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Abstract

Large Language Models (LLMs) have shown001
impressive proficiency in code generation.002
Nonetheless, similar to human developers,003
these models might generate code that con-004
tains security vulnerabilities and flaws. Writ-005
ing secure code remains a substantial chal-006
lenge, as vulnerabilities often arise during in-007
teractions between programs and external sys-008
tems or services, such as databases and operat-009
ing systems. In this paper, we propose a novel010
approach, Feedback-Driven Security Patching011
(FDSP), designed to explore the use of LLMs012
in receiving feedback from Bandit1, which is013
a static code analysis tool, and then the LLMs014
generate potential solutions to resolve security015
vulnerabilities. Each solution, along with the016
vulnerable code, is then sent back to the LLM017
for code refinement. Our approach shows018
a significant improvement over the baseline019
and outperforms existing approaches. Further-020
more, we introduce a new dataset, PythonSe-021
curityEval, collected from real-world scenar-022
ios on Stack Overflow to evaluate the LLMs’023
ability to generate secure code. Code and data024
are available at https://anonymous.4open.025
science/r/LLM-code-refine-4C34/026

1 Introduction027

Large language models (LLMs) such as GPT-4028

(Brown et al., 2020) and CodeLLama (Rozière029

et al., 2023) are powerful tools for generating code030

and assisting developers with coding tasks. These031

models have recently gained popularity for code032

generation and helping in debugging code. How-033

ever, code generated by LLMs can be harmful if it034

contains security issues or is flawed. Recent work035

from (Athiwaratkun et al., 2023) demonstrates that036

LLMs, such as GPT and GitHub Copilot, can gen-037

erate code that contains security weaknesses. Also,038

1In the rest of the paper, we use the term “ Bandit” to refer
to a static code analysis tool. Bandit: https://github.com/
PyCQA/bandit

recent research studies indicate that LLMs may not 039

always recognize security issues, often producing 040

code with vulnerabilities, especially when the code 041

interacts with external APIs such as database, oper- 042

ating system and URL (Pearce et al., 2023; Siddiq 043

et al., 2023). 044

The LLMs have demonstrated proficiency in gen- 045

erating and refining code; however, self-correcting 046

mechanisms are better suited for fixing bugs rather 047

than addressing security vulnerabilities. As (Chen 048

et al., 2023) describe, the self-debugging process of 049

LLMs in code generation may struggle in security 050

issues due to their limited understanding of security 051

vulnerabilities and lack of specific security knowl- 052

edge. Alternative methods involve using external 053

tools such as compiler feedback or static code anal- 054

ysis tools to help the model refine the code. The 055

drawback here is that these methods identify prob- 056

lems but don not provide solution to fix the security 057

issues. We study how often LLMs generate code 058

with security issues and their capability to resolve 059

these issues either through self-refining or by using 060

feedback from external tools. 061

In this paper, we introduce an approach 062

called Feedback-Driven Security Patching (FDSP), 063

wherein LLMs receive varied feedback from both 064

Bandit2 and LLMs, and subsequently generate pos- 065

sible solutions to address security problems. Fol- 066

lowing this, each possible solution, along with feed- 067

back from Bandit and LLMs, is sent back to the 068

model to address the security issues. Our approach 069

demonstrates that the LLM can generate solutions 070

to address the security issues and resolve them. 071

The existing dataset for evaluating LLMs in gen- 072

erating secure code is quite basic and also limited 073

in size. When LLMs improve and resolve the se- 074

curity flaws, this could lead to modifications in the 075

code’s functionality. Therefore, we have gathered 076

2Bandit is a static code analysis tool for Python, designed
to detect the most common security issues in Python code.
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Write a Python
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the total number
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1) Use Parameterized Queries
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3) Use an ORM Library

Refine the
code

1) Use Parameterized Queries: Parameterized queries ensure that user input is treated as a literal value rather than
executable code. Most database libraries provide a way to create these queries, also known as prepared statements. 
2) Manual Escape and Quote Table Names: Since parameterized queries do not support table or column names, you
 can manually ensure that table names are valid, using a whitelist approach where only approved table names are used. 
This strategy can be risky and should be used with caution, and only when other strategies are not applicable. 
3) Use an ORM (Object-Relational Mapping) Library: ORMs provide an abstraction over SQL by allowing you to interact
with the database using your programming language's constructs, which mitigates the risk of SQL injection. Libraries such 
as SQLAlchemy for Python handle escaping and quoting internally in a secure manner.

