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ABSTRACT

Large language models (LLMs) have proven to be remarkably efficient, both across
a wide range of natural language processing tasks and well beyond them. However,
a comprehensive theoretical analysis of the origins of their impressive performance
remains elusive. In this paper, we approach this challenging task by drawing an
equivalence between generic autoregressive language models with vocabulary of
size T and context window of size K and Markov chains defined on a finite state
space of size O(TK). We derive several surprising findings related to the existence
of a stationary distribution of Markov chains that capture the inference power of
LLMs, their speed of convergence to it, and the influence of the temperature on
the latter. We then prove pre-training and in-context generalization bounds and
show how the drawn equivalence allows us to enrich their interpretation. Finally,
we illustrate our theoretical guarantees with experiments on several recent LLMs
to highlight how they capture the behavior observed in practice.

1 INTRODUCTION

The fields of machine learning and artificial intelligence have recently seen significant progress with
the introduction of large language models (LLMs) (Brown et al., 2020; Touvron et al., 2023a), built
on the transformer architecture (Vaswani et al., 2017). These models, trained on vast amounts of data,
have been applied in many natural language processing tasks, including machine translation (Brown
et al., 2020), text generation, question answering (Roberts et al., 2020), and sentiment analysis (Zhang
et al., 2023a). Although successful in practice, the origins of the impressive performance of LLMs
remain elusive, as there is no widely accepted agreement in the scientific community on how they
achieve remarkable reasoning capabilities that go far beyond their training data (Brown et al., 2020).

This work takes a step towards bridging the knowledge gap mentioned above by providing an explicit
characterization of the LLM’s inference capabilities. For this, we adopt an intuitive, yet overlooked,
approach that interprets LLMs as Markov chains operating on a finite state space of sequences and
tokens (see Fig. 1). A key insight is that despite the seeming infinity of LLMs generating capacity,
they have a limited vocabulary and context window making all their possible input and output
sequences enumerable. We show that despite the prohibitively large size of the latter set, it exhibits
a structure that makes it amenable to theoretical analysis. We further generalize recent theoretical
advances on the generalization of LLMs and leverage our proposed point of view to provide a more
insightful interpretation of them.

Markov chains and Large Language Models. While none of the prior works considered the
equivalence between LLMs and Markov chains presented in this work1, some used the Markovian gen-
erative process to better understand the intrinsic capabilities of the transformer architecture. Makkuva
et al. (2024) assume that the input data is generated by an unknown high-order Markov chain to
analyze the learning dynamics of the self-attention mechanism in a single-layer single-head trans-
former. Similarly, Edelman et al. (2024) study in-context learning of a transformer model trained on
samples drawn from a bi-gram Markov chain. Ildiz et al. (2024) establish an equivalence between
context-conditioned Markov chains and the self-attention mechanism in transformers to show that
self-attention weights can be learned, under certain conditions, by prompting the model. In contrast
to this prior work, we seek to model any transformer-based LLM as a Markov chain. Hence, our

1We note, however, a recent blog post (Nardo, 2023) discussing a similar idea on a high level without
analyzing it at the level of details of this work.
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Figure 1: LLM as a Markov chain. A large language model with vocabulary size T and context
window K is equivalent to a Markov chain with a sparse and block-structured transition matrix of
size

∑
i≤K T i ∼ O(TK). The latter captures all possible outputs of a given LLM for all possible

input sequences allowed by its vocabulary and context window.

analysis provides insights into LLMs beyond understanding the self-attention mechanism in simplified
transformers.

In-Context Learning (ICL). ICL is the ability of LLMs to adapt their predictions during inference
by leveraging examples or prompts directly without updating their parameters. Xie et al. (2022)
provide a theoretical guarantee for ICL by showing its equivalence to implicit Bayesian inference,
while Jeon et al. (2024) study ICL in the Bayesian setup by adopting a point of view that relates
it to meta-learning from non-independent and identically distributed (i.i.d.) data. Their guarantees
introduce a desirable dependence on the length of the input sequence and the number of sequences
seen, yet their data generative process assumes that each sequence is outputted by a transformer model
drawn from a prior distribution. A follow-up work by Wies et al. (2024) generalizes this analysis
within a broader Probably Approximately Correct (PAC) framework and sheds light on the few-shot
nature of ICL. Li et al. (2023) studied the generalization error of trained ICL transformers from a
stability viewpoint and provided generalization guarantees for temporally dependent prompts that can
be seen as Markov chains of different orders. The closest work on ICL to our analysis is (Zhang et al.,
2023b) upon which we improve by relaxing many assumptions and, most importantly, by providing
stronger interpretations and experimental observations.

Generalization bounds for LLMs. Deriving generalization bounds for neural networks is inher-
ently difficult due to the complexity of the operations performed by the model. This can require
expressing it as a continuous process (Marion, 2023). For LLMs, an avenue to obtain such bounds is
to rely on the PAC-Bayes framework. Lotfi et al. (2023; 2024) leverage compression techniques in
combination with PAC-Bayes type bounds to obtain tight generalization bounds both at the document
and token level. These works are connected to the existing literature on compressibility and the
intrinsic dimension of neural networks (Aghajanyan et al., 2020; Yaras et al., 2024) and typically
focus on fine-tuning LLMs with LoRA (Hu et al., 2022) inspired adapters. The work of Zhang et al.
(2023b) considers the Bayesian framework to derive generalization bounds for pre-training where the
data is assumed to be a Markov chain. Our theoretical analysis of pre-training is done without relying
on Bayesian modeling and under realistic data generating assumption covering many common types
of data used to train LLMs.

Summary of our contributions. Our main contributions are summarized as follows.

1) We provide an explicit characterization of LLM’s inference mechanism by showing its equivalence
to a finite-state Markov chain. We analyze the transition matrix of the latter and prove the existence
and uniqueness of its stationary distribution. We give a rate of convergence to this distribution
that depends on the vocabulary and context window sizes, and the model’s temperature.

2) By leveraging concentration inequalities for dependent random variables, we obtain generalization
bounds for LLMs in both pretraining and in-context inference. Our bounds are proved under
minimal assumptions on the model and data and depend on the model’s depth, dictionary, and
dataset sizes, as well as the intrinsic properties of the temporally-dependent sequences it was
trained on. We highlight the insights that stem from these bounds by relating them to the minimax
bounds of Markov chain learning.
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3) We experimentally show that the most recent LLMs dating from 2023-2024 obey the in-context
scaling laws predicted by our theoretical results. One highlight is that LLMs are better Markov
chains learners than the minimax optimal frequentist approach (Wolfer & Kontorovich, 2019).

We underline that, in this work, the term LLM refers to a deep transformer-based model trained on
non-iid data whose inference is based on the next-token prediction principle in an autoregressive
fashion. The latter implies that such a model transitions between a sequence of tokens to a sequence
of tokens. Hence, in Section 3, the Markov chain formalization transitions between states that are
sequences of tokens (instead of single tokens). The vast majority of existing LLMs fall into our
definition suggesting that our results apply to them.

Organization of the paper. Section 2 provides background material on autoregressive models and
Markov chains. We formalize an equivalence between these two models in Section 3 and illustrate it
on a toy example. In Section 4, we derive generalization bounds for LLMs trained on non-iid data
and prompted on Markov chains. Our results are empirically verified in Section 5.

2 BACKGROUND KNOWLEDGE

We recall some elementary facts about Markov chains (Paulin, 2015; Roberts & Rosenthal, 2004)
and LLMs. More notations and background materials are available in Appendices A to C.

Markov chains. Let Ω be a discrete finite set of size |Ω|. A discrete-time, time-homogeneous
Markov chain MC(Ω,Q) defined on a state space Ω = {xi}|Ω|

i=1 with transition matrix Q ∈ R|Ω|×|Ω|

with entries Qij = Q(xi, xj) ∈ [0, 1] is a sequence of random variables (X1,X2, . . .) taking values
in Ω such that for any n ∈ N and (x1, . . . , xn+1) ∈ Ωn+1, we have

P(Xn+1 = xn+1 | Xn = xn, . . . ,X1 = x1) = P(Xn+1 = xn+1 | Xn = xn) =: Q(xn, xn+1).

A distribution π on Ω is said to be a stationary distribution if Qπ = π. Under mild conditions
on Q, MC(Ω,Q) has a unique stationary distribution to which it converges, i.e., for any x ∈ Ω,
limn→∞ dTV(Q

n(x, ·), π) = 0, where Qn(x, ·) denotes the probability of Xn conditioned on
X1 = x and the total variation between two distributions P and Q, defined on (Ω,F), is

dTV(P,Q) := sup
A∈F

|P(A)−Q(A)|.

We recall that the mixing time tmix(ε) of a Markov chain is the minimal time needed to be ε-close
to its stationary distribution (see Definition C.8). Intuitively, a Markov chain mixes slowly when
it remains close to the initial state after a given number of steps and doesn’t explore its state space.
A Markov chain that exhibits a fast mixing time on the contrary quickly forgets its initial state and
transitions more easily to a wider set of states.

Large language models. Let V denote a dictionary of size T used to encode an arbitrary sequence
into a sequence of predefined tokens belonging to V . We assume that our model admits a maximum of
K tokens as input, referred to as the context window of the model. The domain of the autoregressive
LLM is the set of all sequences consisting of elements from V with up to K elements. We denote this
by V∗

K , which represents a restriction of Kleene closure of V , i.e., V∗
K := {v ∈ V∗, |v| ≤ K} with |v|

the length of v. We define an LLM with trainable parameters Θ as a function fT,K
Θ : V∗

K → ∆(V),
where ∆(V) is the probability simplex over V , that given a sequence of tokens v outputs a probability
distribution over the whole state space indicating the likelihood for each of its elements to appear
after v (see Appendix B for more details). We consider a setting where the learner’s objective is
to approximate the probabilities of sequences over an input vocabulary given by some reference
distribution PL : P(V∗

K) → [0, 1]2.

3 LARGE LANGUAGE MODELS AS MARKOV CHAINS

We formally define a Markov chain that explicitly captures the full inference capacity of a given LLM
fΘ. We build upon a high-level idea that associates a tokenized input prompt with a state vi, from

2P(V∗
K) denotes the powerset of V∗

K .
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which we transition to a new state vj = [vi, v] by concatenating the token v predicted by an LLM
to it. We then provide a theoretical characterization of this Markov chain highlighting its intriguing
properties and asymptotic behaviour.

3.1 MARKOV CHAIN FORMALIZATION

We begin by defining the transition matrix associated with a large language model fT,K
Θ .

Proposition 3.1. Any large language model fT,K
Θ can be equivalently represented by a Markov

chain MC(V∗
K ,Qf ), with a sparse transition matrix Qf ∈ R|V∗

K |×|V∗
K | defined as:

∀vi, vj ∈ V∗
K , Qf (vi, vj) =

{
0, if ∃l ∈ {1, . . . , |vi| − 1}, s.t. (vi)l+1 ̸= (vj)l,

{fT,K
Θ (vi)}j , otherwise,

where |V∗
K | = T (TK − 1)/(T − 1). The proportion of non-zero elements in Qf is (T −

1)/(TK − 1).

Input 
prompt

Ini�al
distribu�on

Next state 
distribu�on

Figure 2: Illustration of Proposition 3.1
with T = 2 and K = 3.

We discuss the intuition behind the definition of Qf pro-
vided above and illustrate it in Figure 2 for a case of T = 2
and K = 3. For this, we first note that given an input se-
quence vi of size |vi| < K, a transition to any state vj
has a probability of 0 if vj ̸= [vi, v] for some v ∈ V ,
i.e., if the state we transition to is not a concatenation
of the input sequence with an additional token from the
vocabulary (for instance, a state {0} cannot transition to
{1, 0} in one step). Applying this reasoning for different
values of k < K defines green rectangular blocks of size
T k × T k+1 in the transition matrix portrayed in Figure 2.
When one reaches the blue square block in the transition
matrix, the input sequence reaches the maximum context
window length vi: the model can no longer append tokens to the input sequence and has to delete
the first token from it to proceed. This blue block is of size TK × TK : it captures transitions
between all possible sequences of the maximum admissible length. We define similarly the reference
transition matrix Q∗ of the language where the probability of transitions {fT,K

Θ (vi)}j are replaced
by ground-truth probabilities PL(vj | vi). In order to use Qf as fΘ, it is now sufficient to define an
input distribution δ0 of the Markov chain based on input prompt v as a one-hot encoding vector of
size |V∗

K | with 1 at the position of the state corresponding to v. Then, the transition to the next state
simply writes as δ1 = Qfδ0. The output of fΘ(v) for individual tokens in V would then correspond
exactly to the probabilities in δ1 for states that are concatenations of v with T tokens from V . This
process is illustrated in Figure 2.

We now characterize this Markov chain and note that, since V∗
K is finite, MC(V∗

K ,Qf ) admits a
stationary distribution. This stationary distribution is unique given the structure of the transition
matrix Qf , as established in the following result.

Proposition 3.2. Let MC(V∗
K ,Qf ) be a Markov chain defined in Proposition 3.1. Then

MC(V∗
K ,Qf ) is an ergodic unichain and has a unique stationary distribution.

A unichain is a chain that has at most one recurrent class plus some additional transient states. From
Proposition 3.1, we note immediately that green blocks in Fig. 1 represent transient classes, meaning
that applying Qf to the input prompt, represented by a one-hot encoding of size |V∗

K |, will transition
to a state that corresponds to a sequence of length increased by one with an additional, most likely,
token appended to it. This process is repeated if the model is called further on: we append tokens
until we reach the context window limit K. At this point, we reach the recurrent class, represented in
blue, in which the chain stays until it reaches its unique stationary distribution. We now characterize
how many times one should apply Qf to the input to reach the stationary distribution.
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Proposition 3.3. Given an ergodic finite-state unichain MC(V∗
K ,Qf ) and e = (1, 1, . . . , 1)⊤,

then limn→∞ Qn
f = eπ where π is the stationary distribution of the recurrent class R of states,

expanded by 0’s for each transient state of the unichain. Moreover, for all n ≥ K,

|(Qn
f )i,j − (eπ)i,j | ≤ (1− 2ε)⌊

n
K ⌋−1,

where ε = min
i,j∈R2

{(QK
f )i,j} > 0.

The stationary distribution is the long-term equilibrium of the Markov chain defined by the LLM
and can be interpreted as a proxy of its understanding of natural language in its token space. It is
independent of the initial state (i.e., input prompt) but rather captures the absolute frequencies of
occurrences of certain tokens seen during pre-training. For a well-performing model, it is hence
likely to be heavy-tailed, meaning that rare states have a non-zero probability of occurring due to
language’s ambiguity and complexity. Proposition 3.3 shows that reaching the stationary distribution
requires more generation steps for models with larger context window K. Additionally, convergence
depends on ε (that is, the smallest element of the K th power of the transition matrix), which is related
to the ability of the chain to explore the state space after having forgotten the input prompt.

3.2 ILLUSTRATION ON A TOY MODEL

We illustrate the results of Section 3 on a toy model trained on a sequence of 0s and 1s. Here, each
subsequent token is 0 if the sum of three previous tokens is even and 0 otherwise. Therefore, T = 2
and K = 3. We generate a sequence of 40 digits, resulting in 37 distinct supervised examples,
and train a small “GPT-like” model (Karpathy, 2023) on it. We extract the logits from the model
by prompting it with all possible combinations of 0s and 1s of length less than three to obtain the
transition matrix Qf ∈ R14×14 depicted in Fig. 3(a). The transition matrix’s structure (e.g., presence
of transient and recurrent classes) matches the one presented in Fig. 1. Fig. 3(b) displays the stationary
distribution of the trained model obtained by raising Qf to power 105. We note that it has a strong
bias toward seen training samples in accordance with our intuition behind the stationary distribution
presented earlier. Finally, Fig. 3(c) illustrates the convergence rate of the toy model, predicted by
Proposition 3.3, and compares it to models with larger dictionary size T and context window K. In
Fig. 3(c), we set ε = 10−6 and note that this parameter reflects the ability of the LLM to explore the
state space.

