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ABSTRACT

Uncertainty quantification in time series prediction is challenging due to the tem-
poral dependence and distribution shift on sequential data. Conformal inference
provides a pivotal and flexible instrument for assessing the uncertainty of ma-
chine learning models through prediction sets. Recently, a series of online confor-
mal inference methods updated thresholds of prediction sets by performing online
gradient descent on a sequence of quantile loss functions. A drawback of such
methods is that they only use the information of revealed non-conformity scores
via miscoverage indicators but ignore error quantification, namely the distance be-
tween the non-conformity score and the current threshold. To accurately leverage
the dynamic of miscoverage error, we propose Error-quantified Conformal Infer-
ence (ECI) by smoothing the quantile loss function. ECI introduces a continuous
and adaptive feedback scale with the miscoverage error, rather than simple binary
feedback in existing methods. We establish a long-term coverage guarantee for
ECI under arbitrary dependence and distribution shift. The extensive experimen-
tal results show that ECI can achieve valid miscoverage control and output tighter
prediction sets than other baselines.

1 INTRODUCTION

Uncertainty quantification for time series is crucial across various domains including finance, cli-
mate science, epidemiology, energy, supply chains, and macroeconomics, etc, especially in high-
stakes areas. To achieve this goal, an ideal model is supposed to consistently produce prediction sets
that are well-calibrated, meaning that over time, the proportion of sets containing true labels should
align closely with the intended confidence level. Classic methods for uncertainty quantification often
rely on strict parametric assumptions of time-series models like autoregressive and moving average
(ARMA) models (Brockwell & Davis| [1991). Other methods like Bayesian recurrent neural net-
works (Fortunato et al.,|2017) and deep Gaussian processes (Li et al., [2020) are difficult to calibrate
by themselves. And quantile regression models (Gasthaus et al., |2019) may “overfit” when esti-
mating uncertainty. Additionally, complex machine learning models such as transformer (Vaswani
et al.,|2017; L1 et al., 2019; |Gao et al., 2024) have been designed to output accurate predictions but
cannot provide valid prediction sets. Hence, a systematic tool is required to perform uncertainty
quantification for complex black-box models in time series data.

Conformal inference (Vovk et al.,2005) is an increasingly popular framework for uncertainty quan-
tification with arbitrary underlying point predictors (whether statistical, machine or deep learning).
At its core, conformal prediction sets are guaranteed to contain the true label with a specified prob-
ability, under solely the assumption that the data is exchangeable. This is achieved without making
parametric assumptions about the underlying data distribution, thereby enhancing its applicability
across a wide range of models and datasets. However, in time series data, exchangeability does not
hold due to strong correlations and potential distribution shifts.
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Recently, a growing body of research has focused on developing online conformal methods for
scenarios where data arrives sequentially. One of the most important branches is the Adaptive Con-
formal Inference (ACI) proposed by Gibbs & Candes|(2021)), and its following works (Zatfran et al.,
2022; Bhatnagar et al., 2023} |Gibbs & Candes, [2024). At each time step, these methods generate a
prediction set characterized by a single threshold or confidence parameter that regulates the size of
the set, for example C; = {y € ¥ : S;(Xs,y) < ¢}, where Sy(-, ) is the non-conformity score
function. After Y; is observed, they update the threshold ¢; through indicator 1{Y; ¢ C’t} which
is identical to ]I{St(Xt, Y:) > q:+}. However, simple binary feedback cannot precisely capture the
magnltude of erro 11S;(X:,Y;) — ¢4, quantifying the extent of under/over coverage of C,. For ex-
ample, in the miscoverage case, an empty prediction set and a prediction set that almost covers the
true label yield the same feedback value in ACI and its variants. Hence it will take a longer time to
correct past mistakes, see the blue curve in Figure
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Figure 1: Comparison results between OGD (online (sub)gradient descent) and ECI on Google stock
dataset with Prophet model. OGD uses the same feedback as ACI but updates the confidence level.
The coverage is averaged over a rolling window of 50 points.

In this paper, we propose Error-quantified Conformal Inference (ECI) based on an adaptive error
quantification (EQ) term that provides additional smooth feedback. ECI not only uses the miscover-
age indicator in the feedback, but also introduces a continuous EQ function to assess the magnitude
of revealed error S;(X¢, Y;) — ¢:. Benefiting from the EQ term, our online conformal procedure will
react quickly to distribution shifts in time series, see Figure[I] This leads to tighter prediction sets
without sacrificing the miscoverage rate. We summarize our main contributions as follows:

* We propose ECI for uncertainty quantification in time series. It is a novel method based
on adaptive updates with additional smooth feedback, quantifying the extent of under/over
coverage. We further propose two variants of ECI. The first introduces a cutoff threshold for
the EQ term to avoid over-compensation caused by small errors. Another variant integrates
the error of previous steps to make coverage more stable.

* There are mainly two theoretical results. Firstly, we obtain a coverage guarantee for ECI
with a fixed learning rate and not restricted to long-term. We prove it by showing that
every miscoverage step will be followed by several coverage steps given a proper learning
rate. Secondly, for arbitrary learning rates, we give a finite-sample upper bound for the
averaged miscoverage error. Both theoretical results do not need any assumption on the
data-generating distribution.

» Extensive experimental results demonstrate that ECI and its variants provide superior per-
formance in time series, including data in finance, energy, and climate domains. We show
that ECI maintains coverage at the target level and obtains tighter prediction sets than other
state-of-the-art methods.

'"To distinguish from the miscoverage error 1{S:(X:,Y:) > q:} — o, we refer “error” to the term
Si¢(X¢, Y:) — g in the rest of our paper.
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2 BACKGROUND AND PROBLEM SETUP

2.1 CONFORMAL INFERENCE

Let f : X — ) be a prediction model trained on an independent training set. Given labeled data
{(Xi, ) }i<n € & x Y and test data X, 11 € X, the objective is to construct a confidence set
for the unknown label Y, ;. To determine whether the candidate value y is a reasonable estimate
of Y,,1+1, we define a non-conformity score function S(-,-) : X x JV — R. For example, in the
regression task, we may take absolute residual score, scaled residual score (Lei et al.l [2018), and
conformalized quantile regression score (Romano et al. [2019). Generally, S(X;,Y;) depends on

the base model f and measures how well the prediction value f (X;) conforms the true label Y;.
Given the nominal level « € (0, 1), split conformal prediction (Papadopoulos et al.|, 2002; [Lei et al.,

2018) outputs the prediction set C'(X,11) = {y € Y : S(Xpn4+1,y) < s}, where the threshold s is
the [(1 — a)(n + 1)]-th smallest value among {S(X;, Y;)},. If {(X;, Y;)}7*! are exchangeable,
we have the finite-sample coverage guarantee P{Y,, 11 € C'(X,,11)} > 1 — .

In practice, split conformal prediction divides the labeled data into a training set for fitting the
predictive model and a calibration set for computing non-conformity scores. There are other variants
of conformal inference to better utilize the labeled data, like full conformal (Vovk et al., [2005)),
Jackknife+ (Barber et al., 2021). In many scenarios, data may exhibit a distribution shift and thus
are no longer exchangeable. (Chernozhukov et al.| (2018)) extend conformal inference to ergodic cases
with dependent data, but needs transformations of data to be a strong mixing series. |Oliveira et al.
(2024) study split conformal prediction for non-exchangeable data relying on some distributional
assumptions. We refer to Tibshirani et al.|(2019), Podkopaev & Ramdas|(2021)), Barber et al.| (2023))
and Yang et al.| (2024a)) for more development dealing with non-exchangeable data.

2.2 CONFORMAL INFERENCE FOR SEQUENTIAL DATA

Recently, significant efforts have been made to extend conformal inference to online schemes. |Gibbs
& Candes|(2021) proposed ACI which models the distribution shift in time series as a learning prob-
lem in a single parameter whose optimal value varies over time. Based on ACI, several works (Gibbs
& Candes), 2024; |Zaffran et al., 2022; [Bhatnagar et al.| [2023} Podkopaev et al.| 2024} |Angelopou-
los et al., |2024; |Yang et al., [2024b)) used online learning techniques to adaptively adjust the size
of the prediction set based on recent observations. |Gibbs & Candes| (2024) and Bhatnagar et al.
(2023)) utilized meta-learning approaches to aggregate the results updated with multiple learning
rates or experts, where main algorithms were adapted from |Gradu et al.[(2023) and Jun et al.[{(2017)
respectively. In addition, [Podkopaev et al.| (2024) extended the betting technique in |Orabona &
Pal| (2016) to the conformal setting and proposed a new parameter-free algorithm. The methods
mentioned above can achieve a long-term coverage guarantee without any assumptions about the
data-generating process. | Xu & Xie| (2021} 2023)) casted the problem of constructing a conformal
prediction set as predicting the quantile of a future residual and propose algorithms to adaptively re-
estimate (conditional) quantiles. However, these methods are constrained by model and distribution
assumptions and potentially suffer from over-fitting problems. Weinstein & Ramdas|(2020) and Bao
et al.|(2024) investigated online selective conformal inference problem for i.i.d. data stream.