Figure 1: Overview of our approach: Initially, the model generates code. This code is subsequently analyzed for
security vulnerabilities using Bandit, a tool for static code analysis, to determine if there are any security issues.
Following this, feedback on any identified issues is incorporated into the model to generate possible solutions for
resolving the security issues. Finally, each proposed solution is sent back to the model for code refinement.

an extensive dataset from real-world applications077

that includes natural language prompts, with each078

prompt comes with a unit test. These tests are de-079

signed to verify the generated and refine code for080

correctness.081

In summary, this work:082

• We introduce Feedback-Driven Security083

Patching (FDSP), a technique that enhances084

LLMs to generate potential solutions for ad-085

dressing security issues in code by receiving086

feedback from Bandit and LLMs.087

• We evaluate the abilities of the most advanced088

LLMs, including GPT-4, GPT-3.5, and CodeL-089

lama, to generate and refine insecure code. We090

use three benchmarks and employ five base-091

line techniques for this evaluation.092

• We present PythonSecurityEval, a dataset for093

evaluating the ability of LLMs to generate094

secure code. Our dataset includes natural lan-095

guage prompts paired with unit tests.096

• We evaluate the generated code using Bandit097

to determine whether the code has any security098

issues. We report the percentage of secure099

code for each dataset and approach in Table 1.100

2 Related work101

Language models for code: Applying deep learn-102

ing methods in source code has demonstrated re-103

markable effectiveness across various coding tasks,104

including generating code (Zhou et al., 2023), de-105

bugging (Alrashedy et al., 2023), and repairing106

code (Shypula et al., 2023). The first step in our107

experiment is to generate code from natural lan- 108

guages, such as in the text-to-code generation task. 109

Several works have proposed pre-trained models 110

specialized for code generation (Wang et al., 2020; 111

Scholak et al., 2021). Other works have shown 112

that LLMs achieve state-of-the-art performance in 113

code generation tasks without fine-tuning (Nijkamp 114

et al., 2023; Athiwaratkun et al., 2023). In our 115

work, we consider two powerful LLMs to generate 116

and refine code. 117

Refinement of LLMs: Recently, studies have 118

demonstrated that LLMs can refine their own out- 119

put or adapt based on feedback from external tools 120

or human input. Aman, as highlighted in (Madaan 121

et al., 2023), introduced Self-Refine. In this ap- 122

proach, the models produce an initial output, which 123

is then re-input into the model to generate feedback. 124

This feedback is subsequently used to enhance the 125

initial output from the model. The paper presents a 126

comprehensive evaluation of their approach across 127

7 tasks and demonstrates significant improvements 128

in refining the output. Additionally, there’s a sim- 129

ilar technique called self-debug. In this approach, 130

the model generates code and then feeds this gener- 131

ated code back into itself to produce an explanation. 132

This explanation uses as feedback, which is then 133

used to refine the generated code with compiler 134

errors (Chen et al., 2023). Another study (Gou 135

et al., 2023) introduced CRITIC, which enables 136

the model to engage with external tools to obtain 137

feedback, thereby improving the model’s ability 138

to refine its output. These studies directly utilize 139

feedback from either the model or external tools, 140

feeding it back to the model to enhance the output. 141

In our work, we feed the model with the output 142

and feedback from the external tool, and instruct 143
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Algorithm 1 Feedback-Driven Security Patching (FDSP) algorithm

Require: Input x, modelM, prompt {pVF, pBF}, number of potential solutions K, number of iterations N
Ensure: Refine the output C from the modelM

1: Initialize output C fromM(x) . Initial generate code
2: FDSP ←M(C, pVF, pBF) . Generate potential solutions (Eqn. 2)
3: for iteration t ∈ FDSP do . Iteration for each potential solution
4: for n← 1 to N do
5: Refine_code←M(C||(pVF, pBF, pt))
6: if Bandit(Refine_code) is secure then . Stop condition
7: Return Refine_code
8: end if
9: end for