Convergence speed to 
the sta�onary distribu�on

(a) (b) (c)

Figure 3: Markov chain with a small GPT-like model. (a) Transition matrix Qf of the model where □
denotes the examples from the training set. (b) Stationary distribution of the trained model assigning
almost uniform probabilities to the states seen during training. (c) Convergence rate to the stationary
distribution for the considered toy model along with three LLMs, highlighting the dependence on K.
The y-axis is the upper bound in Proposition 3.3.

Role of the temperature. To better illustrate the role of ε, we now plot the transition matrix of the
studied Markov chain obtained when applying different temperature scaling to the logits returned
by the trained model. As the temperature is commonly linked to the ability of LLMs to transition
more freely to a large set of states (Chen & Ding, 2023), we expect that lower temperatures should
impact negatively the speed of the convergence to the stationary distribution. In Fig. 4(a), we show
that for a low temperature (0.2), the Markov chain mixes slowly and is unable to reach its stationary

5
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distribution (same line in the transition matrix as in Fig. 3(c)) even after 106 steps. In the case of
a more commonly used temperature equal to 1 (Fig. 4(b)), the model requires only 300 steps to
converge. Finally, setting the model’s temperature to 2 (Fig. 4(c)) makes the convergence extremely
fast, reaching the stationary distribution after only 30 steps. The interplay between ε and the model’s
temperature is displayed in Fig. 4(d), increasing the temperature leads to a drastic improvement in
the convergence speed.

Temperature     =2

Temperature

Temperature     =1Temperature     =1Temperature    =0.2
(a) (b) (c) (d)

Figure 4: Dependence of ε on the temperature of the model. (a) For low temperatures, ε becomes too
small to achieve convergence to the stationary distribution. (b)-(c) Increasing the temperature from 1
to 2 leads to a ×10 faster convergence. (d) ε (log-scale) increase for temperature values in [0.1, 2].

4 GENERALIZATION BOUNDS FOR LARGE LANGUAGE MODELS

The inference of any large language model fΘ can be fully captured by a Markov chain with a finite
transition kernel Qf defined as above. The formalization of Section 3.1 allows us to see and study
the generalization of fΘ as its capacity to infer correctly all the elements of Qf that approximate
the true reference matrix of transition probabilities Q∗. The hardness of this task lies in achieving
precise inference having observed a negligible amount of Q∗’s elements during its pre-training. For
GPT-3 (Brown et al., 2020), this represents 5× 1011 training tokens, which pales in comparison with
the number of non-zero elements in Qf , given by TK+1 ≈ 109632.

Risk definition. We denote by X = (X1, . . . ,XN ) the tokens in V that fΘ observes (e.g.,
during pre-training or at inference time). The training sequences of tokens can be written as
Sn = (X1, . . . ,Xn) if n ≤ K and Sn = (Xn−K+1, . . . ,Xn) otherwise due to the deletion
process (see Definition B.2). In particular, the Sn are elements of V∗

K . For any n ∈ [N ], the true
probability of next token Xn+1 given a past sequence Sn is defined as PL(· | Sn) ∈ ∆T and the
probability estimated by the model writes PΘ(· | Sn). We assume the existence of a constant c0 > 0
such that for any n ∈ [N ] and (x1, . . . , xn+1) ∈ Ωn+1,

PL(Xn+1 = xn+1 | Xn = xn, . . . ,X1 = x1) ≥ c0 > 0. (1)

This is a common assumption used previously in (Hu et al., 2024; Wies et al., 2024; Xie et al., 2022;
Zhang et al., 2023b). Following the Markov chain formalization introduced in Section 3.1, we define
the theoretical and empirical risks for any Θ ∈ W as3

R(Θ) := ES∼PL [dTV(Q
∗(S, ·),Qf (S, ·))], R̂(Θ) :=

1

N

N∑
n=1

dTV(PL(· | Sn),PΘ(· | Sn)). (2)

The generalization problem consists of bounding the difference R(Θ)− R̂(Θ).

Remark 4.1 (Choice of risk). Our risk definition departs from usual generalization bounds in
statistical learning where risks are mostly derived from empirical risk minimization (Bach, 2024;
Marion, 2023; Redko et al., 2019; Vapnik, 1999). As we want to assess how well the model estimates
the probability distribution of the next token, we rather follow (Hu et al., 2024; Zhang et al., 2023b)
and the learning and identity testing of Markov chains literature (Wolfer & Kontorovich, 2019; 2023)
and use the total variation distance.

3R(Θ) = E[R̂(Θ)] = ES∼PL [dTV(PL(· | S),PΘ(· | S))] = ES∼PL [dTV(Q
∗(S, ·),Qf (S, ·))].
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Transformer model. Without loss of generality, fΘ is assumed to be a transformer model with L
layers and H heads, consisting of alternating multi-head attention (MHA) and feed-forward blocks
(more details in Appendix B). The first layer receives an input S(0) = S embedded in r-dimensional
space. To obtain a probability distribution on the vocabulary V , the output S(L) ∈ Rr×T of the final
layer is projected back to the vocabulary size by an “unembedding layer” WU ∈ RT×r and averaged
over the columns to obtain a vector in RT . A softmax layer is finally applied to obtain the probability
distribution of the next token PΘ(· | S) := softmax

(
1
nτWUS

(L)
1n

)
∈ ∆T , where Θ denotes the

parameters of the entire network and τ is the softmax temperature (Hinton, 2015). Unless otherwise
specified, we assume that the unembedding layer is bounded. The classes of parameters and neural
networks it generates respectively write W = {Θ s.t. ∥W⊤

U∥2,1 ≤ BU} and F = {fΘ s.t. Θ ∈ W}.

4.1 PRE-TRAINING THEORETICAL ANALYSIS

We now significantly extend the scope of our theoretical contributions by assuming that the pre-
training data S = (S1, . . . ,SNtrain) is a sequence of dependent random variables with a mild coupling
structure, namely that a Marton coupling with mixing matrix Γ exists for S = (S1, . . . ,SNtrain

).4
This ensures our setting remains very broad as it subsumes the case of independent variables, m-
dependent variables, language bigrams (Bietti et al., 2023), and the Markov chain setting considered
in state-of-the-art ICL analysis of LLMs (Hu et al., 2024; Zhang et al., 2023b).

Generalization bound. We denote the risks by Rpre(Θ) and R̂pre(Θ) to indicate that we take
N = Ntrain in Eq. (2). Below, we state our main result, whose proof is deferred to Appendix D.4,
which provides a generalization bound on the estimation risk of pre-training.

Theorem 4.1 (Pre-training generalization bound). Consider an LLM fΘ ∈ F . We denote by
Γ the mixing matrix of the pre-training sequences of tokens (S1, . . . ,SNtrain

). Let 0 < δ < 1,
then with probability at least 1− δ,

Rpre(Θ) ≤ R̂pre(Θ) +
B̄√
Ntrain

√
log

(
2

δ

)
,

where B̄ = 2∥Γ∥max{log (T ) + 2BU/τ, log (1/c0)}1/2 is a constant depending on the pa-
rameters of the problem.

The bound in Theorem 4.1 depends on the intrinsic structure of the pre-training data through the norm
of the mixing matrix ∥Γ∥. If the pre-training data S is a Markov chain with state space Ω, this norm
captures exactly the mixing time of the latter, making sequences that mix at a slower pace harder
to learn. Secondly, and perhaps most surprisingly, this bound becomes model-independent when
max{log (T ) + 2BU/τ, log (1/c0)} is dominated by log (1/c0) term. Hence, if BU ≈ O(T

√
r),

which happens in practice due to the common normalization of the unembedding layer, then the
model’s hidden dimension r and vocabulary size T should be large enough to ensure log(T ) +
2BU/τ ≥ log(1/c0) for some unknown reference constant c0. Below this threshold, the architecture
of fΘ is not expressive enough to have any tangible impact on its generalization, although it may
affect the training error R̂pre(Θ).

Depth-dependent variation. We extend Theorem 4.1 to make its dependency on fΘ more fine-
grained. Rather than assuming that only the norm of the embedding layer’s matrix is bounded, we
follow the setting of prior work (Edelman et al., 2022; Furuya et al., 2024; Marion, 2023; Zhang
et al., 2023b) and consider the parameter space defined as follows:

W̃ = {Θ ∈ W | ∀ℓ ∈ [L], ∥W(ℓ)
V ∥∞ ≤ BV , ∥W(ℓ)

O ∥∞ ≤ BO, ∥W(ℓ)
1 ∥∞ ≤ B1, ∥W(ℓ)

2 ∥∞ ≤ B2}.

The definition of W̃ concerns the query, key, and value matrices of all layers and heads. Similarly
to Zhang et al. (2023b, Assumption 5.1), we assume that each token has an ℓ1-norm bounded by
Btok. We have the following generalization bound, whose proof is deferred to Appendix D.5.

4∥Γ∥ = 1 for independent variables and more details on Marton coupling can be found in Appendix C.3.
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Corollary 4.2 (Depth-dependent bound). Consider an LLM fΘ ∈ F̃ := {fΘ | Θ ∈ W̃}. With
the same assumptions as in Theorem 4.1, we have

Rpre(Θ) ≤ R̂pre(Θ) +
B̄√
Ntrain

√
log

(
2

δ

)
,

where B̄ = 2∥Γ∥max{log (T ) + 2(BΘ)L/τ, log (1/c0)}1/2 is a constant depending on the
parameters of the problem, and BΘ = [(1 + rmB1B2)(1 +

r3

HBOBV )](BtokBU )
1/L.

We note that B̄ exhibits an exponential dependence on the depth of the transformer, which also
amplifies the hidden dimensionality (width) of the embedding layer r. This contrasts with the
dependency in m, the hidden dimensionality of the MLP block, which is linear. All these factors
are commonly associated with higher expressive power of transformers suggesting that they should
contribute to a better minimization of R̂pre(Θ) at the expense of requiring more training data. The
number of heads H can be used as a counterbalance to increasing the width in the cubic term r3,
suggesting that a good balance between these parameters may lead to more data-efficient models.

Sample complexity of LLMs. Our goal is to show the asymptotic dependence on the number of
sequences that an LLM requires such that Qf is ε-close to the reference transition matrix Q∗. We
then derive a sample complexity bound. The proof is deferred to Appendix D.6.

Corollary 4.3 (Sample complexity). Let B̄ be the parameter-dependent constant of Theorem 4.1
or Corollary 4.2. Let δ ∈ [0, 1] and let ϵ > 0. If Ntrain ≥ N∗ := ⌈ 4B̄2

ϵ2 log
(
2
δ

)
⌉ and if we

assume a perfect pre-training error for fΘ, then we have with probability at least 1− δ,

ES∼PL∥Q∗(S, ·)−Qf (S, ·)∥1 ≤ ϵ.

This result allows us to contextualize LLMs’ ability to learn Markov chains with respect to the existing
literature. To the best of our knowledge, the only existing approach with theoretical guarantees for
learning Markov chains is the frequentist method: counting the number of occurrences of different
states to fill in the matrix Qf . Wolfer & Kontorovich (2019) show that the sample complexity of ap-
proximating Q∗ up to ϵ with such approach requires at most O(max{|V∗

K |/ϵ2γs, 1/γsπ∗}) samples,
where γs is a (pseudo) spectral gap of the Markov chain and π∗ is the smallest element of its stationary
distribution. The authors state that the frequentist approach is minimax optimal (up to logarithmic
factors). Our bound has a dependence that behaves as B̄2 = O(max{log T + 2T

√
r

τ , log (1/c0)}).
Given that in practice T > r, it then simplifies to O(max{T/ϵ2τ, 1/ϵ2}). Note that the LLMs’
sample complexity is linear in the vocabulary size T , which is remarkable compared to the sample
complexity of the frequentist approach, which scales as O(TK). We show in Section 5 that this is
confirmed experimentally: LLM’s ability to learn Markov chains exceeds the frequentist approach
for Markov chains with a large state space.

4.2 IN-CONTEXT LEARNING OF MARKOV CHAINS

Although insightful, the analysis presented above is related to the pre-training of LLMs – a process
that is hard and extremely costly to reproduce in practice. Similarly, we do not have access to the
ground-truth matrix Q∗ to reason about LLM’s ability to infer it in practice. To provide theoretical
results that can be confirmed experimentally, we now turn our attention to in-context learning of
Markov chains: a setup where one provides an LLM with an input sequence formed by a Markov
chain of size Nicl defined over a state space Ω of size d5. Different from the setting of Section 4.1,
we now can explicitly use a transition kernel P of this Markov chain for the theoretical analysis
by replacing PL with it in the definition of Ricl(Θ) and R̂icl(Θ) in Eq. (2) (see Appendix D.7 for
details on the problem setup). To relate the generalization error to the pre-training error, we quantify

5This is different from another variation of ICL where supervised (x,y) pairs are provided in-context. Rather,
the supervision is provided from observing transitions between states (xi, xi+1 = f(xi)) as discussed in (Li
et al., 2023, Fig.1).
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the discrepancy between an LLM pre-trained mostly on textual data, and a hypothetical LLM with
parameters in Wmc that is pre-trained on a dataset of Markov chains with the same data distribution
as the Markov chain used as an input during in-context inference. We define the divergence between
two estimated transition matrices PΘ1

,PΘ2
as

K(Θ1,Θ2) :=
1

N

N∑
n=1

ESn
[dTV(PΘ1

(· | Sn),PΘ2
(· | Sn))]. (3)

The operator K is akin to a distance (the separation property is only verified almost surely, see
Appendix C.4 for more details). The next result, whose proof is deferred to Appendix D.7, provides a
generalization bound on the in-context learning phase.

Theorem 4.4 (In-Context Learning generalization bound). Consider an LLM fΘ ∈ F . We
provide as input of fΘ a d−state Markov chain X = (X1, . . . ,XNicl

). The sequence of
subsequences of the first n terms is denoted by S = (S1, . . . ,Sn). S is also a Markov chain,
and we denote by tmix(ε) its mixing time. Let tmin := inf0≤ε<1 tmix

(
ε
2

)
( 2−ε
1−ε )

2. Let δ > 0.
Then, with probability at least 1− δ,

Ricl(Θ) ≤ inf
ϑ∈Wmc

{R̂icl(ϑ) +K(ϑ,Θ)}+ B̄

√
tmin

Nicl

√
log

(
2

δ

)
, (4)

where B̄ = 2max{log (d) + 2BU/τ, log (1/pmin)}1/2.

We first note that instead of the norm of the mixing matrix Γ seen before, we now have an explicit
dependency on tmin, which is related to the mixing time of the input Markov chain. This, together
with the availability of the ground-truth transition matrix, allows us to use Theorem 4.4 to derive and
verify experimentally the scaling laws of ICL for popular LLMs. Theorem 4.4 also suggests that an
LLM pre-trained on diverse data sequences different from Markov chains should exhibit a certain
degree of invariance to correctly infer the transition probabilities of the latter. This is reminiscent of
the domain adaptation bounds (Redko et al., 2019) that also commonly involve a distribution shift (i.e.,
a distance or a divergence) term that vanishes if the model is invariant to classes of transformations
linking the distribution of the input data with that on which it is applied during inference. A recent
success of applying LLMs to time series data (Gruver et al., 2023), for instance, suggests that this
term is indeed small for certain types of data not used during pre-training.