Closely related to our work is the Conformal PID algorithm of /Angelopoulos et al.| (2023b)), which
simplifies and strengthens existing analyses in online conformal inference with ideas from control
theory. Our algorithm differs from theirs by replacing the integration and scorecasting with the
EQ term, and is thus able to yield significantly tighter prediction sets with valid coverage. A more
detailed description of the competing methods is included in the Appendix

2.3 PROBLEM SETUP

Suppose the time series data {(X;,Y;)}i>1 C X x ) are collected sequentially. At time ¢, our goal

is to construct a prediction set C;(X%) for the unseen label Y; based on the machine learning model
trained on previously observed data {(X;,Y;)}i<;. Aligned with the standard conformal inference
methods, we use a non-conformity score function S;(+,-) : X x Y — R that may change over time.
For example, in the regression task, Sy (z,y) = |y — f()| with the base model f; trained at time ¢.
Then we construct the conformal prediction set by

ét(Xt>:{y€y:St(Xtay> < @t} (D
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where ¢, is the threshold that estimates or approximates (1 — «)-th quantile for the distribution of
the non-conformity score S;(X¢, 7).

Note that if the data sequence {(X;,Y;)}i<¢41 are i.i.d. or exchangeable, according to the split
conformal prediction, taking ¢; in Equation to be the (1 — (1 + t~1)-th sample quantile of
{S:(X;,Yi)}i<; yields a valid coverage guarantee P{Y; 1 € Cyy1(Xi41)} > 1 — a. However,
in an adversarial setting where exchangeability does not hold, such as time series data with strong
correlations or distribution shifts, it is very difficult to achieve such a real-time coverage guarantee.
Recent works (Bhatnagar et al., 2023; |Angelopoulos et al., [2023a}; |2024; Podkopaev et al.| [2024])
began to consider the following long-term miscoverage control:

1 & A
lim = Z]l{Y; ¢ Ci(Xe)} = a. 2

T—oo T

Hence, our primary target is to design an online algorithm to dynamically choose thresholds {q; }+>1
that can achieve the control in (2)) without any distributional assumptions about data.

3 ERROR-QUANTIFIED CONFORMAL INFERENCE

3.1 ERROR QUANTIFICATION VIA SMOOTHING FEEDBACK

The online conformal inference framework developed by |Gibbs & Candes|(2021) adopts the online
learning technique to learn the thresholds {q;}+>1 based on previously observed data. Let s; =
S(X,Y:) and 4(q) = (st — ¢)(1{s; > ¢} — «) denotes the (1 — «)-th quantile loss. When the
label Y; is revealed, we can perform online (sub)gradient descent (OGD) as

qer1 = q¢ — 1 VE(q) = g +nlerry — o), 3)

where err; = 1{s; > q;} = 1{Y; ¢ C;(X,)} is the miscoverage indicator and 7) is the learning rate.
The subgradient err; — « can be regarded as the feedback after observing label Y;: if C‘t(X +) does
not cover Y; (i.e., err; = 1), OGD will increase the threshold to construct a more liberal prediction
set in the next step; otherwise, OGD will construct a more conservative prediction set. In fact, ACI
uses the same idea but updates the confidence level of the prediction set instead. Notice that the

enrolled average of history feedback ZtT:l(errt — «)/T is exactly the averaged miscoverage we
aim to control in Equation (2)). Essentially, the long-term coverage guarantee of OGD or ACI comes
from the equivalence between feedback and control.

However, subgradients of quantile loss ¢; can only take two values 1 — v and —«, regarding the
feedback value of coverage (s; < ¢:) and miscoverage (s; > ¢;) respectively. As a consequence,
the feedback keeps the same value no matter how severe the miscoverage is or how conservative the
coverage is. In other words, discrete feedback value does not exploit the information of the error.

To address this issue, we consider smoothing the feedback when updating the thresholds. Let f(x) €
[0, 1] be a smooth approximation to the indicator 1(x > 0), such as Sigmoid function, Gaussian error
function, etc. Then we can approximate the quantile loss ¢;(q) via £:(q) = (f(s¢ — q) — a)(st — q).
This smoothing technique was demonstrated in previous studies (Kaplan & Sun, 2017} [Fernandes
et al.,2021). Applying OGD on the smoothed quantile loss {¢;(¢)}:>1, we have the following fully
smoothed update rule

Qa1 =q —nVl(q) = aq +n- [f(se — @) —a+ (se — a)V (s —a)]- 4)

Here we called (s, —q:)V f (s; —q:) as the error quantification (EQ) term, which provides additional
feedback based on the magnitude of error s; — g;.

To have a preliminary view of the effect of EQ term, we take Sigmoid function f(z) = m
as an example, and show the curve of EQ function 'V f(x) in Figure[2| Firstly, the feedback from
the EQ term has the same sign as subgradient err; — « by letting z = s; — ¢;, which means that
it does not deviate from the direction of update in OGD. On the other hand, when s; significantly
deviates from the current threshold g; (for example, an abrupt change point appears at time t), the
EQ term tends to decrease as s; — ¢q; grows. This is to prevent the subsequent prediction sets from

running out of control due to a single anomaly data point.
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Figure 2: Dynamics of the EQ function across variable x, where f () is Sigmoid function and ¢ = 1.

However, Equation (@) may introduce extra bias during the derivation process, as detailed in Ap-
pendix [A.T] If we perform the fully smoothed update rule (), we cannot directly control the aver-

aged miscoverage gap Zthl err; /T — « due to the smoothing bias.

Hence we keep the EQ term and replace f(s; — ¢;) in Equation (4) with the miscoverage indicator
err, that is

G =q +n- ety —a+ (sp — q)Vf(se — ar)]. &)
Formally, we propose Error-quantified Conformal Inference (ECI) based on (3]), which leverages the
miscoverage indicator and the EQ term simultaneously to update thresholds with partially smoothed
feedback. Compared with OGD in Equation (3)), the feedback from EQ term is compensation over
the original subgradient err; —«. Clearly, for the same pair (s¢, ¢;), ECI can provide more feedback
compared with OGD and fully smoothed rule in Equation (). We provide an ablation study in
Appendix [A.2]to illustrate the importance of the EQ term.

3.2 EXTENDED VERSIONS

ECI-cutoff. The EQ term reacts quickly to sudden distribution shifts like changepoints. How-
ever, when ¢, is slightly larger/smaller than s;, the additional adjustment provided by the EQ
term may lead to under/over coverage of prediction sets. For example, if s;<q; and s;4; €
[@: — ma +ne(se — @)V f(s¢ — qi), ¢ — i), then adding the EQ term will cause miscoverage,
i.e. s44+1 > qi+1- Therefore, we introduce a cutoff to our added term:

Gir1=q+n- {(efrt —a)+ (st —qt) VI(st —q)1(|se — ] > ht)} (6)

where hy = hmax;_,<; j<t |s; — 5;|, and h is a pre-determined threshold, w is window length.

EClI-integral. More information input generally means better performance. Note that (3) only takes
the information of one last timestep into consideration. A natural alternative is to integrate the error
of more than a single step. Therefore, we propose the extended update:

t
Qt+1ZQt+n'Zwi{eHi_a+(3i_Qi) Vf(si_%’)}7 @)

i=1

where {w;}1<i<; C [0,1] is a sequence of increasing weights with >.'_, w; = 1. Equation (7)
evaluates the recent empirical miscoverage frequency and degree of miscovery when deciding
whether or not to lower or raise ¢;, making coverage more stable.

3.3 DISTRIBUTION-FREE COVERAGE GUARANTEES

In this section, we outline the theoretical coverage guarantees of ECI. The detailed proofs are re-
ferred in Appendix [B] We first present two assumptions and briefly explain their feasibility.
Assumption 1. For any t € N, there exists B > 0 such that s; € [0, B].

Assumption 2. |2V f(z)| < Aand |V f(z)| < cfor any x € R, where A\, ¢ > 0 are constants.