10: end for
11: Return C

the model to generate potential solutions to fix the144

security issues.145

Source of feedback: There are various methods146

to procure feedback to improve a model’s output.147

While human feedback is often the most accurate,148

it is also quite costly and time-intensive (Elgohary149

et al., 2021) (Yuntao Bai, 2023). Another method150

demonstrates how the model self-generates feed-151

back to enhance its output, as seen in (Chen et al.,152

2023) and (Madaan et al., 2023). Additionally,153

some research illustrates how more powerful mod-154

els like GPT-4 provide feedback to smaller models155

to refine their outputs (Olausson et al., 2023). In156

this paper, we receive feedback from both the exter-157

nal tool and the model, and then use this feedback158

to enhance the model’s ability to generate solutions159

for fixing the buggy code.160

3 Methodology161

3.1 Background162

Recent research has shown that LLMs can re-163

fine and enhance their outputs through feedback,164

whether it’s self-refined, from external tools, or165

from human input. As demonstrated in (Madaan166

et al., 2023), the LLM generates initial output,167

which is then sent back to the LLM for feedback to168

enhance the output. This iterative process between169

generating the initial output and receiving feedback170

helps the LLM improve its performance. The pa-171

per shows improved results in seven different tasks,172

including two related to coding: code optimization173

and code readability. Another study shows that the174

LLM can generate and debug code by itself, named175

self-debugging (Chen et al., 2023). The concept in-176

volves sending the generated code back to the LLM 177

itself to create an explanation about the code. This 178

explanation, along with compiler error messages, 179

is then fed back to the LLM as feedback. 180

Studies also highlight the role of external tools in 181

improving model outputs. Given LLMs’ capabili- 182

ties not only to refine outputs based on feedback but 183

also to generate code and unit testing, and create 184

documentation, as well as to review and complete 185

code, our interest is in exploring how LLMs can 186

generate potential solutions for addressing security 187

issues in code. 188

3.2 Feedback-Driven Security Patching 189

(FDSP) 190

The core idea of Feedback-Driven Security Patch- 191

ing (FDSP) is to enable the model to generate mul- 192

tiple potential solutions to address vulnerabilities. 193

The input to the model includes (1) an insecure 194

code snippet, (2) feedback from Bandit, which is a 195

static analysis tool designed for Python code, and 196

(3) feedback from the LLMs that verbalizes Ban- 197

dit’s feedback with additional explanatory details. 198

The model then proposes K potential solutions to 199

address the identified vulnerabilities. Each solution 200

is repeatedly fed back into the model along with the 201

insecure code and Bandit’s feedback across mul- 202

tiple iterations, denoted as N , with the objective 203

of fixing the security issue. When Bandit provides 204

feedback about the security issues, as shown in 205

2, this feedback is sent to the LLM for detailed 206

verbalization of the issues. Then, the verbalized 207

feedback, along with code, is sent back to the LLM 208

to generate solutions. In each iteration, we test the 209

fixed code with Bandit. If there is no feedback from 210
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Bandit, which means the issue is resolved, we stop211