5 NUMERICAL EXPERIMENTS

Theorem 4.4 provides a practically verifiable result which naturally stems from our analysis in
Section 4. We then evaluate the ability of recent LLMs, namely Mistral 7Bv0.1 (Jiang et al.,
2023), Llama2 7B & 13B (Touvron et al., 2023b), and Gemma 2B (Team et al., 2024) to infer
transition probabilities of Markov chains in-context. We associate each state in the d-state Markov
chain with a token from the set {0, . . . , d − 1}, concatenated to obtain a prompt of length Nicl.
Bearing in mind the differences in the tokenization mechanisms of the different models, we add comas
whenever necessary to ensure that each state is tokenized separately. More details on the experimental
setup and additional experiments with more Markov chains and with Llama3.2 (Dubey et al., 2024)
are available in Appendix E.1.

Dependence on Nicl. We first analyze the effect of Nicl on the risk calculated for a randomly gener-
ated 3-state Markov transition matrix. From the results presented in Fig. 5(left), we note that Llama2
models deviate from our O(N

−1/2
icl ) theoretical scaling law, while most recent models (Mistral

and Gemma) stay much closer to Theorem 4.4, similarly to what was observed by Cabannes et al.
(2024). Being randomly generated, the Markov chains provided to the models have not been seen
during training, and older (weaker) models naturally struggle to generalize.

Dependence on tmin. Theorem 4.4 states that Markov chains with slow mixing (higher tmin) are
slower to learn. We now plot the true risk for a single model with different values of tmin highlighting
in Fig. 5(right) a two-stage regime of ICL. In a first stage, the bound in Eq. (4) is dominated by
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√
tmin/Nicl for small Nicl, and depends strongly on tmin, while the scaling law O(N

−1/2
icl ) dominates

as Nicl increases beyond Nicl ≈ 20.
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Figure 5: In-context scaling laws. The risk Ricl as functions of Nicl, with 95% confidence intervals.
(a) Risks for different LLMs along with the scaling law of Theorem 4.4. (b)-(c) Risks with Mistral
7B v0.1 for random 3-state transition matrices and different tmin as functions of Nicl and Nicl/tmin.

Dependence on d. We now verify Theorem 4.4 for Markov chains with a different state space size
(previously d = 3). We also consider a baseline given by the frequentist method mentioned before.
We recall that, for the latter, its dependence on d behaves like O(

√
d/Nicl), while Theorem 4.4 gives

O(
√
log(d)/Nicl). For Markov chains with a small number of states d, there is no clear difference

between the frequentist estimator and a LLM. However, as d grows the frequentist estimator struggles
to estimate the transition matrix due to the O(

√
d) scaling factor. This is verified experimentally in

Fig. 6, where we vary the parameter d from 3 (left) to 700 (right). We observe that the LLM follows
the theoretical neural scaling law O(N

−1/2
icl ) and outperforms the frequentist method for d = 700,

while being close to it for d = 3. We conclude that our analysis gives theoretical insights on the ICL
neural scaling law observed empirically in (Liu et al., 2024). The additional experiments conducted
in Appendix E.5 show that our bounds remain valid for large values of d.

100 101 102 103

Context Length Nicl

10 1

100
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ro

r 
icl

Frequentist
Gemma 2B

O(N −
1/2icl
)

100 101 102

Context Length Nicl
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O(N −1/2icl )

Figure 6: Impact of the number of states. We plot the risks Ricl as functions of Nicl for Gemma
2B and the frequentist approach (Wolfer & Kontorovich, 2019) with 95% confidence intervals. Left.
The input sequence is a random 3-state Markov chain. Right. The input sequence is a Brownian
motion discretized as a 700-state Markov chain, similarly to Liu et al. (2024).

6 CONCLUSION

This paper proposed an explicit characterization of the inference mechanism in large language models
through an equivalent finite-state Markov chain. We provided an insightful theoretical analysis
based on the established characterization and the ability of the LLM to infer the transition kernel
approximating the true transition probabilities of language. We adapted our results to in-context
learning where experiments confirm our theoretical insights. In the future, we hope that the proposed
equivalence will have far-reaching implications on our understanding of LLMs and allow for a more
fine-grained understanding of their expressiveness.
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Appendix
Roadmap. In Appendix A, we first recall our notations. We provide additional details on large
language models and transformers in Appendix B. Important notions and definitions related to Markov
chains and Marton couplings are given in Appendix C. The detailed proofs of our theoretical results
are given in Appendix D. Finally, we provide additional experiments in Appendix E.
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A NOTATIONS

We denote {1, · · · , N} as [N ]. We represent scalar values with regular letters (e.g., parameter λ),
vectors with bold lowercase letters (e.g., vector x), and matrices with bold capital letters (e.g., matrix
A). The i-th row of the matrix A is denoted by Ai, its j-th column is denoted by A,j and its
transpose is denoted by by A⊤. The identity matrix of size n is denoted by In ∈ Rn×n. The vector
of size n with each entry equal to 1 is denoted by 1n. We denote by ∥A∥p,q the Lp,q matrix norm
where the p-norm is over columns and the q-norm is over rows. We denote by ∥A∥ the operator
norm of A induced by the ℓ2 norm and by ∥A∥∞ = maxij |Aij | the operator norm induced by the
ℓ∞-norm. Similarly, x⊤ is the transpose of the vector x and ∥x∥p is its ℓp-norm. The total variation
between two probability distributions P,Q is denoted by dTV(P,Q). The term “almost surely” is
denoted by the notation “a.s.” while the term random variable is denoted by the notation “r.v.”.
∆n := {p ∈ [0, 1]n|∑n

i=1 pi = 1} is the probability simplex of Rn.

B BACKGROUND ON LARGE LANGUAGE MODELS

We first recall important notions regarding large language models before focusing on the most
widely used ones, namely the transformer-based LLMs. We describe the components of the vanilla
transformer architecture before describing the whole network at the heart of such a model and
formally defining the class of parameters and neural networks considered in our work.

B.1 LARGE LANGUAGE MODELS

In this section, we recall how the sequences of tokens are processed by the large language model
notably regarding the next token generation and the deletion process.

Definition B.1 (Generation process). Given an input s ∈ V∗
K of size p, an large language model

outputs a probability mass function fT,K
Θ (s) over the discrete vocabulary space. A next token x

is then sampled from fT,K
Θ (s), to construct a new sequence (s, x) of size p+ 1.

Generation can be repeated by considering (s, x) as new input sequence and iterating this process.
Since these models are designed to handle only sequences of size at most K, a deletion process is
required.

Definition B.2 (Deletion process). Given an input s of size p > K, an large language model
outputs a probability mass function fT,K

Θ (sK) where sK is a truncation of K tokens of the
sequence s. large language models implement front truncation, which is done by setting sK as
the last K tokens of s.

As shown in Fig. 7, only the last K tokens of a long input sequence are used. This is why we speak
of deletion, since we ignore the first tokens.

Note that it is possible to implement other kinds of truncation, but large language models usually do
not (Brown et al., 2020; Touvron et al., 2023a), however, in models like BERT (Devlin et al., 2019),
which are not autoregressive, back truncation as described in Fig. 8 is also an option.

B.2 TRANSFORMER ARCHITECTURE

The most popular autoregressive LLMs rely on the transformer architecture (Vaswani et al., 2017)
which we describe below following (Brown et al., 2020; Edelman et al., 2022; Zhang et al., 2023b).
An autoregressive transformer-based LLM takes as input a sequence of length n, with n ≤ K and K
is the context window, tokens with values in a vocabulary V of size T . The tokens are embedded into
a r-dimensional space and the input can be written as S ∈ Rr×n. We consider a transformer model
with L layers and h heads. The output of the ℓ-th layer writes S(ℓ) and is fed as input of the (ℓ+1)-th
layer. The input of the whole model is S(0) = S. Below, we describe the operations performed by
the model, including the embeddings of the tokens.
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x1 x2 x3 x4

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Figure 7: Deletion process, front truncation. A large language model with context window K = 7
in navy blue, processing sequences of different lengths. Top. A sequence of length 4. Bottom. Front
truncation of a sequence of length 10.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Figure 8: Back truncation. A large language model with context window K = 7 in navy blue,
processing back truncation of a sequence of a sequence of length 10.

• Token embeddings. The tokens are embedded in a r-dimensional space via an embedding layer
WE which results in an input of the form Sr×n;

• Positional embeddings. (Learnable) positional embeddings are added to each token depending
on its position in the input sequence. This breaks the permutation-invariance of the transformer
architecture and leads, by abuse of notation, to an output S ∈ Rr×n;

• Multi-head attention (MHA). Given an input sequence S ∈ Rr×n, query, key, and value matrices
WQ,WK ,WV ∈ Rr×r (here the value and output matrices are merged for ease of notations), the
self-attention module computes

A(S;WQ,WK ,WV ) := softmax
(
WQS(WKS)

⊤
/
√
r
)
(WV S) ∈ Rr×n,

with softmax: x ∈ Rn → exp(x)/
∑

i exp(x)i ∈ ∆n. The operation described below corre-
sponds to single-head self-attention. In practice, multi-head attention (MHA) is used with H heads
and the query and key matrices are in R r

H × r
H and the value matrix is in R r

H ×r (r,H are taken
such that r

H is an integer). The MHA module concatenates on the row dimension the outputs of
A for each head and then projects it back to the embedding dimension r with an output matrix
WO ∈ Rr×r. By abuse of notation, we also denote by A this operation which results in an output
of dimension r×n, and we include the output matrix in the argument of the operator. The ℓ-th layer
of the transformer applies attention with layer-specific weight matrices and a residual connection
that leads to an output

Z(ℓ) = S(ℓ−1) +A
(
S(ℓ−1);W

(ℓ)
Q ,W

(ℓ)
K ,W

(ℓ)
V ,W

(ℓ)
O

)
.

This is followed by a layer normalization (Zhang & Sennrich, 2019) that projects each token into
the ℓ2-unit ball, i.e., each column S

(ℓ)
·,n has an ℓ2-norm lower than 1;

• Feed-forward block (FF). Finally, a feed-forward block is applied, consisting of a two-layer
MLP with hidden dimension m, layer-specific weight matrices W(ℓ)

1 ∈ Rm×r,W
(ℓ)
2 ∈ Rr×m and

ReLU activation denoted by ReLU(x) = max{0, x} and applied entry-wise. The output of this
layer reads

Y(ℓ) = W
(ℓ)
2 ReLU

(
W

(ℓ)
1 Z(ℓ)

)
.

It is followed by a residual connection to produce the output

S(ℓ) = Z(ℓ) +W
(ℓ)
2 ReLU

(
W

(ℓ)
1 Z(ℓ)

)
∈ Rr×n,
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on which layer normalization (Zhang & Sennrich, 2019) is applied ensuring that each column S
(ℓ)
·,n

has an ℓ2-norm lower than 1.
• softmax output layer. In the autoregressive setting, the model outputs a probability distribution on

the vocabulary V . To that end, the output S(L) ∈ Rr×n of the final layer is projected back to the
vocabulary size by an “unembedding layer” WU ∈ RT×r and averaged over the columns to obtain
a vector in RT . A softmax layer is finally applied on top of it to obtain the probability distribution
of the next token PΘ(· | S). Formally, we have

PΘ(· | S) = softmax

(
1

nτ
WUS

(L)
1n

)
∈ ∆T ,

n is the length (i.e., number of columns) of the input sequence S (and thus of the last layer output
S(L)), Θ denotes the parameters of the whole network that subsume the parameters of each layer
and each block and τ is the softmax temperature (Hinton, 2015).

B.3 AUTOREGRESSIVE TRANSFORMER-BASED LLM

The architecture described above is used in most of the transformer-based autoregressive LLM (Anil
et al., 2023; Brown et al., 2020; Dubey et al., 2024; Jiang et al., 2023). In the theoretical analysis of
Section 4, and unless specified otherwise, we remain faithful to their practical implementation and
only make the following mild assumption: we assume that the unembedding layer is bounded. The
class of parameters and the class of neural networks it generates respectively writes

W = {Θ | ∥W⊤
U∥2,1 ≤ BU} and F = {fΘ | Θ ∈ W}.

It should be noted that this assumption is significantly weaker than what is usually done in the
literature (Edelman et al., 2022; Zhang et al., 2023b).

C BACKGROUND ON MARKOV CHAINS

We recall below some important notions related to Markov chains based on (Paulin, 2015; Roberts &
Rosenthal, 2004) and that will be used in our proofs.

C.1 BASIC NOTIONS

Consider two distribution probabilities P and Q defined on a measurable space (Ω,F).

Definition C.1. The total variation between P and Q is defined as

dTV(P,Q) := sup
A∈F

|P(A)−Q(A)|.

In the setting considered in the main paper, we consider Markov chains with finite discrete state space
Ω. In this section, we refer to Ω as a general Polish space, whose elements are referred to as states.

Informally, a discrete-time, time-homogeneous Markov chain with state space Ω is a sequence of
random variables (X1,X2, . . .) taking values in Ω such that the next observation is independent
of the past given the present. This property is referred to as the Markov property and is defined
below.

Definition C.2. A sequence of random variables (X1,X2, . . .) is said to satisfy the Markov
property if for all n ≥ 1 and any (x1, . . . , xn+1) ∈ Ωn+1

P(Xn+1 = xn+1 | Xn = xn, · · · ,X1 = x1) = P(Xn+1 = xn+1 | Xn = xn).

To a given Markov chain, we associate its transition kernel Q : Ω2 → [0, 1] which collects the
transition probabilities from one state to another

∀n ∈ N, (x, y) ∈ Ω2, Q(x, y) = P(Sn+1 = y | Sn = x).

In the main text, we refer to Q as a transition matrix as the Markov chains we consider are of finite
state space.
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Definition C.3. A distribution π on Ω is said to be a stationary distribution if the action of the
transition kernel leaves π unchanged, that is

(Qπ)(A) :=

∫
y∈A

Q(x, y)dπ(x) = π(A)

for all A ∈ F .

A natural question is whether such a distribution exists for a generic Markov chain. Before stating an
existence theorem, we introduce a classification of states below.

Class of states. All definitions bellow are borrowed from (Gallager, 1996)

Definition C.4 (Accessibility and communication). A state x is accessible from y (abbreviated
as x → y) if there exists n > 0 such that Qn(x, y) > 0. Two distinct states x and y communicate
(abbreviated x ↔ y) if x is accessible from y and y is accessible from x.

Accessibility and communication concepts define how states can reach each other within a Markov
chain. This leads to an important classification of states into transient and recurrent categories.

Definition C.5 (Recurrent and transient states). For finite-state Markov chains, a recurrent state
is a state i that is accessible from all states that are accessible from i (i is recurrent if i → j
implies that j → i). A transient state is a state that is not recurrent.

With the distinction between recurrent and transient states established, we can now group states into
classes based on their communication properties.

Definition C.6 (Class of states). A class C of states is a non-empty set of states such that each
i ∈ C communicates with every other state j ∈ C and communicates with no j /∈ C

Aperiodicity and Ergodicity. Aperiodicity ensures that the system does not exhibit cyclic behavior,
which is a key condition for understanding the asymptotic behavior of states.

Definition C.7 (Aperiodicity). The period of a state i, denoted d(i), is the greatest common
divisor (gcd) of those values of n for which Qn(i, i) > 0. If the period is 1, the state is aperiodic.

Under some conditions on the Markov chain (aperiodicity and irreducibility (Roberts & Rosenthal,
2004)), it can be proven that the chain converges to its stationary distribution i.e. for any x ∈ Ω,
limn→∞ dTV(Q

n(x, ·), π) = 0, where Qn(x, ·) denotes the probability of Sn conditioned on S1 =
x.

We recall below the notion of mixing time that assesses the time taken by the Markov chain to be
ε-close to its stationary distribution (see Definition C.8).

Definition C.8 (Mixing time for time-homogeneous Markov chains (Paulin, 2015)). Let X :=
(X1,X2, . . .) be a time-homogeneous Markov chain with a state space Ω, a transition kernel Q,
and a stationary distribution π. Its mixing time is defined for any ε ∈ [0, 1] as

tmix(ε) := min {t | d(t) ≤ ε} where d(t) := sup
x∈Ω

dTV

(
Qt(x, ·), π

)
.