Assumption [T] assumes boundedness of scores, which is ubiquitous in online conformal literature
(Gibbs & Candes, 2021}, |[Angelopoulos et al.| [2023b} 2024). For Assumption [2] note that a typical
choice of f is the Sigmoid function o (cz) with a scale parameter ¢ > 0. Then

V@) = e lo(e)(1 — oen)| < 7.
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cxT

[V f(z)| = |cxo(cx)(1 — o(cx))| < |cx | < |exe™| < é.

14 ec®
Thus Assumption [2|is naturally satisfied. Moreover, if we consider ECI-cutoff and replace V f(x)
by Vfr(z) = Vf(z)L(|x| > h), then

c

IVin(@)| = c-lo(cx)(1 —olex))[L(je] > h) < T,

which can be sufficiently small as long as we set c to be large.

The following theorem provides a dynamic miscoverage bound when the learning rate is fixed. We
prove it by showing that every miscoverage step will be followed by at least N — 1 coverage step,
where N = |a~!], thatis if Y; ¢ C; happens, then Y;; € Cyy; holds fori = 1,2,--- | N — 1.
Theorem 1. Assume thatn > 2N B, ¢ < % where N = | 1]. UnderAssumpti()ns
and[2] the prediction sets generated by () satisfies for any T,

1 T+N 1

¥ O WYl < (8)

t=T+1

As standard choices for « are {0.01,0.05,0.1,0.2}, if we further assume o = N~ for some N &

N, it follows from (8) that & >/ 4" 1{Y; ¢ C;} < a for any T, which immediately yields the

long-term coverage guarantee in Equation (2).
We present the bound of averaged miscoverage error under adaptive learning rates. The result is also
distribution-free and only needs a proper choice of learning rate sequence.

Theorem 2. Let {1, };>1 be an arbitrary positive sequence. Under Assumptions|l|and[2| the pre-

diction sets generated by () with adaptive learning rate 1 satisfies:

S (B + Mr_)l|Avr|
( < T—1 17l

Zerrt—a) < T

‘ t=1

+c[B+(1—a+NMpr_q], 9)

Nl =

where | Ayl = |t + o In b — 04|, M = maxi <,<7 1y

For the first term, following the analysis in /Angelopoulos et al.|(2024), if the learning rate decreases
over extended periods when the distribution appears stable, but then increases again, in a repetitive
manner, ||Ay.7||1/T can be sufficiently small. To be specific, || Ay.7||1 < 2N¢/(ming<7 1), where

Np = EtT:l 1{n:+1 > m:+} denotes the number of times the learning rate is increased. Hence, if
7n; does not decay too quickly and the number of “resets” N is o(T’) , the first term in the upper
bound in (2)) will be within an acceptable range. For the second term, if we set ¢ as a sufficiently
small value, then the second term is also limited to a small value.

4 EXPERIMENTS

4.1 SETUP

Datasets. We evaluate four real-world datasets: Amazon stock, Google stock (Nguyen, 2018)), elec-
tricity demand (Harries et al., [1999) and temperature in Delhi (Vrao.l [2017). Besides, we evaluate
the synthetic dataset under changepoint setting. In the subsequent sections, we will provide a de-
tailed introduction to each of these datasets.

Base predictors. We consider three diverse types of base predictors.

* Prophet (Taylor & Letham| 2018): As a Bayesian additive model, Prophet predicts the
value Y; as a function of time ¢, expressed as Y; = g(t) 4 s(t) + h(t) + €., where g(t)
models the overall trend, s(t) accounts for periodic seasonal effects, h(t) captures holiday
effects, and ¢, represents the noise assumed to follow a normal distribution.
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* AR (AutoRegressive Model): As a classic model, AR is defined as Y, = 01 Yi_1+d2Yi_ot
o+ Yy + €1, Where 1, ¢o, ..., ¢, are the parameters, and p is the order of AR model.
Following |/Angelopoulos et al.|(2023b), we set p = 3.

* Theta (Assimakopoulos & Nikolopoulos, 2000): As a decomposition-based forecasting
approach, Theta model modify the curvature of a time series by applying a coefficient 0
to its second differences. We typically use # = 0 (the long-term trend) and 6 = 2 (the
short-term dynamics) to decompose the original series into two components.

Baselines. We compare with four state-of-the-art methods: ACI (Gibbs & Candes| 2021), OGD, SF-
OGD (Bhatnagar et al., 2023)), decay-OGD (Angelopoulos et al., [2024), PID (Angelopoulos et al.,
2023b). A detailed description of existing methods can be found in Appendix [C]

General implement. We choose target coverage 1 — o = 90% and construct asymmetric prediction
sets using two-side quantile scores under a/2 respectively. For each baseline, we select the most
appropriate range of learning rates 7 for the respective datasets and present the best results in the
tables. For sets, all baselines will output asymmetric sets [Yt —ql, Y + ¢}*] with upper score ¢}* and
lower score g/ under half of the coverage level /2 respectively.

Other implement. For EQ term, we set f(x) = m as Sigmoid function and ¢ = 1.
For ECI-cutoff, we set h = 1 and hy = h - (r_nax{st,wﬂ, ooy 8¢} — min{S¢—qyy1,- .., 8t }). For
ECl-integral, we set weights w; = % for 1 < ¢ < t. Specifically, PID, ECI, and its
variants use adaptive learning rates 1, = n- (max{s;—w+t1, ..., 8¢} —min{s;_y41,...,S:}), where

w is window length. Unless necessary changes are made, the settings for all baselines adhere to the
original papers and open-source codes.

Overview of experimental results. We have conducted extensive experiments, including
stock data in Section electricity data in Section climate data in Section syn-
thetic data in Section [4.5] and ablation study of hyperparameters in Appendix Experimen-
tal results with Transformer as the base model can be found in Appendix [F| More com-
prehensive experimental results and discussion on the scorecaster and learning rates can be
found in Appendix Our code is available at https://github.com/creator-xi/
Error—-quantified-Conformal-Inference.

4.2 RESULTS IN FINANCE DOMAIN

We consider the uncertainty problem of forecasting stock prices, including Amazon (AMZN) and
Google (GOOGL), collected over 9 years (from January 1, 2006 to December 31, 2014). Models
will forecast the daily opening price of each of Amazon and Google stock on a log scale.

The quantitative results are shown in Table E] and Table @ For ACI, the occurrence of infinite sets
is too frequent, due to updating a; and adopting the a;-quantile of past scores as g;. This implies
that ACI may tend to conservatively expand the prediction sets in the face of more complex or
volatile data to ensure high coverage rates. However, such a strategy is not always ideal in practical
applications, as overly broad sets can reduce the precision and utility of the predictions. For OGD
and SF-OGD, they achieve a good balance between coverage rate and set width to some extent.
However, their performance overly relies on the selection of learning rate and may fail under many
learning rate settings. For PID, its scorecasting can be seen as helping compensate for the base
predictors’ predictive accuracy. Thus, it can lead to improvements in the worse base predictor case
(such as Prophet). However, in the case of better base predictors, it will instead widen the length of
the prediction set.

As for ECI, its performance is outstanding, especially in the control of set width. Compared to exist-
ing methods, ECI can provide shorter and more accurate prediction sets with little loss of coverage.
ECI-cutoff extends ECI by introducing a truncation threshold to further reduce the redundancy of
prediction sets. The experimental data also show that ECI-cutoff achieves the shortest set width of
all methods in general. ECI-integral extends ECI by integrating the information from longer past
time, leading to a better balance between coverage rate and set width.

Figure [3] shows the coverage results on Amazon stock dataset with Prophet as the base predictor.
Throughout the entire period, the more effectively a method maintains the nominal level (here is
90%), the more valid the method is. We can see ACI generally having larger oscillations, and OGD,
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Table 1: The experimental results in the Amazon stock dataset with nominal level & = 10%. The

best (shortest) width results are indicated with bold text.

Prophet Model AR Model Theta Model

Method Coverage Average Median | Coverage Average Median | Coverage Average Median
(%) width  width (%) width  width (%) width  width
ACI 90.2 00 46.97 89.8 00 13.77 89.7 00 12.31
OGD 89.6 55.15  30.00 89.9 19.10  15.00 89.8 18.07 1450
SF-OGD 89.5 6147  31.75 89.9 2444  21.05 90.0 23.88 21.14
decay-OGD 89.9 9722  36.20 89.7 20.23 14.01 89.2 1749  13.46
PID 89.8 52.56  39.09 89.6 59.22  37.93 89.5 61.19  40.20
ECI 90.1 47.00 34.84 89.5 17.12 1273 89.7 17.46 1249
ECI-cutoff 89.7 43.46 2998 89.3 1691  12.63 89.6 17.19 1248
ECl-integral |  89.8 42.01 30.02 89.5 1699  12.62 89.6 1720  12.46

Table 2: The experimental results in the Google stock dataset with nominal level o = 10%.