the iteration before reaching N . This study focuses212

on the Python language due to its popularity and213

its significance in evaluating LLMs’ capabilities in214

generating and understanding code.215

3.3 Preliminaries216

We test the generated code using Bandit to pro-217

vide feedback, as shown in Fig. 2. However, this218

feedback is not very informative for the LLM. To219

enhance its usefulness, we send the Bandit feed-220

back along with the vulnerable code to the LLMs221

for verbalization. The advantage of this approach222

is that the LLMs offer more detailed explanations223

about the security issues, thereby providing more224

information to the LLM.225

The verbalization approach begins by sending226

the Bandit feedback, denoted as BF , along with227

the vulnerable code, represented as C. Instructions228

are then given to the model to verbalize the feed-229

back. Following this, the Large Language Model230

(LLM) generates new feedback that includes more231

detailed explanations and potentially offers solu-232

tions for addressing the security issues. The for-233

mula for Verbalization is shown below:234

Verbalization: Given vulnerable code C, Ban-235

dit feedback pBF, and modelM. The objective for236

the model is to verbalize the feedback as shown in237

Equation 1:238

pVF ←M(C, pBF) (1)239

The drawback of verbalization is that it only240

provides explanations about the bandit feedback,241

which does not always offer potential solutions to242

fix the issues. We propose a novel approach which243

prompts the LLMs to generate potential solutions244

to these issues. Our key idea is to give the LLM245

vulnerable code, denoted as C, along with Bandit246

feedback, BF , and verbalization feedback, de-247

noted as V F . Then, the model proposes K distinct248

solutions to fix the security issues. Subsequently,249

each potential solution is sent back to the LLMs,250

along with C, BF , and V F for refinement. As251

shown in Algorithm 1, we iterate the process for252

each potential solution until the conditions are met,253

which occur when the security issue is fixed by254

testing it with Bandit or when the iteration reaches255

the maximum number of iterations, N . The key256

formula of our approach is presented in Equation257

FDSP: Given vulnerable code C, verbalization258

feedback pVF, Bandit feedback pBF and the model259

M generates K possible solutions to refine the 260

code: 261

FDSP ←M(C, pVF, pBF) (2) 262

4 Experimental Settings 263

The goal of this paper is to evaluate how LLMs 264

can address security issues in code, and to identify 265

the limitations of current datasets and approaches 266

while proposing new solutions. Two well-known 267

datasets, LLMSecEval and SecurityEval, contain 268

a limited number of code samples, insufficient for 269

large-scale evaluation . A significant challenge 270

is that once an LLM generates a fix, there is no 271

unit test to verify the code’s functionality, which 272

raises concerns that while security issues may be 273

addressed, the functionality of the code might be 274

altered. To overcome this limitation, we introduce 275

a new, large dataset comprising 470 natural lan- 276

guage (NL) prompts collected from Stack Over- 277

flow, each accompanied by a unit test to ensure 278

the correctness of the generated and refined code. 279

Furthermore, current methods for fixing security 280

issues through LLMs, such as direct prompts, self- 281

debugging, and feedback from static code analysis, 282

are inadequate for effective repair and improve- 283

ment. We empirically evaluate these datasets using 284

the current in-context learning approach and pro- 285

pose a novel method to enhance LLMs’ ability to 286

generate solutions and fix security issues. Our re- 287

sults demonstrate that our approach significantly 288

improves performance in resolving these issues. 289

4.1 Benchmarks 290

LLMSecEval: A dataset containing natural lan- 291

guage prompts evaluates LLms on generating 292

secure source code (Tony et al., 2023). This 293

dataset cover the majority of the Top 25 Common 294

Weakness Enumeration (CWE) scenarios from 295

2021, tackling various security concerns with 150 296

prompts. 297

SecurityEval: This dataset, proposed by (Sid- 298

diq and Santos, 2022), is used to evaluate LLMs on 299

their ability to generate secure Python programs. It 300

comprises 121 natural language (NL) prompts, fea- 301

turing a diverse range of vulnerability types, known 302

as Common Weakness Enumerations (CWEs), cov- 303

ering 75 different categories. Each prompt includes 304

the header of a Python function along with com- 305

ments that describe the function’s purpose. 306

PythonSecurityEval: collect a real-world 307
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1 # Write a Python function to return
the total number of rows in SQLite

2

3 import sqlite3
4 def get_total_rows(database_name ,

table_name):
5 conn = sqlite3.connect(

database_name)
6 cursor = conn.cursor ()
7 cursor.execute("SELECT COUNT (*)

FROM {}".format(table_name))
8 result = cursor.fetchone ()
9 conn.close()

10 return result [0]

Code Snippet 1: Example of a prompt and
vulnerable code from our benchmark: This function
connects to the database and requests a query.