We also introduce the quantity

tmin := inf
0≤ε<1

tmix

(ε
2

)
·
(
2− ε

1− ε

)2
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which will be useful later on.
Remark C.1 (Well-posedness of tmin). As we only consider finite state-space Markov chains in
our work, we know that a stationary distribution always exists. However, its uniqueness and the
convergence to it require additional assumptions (see Appendix C.2). In particular, not all Markov
chains admit a finite tmix(ε), tmin for some ε < 1

2 . In such case, tmin can be infinite. In our practical
experimentation, this is never the case despite considering various Markov chains.

C.2 ERGODIC UNICHAINS

We are now ready to state the following theorem, which formalizes the classification of states into
recurrent, transient, and aperiodic classes.

Theorem C.9 (Recurrent and transient classes). For finite state Markov chains, either all states
in a class are transient or all are recurrent. We refer to these classes as transient and recurrent,
respectively.

For any Markov chain, all states in a class have the same period. If the period is 1, the class is
said to be aperiodic

Having categorized states into recurrent, transient, and aperiodic classes, we can now define ergodicity.

Definition C.10 (Ergodicity). For a finite-state Markov chain, an ergodic class of states is a
class that is both recurrent and aperiodic. A Markov chain consisting entirely of one ergodic
class is called an ergodic chain.

Unichains. We now introduce the concept of unichains.

Definition C.11 (Unichains and ergodic unichains). A unichain is a finite-state Markov chain
containing a single recurrent class and transient states. An ergodic unichain is a unichain for
which the recurrent class is ergodic.

C.3 MARTON COUPLINGS

While we consider Markov chain inputs in Section 4.2, we consider less structured inputs during the
pre-training phase Section 4.1.

More specifically, we model the sequences of tokens used during pre-training as generic dependent
random variables. To derive meaningful results, we rely on the notion of Marton couplings introduced
by Marton (2004). A Marton coupling can be seen as a weak dependency structure between random
variables. The associated notion of the mixing matrix, analogous to the mixing time of a Markov
chain, is used to assess the strength of the dependence between those variables.

This minimal modeling choice is made to remain as faithful as possible to the pre-training considered
in practical applications of LLMs, for which the pre-training data is not public and may contain
arbitrary data points such as video, code snippets, text and images (Achiam et al., 2023; Anil et al.,
2023; Brown et al., 2020; Dubey et al., 2024; Jiang et al., 2023; Touvron et al., 2023a).

As shown in Paulin (2015, Remark 2.2.), considering sequences of random variables linked through a
Marton coupling is a weaker assumption than what is usually done in the literature on generalization
bounds, which typically relies on independent random variables and Markov chains (Hu et al., 2024;
Marion, 2023; Wolfer & Kontorovich, 2019; Zhang et al., 2023b).

In particular, the results stated in Section 4.1 encompass the case where the pre-training input
sequences of tokens are independent random variables (Kim et al., 2024) or Markov chains (Zhang
et al., 2023b). We also note that Markov chains can model bigrams used in natural language (Bietti
et al., 2023; Jurafsky & Martin, 2024).

We do not provide an exhaustive review of Marton couplings. We will simply recall its definition and
introduce the associated mixing matrix. We refer the interested reader to Marton (2004) and Paulin
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(2015). Consider a sequence of dependent random variables S = (S1, . . . ,SN ) taking values in a
polish space Ω = Ω1 × . . .× ΩN . We will denote by P(S1, . . . ,SN ) the distribution of S.

Definition C.12 (Marton coupling). We define a Marton coupling for S as a set of couplings(
S(s1,...,si,s

′
i), S′(s1,...,si,s′i)

)
∈ Ω× Ω,

for every i ∈ [N ], every s1 ∈ Ω1, . . . , si ∈ Ωi, s
′
i ∈ Ωi, satisfying the following conditions.

(i) S
(s1,...,si,s

′
i)

1 = s1, . . . , S
(s1,...,si,s

′
i)

i = si,

S
′(s1,...,si,s′i)
1 = s1, . . . , S

′(s1,...,si,s′i)
i−1 = si−1, S

′(s1,...,si,s′i)
i = s′i.

(ii)
(
S
(s1,...,si,s

′
i)

i+1 , . . . ,S
(s1,...,si,s

′
i)

N

)
∼ P(Si+1, . . . ,SN | S1 = s1, . . . ,Si = si),(
S′(x1,...,xi,x

′
i)

i+1 , . . . ,S′(x1,...,xi,x
′
i)

N

)
∼ P(Si+1, . . . ,SN | S1 = x1, . . . ,Si−1 = xi−1,Si = x′

i).

(iii) If xi = x′
i, then S(x1,...,xi,x

′
i) = S′(x1,...,xi,x

′
i).

Definition C.13 (Mixing matrix (Paulin, 2015)). For a Marton coupling, we define the mixing
matrix Γ ∈ RN×N as an upper diagonal matrix with

∀1 ≤ i < j ≤ N,


Γi,i := 1,

Γj,i := 0

Γi,j := sups1,...,si,s′i P
[
S
(s1,...,si,s

′
i)

j ̸= S′(s1,...,si,s
′
i)

j

] .
For independent random variables, one can define a Marton coupling with a mixing matrix equal to
the identity (see Paulin, 2015, Remark 2.2). In particular, it means that for independent variables, we
have the operator norm of the mixing matrix equal to 1, i.e., ∥Γ∥ = 1.

C.4 AN (ALMOST) DISTANCE BETWEEN MARKOV CHAINS

In Theorem D.23, We state elementary properties of K in the proposition below.

Proposition C.14 (Properties of K). K is an almost-distance between transition matrices in the
sense that it satisfies the properties below:

1. Non-negativity. For any Θ1,Θ2, K(Θ1,Θ2) ≥ 0.

2. Almost sure positivity. K(Θ1,Θ2) = 0 ⇐⇒ ∀n ∈ [N ],PΘ1
(· | Sn) = PΘ2

(· | Sn) a.s..

3. Symmetry. For any Θ1,Θ2, K(Θ1,Θ2) = K(Θ1,Θ2).

4. Triangular inequality.. For any Θ1,Θ2,Θ3, K(Θ1,Θ3) ≤ K(Θ1,Θ2) +K(Θ2,Θ3).

Proof of Proposition C.14. We first recall the following technical lemma.

Lemma C.15 (Proposition 2.16 in Folland (1999)). Let Y be a non-negative random variable
defined on a probability space Ω with probability function P. If E[Y ] = 0, then Y = 0 almost
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surely, i.e.,
P({ω ∈ Ω | Y (ω) = 0}) = 1

The non-negativity and symmetry of K directly come from the symmetry and non-negativity of the
total variation distance. The triangular inequality follows from the fact that the total variation is a
distance and that the expectation respects inequalities. For the almost positivity, consider Θ1,Θ2

such that K(Θ1,Θ2) = 0. By non-negativity of all the terms in the sum, it means that for all n ∈ [N ],
we have

ESn [dTV(PΘ1(· | Sn),PΘ2(· | Sn))] = 0.

As the total variation is a distance, we know that the random variable under the expectation is
non-negative. Applying Lemma C.15 leads to

dTV(PΘ1(· | Sn),PΘ2(· | Sn)) = 0 almost surely.

On the probability space, deprived of the set where the distance is non-zero (which is of null measure),
the total variation is equal to zero and as a distance between probability distributions, it means that
on this subset of the probability space, the probabilities are equal. Again, as the set on which they are
not equal is of null measure, we have

PΘ1
(· | Sn) = PΘ2

(· | Sn) almost surely.

Putting everything together, we have

∀n ∈ [N ],PΘ1(· | Sn) = PΘ2(· | Sn) a.s., (5)

which concludes the direct sense. The converse sense is proved by assuming that Eq. (5) holds and
using the distance properties of the total variation. This concludes the proof.

D PROOFS

D.1 PROOF OF PROPOSITION 3.1

We detail below the proof of Proposition 3.1.

Proof of Proposition 3.1. Step 1: large language models as Markov chains. Given an input
vi ∈ V∗

K of p tokens, an large language model outputs a probability mass function fT,K
Θ (vi) over

the discrete vocabulary space. As the temperature is positive, i.e., τ > 0, and as the exponential is
positive, we know that all the tokens in the vocabulary will be given a positive mass.

A next sequence vj ∈ V∗
K is then sampled according to fT,K

Θ (vi). But the vj sequences that fit
necessarily contain the vi sequence (except possibly the first element of vi, thanks to Definition B.2),
i.e. ∀l, (vj)l = (vi)l+1. Note also the size of vj is p+ 1 when p < k and k when p = k. All other
sequences vj that do not satisfy this condition are not suitable.

In that sense, fT,K
Θ can be represented by a Markov chain MC(V∗

K ,Qf ) with transition kernel
Qf ∈ R|V∗

K |×|V∗
K |, as defined in Proposition 3.1.

Step 2: Proportion of non-zero elements. We denote by R the set of states of length K. The set
of states of length strictly less than equal K is denoted by T . We can construct a transition matrix
PR ∈ RTK×TK

with the states of this class, containing the probabilities of moving from one state of
R to another. PR corresponds to the blue block in Fig. 1 while green rectangle blocks correspond to
part of PT and PT R in the following description of large language models as Markov chains,

Qf =

 PT PT R

0 PR

. (6)

Now, let us count the number of non-zero elements in each of these 4 large blocks.

PT block : The size of this block is
[ T

T − 1
(TK−1 − 1)

]
×
[ T

T − 1
(TK−1 − 1)

]
. There are K − 2

green blocks contained in PT . The block number i ∈ [K − 2] is of size T i × T i+1. Since each
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sentence of size i can be completed with non-zero probability, by any other token, there are a total
of
∑T i

p=1 T = T i+1 non-zero elements. There are therefore
∑K−2

i=1 T i+1 non-zero elements in the
entire PT block.

PT R block : The size of this block is
[ T

T − 1
(TK−1 − 1)

]
× TK . The green block contained in

PT R that contains non-zero elements is of size TK−1 × TK . Since each sentence of size K − 1 can
be completed with non-zero probability, by any other token, there are a total of

∑TK−1

p=1 T = TK

non-zero elements.

PR block : The size of this block is TK × TK . Each sentence v = (v1, . . . , vK) of size K is
mapped to another sentence v′ = (v′1, . . . , v

′
K) of size K with non-zero probability, if and only if

v′1 = v2, v
′
2 = v3, . . . , v

′
k−1 = vK . The final token v′K can by any other token in the vocabulary. It

means that there are a total of
∑TK

p=1 T = TK+1 non-zero elements.

0′s block : Obviously, there are no non-zero elements in this block.

Finally, there are

K−2∑
i=1

T i+1 + TK + TK+1 =

K∑
i=1

T i+1 = T 2

(
TK − 1

T − 1

)
non-zero elements. This means that the proportion of non-zero elements in the matrix is exactly

T 2
(

TK−1
T−1

)
(
T
(

TK−1
T−1

))2 =
T − 1

TK − 1
.

Note that for large T and K we have that

T − 1

TK − 1
∼ 1

TK−1
.

D.2 PROOF OF PROPOSITION 3.2

We begin with a preliminary lemma.

Lemma D.1 (Powers of Qf greater than K). For any initial state i, the following hold:

• ∀k ≥ K,∀j ∈ T , (Qk
f )i,j = 0,

• ∀k ≥ K,∀j ∈ R, (Qk
f )i,j > 0.

Proof. By considering Qf as defined in (6), we can compute its powers. For any k ≥ 1,

Qk
f =

P k
T Bk

0 P k
R

,

where Bk =
∑k−1

m=0 P
m
T PT RP k−1−m

R .

To prove the first item, we focus on the blocks on the left of Qf . Since the lower left block is zero,
we have that ∀k ≥ 1,∀i ∈ R,∀j ∈ T , (Qk

f )i,j = 0. In the upper left block, the element (P k
T )i,j

designates the probability of moving from one transient state i ∈ T to another transient state j ∈ T
after k iterations. According to Definition B.1, if state i is a sequence of p ≥ 1 tokens, state j
is necessarily a sequence of min{K, p +K} = K elements. Thus, PT is a nilpotent matrix and
∀k ≥ K, ∀i, j, (P k

T )i,j = 0. This proves that ∀k ≥ K,∀j ∈ T , (Qk
f )i,j = 0.
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We now move on to the second item. From the above, ∀k ≥ K,Bk =
∑K−1

m=0 P
m
T PT RP k−1−m

R .
Note that this sum is finite, but there is still a dependence on k, in the powers of the matrix PR. In
the lower right block, the element (P k

R)i,j designates the probability of moving from one recurrent
state i ∈ R to another recurrent state j ∈ R after k iterations. According to the definition of Qf in
Proposition 3.1 and Definition B.2, ∀k ≥ K,∀i, j ∈ R2, (P k

R)i,j is nonzero. Exploiting this also in
Bk, we obtain the result, i.e. ∀k ≥ K,∀j ∈ R, (Qk

f )i,j > 0.

We are now ready to prove Proposition 3.2, which is inspired by Gallager (1996).

Proof of Proposition 3.2. The states of length strictly less than equal K (elements of T ) are transient,
because of Definition B.1. To discuss the nature of states of length K (elements of R), let us introduce
a result regarding the powers of the Qf matrix as defined in (6). Thanks to Lemma D.1, the set of
states R (i.e. the states of length K) form a class. Lemma D.1 gives us also that R is ergodic. In
fact, every state in R only communicates with all the other states in R, which proves the recurrence.
Since ∀i, j ∈ R2, (QK

f )i,j > 0, we can move between any two states in exactly K steps, regardless
of the initial position. This ensures that R is aperiodic because the transition probabilities do not
depend on a specific cycle, and states can be revisited at various time steps, not just multiples of
a particular number. More simply, by considering a token x, the state defined as i = xx . . . x︸ ︷︷ ︸

K times

has

period 1, i.e. (Qf )i,i > 0. This is a consequence of Definition B.2 and Proposition 3.1. Thanks to
Theorem C.9, it means that the whole class R is aperiodic. Finally, this means that MC(V∗

K ,Qf ) are
ergodic unichains, in the sense of Definition C.11.

D.3 PROOF OF PROPOSITION 3.3

We start by introducing three technical lemmas that will be useful in the proof of Proposition 3.3. We
start with the Chapman–Kolmogorov equation.

Lemma D.2 (Chapman-Kolmogorov equation). Let P be a matrix of size d. Then, P satisfies

∀i, j ∈ [d]2,∀n, n′ ∈ N2, (Pn+n′
)i,j =

d∑
k=1

(Pn)i,k(P
n′
)k,j .

Proof. The result follows from the fact that ∀n, n′ ∈ N2, Pn+n′
= PnPn′

.

Then, we introduce a simple but useful result of monotonicity.

Lemma D.3 (Lemma 3.3.1. in Gallager (1996)). Let the transition matrix P of a finite state
Markov chain. Then, for all states j and n ≥ 1, we have

max
i

(Pn+1)i,j ≤ max
i

(Pn)i,j , and min
i

(Pn+1)i,j ≥ min
i

(Pn)i,j .

We now refer to a result on Markov chains with positive transition matrices.

Lemma D.4 (Lemma 3.3.2. in Gallager (1996)). Let the transition matrix P of a finite state
Markov chain satisfy ∀i, j, Pi,j > 0, and let α = min

i,j
Pi,j > 0. Then, for all states j and n ≥ 1,

max
i

(Pn)i,j −min
i

(Pn)i,j ≤ (1− 2α)
(
max

i
(Pn)i,j −min

i
(Pn)i,j

)
,

max
i

(Pn)i,j −min
i

(Pn)i,j ≤ (1− 2α)n,

lim
n→∞

max
i

(Pn)i,j = lim
n→∞

min
i

(Pn)i,j > 0.