Prophet Model AR Model Theta Model

Method Coverage Average Median | Coverage Average Median | Coverage Average Median
(%) width  width (%) width  width (%) width  width
ACI 90.0 00 66.83 89.8 00 18.64 90.5 00 32.78
OGD 89.7 57.60  46.00 90.7 3376 23.00 89.9 3149  29.50
SF-OGD 89.6 58.92  47.78 89.9 28.31 2442 90.0 34.04 3148
decay-OGD 89.9 7723  50.18 90.2 46.53  26.77 90.2 55.32 3371
PID 90.1 5747  48.44 89.9 64.88  54.07 89.9 63.58  54.05
ECI 89.9 56.06  46.96 89.7 1995  17.19 89.6 3092 2953
ECI-cutoff 89.8 53.12 4436 89.7 19.84 17.63 89.6 30.71  28.11
ECl-integral |  89.8 5236  43.28 89.7 19.93 17.31 89.6 3042  28.02

and SF-OGD become increasingly oscillatory over time. Figure |4/ compares the prediction sets of
the variants of ECI with those of other methods. Consistent with the quantitative results, the variants
of ECI have the shortest prediction sets.

Table 3: The experimental results in the electricity demand dataset with nominal level o = 10%.

Prophet Model AR Model Theta Model

Method Coverage Average Median | Coverage Average Median | Coverage Average Median
(%) width  width (%) width  width (%) width  width
ACI 90.1 00 0.443 90.1 00 0.105 90.2 00 0.055
OGD 89.8 0.433 0435 90.0 0.133  0.115 90.1 0.081  0.075
SF-OGD 89.9 0419 0426 90.0 0.129  0.116 90.3 0.106  0.095
decay-OGD 90.1 0.531  0.521 90.1 0.122  0.099 90.0 0.100  0.059
PID 90.1 0.207  0.177 90.0 0.434 0432 89.9 0.413 0411
ECI 90.0 0.384  0.382 90.0 0.117  0.098 89.9 0.071  0.055
ECI-cutoff 90.0 0.405  0.396 90.2 0.118  0.096 90.1 0.072  0.055
ECI-integral |  90.1 0.402  0.398 90.0 0.117  0.098 89.9 0.072  0.055

4.3 RESULTS IN ENERGY DOMAIN

Then we consider the uncertainty problem of electricity demand. The dataset measures electricity
demand in New South Wales, collected at half-hour increments from May 7th, 1996 to December
5th, 1998. All values are normalized in [0, 1].

Table [3|shows that ECI and ECI-integral have the shortest prediction sets with AR and Theta model,
even maintaining the highest coverage in the AR model. We can note that PID stands out with
Prophet model due to the scorecaster. In fact, This dataset has collected several other variables, such
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Figure 4: Comparison results of prediction sets on Amazon stock dataset with Prophet model.

as the demand and price in Victoria, the amount of energy transfer between New South Wales and
Victoria, and so on. These are given as covariates to the scorecaster and complement Prophet well.
Other methods do not use this information.
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4.4 RESULTS IN CLIMATE DOMAIN

Finally, we consider the uncertainty problem of climate demand. The dataset measures the daily
temperature in the city of Delhi over 15 years (from January 1, 2003 to April 24, 2017). Table {4
shows that ECI-cutoff achieves best performance in general.

Table 4: The experimental results in the Delhi temperature dataset with nominal level @ = 10%.

Prophet Model AR Model Theta Model

Method Coverage Average Median | Coverage Average Median | Coverage Average Median
(%) width  width (%) width  width (%) width  width
ACI 91.0 00 8.49 90.0 00 6.06 90.2 00 6.48
OGD 90.4 7.54 7.60 90.1 6.82 6.10 90.0 6.36 6.30
SF-OGD 90.0 7.17 7.08 90.1 6.37 5.91 90.1 6.75 6.43
decay-OGD 90.1 8.84 8.35 90.0 6.36 5.67 89.9 6.56 6.18
PID 90.1 7.65 7.65 89.7 8.92 8.86 89.7 8.77 8.79
ECI 90.0 7.20 7.22 90.1 6.39 6.10 90.0 6.41 6.27
ECI-cutoff 90.1 7.01 6.96 90.1 6.28 597 90.0 6.27 6.17
ECl-integral |  90.0 7.21 7.30 90.2 6.39 6.11 90.0 6.38 6.26

4.5 RESULTS IN SYNTHETIC DATA

In this experiment, we compare the performance of our method with other baselines under a
synthetic changepoint setting in Barber et al.| (2023). The data {X;,Y;}" ; are generated ac-
cording to a linear model Y; = X! B; + ¢, X; ~ N(0,14), ¢, ~ N(0,1). And we set:
B = O =(2,1,0,0) fort =1,...,500; B; = B = (0,-2,—1,0)" for t = 501,...,1500;
and 3, = ?) = (0,0,2,1) T for t = 1501,...,2000. And two changes in the coefficients happen
up to time 2000.

We compare ECI and its variants with some competing methods about the coverage and prediction
set width. Table [5| show the result of coverage and set width, while the base predictor is Prophet
model. In general, ECI-cutoff and ECI-integral achieve best performance.

Table 5: The experimental results in the synthetic data dataset with nominal level o = 10%.

Prophet Model AR Model Theta Model
Method Coverage Average Median | Coverage Average Median | Coverage Average Median
(%) width  width (%) width  width (%) width  width
ACI 89.9 00 8.20 89.9 00 8.20 89.9 00 8.43
OGD 90.0 8.49 8.50 89.9 8.39 8.40 89.9 8.73 8.70

SF-OGD 90.0 12.48 11.56 90.0 12.58 11.69 89.9 12.70 11.88
decay-OGD 90.0 8.30 8.22 90.0 8.26 8.21 90.0 8.57 8.60
PID 89.7 11.02 9.64 89.9 10.83 9.35 89.7 11.23 9.78
ECI 89.9 8.16 8.25 89.9 8.17 8.26 89.8 8.55 8.68
ECI-cutoff 89.8 8.31 8.44 89.9 8.14 8.19 89.8 8.51 8.59
ECl-integral 89.8 8.25 8.37 89.9 8.16 8.23 89.8 8.48 8.58

5 CONCLUSION

Several approaches have recently been introduced for online conformal inference. A significant
limitation of these methods is their neglect of quantifying extent of over/under coverage. In this
work, we propose Error-quantified Conformal Inference (ECI) to construct prediction sets for time
series data. Compared with ACI (Gibbs & Candes| [2021) and its variants, ECI introduces additional
smooth feedback by measuring the magnitude of error s; — ¢;. ECI can rapidly adapt to the dis-
tributional shifts in time series, and yield more tight conformal prediction sets. Theoretically, we
establish a finite-sample coverage guarantee for ECI with a fixed learning rate in a short interval
and prove a miscoverage bound with arbitrary learning rate. Empirically, we verify our method’s
effectiveness and efficiency across extensive datasets.

10



Published as a conference paper at ICLR 2025

ACKNOWLEDGEMENT

We would like to thank the anonymous reviewers and area chair for their helpful comments.
Changliang Zou was supported by the National Key R&D Program of China (Grant Nos.
2022YFA1003703, 2022YFA1003800), and the National Natural Science Foundation of China
(Grant Nos. 11925106, 12231011, 12326325).

REFERENCES

Anastasios N. Angelopoulos, Stephen Bates, Clara Fannjiang, Michael I Jordan, and Tijana Zrnic.
Prediction-powered inference. Science, 382(6671):669-674, 2023a.

Anastasios N. Angelopoulos, Emmanuel Candes, and Ryan J Tibshirani. Conformal pid control for
time series prediction. Advances in Neural Information Processing Systems, 36, 2023b.

Anastasios N. Angelopoulos, Rina Barber, and Stephen Bates. Online conformal prediction with
decaying step sizes. In Forty-first International Conference on Machine Learning, 2024.

Vassilis Assimakopoulos and Konstantinos Nikolopoulos. The theta model: a decomposition ap-
proach to forecasting. International journal of forecasting, 16(4):521-530, 2000.

Yajie Bao, Yuyang Huo, Haojie Ren, and Changliang Zou. CAP: A general algorithm for online
selective conformal prediction with FCR control. arXiv preprint arXiv:2403.07728, 2024.