dataset for evaluating LLMs ability to generate308

secure code and their capacity to fix security vul-309

nerabilities. This dataset was manually curated310

from Stack Overflow. Our benchmark includes nat-311

ural language (NL) prompts intended to generate312

Python functions, each comes with corresponding313

unit tests. Our dataset is four times larger than314

those used in LLMSecEval and SecurityEval.315

As our benchmark is to generate Python pro-316

grams that interact with various systems or ser-317

vices, unit testing can be somewhat challenging.318

Fortunately, the Python unittest library includes a319

submodule named unittest.mock, which offers a320

way to isolate parts of the system under test us-321

ing Mock objects. For example, when our Python322

program interacts with an SQL dataset, the Mock323

library can create a virtual object that simulates324

the behavior of a real database. In our case, each325

natural language (NL) prompt in our dataset comes326

with its own unit test. The primary benefit of im-327

plementing unit tests is to ensure that the LLM328

can address security issues without modifying the329

program’s intended functionality.330

Bandit Feedback

» Issue: [B608:hardcoded_sql_expressions]
Possible SQL injection vector through
string-based query construction.
Line 7:cursor.execute("SELECT COUNT(*)
FROM ".format(table_name))

Figure 2: The Feedback from Bandit for Code Snippet
1

4.2 Baselines 331

Direct Prompting: This approach involves send- 332

ing the generated code back to the LLMs with the 333

instruction: Does the provided function have a se- 334

curity issue? If yes, please fix the issue. If the 335

LLMs detect any security issues in the code, they 336

will fix the issue and generate secure code. This 337

serves as a baseline to demonstrate the LLM’s abil- 338

ity to detect and resolve security issues without 339

additional feedback. 340

Self-Debugging: The concept of self-debugging 341

involves LLMs generating and then debugging 342

code, without human or external tool feedback. Af- 343

ter code generation, the models explain their code. 344

This explanation, paired with the code, is then an- 345

alyzed by the models to identify and resolve any 346

security vulnerabilities. The process of explaining 347

the code could improve the models’ ability to un- 348

derstand the code and their capacity to fix security 349

flaws. 350

Bandit feedback: Bandit is a static code analy- 351

sis tool designed to detect common security issues 352

in Python code.3 In our baseline, we provide the 353

LLM with direct feedback from Bandit, which in- 354

cludes the type of security issue and indicates the 355

specific line of code where the issue is found. Ban- 356

dit does not provide a solution to fix the issue; it 357

simply highlights the problematic line and type of 358

the issue. Figure 2 shows an example of Bandit 359

feedback for the code snippet in Figure 1. 360

Verbalization: The technique involves sending 361

feedback from Bandit to LLMs, which then the 362

LLMs verbalize the feedback from Bandit with a 363

detailed explanation in natural language. This ex- 364

panded explanation provides deeper insights into 365

the security problems and might suggest methods 366

for resolving them. Verbalization resembles self- 367

debugging but also incorporates feedback from 368

static code analysis tool. 369

4.3 Metrics 370

The primary objective of this paper is to introduce a 371

method for enhancing the model’s ability to gener- 372

ate secure code that is free from security flaws and 373

to refine any insecure code. We evaluate each piece 374

of code using Bandit to identify common security 375

issues. 376

3Bandit: https://github.com/PyCQA/bandit
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Table 1: The table illustrates the percentage of insecure code.

Dataset Approach GPT 4 GPT 3.5 CodeLlama

LLMSecEval

Generated code 38.25 34.22 28.85

Direct prompting 34.89 (↓ 3.3) 27.51 (↓ 6.7) 23.48 (↓ 5.3)
Self-debugging 23.48 (↓ 14.7) 28.18 (↓ 6.0) 23.48 (↓ 5.3)
Bandit feedback 7.38 (↓ 30.8) 18.79 (↓ 15.4) 15.43 (↓ 13.4)
Verbalization 7.38 (↓ 30.8) 16.77(↓ 17.4) 16.77 (↓ 12.0)
FDSP 6.04 (↓ 32.2) 11.40 (↓ 22.8) 11.40(↓ 17.4)

SecurityEval

Generated code 34.71 38.01 46.28

Direct prompting 21.48 (↓ 13.2) 25.61 (↓ 12.4) 35.53 (↓ 10.7)
Self-debugging 16.52 (↓ 18.1) 27.27 (↓ 10.7) 38.01 (↓ 8.2)
Bandit feedback 4.13(↓ 30.5) 13.22 (↓ 24.7) 19.83 (↓ 26.4)
Verbalization 4.95(↓ 29.7) 13.22 (↓ 24.7) 16.52 (↓ 29.7)
FDSP 4.13(↓ 30.5) 5.78 (↓ 32.2) 6.61 (↓ 39.6)