We are now ready to prove Proposition 3.3 using a similar argument as in Gallager (1996).
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Proof of Proposition 3.3. Let T and R denote respectively the sets of transient and recurrent states.
For any state j, we define πj := limn→∞ maxi (Q

n
f )i,j = limn→∞ mini (Q

n
f )i,j . Then π =

(πj)j∈Ω is the stationary distribution for Qf .

Step 1: Stationary distribution for transient states. Lemma D.1 gives us that ∀i,∀k ≥ K,∀j ∈
T , (Qk

f )i,j = 0. This means that ∀j ∈ T , πj = 0 and hence the limit is reached at most after K
iteration.

Step 2: Stationary distribution for recurrent states. Lemma D.1 gives us ∀i, j ∈ R2, (QK
f )i,j >

0. By defining ε := min
i,j∈R2

(QK
f )i,j , Lemma D.4 shows that for any integer ℓ ≥ 1,

max
i∈R

(QℓK
f )i,j −min

i∈R
(QℓK

f )i,j ≤ (1− 2ε)

(
max
i∈R

(QℓK
f )i,j −min

i∈R
(QℓK

f )i,j

)
, (7)

max
i∈R

(QℓK
f )i,j −min

i∈R
(QℓK

f )i,j ≤ (1− 2ε)ℓ, (8)

lim
ℓ→∞

max
i∈R

(QℓK
f )i,j = lim

ℓ→∞
min
i∈R

(QℓK
f )i,j > 0. (9)

Thanks to Lemma D.3, max
i

(Qn+1
f )i,j is non-decreasing in n, so the limit on the left in Eq. (9) can

be replaced with a limit in n. The same argument for the limit on the right gives that, ∀j ∈ R,

max
i∈R

(Qn
f )i,j −min

i∈R
(Qn

f )i,j ≤ (1− 2ε)⌊n/K⌋,

lim
n→∞

max
i∈R

(Qn
f )i,j = lim

n→∞
min
i∈R

(Qn
f )i,j > 0,

where we have taken the floor function to also convert the result of (8). Since πj lies between the
minimum and maximum (Qn

f )i,j for each n, we have that ∀i, j ∈ R2,

|(Qn
f )i,j − πj | ≤ (1− 2ε)⌊

n
K ⌋.

It means that ∀i, j ∈ R2, πj = limn→∞(Qn
f )i,j . This also gives us the convergence rate when the

initial state i is recurrent. In the next step, we consider the general convergence rate, regardless of the
nature of the initial state i.

Step 3: Convergence bound. We proceed to the remaining case, i.e. the case where the initial state
i ∈ T and the final state j ∈ R. Lemma D.2 says that ∀n ≥ K,

(Qn
f )i,j =

∑
k∈T

(QK
f )i,k(Q

n−K
f )k,j +

∑
k∈R

(QK
f )i,k(Q

n−K
f )k,j .

We then have that ∀i ∈ T ,∀n ∈ N,

|(Qn
f )i,j − πj | ≤

∣∣∣ ∑
k∈T

(QK
f )i,k

[
(Qn−K

f )k,j − πj

]
+
∑
k∈R

(QK
f )i,k

[
(Qn−K

f )k,j − πj

]∣∣∣
≤
∑
k∈T

(QK
f )i,k

∣∣(Qn−K
f )k,j − πj

∣∣+ ∑
k∈R

(QK
f )i,k

∣∣(Qn−K
f )k,j − πj

∣∣
≤
∑
k∈T

(QK
f )i,k +

∑
k∈R

(QK
f )i,k

∣∣(Qn−K
f )k,j − πj

∣∣
≤ (1− 2ε)⌊

n−K
K ⌋,

where the first sum vanishes and
∑

k∈R(QK
f )i,k ≤ 1. Finally, ∀i ∈ T ,∀n ≥ K,

|(Qn
f )i,j − πj | ≤ (1− 2ε)⌊

n
K ⌋−1.

Combining this with the result of Step 2 concludes the proof.

D.4 PROOF OF THEOREM 4.1

In this section, we detail the proof of Theorem 4.1. We provide below an overview of the proof before
detailing it.
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Overview of the proof. We are going to use McDiarmid’s inequality for dependent random
variables of Paulin (2015, Theorem 2.9). To adapt the arguments of Paulin (2015, Theorem 2.9) to
our setting, we bound the total variation between the true probability of the next token and the one
estimated by the LLM. The rest of this section is organized as follows. First in Appendix D.4.1, we
adapt the concentration inequality of Paulin (2015, Theorem 2.9). Then in Appendix D.4.2, we show
how to bound the total variation between the true and the estimated probability of the next token. , in
Appendix D.4.3, we restate Theorem 4.1 and conclude the proof.

D.4.1 CONCENTRATION INEQUALITIES FOR DEPENDENT RANDOM VARIABLES

We first state a concentration inequality for dependent random variables that will be used to obtain
our final bound.

Proposition D.5 (McDiarmid’s inequality for dependent random variables). Let S :=
(S1, . . . ,SN ) be a sequence of random variables that take values in Ω = Ω1 × . . . × ΩN .
Assume there exists a Marton coupling for S with mixing matrix Γ. Let ∥Γ∥ be the operator
norm of Γ. If f : Ω → R is such that there exists c ∈ RN satisfying

∀x,y ∈ Ω, f(x)− f(y) ≤
N∑
i=1

ci1{xi ̸=yi},

then we have for any u ≥ 0,

P(|f(S)− ES [f(S)]| ≥ u) ≤ 2 exp

( −2u2

∥Γ∥2∥c∥22

)
.

Proof. Consider a function f verifying the properties of Proposition D.5. Paulin (2015, Theorem 2.9)
ensures that for a partition Ŝ of S (see Paulin, 2015, Definition 2.3) the following inequality holds

∀u ≥ 0, P
(
|f(Ŝ)− E

[
f(Ŝ)

]
| ≥ u

)
≤ 2 exp

( −2u2

∥Γ · C(c)∥22

)
, (10)

where C(c) is a vector of RN whose i-th element is the sum of the cj such that j is an index of
the elements of Ŝi. Taking the trivial partition Ŝ = S implies that the index of the elements in Ŝi

are reduced to {i}. Hence the i-th entry of C(c) is equal to ci and C(c) = c. By definition of the
operator norm (naturally induced by the ℓ2-norm), we have

∥Γ · c∥2 =
∥Γc∥2
∥c∥2

· ∥c∥2 ≤ sup
x̸=0

∥Γx∥2
∥x∥2︸ ︷︷ ︸

=∥Γ∥

·∥c∥2 ≤ ∥Γ∥ · ∥c∥2,

where the first inequality comes from the fact that c is non-zero (otherwise the only possible f is
the zero function which is not of great interest). Using the fact that the function x → exp (− 2u2

x ) is
increasing, we obtain

exp

( −2u2

∥Γ · c∥22

)
≤ exp

( −2u2

∥Γ∥2 · ∥c∥22

)
,

which concludes the proof.

By looking at the definition of the risk R̂pre(Θ), we can see that applying Proposition D.5 to the
function

f : (S1, . . . ,SNtrain
) =

1

Ntrain

Ntrain∑
n=1

dTV(PL(· | Sn),PΘ(· | Sn)),

would lead to the desired bound as we already know S admits a Marton coupling with mixing matrix
Γ. We investigate in the next section how to find the bounding vector c to apply Proposition D.5.
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D.4.2 FINDING THE BOUNDING VECTOR

Technical lemmas. We first recall the following important notions from (Tsybakov, 2008). Let
(Ω,F) be a measure space and consider two probability distributions P,Q defined on (Ω,F). For
any σ-finite measure ν on (Ω,F) such that P,Q are absolutely continuous with respect to ν, we can
define p = dP

dν , q = dQ
dν which can also be written as P(dω) = q(ω)ν(dω) and Q(dω) = p(ω)ν(dω).

We will adopt both notations interchangeably. It should be noted that there always exists at least one
such measure ν as one can take ν = P + Q. With these notations, the squared Hellinger distance
between P and Q is defined as

H(P,Q)
2 :=

∫
ω∈Ω

(√
p(ω)−

√
q(ω)

)2
ν(dω) =

∫
ω∈Ω

(√
P(dω)−

√
Q(dω)

)2
.

The lemma below shows that the total variation between two probability distributions is controlled
from above by the absolute value of the logarithm of their ratio.

Lemma D.6. Consider two probability distributions P,Q defined on a measure space (Ω,F)
and a σ-finite measure ν on (Ω,F). Let p, q be the corresponding probabilities densities, i.e.,
we have P(dω) = q(ω)ν(dω) and Q(dω) = p(ω)ν(dω), the total variation between P and Q
satisfies

dTV(P,Q) ≤
(
2

∫
ω∈Ω

∣∣∣∣∣log
√

P(dω)
Q(dω)

∣∣∣∣∣ q(ω)dν(dω)
)1/2

.

If there exists a non-negative constant B such that for any z ∈ Ω,
∣∣∣log√ P(z)

Q(z)

∣∣∣ ≤ B, then we
have

dTV(P,Q) ≤
√
2B.

Proof. We have the following relation between the total variation and the Hellinger distance (cf.
Tsybakov, 2008, Lem. 2.3, Chapt. 2, p. 86):

dTV(P,Q)
2 ≤ H(P,Q)

2 ·

1−H(P,Q)
2
/4︸ ︷︷ ︸

≥0

 ≤ H(P,Q)
2
, (11)

where the last inequality uses the positivity of the Hellinger distance. Inspired by the decomposition
of the Hellinger distance in (Agarwal et al., 2020, Lem. 25), we have

H(P,Q)
2
=

∫
ω∈Ω

(√
P(dω)−

√
Q(dω)

)2
=

∫
ω∈Ω

(
P(dω) +Q(dω)− 2

√
P(dω)

√
Q(dω)

)
= 2 ·

(
1−

∫
ω∈Ω

√
P(dω)

√
Q(dω)

)
= 2 ·

(
1−

∫
ω∈Ω

√
P(dω)
Q(dω)

Q(dω)

)

= 2 ·
(
1−

∫
ω∈Ω

√
P(dω)
Q(dω)

q(ω)dν(dω)

)
(by definition of Q(dω))

≤ −2 log

(∫
ω∈Ω

√
P(dω)
Q(dω)

q(ω)dν(dω)

)
(using 1− x ≤ − log (x))

It follows using Eq. (11)

dTV(P,Q)
2 ≤ H(P,Q)

2

≤ 2

∫
ω∈Ω

− log

(√
P(dω)
Q(dω)

)
q(ω)dν(dω) (by Jensen as − log is convex)

≤ 2

∣∣∣∣∣
∫
ω∈Ω

− log

(√
P(dω)
Q(dω)

)
q(ω)dν(dω)

∣∣∣∣∣
27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

≤ 2

∫
ω∈Ω

∣∣∣∣∣− log

(√
P(dω)
Q(dω)

)∣∣∣∣∣ q(ω)dν(dω) (by Jensen as |·| is convex)

≤ 2

∫
ω∈Ω

∣∣∣∣∣log
(√

P(dω)
Q(dω)

)∣∣∣∣∣︸ ︷︷ ︸
≤B

q(ω)dν(dω) (first part of Lemma D.6)

≤ 2B

∫
ω∈Ω

q(ω)dν(dω)︸ ︷︷ ︸
=1

≤ 2B. (second part of Lemma D.6)

This concludes both parts of the proof.

The next lemma provides a lower bound on the softmax output if its input is upper-bounded (in
ℓ1-norm).

Lemma D.7. Let x ∈ Rm be such that ∥x∥1 ≤ c1 for some c1 > 0. Then, we have

softmax(u) ≥ 1

m exp (2c1)
,

where the inequality holds for each component of softmax(u).

Proof. Using the fact that

∥x∥1 =

m∑
i=1

|xi| ≤ c1,

we know that for any i ∈ [m], we have

−c1 ≤ xi ≤ c1.

Hence, using the fact that the exponential is increasing, we have for any i ∈ [m]

exp (−c1) ≤ exp (xi) ≤ exp (c1). (12)

Summing and taking the inverse leads to
m∑
i=1

exp (−c1) ≤
m∑
i=1

exp (xj) ≤
m∑
i=1

exp (c1)

⇐⇒ 1∑m
j=1 exp (c1)

≤ 1∑m
j=1 exp (xj)

≤ 1∑m
j=1 exp (−c1)

.

(13)

Combining Eq. (12) and Eq. (13) yields

exp (−c1)∑m
j=1 exp (c1)

≤ exp (xi)∑m
j=1 exp (xj)

≤ exp (c1)∑m
j=1 exp (−c1)

.

As we desire a lower bound, we only focus on the left-hand side of the previous inequality. Multiplying
the numerator and denominator by exp (c1) leads to

∀i ∈ [m], softmax(x)i =
exp (xi)∑m
j=1 exp (xj)

≥ 1

m exp (2c1)
,

which concludes the proof.

Upper-bounding the total variation. We now proceed with finding an upper bound on the total
variation between the true probability of the next token and the one estimated by the LLM fΘ. It will
enable us to find the bounding vector c. The next lemma shows that the input of the softmax layer of
the model is bounded.
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Lemma D.8. Consider an LLM fΘ ∈ F . For any input sequence S ∈ Rr×n, the following
inequality holds

∥ 1

nτ
WUS

(L)
1n∥1 ≤ 1

τ
∥W⊤

U∥2,1,
where τ is the temperature, WU is the unembedding matrix (which is bounded as stated in the
definition of the parameters space W), and S(L) is the output of the last transformer layer.

Proof. We recall that the layer normalization ensures that at each layer, the tokens are in the unit
ℓ2-ball. This is, in particular, the case for the output of the last layer S(L). It means that the columns
of S(L) verifies

∀k ∈ [n], ∥S(L)
·,k ∥2≤ 1, (14)

which implies
max

1≤k≤n
∥S(L)

·,i ∥2 ≤ 1. (15)

Recalling that the Lp,q-norm of a matrix A ∈ Rn×m can be rewritten as

∥A∥p,q :=

 m∑
j=1

(
n∑

i=1

|Aij |p
) q

p

 1
q

= ∥(∥A·,j∥p)mj=1∥q, (16)

the ℓ1-norm of the last layer before the softmax layer satisfies

∥ 1

nτ
WUS

(L)
1n∥1 =

1

nτ

T∑
i=1

∣∣∣∣∣∣
r∑

j=1

Wij

n∑
k=1

Sjk

∣∣∣∣∣∣ = 1

nτ

T∑
i=1

∣∣∣∣∣∣
r∑

j=1

n∑
k=1

WijSjk

∣∣∣∣∣∣
≤ 1

nτ

T∑
i=1

r∑
j=1

n∑
k=1

|WijSjk| (triangular inequality)

≤ 1

nτ

T∑
i=1

n∑
k=1

∣∣W⊤
i S·,k

∣∣
≤ 1

nτ

T∑
i=1

n∑
k=1

∥Wi∥2∥S·,k∥2 (Cauchy-Schwartz inequality)

≤ 1

nτ

T∑
i=1

n∑
k=1

∥Wi∥2 max
1≤k≤n

∥S·,k∥2 ≤ 1

nτ
n max

1≤k≤n
∥S·,k∥2

T∑
i=1

∥Wi∥2

≤ 1

τ

T∑
i=1

∥Wi∥2 ≤ 1

τ
∥W⊤

U∥2,1 (by Eq. (15) and the def. of L2,1 in Eq. (16))

where we dropped the subscript and superscript on WU and S(L) to ease the notations. This concludes
the proof.

The previous lemma can be used to show that the logarithm of the ratio between the true probability of
the next token and the one estimated by the LLM fΘ is upper bounded as a function of the vocabulary
size T , the temperature, the upper-bound on WU and some constant related to the ambiguity of
language (see Eq. (1)).