Rina Foygel Barber, Emmanuel J Candes, Aaditya Ramdas, and Ryan J Tibshirani. Predictive
inference with the jackknife. The Annals of Statistics, 49(1):486-507, 2021.

Rina Foygel Barber, Emmanuel J Candes, Aaditya Ramdas, and Ryan J Tibshirani. Conformal
prediction beyond exchangeability. The Annals of Statistics, 51(2):816-845, 2023.

Aadyot Bhatnagar, Huan Wang, Caiming Xiong, and Yu Bai. Improved online conformal prediction
via strongly adaptive online learning. In International Conference on Machine Learning, pp.
2337-2363. PMLR, 2023.

Peter J Brockwell and Richard A Davis. Time series: theory and methods. Springer science &
business media, 1991.

Victor Chernozhukov, Kaspar Wiithrich, and Zhu Yinchu. Exact and robust conformal inference
methods for predictive machine learning with dependent data. In Conference On Learning Theory,
pp- 732-749. PMLR, 2018.

Marcelo Fernandes, Emmanuel Guerre, and Eduardo Horta. Smoothing quantile regressions. Jour-
nal of Business & Economic Statistics, 39(1):338-357, 2021.

Meire Fortunato, Charles Blundell, and Oriol Vinyals. Bayesian recurrent neural networks. arXiv
preprint arXiv:1704.02798, 2017.

Kuofeng Gao, Yang Bai, Jindong Gu, Shu-Tao Xia, Philip Torr, Zhifeng Li, and Wei Liu. Induc-
ing high energy-latency of large vision-language models with verbose images. In The Twelfth
International Conference on Learning Representations, 2024.

Jan Gasthaus, Konstantinos Benidis, Yuyang Wang, Syama Sundar Rangapuram, David Salinas,
Valentin Flunkert, and Tim Januschowski. Probabilistic forecasting with spline quantile function
rnns. In The 22nd international conference on artificial intelligence and statistics, pp. 1901-1910.
PMLR, 2019.

Isaac Gibbs and Emmanuel Candes. Adaptive conformal inference under distribution shift. Ad-
vances in Neural Information Processing Systems, 34:1660-1672, 2021.

Isaac Gibbs and Emmanuel J Candes. Conformal inference for online prediction with arbitrary
distribution shifts. Journal of Machine Learning Research, 25(162):1-36, 2024.

Paula Gradu, Elad Hazan, and Edgar Minasyan. Adaptive regret for control of time-varying dynam-
ics. In Learning for Dynamics and Control Conference, pp. 560-572. PMLR, 2023.

11



Published as a conference paper at ICLR 2025

Michael Harries, New South Wales, et al. Splice-2 comparative evaluation: Electricity pricing. 1999.

Kwang-Sung Jun, Francesco Orabona, Stephen Wright, and Rebecca Willett. Improved strongly
adaptive online learning using coin betting. In Artificial Intelligence and Statistics, pp. 943-951.
PMLR, 2017.

David M Kaplan and Yixiao Sun. Smoothed estimating equations for instrumental variables quantile
regression. Econometric Theory, 33(1):105-157, 2017.

Jing Lei, Max G’Sell, Alessandro Rinaldo, Ryan J Tibshirani, and Larry Wasserman. Distribution-
free predictive inference for regression. Journal of the American Statistical Association, 113
(523):1094-1111, 2018.

Naiqi Li, Wenjie Li, Jifeng Sun, Yinghua Gao, Yong Jiang, and Shu-Tao Xia. Stochastic deep
gaussian processes over graphs. Advances in Neural Information Processing Systems, 33:5875—
5886, 2020.

Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang Wang, and Xifeng
Yan. Enhancing the locality and breaking the memory bottleneck of transformer on time series
forecasting. Advances in Neural Information Processing Systems, 32, 2019.

Cam Nguyen. S&P 500 stock data. Kaggle, 2018.

Roberto I Oliveira, Paulo Orenstein, Thiago Ramos, and Joao Vitor Romano. Split conformal pre-
diction and non-exchangeable data. Journal of Machine Learning Research, 25(225):1-38, 2024.

Francesco Orabona and D4vid P4l. Coin betting and parameter-free online learning. Advances in
Neural Information Processing Systems, 29, 2016.

Harris Papadopoulos, Kostas Proedrou, Volodya Vovk, and Alex Gammerman. Inductive confidence
machines for regression. In European Conference on Machine Learning, pp. 345-356. New York:
Springer, 2002.

Aleksandr Podkopaev and Aaditya Ramdas. Distribution-free uncertainty quantification for classi-
fication under label shift. In Uncertainty in Artificial Intelligence, pp. 844-853. PMLR, 2021.

Aleksandr Podkopaev, Dong Xu, and Kuang-Chih Lee. Adaptive conformal inference by betting. In
International Conference on Machine Learning, volume 235 of Proceedings of Machine Learning
Research, pp. 40886—40907. PMLR, 2024.

Yaniv Romano, Evan Patterson, and Emmanuel Candes. Conformalized quantile regression. Ad-
vances in Neural Information Processing Systems, 32:3543-3553, 2019.

Kean Ming Tan, Lan Wang, and Wen-Xin Zhou. High-dimensional quantile regression: Convolution
smoothing and concave regularization. Journal of the Royal Statistical Society Series B: Statistical
Methodology, 84(1):205-233, 2022.

Sean J Taylor and Benjamin Letham. Forecasting at scale. The American Statistician, 72(1):37-45,
2018.

Ryan J Tibshirani, Rina Foygel Barber, Emmanuel Candes, and Aaditya Ramdas. Conformal pre-
diction under covariate shift. Advances in Neural Information Processing Systems, 32, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
L ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems, volume 30, 2017.

Vladimir Vovk, Alexander Gammerman, and Glenn Shafer. Algorithmic learning in a random world.
Springer Science & Business Media, 2005.

Sumanth Vrao. Daily climate time series data. Kaggle, 2017.

Asaf Weinstein and Aaditya Ramdas. Online control of the false coverage rate and false sign rate.
In International Conference on Machine Learning, pp. 10193—-10202, 2020.

12



Published as a conference paper at ICLR 2025

Chen Xu and Yao Xie. Conformal prediction interval for dynamic time-series. In International
Conference on Machine Learning, pp. 11559-11569. PMLR, 2021.

Chen Xu and Yao Xie. Conformal prediction for time series. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 45(10):11575-11587, 2023.

Yachong Yang, Arun Kumar Kuchibhotla, and Eric Tchetgen Tchetgen. Doubly robust calibration of
prediction sets under covariate shift. Journal of the Royal Statistical Society Series B: Statistical
Methodology, pp. qkae009, 2024a.

Zitong Yang, Emmanuel Candes, and Lihua Lei. Bellman conformal inference: Calibrating predic-
tion intervals for time series. arXiv preprint arXiv:2402.05203, 2024b.

Margaux Zaffran, Olivier Féron, Yannig Goude, Julie Josse, and Aymeric Dieuleveut. Adaptive
conformal predictions for time series. In International Conference on Machine Learning, pp.
25834-25866. PMLR, 2022.

13



Published as a conference paper at ICLR 2025

A SMOOTHED WAYS

A.1 EXPLANATIONS FOR EXTRA BIAS

Our target is the quantile loss ¢;(¢) = (err; — «)(s¢ — ¢). For simplicity, we denote h(q) =
err; — o, g(q) = s¢ — g. Note that h(q) is non-differentiable, so we use smoothed function f(g) to
approximate h(q). The fully smoothed method in Equation (4) considers:

Vh(q)g(q) =V f(q)9(q)
= [(@)Vy(9) + 9(@9)V [ (q)-
The two terms f(q)Vg(q) and g(q)V f(¢) both introduce error. Strictly we have

Vh(ga(q) = tim M40 +9) — hlg +9)g(a) + hlg +0)g(a) — Ma)g(a)

6—0 )
_ i g 0)g(g+0) — hlg +0)g(e) | . hla+0)g(e) — hlg)g(a)
T 550 ) 0—0 )
= h(g)Vyg(q) + lim w 9(q)

using V f to approximate
~ —(erry — ) = V f(st — q) (st — q).

Hence, if we only approximate the second term, potential bias may be reduced. The fully smoothed
method is better only when the error of the two terms are negatively correlated and cancel out.