PythonSecurityEval

Generated code 40.21 48.51 42.34

Direct prompting 25.10 (↓ 15.1) 42.34 (↓ 6.1) 31.06 (↓ 11.2)
Self-debugging 24.46 (↓ 15.7) 43.40 (↓ 5.1) 33.19 (↓ 9.1)
Bandit feedback 8.72 (↓ 31.4) 25.95 (↓ 22.5) 19.57 (↓ 22.7)
Verbalization 8.51 (↓ 31.7) 23.40 (↓ 25.1) 19.57 (↓ 22.7)
FDSP 6.80 (↓ 33.4) 14.25 (↓ 34.2) 10.85 (↓ 31.4)

4.4 Models377

To evaluate our approach, we consider the three378

most powerful models: GPT-4, GPT-3.5, and379

CodeLlama.380

5 Experimental Results381

In this section, we discuss the results of our study,382

focusing on the evaluation of LLMs in addressing383

security issues.384

5.1 Main results385

Table 1 presents the results of an evaluation of how386

three different language models generate insecure387

code and subsequently refine it across three distinct388

datasets.389

For the LLMSecEval and SecurityEval datasets,390

more than 30% of the generated code contains se-391

curity issues . The approaches of direct prompting392

and self-debugging help fix some of these issues,393

and they perform similarly in GPT-3 and CodeL-394

lama. However, self-debugging significantly out-395

performs in GPT-3 and CodeLlama. This suggests396

that GPT-4 can provide feedback to fix security397

issues without external input. Other approaches,398

like using feedback from Bandit, show impressive399

results, enabling these LLMs to fix the majority of400

security issues. The FDSP approach slightly im- 401

proves security fixes in GPT-4 and significantly in 402

GPT-3 and CodeLlama. 403

We can observe that more than 40% of the code 404

generated by PythonSecurityEval contains secu- 405

rity issues. The results of refining the code are 406

somewhat similar across all LLMs in both direct 407

prompting and self-debugging. This differs from 408

the results with other datasets like LLMSecEval 409

and SecurityEval. Additionally, providing feed- 410

back from Bandit helps the LLMs to address most 411

security issues in PythonSecurityEval. The FDSP 412

shows a significant improvement compared to us- 413

ing Bandit feedback directly and verbalization. In 414

summary, FDSP achieves state-of-the-art perfor- 415

mance in fixing security issues compared to other 416

approaches. 417

5.2 Key Takeaways 418

• LLMs frequently produce programs with secu- 419

rity vulnerabilities. For PythonSecurityEval, 420

the models generate insecure code in more 421

than 40% of cases. Furthermore, there are 422

cases where the LLM is unable to fix security 423

flaws in the code 424

• Simple baselines, such as direct prompts and 425

6



self-debugging, can be helpful but are ulti-426

mately not highly effective in fixing security427

issues in code. These approaches assist in428

addressing easy security problems.429

• Feedback from the tool helps the LLM to430

refine the code and address security issues.431

Across all models and datasets, this feedback432

proves more effective than self-debugging and433

direct prompting.434

• Our approach, which combines tool feedback435

with the natural language generation capabil-436

ities of Large Language Models (LLMs), is437

overall the most effective. The results demon-438

strate how powerfully our approach addresses439

most of the security issues in code, as well as440

its capacity to generate potential solutions.441
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Figure 3: The figure illustrates the total number of the
most common types of security issues (Top-10) in gen-
erated codes for the PythonSecurityEval dataset.

CWE-89
CWE-78

CWE-80
CWE-22

CWE-703

CWE-400

CWE-605

CWE-502

CWE-327

CWE-259
CWE-20

CWE-377

CWE-295
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

To
ta

l n
um

be
r o

f c
od

es

GPT-4
GPT-3.5
CodeLlama

Figure 4: The figure displays the total number of Top-
10 unresolved security issues for PythonSecurityEval
dataset.