Proposition D.9 (Upper-bound on the logarithm). Consider an LLM fΘ ∈ F with vocabulary
size T . We recall that BU is the upper bound on the norm of WU in the definition of parameter
space W , τ is the softmax temperature and c0 is the constant related to the ambiguity of language
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(see Eq. (1)). We have

∀n ∈ [N ],

∣∣∣∣log( PL(Xn+1 | Sn)

PΘ(Xn+1 | Sn)

)∣∣∣∣ ≤ B̄ = max{log (T ) + 2BU

τ
, log

(
1

c0

)
}.

Proof. The main idea of the proof is to bound the probability ratio and use the fact that log is
non-decreasing. Let n ∈ [N ]. The model fΘ receives as input sequences of tokens Sn of size n ≤ K.
We first lower-bound each term of the probability ratio. From Eq. (1), we have

PL(Xn+1 | Sn) ≥ c0. (17)
We want to obtain a similar inequality for PΘ(Xn+1 | Sn). As the parameters Θ of the LLM are in
W , we know that ∥W⊤

U∥2,1 ≤ BU . Lemma D.8 ensures that

∥ 1

nτ
WUS

(L)
1n∥1 ≤ 1

τ
∥W⊤

U∥2,1 ≤ BU

τ
.

We can then apply Lemma D.7 with c1 = BU

τ and given that 1
nτWUS

(L)
1n ∈ RT , it leads to

PΘ(· | Sn) = softmax

(
1

nτ
WUS

(L)
1n

)
≥ 1

T exp (2BU/τ)
,

where the inequality holds for each component of PΘ(· | Sn). This is in particular the case for
PΘ(Xn+1 | Sn) which is the entry we are interested in, i.e., we have

PΘ(Xn+1 | Sn) ≥
1

T exp (2BU/τ)
. (18)

Going back to the ratio of probability, consider the situation where we have
PL(Xn+1 | Sn)

PΘ(Xn+1 | Sn)
≥ 1.

Then, using Eq. (18), we have

1 ≤ PL(Xn+1 | Sn)

PΘ(Xn+1 | Sn)
≤ 1

PΘ(Xn+1 | Sn)
≤ T exp (2BU/τ),

which implies, as the log is non-decreasing monotonically,

0 ≤ log

(
PL(Xn+1 | Sn)

PΘ(Xn+1 | Sn)

)
≤ log (T exp (2BU/τ)) = log (T ) +

2BU

τ
. (19)

Similarly, consider the case where we have
PL(Xn+1 | Sn)

PΘ(Xn+1 | Sn)
≤ 1.

Then, we have
PΘ(Xn+1 | Sn)

PL(Xn+1 | Sn)
≥ 1,

and similarly to above, we can use Eq. (17) to obtain

1 ≤ PΘ(Xn+1 | Sn)

PL(Xn+1 | Sn)
≤ 1

PL(Xn+1 | Sn)
≤ 1

c0
.

This implies

0 ≤ log

(
PΘ(Xn+1 | Sn)

PL(Xn+1 | Sn)

)
≤ log

(
1

c0

)
,

which also rewrites

0 ≤ − log

(
PL(Xn+1 | Sn)

PΘ(Xn+1 | Sn)

)
≤ log

(
1

c0

)
. (20)

By definition of the absolute value, combining Eq. (19) and Eq. (20) leads to∣∣∣∣log( PL(Xn+1 | Sn)

PΘ(Xn+1 | Sn)

)∣∣∣∣ ≤ max{log (T ) + 2BU

τ
, log

(
1

c0

)
}.

This concludes the proof.

We are now ready to upper-bound the total variation.
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Corollary D.10 (Upper-bound on the total variation). Consider an LLM fΘ ∈ F with vocab-
ulary size T . We recall that BU is the upper bound on the norm of WU in the definition of
parameter space W , τ is the softmax temperature and c0 is the constant related to the ambiguity
of language (see Eq. (1)). For n ∈ [N ], we have

dTV(PL(· | Sn),PΘ(· | Sn)) ≤
√
2max{log (T ) + 2BU

τ
, log

(
1

c0

)
} := c2. (21)

Proof. Using Proposition D.9, we can directly apply Lemma D.6 with B = max{log (T ) +
2BU

τ , log
(

1
c0

)
} for any n ∈ [N ]. This leads to

∀n ∈ [N ], dTV(PL(· | Sn),PΘ(· | Sn)) ≤
√

2max{log (T ) + 2BU

τ
, log

(
1

c0

)
}.

This concludes the proof.

D.4.3 CONCLUDING THE PROOF

We are now ready to state our main result.

Theorem D.11 (Restatement of Theorem 4.1). Consider an LLM fΘ ∈ F with vocabulary size
T . We denote by Γ the mixing matrix of the pretraining sequences of tokens (S1, . . . ,SNtrain

).
Let δ > 0. Then, with probability at least 1− δ,

Rpre(Θ) ≤ R̂pre(Θ) +
B̄√
Ntrain

√
log

(
2

δ

)
,

where B̄ is a constant depending on the parameters of the problem. More precisely,

B̄ = 2∥Γ∥
√
max{log (T ) + 2BU

τ
, log

(
1

c0

)
}.

Proof of Theorem 4.1. By definition of the risk, we have

R̂pre(Θ) =
1

Ntrain

Ntrain∑
n=1

dTV(PL(· | Sn),PΘ(· | Sn))︸ ︷︷ ︸
=gn(Sn)

=
1

Ntrain

Ntrain∑
n=1

gn(Sn)

= f(S1, . . . ,SNtrain
) = f(S).

Using Corollary D.10, we know that

|gn(Sn)| ≤
√

2max{log (T ) + 2BU

τ
, log

(
1

c0

)
} := c2.

By definition, each sequence of tokens Sn takes its values in Vn (again by abuse of notation,
n = min{n,K}) and S takes its values in V1 × . . . × VNtrain . For any two sequences ζ,Σ with
values in V1 × . . .× VNtrain , we have

f(ζ)− f(Σ) =
1

Ntrain

Ntrain∑
n=1

dTV(PL(· | ζn),PΘ(· | ζn))︸ ︷︷ ︸
=gn(ζn)

− dTV(PL(· | Σn),PΘ(· | Σn))︸ ︷︷ ︸
=gn(Σn)


=

1

Ntrain

Ntrain∑
n=1

(gn(ζn)− gn(Σn))
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=
1

Ntrain

Ntrain∑
n=1

(gn(ζn)− gn(Σn))1{ζn ̸=Σn} (removing the zero terms)

≤
∣∣∣∣∣ 1

Ntrain

Ntrain∑
n=1

(gn(ζn)− gn(Σn))1{ζn ̸=Σn}

∣∣∣∣∣
≤ 1

Ntrain

Ntrain∑
n=1

∣∣(gn(ζn)− gn(Σn))1{ζn ̸=Σn}
∣∣

≤ 1

Ntrain

Ntrain∑
n=1

|gn(ζn)− gn(Σn)|1{ζn ̸=Σn}

≤ 1

Ntrain

Ntrain∑
n=1

|gn(ζn)|︸ ︷︷ ︸
≤c2

+ |gn(Σn)|︸ ︷︷ ︸
≤c2

1{ζn ̸=Σn} (Corollary D.10)

≤ 1

Ntrain

Ntrain∑
n=1

2c21{ζn ̸=Σn} =

Ntrain∑
n=1

(
2c2

Ntrain

)
1{ζn ̸=Σn},

where c2 =

√
2max{log (T ) + 2BU

τ , log
(

1
c0

)
}. As ζ and Σ were taken arbitrary, choosing c ∈

RNtrain with all entries equal to 2c2
Ntrain

ensures that f verifies the condition in Proposition D.5, i.e.,

∀ζ,Σ, f(ζ)− f(Σ) ≤
Ntrain∑
n=1

cn1{ζn ̸=Σn}.

We assumed in Section 4.1 that the sequences Sn were related via a Marton coupling with mixing
matrix Γ. Putting everything together, we can apply Proposition D.5 which leads to

∀u ≥ 0, P(|f(S)− ES [f(S)]| ≥ u) ≤ 2 exp

( −2u2

∥Γ∥2∥c∥22

)
. (22)

Let u ≥ 0. We have the following events ordering

(ES [f(S)]− f(S) ≥ u) ⊆ (ES [f(S)]− f(S) ≥ u) ∪ (f(S)− ES [f(S)] ≥ u)

= (|f(S)− ES [f(S)]| ≥ u).

Hence, as u was taken arbitrary and using Eq. (22), we have

∀u ≥ 0, P(ES [f(S)]− f(S) ≥ u) ≤ 2 exp

( −2u2

∥Γ∥2∥c∥22

)
.

We recall that by definition

f(S) = R̂pre(Θ) and Rpre(Θ) = ES

[
R̂pre(Θ)

]
.

Since the previous inequality holds for any u ≥ 0, we can hence choose u such that

δ = 2 exp

( −2u2

∥Γ∥2∥c∥22

)
⇐⇒ −2u2

∥Γ∥2∥c∥22
= log

(
δ

2

)
⇐⇒ u2 =

1

2
∥Γ∥2∥c∥22 log

(
2

δ

)
⇐⇒ u =

1√
2
∥Γ∥∥c∥2

√
log

(
2

δ

)
.

Using the fact that

∥c∥2 =

√√√√Ntrain∑
n=1

c2n =

√√√√Ntrain∑
n=1

(
2c2

Ntrain

)2

=

√√√√Ntrain∑
n=1

4c22
N2

train

=

√
4c22

Ntrain
=

2c2√
Ntrain

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

and using the fact that c2 =

√
2max{log (T ) + 2BU

τ , log
(

1
c0

)
} from Corollary D.10, we obtain

u =
1√
2

2c2√
Ntrain

∥Γ∥
√
log

(
2

δ

)
=

√
2c2√

Ntrain

∥Γ∥
√

log

(
2

δ

)

=

2∥Γ∥
√
max{log (T ) + 2BU

τ , log
(

1
c0

)
}

√
Ntrain

√
log

(
2

δ

)
=

B̄√
Ntrain

√
log

(
2

δ

)
,

where we define

B̄ = 2∥Γ∥
√
max{log (T ) + 2BU

τ
, log

(
1

c0

)
}.

Putting everything together, we have

P

(
Rpre(Θ)− R̂pre(Θ) ≥ B̄√

Ntrain

√
log

(
2

δ

))
≤ δ.

Taking the opposite event leads to the following inequality with probability at least 1− δ

Rpre(Θ) ≤ R̂pre(Θ) +
B̄√
Ntrain

√
log

(
2

δ

)
,

which concludes the proof.

D.5 PROOF OF COROLLARY 4.2

As the layer norm is not applied anymore, each token is no longer in the ℓ2-unit ball, and Lemma D.8
does not hold anymore. We want to provide an analogous lemma for our setting. We first prove the
following technical lemmas.

Lemma D.12. The ReLU is a norm-decreasing operator, i.e., we have

∀A ∈ Rn×m, ∥ReLU(A)∥1,1 ≤ ∥A∥1,1,
where the ReLU is applied entry-wise.

Proof. Recalling that ReLU(x) = max{0, x} is applied entry-wise, using the fact that
|max{0, x}| ≤ |x| and considering A and Ã = ReLU(A), we have

∥Ã∥1,1 =
∑
i,j

|Ãi,j | =
∑
i,j

|max{0, Ãi,j}| ≤
∑
i,j

|Ai,j | ≤ ∥A∥1,1,

which concludes the proof.

Lemma D.13. The L1,1-norm verifies the following property:

∀A ∈ Rn×m,B ∈ Rm×p, ∥AB∥1,1 ≤ n∥A∥∞∥B∥1,1.

Proof. We have

∥AB∥1,1 =

p∑
j=1

n∑
i=1

|(AB)ij | =
p∑

j=1

n∑
i=1

|
m∑

k=1

AikBkj | ≤
p∑

j=1

n∑
i=1

m∑
k=1

|AikBkj |

≤
p∑

j=1

n∑
i=1

m∑
k=1

|Aik||Bkj | ≤ max
ik

|Aik|
p∑

j=1

n∑
i=1

m∑
k=1

|Bkj |
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≤ n∥A∥∞
p∑

j=1

m∑
k=1

|Bkj | ≤ n∥A∥∞∥B∥1,1,

which concludes the proof.

Lemma D.14. The L2,1 and L∞,1-norms verify the following relation

∀A ∈ Rn×m, ∥A∥∞,1 ≤ ∥A∥2,1.

Proof. By definition of the Lp,q-norm, we have

∥A∥∞,1 =

M∑
j=1

max
1≤i≤n

|Aij | =
M∑
j=1

√
max
1≤i≤n

|A2
ij | (as x → x2 is increasing)

≤
M∑
j=1

√√√√ n∑
i=1

|A2
ij | ≤

M∑
j=1

∥A·,j∥2 ≤ ∥A∥2,1,

where the first inequality comes from adding non-negative terms.

We are now ready to state the lemma analogous to Lemma D.8.

Lemma D.15. Consider an LLM fΘ ∈ F̃ with L layers. For any input sequence S ∈ Rr×n, the
following inequality holds

∥ 1

nτ
WUS

(L)
1n∥1 ≤ c3

τ
∥W⊤

U∥2,1,

where τ is the temperature and c3 is a constant depending on the parameters upper-bound.
More precisely,

c3 =

[
(1 + rmB1B2) ·

(
1 +

r3

H
BOBV

)]L
·Btok.

WU is the unembedding matrix (which is bounded as stated in the definition of the parameters
space W), and S(L) is the output of the last transformer layer.

Proof of Lemma D.15. Our model fΘ ∈ F̃ is given as input a sequence S ∈ Rr×n. With similar
computations than in Lemma D.8, we have

1

nτ
∥WUS

(L)
1n∥1 =

1

nτ

T∑
i=1

∣∣∣∣∣∣
r∑

j=1

Wij

n∑
k=1

Sjk

∣∣∣∣∣∣ = 1

nτ

T∑
i=1

∣∣∣∣∣∣
r∑

j=1

n∑
k=1

WijSjk

∣∣∣∣∣∣
≤ 1

nτ

T∑
i=1

r∑
j=1

n∑
k=1

|WijSjk| (triangular inequality)

≤ 1

nτ

T∑
i=1

n∑
k=1

∣∣W⊤
i S·,k

∣∣ ≤ 1

nτ

T∑
i=1

n∑
k=1

∥Wi∥∞∥S·,k∥1 (Hölder inequality)

≤ 1

nτ

(
T∑

i=1

∥Wi∥∞
)

·
(

n∑
k=1

∥S·,k∥1
)

≤ 1

nτ
∥W⊤

U∥∞,1∥S(L)∥1,1

≤ 1

nτ
∥W⊤

U∥2,1∥S(L)∥1,1, (Lemma D.14)

where, again, we dropped the subscript and superscript on WU and S(L) to ease the notations. We
obtain

∥ 1

nτ
WUS

(L)
1n∥1 ≤ 1

nτ
∥W⊤

U∥2,1∥S(L)∥1,1. (23)
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As we do not use layer normalization, we want to find another way to bound S(L). To that end, we
will first express S(ℓ), the output of the (ℓ)-th layer of the transformer, as a function of S(ℓ−1), the
output of the (ℓ− 1)-th layer. Using the definition of the transformer model (see Appendix B), we
have 

Z(ℓ) = S(ℓ−1) +A
(
S(ℓ−1);W

(ℓ)
Q ,W

(ℓ)
K ,W

(ℓ)
V ,W

(ℓ)
O

)
,

Y(ℓ) = W
(ℓ)
2 ReLU

(
W

(ℓ)
1 Z(ℓ)

)
,

S(ℓ) = Z(ℓ) +Y(ℓ).

We will compute each layer’s L1,1-norm.