A.2 FULLY SMOOTHED WAYS

There is another smoothing technique applied in the quantile regression (Fernandes et al.l[2021;|Tan
et al., 2022)), which directly smooths the inidcator in subgradient. Based on this, we can have the
following udpate rule

Qi1 =q+ 1 [f(se— @) — . (10)

To further validate our ideas in Section [3.1} we test the experimental performance of smoothed
method and fully smoothed method, as shown in Figures[|to[7] All experimental setting are aligned
with Section

The update rule of fully smoothed method in Equation () is
Gi+1 =Gt + 1 [f(st —qt) —a+ (st —q)V(se — Qt)]'
And the update rule of ECI in Equation () is
Gt+1 = q¢ + 1 {errt —a+ (st —q)Vf(se— Qt)} .

Compared with ECI in Equation (3)), fully smoothed updates rules in Equation (4 and Equation (I0)
do not keep the actual value of indicator function err;, and brings the bias between smooth function
f(st — q¢) and 1(s; > ¢;). This leads to these method being conservative.

Experimental results also demonstrate it. Since f(x) does not approach 0 quickly in the early part
of the period, and may even be larger than «, the coverage rate can not effectively approach 1 — a.
It can be seen that smoothed method and fully smoothed method tends to have overly high coverage
in the early stages in the Figures[5|to[7] Consequently, it results in wider sets.
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Figure 5: Coverage result on Amazon stock dataset with Prophet model.
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Figure 6: Coverage result on Amazon stock dataset with AR model.

B PROOFS OF MAIN RESULTS

We show below that under Assumptions|T]and[2] there exists a bound for ¢; and EQ term, depending
on learning rate 7, and the upper bound of s;. This result is essential in proving our following results

of coverage guarantees.

B.1

Proposition 1. Fix an initial threshold q; € [0, B]. Then under Assumptions |I|and @ ECI in (B)

PROPOSITIONS

with arbitrary nonnegative learning rate 1, satisfies that

—(Oé + )\)Mt,1 S qt S B + (1 —a+ )\)Mt,1

where My = 0, and My = maxi<,<¢ 7, fort > 1.
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Figure 7: Coverage result on Amazon stock dataset with Theta model.

Proof. We prove this by induction. First, ¢; € [0, B] by assumption. Next fix any ¢ > 1 and assume
¢ lies in the range specified in (TI), and consider g;1.

(D): s¢ > q4,
Q1= qe +me (L —a) +me(se — q) V(s — )
< g+ ne (1 —a) +mA
<si+(I—a+A)n

and qt+1 > qt > —Mt,la > —MtOé.

2): st < q1,
Q1= G + 0 (—a) +0e(se — q¢) V(e — )
> q + e (—a) —meA
2 —(O[ + )\>Mt7
and i1 <@g < B+ (1—a+ MMy <B+(1l—a+ M. O

Proposition 2. Under Assumptionsand (st — @)V (st —q)| < c¢[B4+(1—a+ A)M;_1]
foranyt > 1.
Proof. Based on s, € [0, B] and Proposition |}

|s; — qi| = max{q; — s¢, 8¢ — qr} < max{qs,s; — q}
<max{B+ (1—a+NM;_1,B+ (a+ A\)M;_1}
< B+(1—Q+A)Mt_1.

Hence |(st — ¢t)Vf(st — q)| < c¢[B+ (1 —a+ X\)M;_4] O
B.2 PROOF OF THEOREMI[I]

Theorem 1. Assume that p > 2N B, ¢ < %, where N = [i] Under Assump-

tions [[|and 2] the prediction set generated by eq. (3) satisfies:

T
lim © Z]I{Yt ¢ <o (12)
=1

TﬂooTt
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Proof. We first prove that for any ¢, s, > ¢, implies $;1; < q444,% = 1,2,--- , N — 1. Note that

{v, € Ci} = {|Y; — Y| < ¢} is meaningless when ¢; < 0. Hence we set ¢; to be max{q;, 0} after
each update ( which does not affect the validity of our proof ) and assume ¢, > 0. For simplicity,
denote g(x) = 2V f(x), then ;41 = ¢ + n[erry — o+ g(s¢ — qr)].

We prove by induction. For k = 1,
Q1 — St =q+n[l—a+g(se—aq)]>nl—a—c[B+(1-a+)n)

Observethatc- [B+ (1 —a+ A\ < [B+ (1 —a+ A)n] - WM = 1, hence

1 1
Qt+1—8t+1>77(1—0l—§)>77(§—04)20'

For2 < k < N — 1, by recursion:

k-1
Gk — St+k = @+ 1(1 — ka) +1 Z 9(Stti = qeri) = Stk
i=0
k-1
>n(l - ka) + UZQ(SHi = Qt+i) — St+k (st >q >0)
=1
k-1
>n(l —ka)+cn Z(StH = Gt+i) = St+k
=1

= n(l —ka)—c(k =1)[B+ (1 —a+ Nn| — sk
2%—C(N—Q)[Bﬂ-(].—a"‘)\)?ﬂ—StJrk (kSN_]-;CVZ%)
>E_M_ Nl >0

The last inequality is based on the assumption s,y < B < 5%, ¢ < m.

In conclusion, we have proved that for every miscoverage step ¢, i.e. Y; ¢ C,, the next N — 1 steps
of (B) will satisfy Y;4; € Ciyi,i =1,2,--- N — 1. Therefore, for any 7',

| TN A )
N Z ]1{Yt¢0t}ﬁﬁ-
t=T+41

B.3 PROOF OF THEOREM[2]

Theorem 2. Let {7, };>1 be an arbitrary positive sequence. Under Assumptions and the predic-
tion set generated by Equation (5) with adaptive learning rate 7, satisfies:

(B+ Mp_1)||Avrla

T
( T

‘;Z err; — )

t=1

< +ec[B+(1—a+ N)Mr_q] (13)

where [|Arr|[1 = [0yt + X0 ot — 04l My = max; <,<7 0.
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Proof. Denote A; =n; ", and Ay = n; ' —n; !, forallt > 1,

lléem_a i(iﬁ> ne (erry — o)

£ (fons)

T
A, <QT+1 — g+ milsi —a) V(s — %))

Nl =

by Equation (3]

Nl

’ﬂ\l
M= 0 Mq I

t=r

%
Il
-

T T
1
< T ;A (g1 — gA Zrm st —q)Vi(se —aqr)
1| T
ST ;A(QT+1 ESt*Qt Vi(se—q)
1
< —HA1 T||1 max, |QT+1_QT|+ <Z|st—qt|Vf(st—Qt)>

< B+ Mr_1)[|Avr fe S [B+(1—a+N)M_4
- T T

B+ My y)||A,
< TT”” 17l 1By (1= at MMy

C MORE DETAILS ON EXISTING METHODS

C.1 ACI

Adaptive Conformal Inference (ACI) in Algorithm [I] models the sequentially conformal inference
with distribution shift as a learning problem of a single parameter whose optimal value is varying
over time. Assume we have a calibration set Deay C {(X,,Y,)}1<r<i—1, and Qt() is the fitted
quantiles of the non-conformity scores:

) . 1
Q(p) :=1inf { s: Do Z Tisx,vy<sy | 2P
all (x,.v,)€Deur

For prediction set Cy () := {y : Sy(Xs,y) < Qi(1 — a)}, define:
B == sup{B:Y; € Ci(B)}.
Consider pinball loss £(, 8:) = pa(B: — o), by gradient descent:

apr1 = ap — N0q, (v, By) = oy + (e — Lo, >8,) = ay + n(a — erry).

ACI transforms unbounded score sequences into bounded ones, which then implies long-run cover-
age for any score sequence. This may, however, come at a cost: ACI can sometimes output infinite
or null prediction sets (a; < 0 or ay > 1).

C.2 0OGD
Online Gradient Descent (OGD) in Algorithm [2]is an iterative optimization algorithm that updates

model parameters incrementally using each new data point, making it suitable for real-time and
streaming data applications.
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Algorithm 1 Adaptive Conformal Inference (ACI)

Require a € (0,1),n >0, Doy, init. aq € R
: fort > 1do

2. Observe input X; € X
3: Compute Q; (1 — ay)
4: Return prediction set Ct(at ={y: S:(Xt,y) < Qt(l —a)}
5: Observe true label Y; € Y and compute true radius 5; := sup{5: Y; € C’t(ﬁ)}
6: Update predicted radius
apy1 = o +n(a —1a,>p,)
7: end for

Algorithm 2 Online Gradient Descent (OGD)

Require: « € (0, 1), base predictor f , learning rate n > 0, init. ¢; € R
1: fort > 1do
2: Observe input X; € X

3: Return prediction set é‘t(Xt, qt) = [ft(Xt) —q, ft(Xt) + ¢
4: Observe true label Y; € Y and compute true radius s; = inf{s e R: Y; € C’t(Xt, s)}
5: Compute quantile loss f(t)(qt) =pr—alst —q)
6: Update predicted radius
gt+1 = gt — nw(t)(qt)
7: end for
C.3 SF-OGD

Scale-Free OGD (SF-OGD) that we summarize in Algorithm [3]is a variant of OGD that decays its
effective learnlng rate based on cumulative past gradient norms. Suppose f is a base predictor and
choose Cy(Xy,q) == [f:(X¢) — q, f1(X;) + q] to be a prediction set around f;(X).