5.3 Analysis 442

In this subsection, we analyze our results regarding 443

how LLMs are able to generate secure code and 444

refine security issues, focusing on the PythonSecu- 445

rityEval benchmark. 446

Figure 3 illustrates the most common types of se- 447

curity issues generated by three models. Similarly, 448

Figure 4 displays the most frequent unresolved se- 449

curity issues by the same three models. CWE-400 450

and CWE-259 the most common type of security is- 451

sue generated by LLMs, and the LLMs are capable 452

of resolving the vast majority of these issues. For 453

other security issues such as CWE-89 and CWE-78, 454

the LLMs are only able to solve a few of them. 455

Generated code
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Figure 5: The figure illustrates the percentage of se-
cure codes in the PythonSecurityEval dataset, compar-
ing five different methods and three distinct models.

The feedback provided by Bandit substantially 456

improves the LLMs in addressing security issues, 457

in contrast to other methods that do not include Ban- 458

dit’s feedback as shown in Figure 5. Our approach, 459

FDSP, demonstrates a notable enhancement in the 460

performance of GPT-3.5 and CodaLlama, exceed- 461

ing the results achieved by directly providing feed- 462

back from Bandit or verbalizing the feedback from 463

Bandit. We compare the effectiveness of each ap- 464

proach in addressing the most common security is- 465

sues in CodeLlama, as illustrated in Figure 6. The 466

Direct Prompting and Self-Debugging approaches 467

solve a very similar number of issues, with the 468

majority of these resolved issues being relatively 469

straightforward. 470

5.4 Unit Test 471

Writing unit tests for NL prompts is challenging 472

because the generated code interacts with various 473

services and external tools, such as datasets, URLs, 474

and operating systems. We diligently to generate 475
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and manually check unit tests for each prompt, uti-476

lizing the Python Mock Object Library. Our objec-477

tive in conducting these unit tests is to ensure that478

when the generated program passes the unit tests,479

subsequent refinements for fixing security issues480

do not render the program incorrect. Table 2 shows481

that 37.7% of the generated programs passed the482

unit tests. The refinement in our approach is 34.9%,483

indicating that approximately 2.8% of programs484

did not pass the unit tests after refinement.485

Table 2: Proportion of insecure code successfully pass-
ing unit tests

Metric GPT 4 GPT 3.5 CodeLlama

Generated code 37.5 36.8 33.6
Direct prompting 34.9 26.3 23.1
Self-debugging 36.5 27.1 26.1
Bandit feedback 34.3 26.7 22.6
Verbalization 34.9 27.6 23.6
FDSP 34.9 27.6 24.6

CWE-259
CWE-20

CWE-94
CWE-400

CWE-89

Generated code

Direct Prompting

Self-Debugging

Bandit feedback

Verbalization

FDSP

26 24 24 38 20

7 9 22 28 16

7 15 8 32 16

7 10 2 0 16

0 0 0 0 20

0 0 0 1 16
0

5

10

15

20

25

30

35

Figure 6: The figure illustrates.

6 Conclusion486

We introduce Feedback-Driven Security Patching487

FDSP, a novel approach to code refinement. In488

this approach, LLMs receive vulnerable code along489

with feedback about security issues from Bandit,490

a tool for static code analysis. The LLMs then491

generate potential solutions to address these se-492

curity issues. Our approach differs from existing493

LLM-based code refinement methods. The main494

idea of our approach is to provide LLMs with feed-495

back from Bandit, enabling them to generate po-496

tential solutions for code refinement. Our results497

demonstrate that the FDSP approach outperforms498

the baselines across all three benchmarks and three499

models.500

7 Limitations 501

One of the limitations of our study is that our eval- 502

uation may not identify all security issues in the 503

code. Additionally, while we study and evaluate 504

code snippets to fix any security issues present, we 505

do not examine the entire project. In real-life sce- 506

narios, security issues may arise from interactions 507

between different files. Lastly, our approach to 508

fixing security issues involves making changes to 509

the code, which might inadvertently render the pro- 510

gram incorrect. Despite our dataset containing natu- 511

ral language (NL) prompts and their corresponding 512

unit tests, the accuracy of these tests in evaluating 513

program correctness is limited, as they are based on 514

Python Mocking, which simulates behavior rather 515

than testing actual functionality. 516
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