Step 1: MHA. By definition, denoting the number of heads by H , we know that
A
(
S(ℓ−1);W

(ℓ)
Q ,W

(ℓ)
K ,W

(ℓ)
V ,W

(ℓ)
O

)
∈ Rr×n multiplies W(ℓ) ∈ Rr×r with the concatenation

on the rows of the H softmax layers that each writes

softmax

(
W

(ℓ)
Q S(ℓ)

(
W

(ℓ)
K S(ℓ−1)

)⊤
/
√
r

)(
W

(ℓ)
V S(ℓ−1)

)
∈ R

r
H ×n,

We keep the notations ℓ without explicating the index of the head to ease notations. Denoting the
concatenation on the rows by C(ℓ) ∈ Rr×n, we have

∥A
(
S(ℓ−1);W

(ℓ)
Q ,W

(ℓ)
K ,W

(ℓ)
V ,W

(ℓ)
O

)
∥1,1 = ∥W(ℓ)

O C(ℓ)∥1,1 ≤ r · ∥W(ℓ)
O ∥∞∥C(ℓ)∥1,1

≤ rBO∥C(ℓ)∥1,1. (definition of W̃)

Moreover, by definition of C(ℓ), we have

∥C(ℓ)∥1,1 =

r∑
j=1

r∑
i=1

|C(ℓ)
ij | =

r∑
j=1

r/H∑
i=1

H∑
h=1

|C(ℓ,h)
ij | =

H∑
h=1

∥C(ℓ,h)∥1,1, (24)

where C(ℓ,h) ∈ R r
H ×n is the softmax matrix of the h-th layer. We recall that the softmax matrix is a

row-stochastic matrix of R r
H ×r so it has all values lower than 1. In the next computations, we drop

the h index on the query, key, and value matrices to ease the notations. Using Lemma D.13 on the
softmax matrix and on the value matrix W

(ℓ)
V ∈ R r

H ×r, we have

∥C(ℓ,h)∥1,1 = ∥softmax

(
W

(ℓ)
Q S(ℓ)

(
W

(ℓ)
K S(ℓ−1)

)⊤
/
√
r

)(
W

(ℓ)
V S(ℓ−1)

)
∥1,1

≤ r

H
· ∥softmax

(
W

(ℓ)
Q S(ℓ)

(
W

(ℓ)
K S(ℓ−1)

)⊤
/
√
r

)
∥∞ · ∥

(
W

(ℓ)
V S(ℓ−1)

)
∥1,1

≤ r

H
· ∥
(
W

(ℓ)
V S(ℓ−1)

)
∥1,1 (the softmax matrix is row-stochastic)

≤ r

H
· r

H
∥(W(ℓ)

V ∥∞∥S(ℓ−1)∥1,1 ≤
( r

H

)2
BV ∥S(ℓ−1)∥1,1. (definition of W̃)

Combining the previous inequality with Eq. (24) leads to

∥C(ℓ)∥1,1 ≤ r2

H
BV ∥S(ℓ−1)∥1,1.

In the end, the multi-head attention norm verifies

∥A
(
S(ℓ−1);W

(ℓ)
Q ,W

(ℓ)
K ,W

(ℓ)
V ,W

(ℓ)
O

)
∥1,1 ≤ r3

H
BOBV ∥S(ℓ−1)∥1,1.

Using the triangular inequality, we obtain

∥Z(ℓ)∥1,1 ≤
(
1 +

r3

H
BOBV

)
· ∥S(ℓ−1)∥1,1. (25)

Step 2: FF. We recall that W1 ∈ Rm×r and W2 ∈ Rr×m. Using similar arguments to the above,
we have

∥Y(ℓ)∥1,1 = ∥W(ℓ)
2 ReLU

(
W

(ℓ)
1 Z(ℓ)

)
∥1,1
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≤ r · ∥W(ℓ)
2 ∥∞∥ReLU

(
W

(ℓ)
1 Z(ℓ)

)
∥1,1 (Lemma D.13)

≤ r · ∥W(ℓ)
2 ∥∞∥W(ℓ)

1 Z(ℓ)∥1,1 (Lemma D.12)

≤ r ·m · ∥W(ℓ)
2 ∥∞∥W(ℓ)

1 ∥∞∥Z(ℓ)∥1,1 (Lemma D.13)

≤ rmB1B2∥Z(ℓ)∥1,1. (definition of W̃)

Step 3: output layer. Again, applying the triangular inequality and using the previous inequality and
Eq. (25), we have

∥S(ℓ)∥1,1 ≤ ∥Z(ℓ)∥1,1 + ∥Y(ℓ)∥1,1 ≤ (1 + rmB1B2)∥Z(ℓ)∥1,1

≤ (1 + rmB1B2)

(
1 +

r3

H
BOBV

)
∥S(ℓ−1)∥1,1.

Iterating through the layers, recalling that S(0) = S, we finally obtain

∥S(L)∥1,1 ≤
[
(1 + rmB1B2)

(
1 +

r3

H
BOBV

)]L
∥S∥1,1,

where S is the input sequence. Combining this inequality with Eq. (23) leads to

∥ 1

nτ
WUS

(L)
1n∥1 ≤

[
(1 + rmB1B2)

(
1 +

r3

H
BOBV

)]L ∥S∥1,1
n

(
1

τ
∥W⊤

U∥2,1
)
.

Using the fact that each token has a ℓ1-norm bounded by Btok. Hence, each column of S is too and
we have

1

n
∥S∥1,1 =

1

n

n∑
j=1

r∑
i=1

|Sij |=
1

n

n∑
j=1

∥S·,j∥1︸ ︷︷ ︸
≤Btok

≤ Btok.

Combining the last two inequalities concludes the proof.

We can now restate Corollary 4.2.

Corollary D.16 (Restatement of Corollary 4.2). Consider an LLM fΘ ∈ F̃ with vocabulary size
T composed of L transformer blocks and H attention heads. We denote by Γ the mixing matrix
of the pretraining sequences of tokens (S1, . . . ,SNtrain

). Let δ > 0. Then, with probability at
least 1− δ,

Rpre(Θ) ≤ R̂pre(Θ) +
B̄√
Ntrain

√
log

(
2

δ

)
,

where B̄ is a constant depending on the parameters of the problem. More precisely,

B̄ = 2∥Γ∥
√
max{log (T ) + 2(BΘ)L

τ
, log

(
1

c0

)
},

with BΘ =
[
(1 + rmB1B2)

(
1 + r3

HBOBV

)]
(BtokBU )

1/L.

Proof of Corollary 4.2. We first note that the only change from Lemma D.8 to Lemma D.15 is the

multiplicative constant c3 =
[
(1 + rmB1B2)

(
1 + r3

HBOBV

)]L
Btok in front of 1

τ ∥W⊤
U∥2,1. In

particular, as we know that W̃ ⊂ W , we also have ∥W⊤
U∥2,1 ≤ BU . Hence, we can apply the

proof of Theorem 4.1 in a straightforward manner by changing BU

τ by c3 · BU

τ . This concludes the
proof.
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D.6 PROOF OF COROLLARY 4.3

We detail the proof of Corollary 4.3 below.

Proof. We first note that by definition of the total variation distance (Wolfer & Kontorovich, 2019),
we have

ES∼PL∥Q∗(S, ·)−Qf (S, ·)∥1 = ES∼PL [2 · dTV(Q
∗(S, ·),Qf (S, ·))]

= 2 · ES∼PL [dTV(Q
∗(S, ·),Qf (S, ·))]

= 2 · Rpre(Θ). (by definition of the risk Eq. (2))

Applying Theorem 4.1 (or similarly Corollary 4.2), we know that

Rpre(Θ) ≤ R̂pre(Θ) +
B̄√
Ntrain

√
log

(
2

δ

)
,

where B̄ is formally defined in Theorem 4.1 (respectively Corollary 4.2). Assuming a perfect pre-
training error amounts to consider R̂pre(Θ) = 0. We denote by N∗ the integer such that the error is
equal to ϵ

2 , i.e.,

B̄√
N∗

√
log

(
2

δ

)
=

ϵ

2
⇐⇒ B̄2

N∗ log

(
2

δ

)
=

ϵ2

4
⇐⇒ N∗ =

(
2B̄

ϵ

)2

log

(
2

δ

)
.

Taking the ceiling function ensures that N∗ is an integer. Hence, taking Ntrain ≥ N∗ =

⌈
(

2B̄
ϵ

)2
log
(
2
δ

)
⌉ ensures that

B̄√
Ntrain

√
log

(
2

δ

)
≤ B̄√

N∗

√
log

(
2

δ

)
=

ϵ

2
.

Putting everything together, taking Ntrain ≥ N∗ leads to

ES∼PL∥Q∗(S, ·)−Qf (S, ·)∥1 ≤ 2 · Rpre(Θ) ≤ 2 · ϵ
2
= ϵ,

which concludes the proof.

D.7 PROOF OF THEOREM 4.4

In this section, we detail the proof of Theorem 4.4. We first recall the problem setup.

Markov chains inputs. In this section, we give as input of the model a single Markov chain
X = (X1, . . . ,XNicl

) with finite, discrete state space Ω of size d with transition probability P. We
assume the Xn are already tokenized and thus we have Ω ⊂ V . We denote the sequence of tokens
the LLM receives by Sn = (X1, . . . ,Xn) if n ≤ K and Sn = (Xn−K+1, . . . ,Xn) otherwise due
to the deletion process (see Definition B.2). In particular, the Sn are elements of V∗

K . We note that
S = (S1, . . . ,SNicl

) is also a Markov chain (see Appendix D.7.1). By definition of P, we know that
for any n ∈ [Nicl], the next token Xn+1 follows the distribution P(· | Sn). We assume that there
exists a positive constant pmin that lower bounds all the transition probability between states, i.e.,
∀n ∈ [Nicl],∀x, y ∈ Ω, P(Xn+1 = y | Xn = x) ≥ pmin > 0. This is akin to the ambiguity of
language constant c0 considered in the previous section and in Hu et al. (2024); Wies et al. (2024);
Xie et al. (2022); Zhang et al. (2023b).

Next token probability distribution. An important difference with the setting considered in
Theorem 4.1 is that here, we predict a probability distribution on the state space Ω of the Markov
chain and not on the vocabulary of the LLM V . To that end, we restrict the predicted probability given
the past tokens Sn to the state space Ω. Formally, denoting the output of the last layer of fΘ by S(L),
the last layer before the softmax outputs a vector u = 1

nτWUS
(L)

1n ∈ RT . We first extract the
entries of u whose index i are such that the i-th element of the vocabulary space V is in Ω. This can
be formalized as follows. We denote by Id = (i1 ≤ i2 ≤ . . . ≤ id) ∈ [T ]d the subset of d distinct
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elements of [T ] and consider the matrix Mj = e⊤ij , where eij ∈ RT has value 1 at entry ij ∈ I and 0

elsewhere. Extracting only the d entries of u that corresponds to the state space yields a vector in Rd

that writes v = 1
nτMWUS

(L)
1n ∈ RT . Similarly to Appendix B, the probability distribution of

next token Xn+1 provided by the LLM fΘ now writes

PΘ(· | Sn) = softmax

(
1

nτ
MWUS

(L)
1n

)
∈ ∆d.

We aim to obtain a similar generalization bound than in Theorem 4.1 where the reference probability
distribution is the Markov chain transition probability P instead of the probability distribution of
language PL. In particular, P will replace PL in the definition of the risks in Eq. (2). We provide
below an overview of the proof before detailing it.

Overview of the proof. We are going to use McDiarmid’s inequality for Markov chains of Paulin
(2015, Corollary 2.11). To adapt their arguments to our setting, we bound the total variation between
the true probability of the next token and the one estimated by the LLM. The rest of this section is
organized as follows. First, in Appendix D.7.1, we show that S = (S1, . . . ,SNicl

) is a Markov chain.
Then in Appendix D.7.2, we adapt the concentration inequality of Paulin (2015, Corollary 2.11).
Afterwards in Appendix D.7.3, we show how to bound the total variation between the true and the
estimated probability of the next token. Finally Appendix D.7.4 concludes the proof.

D.7.1 CONNECTION BETWEEN TOKENS AND SEQUENCES OF TOKENS MARKOV CHAINS

We first show that S = (S1, . . . ,SNicl
) is also a Markov chain.

Lemma D.17. Consider a sequence (not necessarily a Markov chain) X = (X1, . . . ,XN ) with
values in Ω and let Sn = (X1, . . . ,Xn) if n < K and Sn = (Xn−K+1, . . . ,Xn) otherwise.
Then, the sequence S = (S1, . . . ,SN ) is a Markov chain with state space Ω∗

K that contains the
sequence of elements in Ω of length smaller than K.

Proof. By definition of the Sn, we know that they take values in Ω∗
K . Let x1, . . . , xn+1 ∈ Ω. We

first assume that n > K and denote si = (xn−K+1, . . . , xi). We have

P(Sn+1 = sn+1 | Sn = sn, . . . ,Sn−K+1 = sn−K+1)

= P(Sn+1 = sn+1 | Xn = xn, . . . ,Xn−K+1 = xn−K+1)

= P(Sn+1 = sn+1 | Sn = sn). (by definition of Sn)

Similarly, we assume n < K and denote si = (x1, . . . , xi). We have

P(Sn+1 = sn+1 | Sn = sn, . . . ,S1 = s1)

= P(Sn+1 = sn+1 | Xn = xn, . . . ,X1 = x1)

= P(Sn+1 = sn+1 | Sn = sn). (by definition of Sn)

Finally, for n = K, we denote si = (x1, . . . , xi) for i ≤ K and sK+1 = (x2, . . . , xK+1). We have

P(SK+1 = sK+1 | Sn = sn, . . . ,S2 = s2)

= P(SK+1 = sK+1 | XK = xK , . . . ,X1 = x1)

= P(SK+1 = sK+1 | SK = sK).
(by definition of SK)

This establishes the Markov property for S.

D.7.2 CONCENTRATION INEQUALITIES FOR MARKOV CHAINS

We first state a concentration inequality for time-homogeneous Markov chains that will be used to
obtain our final bound.
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Proposition D.18 (McDiarmid’s inequality for time-homogeneous Markov chains). Let S :=
(S1, . . . ,SN ) be a Markov chain with value in a discrete, finite state space Ω and mixing time

tmix(ε). Let tmin := inf0≤ε<1 tmix

(
ε
2

)
·
(

2−ε
1−ε

)2
. If f : Ω → R is such that there exists c ∈ RN

satisfying

∀x,y ∈ Ω, f(x)− f(y) ≤
N∑
i=1

ci1{xi ̸=yi},

then we have for any u ≥ 0,

P(|f(S)− ES [f(S)]| ≥ u) ≤ 2 exp

( −2u2

∥c∥22 · tmin

)
.

Proof. We recall that Corollary 2.11 of Paulin (2015) ensures that for such a function f , we have

P(|f(S)− E[f(S)]| ≥ u) ≤ 2 exp

( −2u2

∥c∥22 · τmin

)
, (26)

where τmin is defined as

τmin := inf
0≤ε<1

τ(ε)

(
2− ε

1− ε

)2

,

with τ(ε) being the mixing time of a Markov chain without assuming time homogeneity (see Paulin
(2015, Definition 1.4)). As in our case, we assume the time homogeneity, this inequality in Eq. (26)
has to be adapted. Following Remark 1.5 of Paulin (2015), we notice that

∀ε ∈ [0, 1], τ(2ε) ≤ tmix(ε) ≤ τ(ε).

Let 0 ≤ ε < 1. Using the fact that
(

2−ε
1−ε

)2
> 0, the previous inequality ensures

τ(ε) ≤ tmix

(ε
2

)
⇐⇒ τ(ε)

(
2− ε

1− ε

)2

≤ tmix

(ε
2

)(2− ε

1− ε

)2

.