Algorithm 3 Scale-Free Online Gradient Descent (SF-OGD)

Require: « € (0, 1), base predictor f , learning rate > 0, init. ¢; € R
1: fort > 1do
2: Observe input X;y; € X

3: Return prediction set C’t(Xt, qt) = [ft(Xt) — Gt41, ft (Xt) + ¢4
4: Observe true label Y; € A
5: Compute true radius s; = inf{s € R:Y; € C¢(Xy,s)}
6: Compute quantile loss E(t)(qt) =pr—a(st —q)
7: Update predicted radius
Vﬁ(t)(%)
qt+1 =4t — 1 ; :
VL V60 (q)]3

8: end for

C.4 DECAY-OGD
Online conformal prediction with decaying step sizes (decay-OGD) in Algorithm H]is a variant of

OGD that decays its effective learmng rate based on time steps. Suppose f is a base predictor and
choose Cy (X, q) = [f+(X;) — q, fs(X:) + ¢ to be a prediction set around f;(X;).
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Algorithm 4 Online conformal prediction with decaying step sizes (decay-OGD)

Require: « € (0, 1), base predictor f , learning rate > 0, init. ¢; € R
1: fort > 1do
2: Observe input X;y; € X

3 Return prediction set Cy (X, q:) = [fe(X¢) — @41, fr(X2) +
4: Observe true label Y; € Y .
5: Compute true radius s; = inf{s € R:Y; € C¢(Xy, )}
6: Compute quantile loss /) (q,) = p1_o(s5¢ — q;)
7: Compute a decaying step size n; = 1 - tmac
8: Update predicted radius
qi+1 = Gt — ntvg(t) (qt)
9: end for

C.5 CONFORMAL PID

Conformal PID in Algorithm [5]is bulit upon ideas from conformal prediction and control theory. It
is able to prospectively model conformal scores in an online setting, and adapt to the presence of
systematic errors due to seasonality, trends, and general distribution shifts. Conformal PID consists
of three parts: quantile tracking, error integration and scorecasting. For prediction set:

Ci={ycd:Si(a,y) <},

consider the optimization:
T

minimize E P1—a(st —q).
q€eR P}

Conformal PID solves it via online gradient method:
Gt+1 = gt +NOp1-a(st — qt)
=q +n(L(st > q) — ) = q + nlerry — ),

which is called quantile tracking. In parctice, the learning rate is not fixed. They choose it in
an adaptive way: n; = 1 - (max{st—w41, - ,S¢} — min{St_q41,- -, St}), where 7 is a scale
parameter. The error integration incorporates the past error to further stabilize the coverage :

t

qi+1 = Tt<2(el'1'¢ - a)).

=1

The last step is to add up a scorecasting term: g;, a model that can take advantage of any leftover
signal that is not captured like seasonality, trends, and exogenous covariates. Scorecastor needs be
trained and can be Theta or other models.

Putting the three steps together is the conformal PID method:

t

Q+1 = gy + melerry — o) + 1 ( Z(em - a)>

i=1

C.6 SPCI

The sequential predictive conformal inference (SPCI) outlined in Algorithm [6] cast the conformal
prediction set as predicting the quantile of a future residual and adaptively re-estimate the conditional

quantile of non-conformity scores. Suppose f is a pre-trained model, Q; (p) is an estimator of Q¢(p),
the p—th quantile of the residual é; = |Y; — f(X+)|. SPCI sets is C;_1(X}) is defined as:

[F(Xe) + Qu(B), f(Xe) + Qe(1 — a + )],
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Algorithm 5 Conformal PID

Require: « € (0, 1), base predictor f , trained scorecastor ¢/, > 0, window length w, init. ¢; € R
1: fort > 1do
2: Observe input X; € X

3: Return prediction set C; = {y € YV : Si(x,y) < qi}
4: Observe true label Y; € Y and compute score s; := Si(X¢, Y2),
5: Compute learning rate 7y = 7 - (max{St—w41, "+, St} — MaAX{St—wi1, "+ ,5t})
6: Compute the integrator
t
ry = rt<2(erri — a))
i=1
7 Compute the scorecastor g;(X;)
8: Update :
t
Ge+1 = go(Xe) + meerre — a) + 1y ( > (e — 0‘)>
i=1
9: end for

where B minimizes set width:

f=arg min (Qu(1 —a+8) —QuB)).

BE[0,a]

Algorithm 6 Sequential Predictive Conformal Inference (SPCI)

Require: Training data {(Xy,Y;)}7_,, prediction algorithm A, significance level «, quantile re-
gression algorithm Q.

Output: Prediction sets Coo1(Xy) = [f(Xy) + QiB), f(X) +Qi(1 —a+ B),t>T
1: Obtain f and prediction residuals € with A and {(X;, Y;)}1,

2: fort > T do )

3: Use quantile regression to obtain () < Q(é)

4 Obtain prediction set Cy (X4)

5: Obtain new residual &;

6: Update residuals € by sliding one index forward (i.e., add £; and remove the oldest one)
7: end for

D ABLATION STUDY OF HYPERPARAMETERS

D.1 EFFECTS OF DIFFERENT SCALE PARAMETER IN SIGMOID FUNCTION

We explore the effects of different scale parameter c in Sigmoid function. We conduct the ablation
study on Amazon stock dataset. Figures[8|and [0]show the line graphs across different c. When base
predictor is not well (such as Prophet), as c increases, the sets tighten, but the coverage decreases.
For AR model and Theta model, there are almost identical performance when c is in a reasonable
range. Note that, when c is large, numeric overflow will encounter because of scalar power. As
c varies, the changes in coverage and width are relatively small and the two metrics are actually a
trade-off. When the coverage is fixed, the width of our methods with ¢ € {0.1,0.5,1,1.5,2} are
consistently shorter than other methods (see Table[I). In general, our methods are less sensitive to
the choice of scale parameter c due to the trade-off between coverage and width.

D.2 EFFECTS OF DIFFERENT WINDOW LENGTH

We also explore the effects of different window length w in adaptive learning rates 7, and adaptive
cutoff threshold h,. Tables[6]to[8|show the experimental results of window length w in ECI-cutoff. In
general, w = 100 has the shortest average width with coverage greater than 89.5%. It is worth noting
that in the synthetic dataset, there is a clear trend of increasing width and coverage as w increases.
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Figure 8: Coverage result on different scale parameter c in Sigmoid function.

Line Graph on ¢ and Average Width with Dual Y-Axes (40-50 and 16.75-18.75)

50 18.75
-®- Prophet N
d heS
v ~ L 18.50
" Y
48 v .
7 g 18.25 5
/ Se- ~
xa ~~—e <
, -~ =
& Smas £ 18.00 v
46 .
"""" . 1775

441 4 1750

Average Width (40-50)

Average Width (16.75

r17.25
42 4

= AR 17.00
—A— Theta
40 T T T T T T T T 16.75

Figure 9: Set width result on different scale parameter ¢ in Sigmoid function.

This is because the main influencing factor at this time is the learning rate, and an increase in w
leads to a larger adaptive learning rate.

Table 6: The ablation experimental results of window length w in the synthetic data dataset with
nominal level a = 10%.

Prophet Model AR Model Theta Model
Coverage Average Median | Coverage Average Median | Coverage Average Median
(%) width  width (%) width  width (%) width  width
10 89.4 8.18 8.21 89.4 8.22 8.30 89.4 8.41 8.43
50 89.8 8.42 8.45 89.6 8.32 8.37 89.6 8.61 8.57
100 89.8 8.31 8.44 89.9 8.14 8.19 89.8 8.51 8.59
150 89.9 8.47 8.46 89.9 8.43 8.47 89.9 8.83 8.82
200 89.9 8.56 8.54 89.9 8.33 8.40 89.9 8.83 8.84

E EXPERIMENTAL RESULTS IN SYNTHETIC DATA

Following [Barber et al.| (2023)), we test the performance on synthetic data under a changepoint
setting. The data {X,,Y;}" ; are generated according to a linear model V; = XtT By + €4, Xy ~
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Table 7: The ablation experimental results of window length w in the Amazon stock dataset with
nominal level o = 10%.

