance We utilize an actor-critic algorithm to learn
the policy over the predicted future state and reward trajectories. As shown in Figure 2, we use the
action generation model Gθ to promote policy learning, which 1) provides an efficient indication
when a strong correlation exists between the source and target tasks, and 2) expends exploration of
action space when there is little correlation between them. The parameters in Gθ are frozen at this
stage. Notably, instead of using the output of Gθ, we use the feature of Gθ before output, which is
more informative. Reusing the similarity weights learned in dynamics transfer, we can dynamically
select task label k with the highest confidence to generate action guidance. Therefore, we modify the
action model and the value model as follows:

Action model: at ∼ π(at | et, Gθ(et, k)), Value model: vψ(et) ≈ Eπ(·|et)
t+H∑
k=t

γk−trk, (8)

where H is the imagination time horizon. Similar to the process of behavior learning, we also utilize
the action generation model Gθ to draw action from the action model during policy deployment. As
shown in Lines 23-24 in Algorithm 1, the action guidance is dependent on current states ei and the
source task label with the highest task-similarity weights, which may evolve over time.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

We evaluate Vid2Act on two visual RL environments in an offline-to-online domain transfer setup:

• Meta-World (Yu et al., 2020): It simulates 50 manipulation tasks, all involving the same robotic
arm. We collect 6 offline datasets using expert experiences from button press topdown, door open,
drawer close, peg insert side, pick place, and push. Each of them contains 10 demonstrations.

• DeepMind Control Suite (Tassa et al., 2018): It is a standard benchmark for visual-based RL
that contains a diverse set of continuous control tasks. We collect offline datasets from 4 tasks,
i.e., cheetah run, hopper stand, walker walk, and walker run. Each task contains 50 trajectories of
expert experiences.
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Figure 3: Performance comparison with the state-of-the-art methods on 6 tasks from Meta-World as
measured on the success rate. Vid2Act generally outperforms the compared models.

We compare Vid2Act with the following approaches:

• DreamerV2 (Hafner et al., 2021): A model-based RL method that learns the policy directly from
latent states in the world model. For a fair comparison, we pretrain this model with offline datasets.

• APV (Seo et al., 2022): A model-based RL method that stacks an action-conditional RSSM model
on top of the pretrained action-free RSSM model. It utilizes the pretrained representations for
finetuning. We train this model by following its training setting.

• Iso-Dream (Pan et al., 2022): A strong baseline for visual RL method that focuses on modeling
different dynamics based on controllability. It rolls out noncontrollable states into the future and
performs policy optimization based on the decoupled latent imaginations.

• SMART (Sun et al., 2023): A generic multi-task pretraining framework that designs a Control
Transformer coupled with a control-centric pretraining objective in a self-supervised manner.
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Figure 4: Ablation studies of Vid2Act that shows the impact of learning time-varying task importance
weights (orange) and optimizing behavior learning with generative action guidance (green).
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Figure 5: Analyses on the impact of different source task configurations.

5.2 META-WORLD

Implementation details. We first pretrain the teacher models of action-conditioned video prediction
model by minimizing the objective in Equation (2) for 200K gradient steps. Our model is evaluated
in 6 tasks, i.e., button press, coffee push, drawer open, door lock, window open, and door close. In all
tasks, the episode length is 500 steps without any action repeat. The number of environment steps
is limited to 300K. We run all tasks with 3 seeds and report the mean success rate and standard
deviations of 10 episodes.

Quantitative comparisons. As shown in Figure 3, our Vid2Act generally outperforms other
methods in 6 tasks. We improve DreamerV2 about 25% in button press and 90% in coffee push.
Iso-Dream, which serves as a robust baseline for addressing visual control tasks using isolated state
transition branches, exhibits limitations in handling a majority of the tasks in Meta-World. Compared
with APV, our model is more stable and effective, especially in drawer open.

Ablation studies. We conduct ablation studies to confirm the validity of learning a set of time-
varying task importance weights and behavior learning with generative action guidance on two tasks,
as shown in Figure 4. Without the process of learning the importance weights (orange) to measure
the similarity between source and target tasks, the performance of our model has decreased by about
25% in button press, and it requires more timesteps to improve the behavior policy in drawer open. It
demonstrates that information in different source tasks has different impacts on the target task, and a
task-selective knowledge distillation loss with importance weights encourages the student model to
adaptively find useful prior knowledge and transfer it to help the dynamics learning in downstream
tasks. Moreover, we evaluate Vid2Act without generative action guidance for behavior learning
(green). The result shows that our proposed task-selective behavior learning strategy can identify
potentially valuable source actions and employ them as exemplar guidance for the target policy.
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Figure 6: Performance comparison on two tasks from DeepMind Control Suite as measured on the
episode rewards. Our Vid2Act with dynamic knowledge distillation achieves significant improvements
compared with existing model-based RL approaches.

Impact of fewer or less relevant source tasks. To analyze the robustness of our approach to
different source domain configurations, we sequentially decrease the number of source domain tasks
according to the learned importance weights, i.e., gradually removing the task with the highest
importance weight. The results are shown in Figure 5. We have two observations in this figure. First,
compared with the baseline model that is solely trained on the target task, our approach consistently
achieves positive offline-to-online transfer even when it can only access parts of the source datasets
with lower importance weights. Second, as the number of the source tasks grows, the performance of
Vid2Act improves as well, demonstrating its effectiveness in identifying task similarity and improving
the target policy with the expanded offline datasets.

5.3 DEEPMIND CONTROL SUITE

Implementation details. In this environment, the episode length is 1,000 steps with the action
repeat of 2, and the reward ranges from 0 to 1. We pretrain four teacher models for four source tasks
with 200K gradient steps. For the online target tasks, we train our method for 200K iterations, which
results in 400K environment steps. The input image size is set to 64× 64, the batch size is 50, and
the imagination horizon is 50. The hyperparameters β and α are set to 1 in Equation (5).

Quantitative comparisons. We evaluate Vid2Act with baselines on the mean episode rewards and
standard deviations. The results of quadruped walk and quadruped run are shown in Figure 6. Our
framework achieves significant improvements compared with existing model-based RL approaches.
For example, Vid2Act performs nearly 100 higher performance on the task of quadruped walk and
quadruped run than DreamerV2 after 400k steps environment interactions. These results show that
our model can effectively transfer valuable dynamics knowledge from source tasks. Compared with
APV, which only uses the pretrained action-free world model as initialization to train downstream
tasks, Vid2Act is encouraged to learn more precise state transitions based on action input and more
useful source dynamics based on task-selective knowledge distillation. Moreover, the learned task
selection weights help the agent adaptively transfer potentially useful action demonstrations from
offline datasets. Such as quadruped walk, our agent tends to select a source task with the greatest
relevance, i.e., walker walk in this online task.

6 CONCLUSION

In this paper, we proposed a new task-selective transfer learning framework called Vid2Act that
improves visual RL with offline datasets with multiple tasks. Vid2Act has two contributions. First,
it provides a novel model-based pretraining and transfer learning pipeline for visual RL. Unlike
APV (Seo et al., 2022), it transfers action-conditioned dynamics from multiple source tasks with a
set of importance weights learned by the world models. Second, it provides a novel task-selective
behavior learning strategy that identifies potentially valuable source actions and employs them as
exemplar guidance for the target policy. Experiments in the Meta-World and the DeepMind Control
environments demonstrated that Vid2Act significantly outperforms existing visual RL approaches.
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