Prophet Model AR Model Theta Model

w Coverage Average Median | Coverage Average Median | Coverage Average Median
(%) width  width (%) width  width (%) width  width
10 90.1 40.98  29.68 89.9 16.05 11.76 89.7 1624  11.84
50 89.3 36.14  27.34 89.0 1629  12.15 88.8 1628 1191
100 | 89.7 4346 2998 89.3 16.91 12.63 89.6 17.19 12.48
150 89.0 4597  33.60 89.2 16.20 12.24 89.2 1643  12.15
200 89.1 4399  31.66 89.4 1624  12.30 89.1 1628  12.48

Table 8: The ablation experimental results of window length w in the Google stock dataset with
nominal level o = 10%.

Prophet Model AR Model Theta Model

w Coverage Average Median | Coverage Average Median | Coverage Average Median

(%) width  width (%) width  width (%) width  width
10 89.9 50.33 4247 91.7 2274 22.05 89.6 3349 2942
50 89.4 47.38  40.90 90.2 20.69 19.21 89.3 31.63  29.64
100 89.8 53.12 4436 89.7 19.84  17.63 89.6 30.71 28.11
150 89.1 55.62  47.59 90.0 20.53 17.85 89.7 30.54  28.98
200 89.4 53.65 4549 89.8 20.48 18.02 89.8 30.99  30.06

N(0,14), e, ~ N(0,1). And we set:
By =p0 =(2,1,0,0)", t=1,...,500,

By =W =(0,-2,-1,0)", t = 501,...,1500,
ﬁt = /8(2) = (Oa0a271>—r7

where two changes in the coefficients happen up to time 2000.

¢ =1501,...,2000,

We compare ECI and its variants with some competing methods about the coverage and prediction
set width. Figures [I0] and [IT] show the result of coverage and set width, while the base predictor is
Theta model.
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Figure 10: Coverage result on synthetic data under a changepoint setting.

As one of the most successful deep learning models, Transformer has had a significant impact on
various application fields, including time series. Thus it is interesting to conduct an additional
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Figure 11: Set width result on synthetic data under a changepoint setting.

experiment with Transformer as the base model. We set input length to 12, output length to 1, the
number of encoder layers to 3, the number of decoder layers to 3, and the number of features in the
encoder/decoder inputs to 64.

The quantitative results are shown in Tables E] and @} Consistent with other base models, ECI
variants have achieved the best performance on five benchmark datasets with Transformer.

Table 9: The experimental results with Transformer base model at nominal level o = 10%.

Amazon stock Google stock Electricity demand
Coverage Average Median | Coverage Average Median | Coverage Average Median

Method (%)  width width | (%)  width width | (%)  width width
ACI 90.1 so 4044 | 902 o 5713 | 902 s 0.109
0OGD 89.4 5268 31.00 | 901 10927 89.00 | 90.1  0.139  0.120

SF-OGD 89.3 56.56  31.75 90.1 88.30  70.55 90.3 0.141  0.114
decay-OGD 89.8 93.16  34.98 89.9 120.25  69.81 90.3 0.147  0.111
PID 89.8 55.36  39.04 90.1 78.69  58.65 89.9 0.428  0.435
ECI 89.9 49.07 3379 89.9 7093  55.00 90.2 0.135  0.111
ECI-cutoff 89.7 45.01 29.64 89.9 66.67 51.29 89.9 0.133  0.108
ECl-integral 89.7 45.02  29.46 90.0 68.64  52.45 90.2 0.135  0.111

Table 10: The experimental results with Transformer base model at nominal level o = 10%.

Amazon stock Google stock

Method Coverage Average Median | Coverage Average Median
(%) width  width (%) width  width
ACI 90.3 00 11.69 89.9 00 8.20
OGD 89.9 9.72 9.50 89.9 8.13 8.20
SF-OGD 90.0 10.93 9.97 90.0 12.55 11.65
decay-OGD 89.7 14.43 11.47 90.1 8.30 8.24
PID 89.9 10.02 9.75 89.7 10.75 9.05
ECI 89.9 9.15 9.16 89.9 8.09 8.15
ECI-cutoff 90.0 10.42 9.95 89.9 8.01 8.10
ECl-integral 89.9 8.87 8.60 89.9 8.04 8.13

G MORE DETAILS ON EXPERIMENTS

G.1 DISCUSSION ON THE SCORECASTER

It is worth noting that the Conformal PID baseline outperforms ECI under the Prophet base model
in Table [3| Actually, the scorecaster term of conformal PID in the baseline utilizes the relatively
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accurate Theta model (which can also be replaced by AR or Transformer) to take advantage of any
leftover signal and residualize out systematic errors in the score distribution. It can be regarded as
an additional component that “sits on top” of the base forecaster (base model). Therefore, across all
test datasets, the performance of conformal PID in the Prophet model consistently outperforms that
of the AR and Theta model. This is attributed to the fact that Prophet, being a worse-performing
model, is complemented by the superior performance of PID’s scorecaster Theta, which is a better-
performing model.

We maintained the settings of Table 3 to test the performance of ECI combined with the scorecaster
(Theta model), as shown in Table @ The results demonstrated that ECI+scorecaster is consistently
superior over Conformal PID across three base models, thereby validating the effectiveness of the
ECI update. Interestingly, for the worse-performing Prophet base model, adding the scorecaster
enhanced the performance of ECI, while the scorecaster tended to degrade performance when better-
performing base models were used. This observation is also mentioned in |[Angelopoulos et al.
(2023b)): “an aggressive scorecaster with little or no signal can actually hurt by adding variance to
the new score sequence”.

Table 11: The experimental results in the electricity demand dataset with nominal level o« = 10%.
Both scorecasters of PID and ECl+scorecaster are Theta model.

Prophet Model AR Model Theta Model
Method Coverage Average Median | Coverage Average Median | Coverage Average Median
(%) width  width (%) width  width (%) width  width
PID 90.1 0207  0.177 90.0 0434 0432 89.9 0413 0411
ECI 90.0 0.384  0.382 90.0 0.117  0.098 89.9 0.071  0.055

ECl+scorecaster | 90.3 0.193  0.166 90.0 0.420 0428 89.9 0.395  0.409

G.2 MORE DETAILS ON LEARNING RATES IN THE EXPERIMENTS

In this section, we show more comprehensive experimental results. We set base predictor as Theta
model and all experimental setting are aligned with Section[d] Coverage and prediction set results
can be seen as the following Figure[I2]to Figure[I9]

Since the methods based on OGD are highly sensitive to the learning rate, we initially select four
appropriate learning rates for these methods across various datasets, and then choose the one that
performs the best among these four. In fact, aside from the OGD-based methods, the four learning
rates for other methods remain unchanged. We compile a list that includes all the learning rates,

which are
ACI :n = {0.1,0,05,0.01,0.005},

0GD = = {10,5,1,0.5,0.1,0.05,0.01, 0.005},
SF-OGD =1 = {1000, 500, 100, 50, 10, 5, 1,0.5, 0.1, 0.05},
decay-OGD :1) = {2000, 1000, 200, 100, 20, 10,2, 1,0.2,0.1},
Conformal PID :np = {1,0.5,0.1,0.05},
ECI : = {1,0.5,0.1,0.05},
ECI-cutoff :n = {1,0.5,0.1,0.05},
ECl-integral :n = {1,0.5,0.1,0.05}.

Note that, except ACI and OGD, other methods use 7, as adaptive learning rate in practice. Specifi-
cally, for SF-OGD:

Vé(t)(@t)
VL 90003

where ¢(*) (g¢) is quantile loss and ¢; is the predicted radius at time ¢. For decay-OGD:

="

1.

’r]t:nt 2 )
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where the hyperparameter ¢ = 0.1 follows |Angelopoulos et al|(2024). For conformal PID, ECI,
EClI-cutoff and ECI-integral:

where s; is the non-conformality score at time ¢ and the window length w

ne =n - (max{s; w1, -, 8t} — Min{s;wy1,-+,5}),

gelopoulos et al.| (2023b).
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Figure 14: Coverage result on Amazon stock dataset.
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Figure 16: Coverage result on electricity demand dataset.
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Figure 17: Prediction set result on electricity demand dataset.
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Figure 18: Coverage result on Delhi temperature dataset.
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Figure 19: Prediction set result on Delhi temperature dataset.
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