Taking the infimum on the left-hand side leads to

τmin = inf
0≤ε<1

τ(ε)

(
2− ε

1− ε

)2

≤ tmix

(ε
2

)(2− ε

1− ε

)2

.

As we took ε arbitrary in [0, 1), we can take the infimum on the right-hand side, which leads to

τmin ≤ tmin.

As the function x → exp
(

−2u2

∥c∥2
2x

)
is decreasing, we finally obtain

exp

( −2u2

∥c∥22τmin

)
≤ exp

( −2u2

∥c∥22tmin

)
. (27)

Combining Eqs. (26) and (27) concludes the proof.

Similarly to Theorem 4.1, we want to apply Proposition D.18 to a function f that consists of sums
of total variation. We investigate in the next section how to find the bounding vector c to apply
Proposition D.18.

D.7.3 FINDING THE BOUNDING VECTOR

We want to apply the same arguments as in the proof of Theorem 4.1 to find the bounding vector c.
The only difference in terms of setting is the definition of the probability of the next token. Indeed, in
our case, we apply an extraction matrix M ∈ Rd×T to recover the d states of the input Markov chain.
We first prove the following technical lemma.
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Lemma D.19. Let d ≤ T and consider a subset of d distinct elements of [T ] that writes
Id = (i1 ≤ i2 ≤ . . . ≤ id) ∈ [T ]d. We denote by M ∈ Rd×T the matrix with rows Mj = e⊤ij ,
where eij ∈ RT has value 1 at entry ij ∈ I and 0 elsewhere. For any vector u ∈ RT , we have

∥Mu∥1 ≤ ∥u∥1.

Proof. By definition of the ℓ1-norm, we have

∥Mu∥1 =

d∑
k=1

|
T∑
l=1

Mklul| ≤
d∑

k=1

T∑
l=1

|Mklul| ≤
T∑
l=1

|ul|
d∑

k=1

|Mkl|.

Moreover, each column of M contains at most one non-zero entry (with value 1). Otherwise, it means
that two eij are identical (as they only have one non-zero entry with value 1, having it at the same
position ensures their equality) which contradicts the fact that the ij where taken distinct. Hence, for
all l, we have

∑d
k=1|Mkl| ≤ 1, which concludes the proof.

We now prove a lemma analogous to Lemma D.8.

Lemma D.20. Let S ∈ Rr×n denote the entry of the LLM fΘ and S(L) denote the output of
the last layer before the softmax. Let d ≤ T and consider a subset of d distinct elements of [T ]
that writes Id = (i1 ≤ i2 ≤ . . . ≤ id) ∈ [T ]d. We denote by M ∈ Rd×T the matrix with rows
Mj = e⊤ij , where eij ∈ RT has value 1 at entry ij ∈ I and 0 elsewhere. Then, the following
inequality holds

1

nτ
∥MWUS

(L)
1n∥1 ≤ 1

τ
∥W⊤

U∥2,1.

Proof. Applying Lemma D.19 with the matrix M ∈ Rd and the vector 1
nτWUX

(L)
1n ∈ RT leads

to
1

nτ
∥MWUS

(L)
1n∥1 ≤ 1

nτ
∥WUX

(L)
1n∥1.

Applying Lemma D.8 concludes the proof.

The previous lemma can be used to show that the logarithm of the ratio between the true probability
of the next token and the one estimated by the LLM fΘ is upper bounded as a function of the number
of states of the Markov chain d, the temperature τ , the upper-bound on WU and some constant
related to the ambiguity of language (see Eq. (1)).

Proposition D.21 (Upper-bound on the logarithm). Consider an LLM fΘ ∈ F and an input
Markov chain X = (X1, . . . ,XNicl

) with d states. We recall that BU is the upper bound on the
norm of WU in the definition of parameter space W , τ is the softmax temperature, and pmin is
the constant related to the minimal transition probability between states. We have

∀n ∈ [N ],

∣∣∣∣log( P(Xn+1 | Sn)

PΘ(Xn+1 | Sn)

)∣∣∣∣ ≤ B̄ = max{log (d) + 2BU

τ
, log

(
1

pmin

)
}.

Proof. The main idea of the proof is to bound the probability ratio and use the non-decreasing
monotonicity of the log. Let n ∈ [N ]. The model fΘ receives as input sequences of tokens Sn of
size n ≤ K. We first lower-bound each term of the probability ratio. By definition of pmin, we have

P(Xn+1 | Sn) = P(Xn+1 | Xn) ≥ pmin > 0, (28)

where we used the Markov property for the first equality. We want to obtain a similar inequality
for PΘ(Xn+1 | Sn). As the parameters Θ of the LLM are in W , we know that ∥W⊤

U∥2,1 ≤ BU .
Lemma D.20 ensures that

∥ 1

nτ
MWUS

(L)
1T ∥1 ≤ 1

τ
∥W⊤

U∥2,1 ≤ BU

τ
.
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We can then apply Lemma D.7 with c1 = BU

τ and given that 1
TτMWUS

(L)
1T ∈ Rd, it leads to

PΘ(· | Sn) = softmax

(
1

nτ
MWUS

(L)
1n

)
≥ 1

d exp (2BU/τ)
,

where the inequality holds for each component of PΘ(· | Sn). This is in particular the case
PΘ(Xn+1 | Sn) which is the entry we are interested in, i.e., we have

PΘ(Xn+1 | Sn) ≥
1

d exp (2BU/τ)
. (29)

Going back to the ratio of probability, consider the situation where we have

P(Xn+1 | Sn)

PΘ(Xn+1 | Sn)
≥ 1.

Then, using Eq. (29), we have

1 ≤ P(Xn+1 | Sn)

PΘ(Xn+1 | Sn)
≤ 1

PΘ(Xn+1 | Sn)
≤ d exp (2BU/τ),

which implies, as the log is non-decreasing monotonically,

0 ≤ log

(
P(Xn+1 | Sn)

PΘ(Xn+1 | Sn)

)
≤ log (d exp (2BU/τ)) = log (d) +

2BU

τ
. (30)

Similarly, consider the case where we have

P(Xn+1 | Sn)

PΘ(Xn+1 | Sn)
≤ 1.

Then, we have
PΘ(Xn+1 | Sn)

P(Xn+1 | Sn)
≥ 1,

and similarly to above, we can use Eq. (28) to obtain

1 ≤ PΘ(Xn+1 | Sn)

P(Xn+1 | Sn)
≤ 1

P(Xn+1 | Sn)
≤ 1

pmin
.

This implies

0 ≤ log

(
PΘ(Xn+1 | Sn)

P(Xn+1 | Sn)

)
≤ log

(
1

pmin

)
,

which also rewrites

0 ≤ − log

(
P(Xn+1 | Sn)

PΘ(Xn+1 | Sn)

)
≤ log

(
1

pmin

)
. (31)

By definition of the absolute value, combining Eq. (30) and Eq. (31) leads to∣∣∣∣log( P(Xn+1 | Sn)

PΘ(Xn+1 | Sn)

)∣∣∣∣ ≤ max{log (d) + 2BU

τ
, log

(
1

pmin

)
}.

This concludes the proof.

We are now ready to upper-bound the total variation.

Corollary D.22 (Upper-bound on the total variation). Consider an LLM fΘ ∈ F and an input
Markov chain X = (X1, . . . ,XNicl

) with d states. We recall that BU is the upper bound on the
norm of WU in the definition of parameter space W , τ is the softmax temperature, and pmin is
the constant related to the minimal transition probability between states. We have

∀n ∈ [N ], dTV(P(· | Sn),PΘ(· | Sn)) ≤
√

2max{log (d) + 2BU

τ
, log

(
1

pmin

)
} := c4.

(32)
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Proof. Using Proposition D.21, we can directly apply Lemma D.6 with B = max{log (d) +
2BU

τ , log
(

1
pmin

)
} for any n ∈ [N ]. It leads to

∀n ∈ [N ], dTV(P(· | Sn),PΘ(· | Sn)) ≤
√
2max{log (d) + 2BU

τ
, log

(
1

pmin

)
}.

This concludes the proof.

D.7.4 CONCLUDING THE PROOF

We are now ready to state our main result.

Theorem D.23 (Restatement of Theorem 4.4). Consider an LLM fΘ ∈ F . We provide as input
of fΘ a d−state Markov chain X = (X1, . . . ,XNicl

). The sequence of subsequences of the first
n terms is denoted by S = (S1, . . . ,SNicl

). S is also a Markov chain, and we denote by tmix(ε)

its mixing time. Let tmin := inf0≤ε<1 tmix

(
ε
2

)
·
(

2−ε
1−ε

)2
. Let δ > 0. Then, with probability at

least 1− δ,

Ricl(Θ) ≤ inf
ϑ∈Wmc

{R̂icl(ϑ) +K(ϑ,Θ)}+ B̄

√
tmin

Nicl

√
log

(
2

δ

)
,

where B̄ is a constant depending on the parameters of the problem. More precisely,

B̄ = 2

√
max{log (d) + 2BU

τ
, log

(
1

pmin

)
}.

Proof. Let ϑ ∈ Wmc. We first benefit from the metric properties of the total variation to decompose
the risk.

Ricl(Θ) =
1

Nicl

Nicl∑
n=1

ESn [dTV(P(· | Sn),PΘ(· | Sn))]

≤ 1

Nicl

Nicl∑
n=1

ESn [dTV(P(· | Sn),Pϑ(· | Sn)) + dTV(Pϑ(· | Sn),PΘ(· | Sn))]

≤ 1

Nicl

Nicl∑
n=1

ESn
[dTV(P(· | Sn),Pϑ(· | Sn))]

+
1

Nicl

Nicl∑
n=1

ESn
[dTV(Pϑ(· | Sn),PΘ(· | Sn))]

≤ Ricl(ϑ) +K(ϑ,Θ). (33)

By definition of the risk, we have

R̂icl(ϑ) =
1

Nicl

Nicl∑
n=1

dTV(P(· | Sn),Pϑ(· | Sn))︸ ︷︷ ︸
=gn(Sn)

=
1

Nicl

Ntrain∑
n=1

gn(Sn) = f(S1, . . . ,SNicl
) = f(S).

Using Corollary D.22, we know that

|gn(Sn)| ≤
√
2max{log (d) + 2BU

τ
, log

(
1

pmin

)
} := c4.
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Similarly to Theorem 4.1, and using the fact that S = (S1, . . . ,SNicl
) is a Markov chain, we can

show that choosing c ∈ RNicl with all entries equal to 2c4
Nicl

ensures that f verifies the condition in
Proposition D.5, i.e.,

∀S,Σ, f(S)− f(Σ) ≤
Nicl∑
n=1

cn1{Sn ̸=Σn}.

Putting everything together, we can apply Proposition D.18 which leads to

∀u ≥ 0, P(|f(S)− ES [f(S)]| ≥ u) ≤ 2 exp

( −2u2

tmin∥c∥22

)
. (34)

Let u ≥ 0. We have the following events ordering

(ES [f(S)]− f(S) ≥ u) ⊆ (ES [f(S)]− f(S) ≥ u) ∪ (f(S)− ES [f(S)] ≥ u)

= (|f(S)− ES [f(S)]| ≥ u).

Hence, as u was taken arbitrary and using Eq. (34), we have

∀u ≥ 0, P(ES [f(S)]− f(S) ≥ u) ≤ 2 exp

( −2u2

tmin∥c∥22

)
.

We recall that by definition

f(S) = R̂icl(ϑ) and Ricl(ϑ) = ES

[
R̂icl(ϑ)

]
.

Moreover, the inequality on the probability holds for any u ≥ 0, we can choose u such that

δ = 2 exp

( −2u2

tminc∥22

)
⇐⇒ −2u2

tmin∥c∥22
= log

(
δ

2

)
⇐⇒ u2 =

1

2
tmin∥c∥22 log

(
2

δ

)
⇐⇒ u =

1√
2

√
tmin∥c∥2

√
log

(
2

δ

)
.

Using the fact that

∥c∥2 =

√√√√Nicl∑
n=1

c2n =

√√√√Nicl∑
n=1

(
2c4
Nicl

)2

=

√√√√Nicl∑
n=1

4c24
N2

icl

=

√
4c24
Nicl

=
2c4√
Nicl

.

Using the fact that c4 =

√
2max{log (d) + 2BU

τ , log
(

1
pmin

)
} (Corollary D.22), we obtain

u =
1√
2

2c4√
Nicl

√
tmin

√
log

(
2

δ

)
=

√
2c4√
Nicl

√
tmin

√
log

(
2

δ

)

=

2
√
tmin

√
max{log (d) + 2BU

τ , log
(

1
pmin

)
}

√
Ntrain

√
log

(
2

δ

)

= B̄

√
tmin

Nicl

√
log

(
2

δ

)
,

where we define

B̄ = 2

√
max{log (d) + 2BU

τ
, log

(
1

pmin

)
}.

Putting everything together, we have

P

(
Ricl(ϑ)− R̂icl(ϑ) ≥ B̄

√
tmin

Nicl

√
log

(
2

δ

))
≤ δ.

43



2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

Taking the opposite event leads to the following inequality with probability at least 1− δ

Ricl(ϑ) ≤ R̂icl(ϑ) + B̄

√
tmin√
Nicl

√
log

(
2

δ

)
.

Going back to the decomposition of the risk in Eq. (33) and rearranging the terms, we obtain

Ricl(Θ) ≤ R̂icl(ϑ) +K(Θ,ϑ) + B̄

√
tmin√
Nicl

√
log

(
2

δ

)
.

As the left-hand side and the bound function of B̄ do not depend on ϑ, we can put them both on
the left side of the inequality and then take the infimum on ϑ. Rearranging the terms to keep only
R̂icl(Θ) on the left side of the inequality leads to

Ricl(Θ) ≤ inf
ϑ∈Wmc

{R̂icl(ϑ) +K(ϑ,Θ)}+ B̄

√
tmin

Nicl

√
log

(
2

δ

)
,

which concludes the proof.

E ADDITIONAL EXPERIMENTS

E.1 EXPERIMENTAL SETUP AND TOKENIZATION

Experimental setup. To ensure a fair validation of our theoretical results, we conduct our experi-
ments on some of the most recent and widely used LLMs: Gemma 2B (Team et al., 2024), Llama2
7B & 13B (Touvron et al., 2023b), Llama3 8B, Llama3.2 1B & 3B (Dubey et al., 2024),
and Mistral 7Bv0.1 (Jiang et al., 2023).

Tokenization. As the models we consider have different tokenizations, we need to do this step
with extra care as it is a crucial part of the experimental procedure. Indeed, LLMs’ ability to handle
numerical values has been proved to be dependent on the tokenization algorithm (Ali et al., 2024;
Gruver et al., 2023; Singh & Strouse, 2024). The most widely used tokenization algorithm to-date,
BPE (Sennrich et al., 2016), tends to assign tokens to arbitrary 3-digits numbers based on their
occurrences in large-scale corpora, and the tokenizer’s vocabulary size. As highlighted by (Gruver
et al., 2023), this artifact severely hinders LLMs’ ability to predict numerical values in-context. This is
the case for popular LLMs such as GPT-3 (Brown et al., 2020). Newer models (LLama3, GPT-3.5,
GPT-4) however, tend to have hard-coded rules on top of BPE, making them able to encode all
3-digits numbers with their own token. Although this feature would accelerate the ICL procedure by
eliminating the need for the Hierarchy-PDF algorithm in (Liu et al., 2024),the under-representability
of larger numbers in the training data could be an issue. Other tokenization techniques that are
numerical values-focused has been presented in the literature (Golkar et al., 2023; Wu et al., 2024),
paving the way for another research direction that may benefit our method.

Rodmap. In the rest of this section, we extend our experiments to study the following setups:

• In Appendix E.2: impact of the number of states d;
• In Appendix E.3: extension to Markov chains with pmin = 0;
• In Appendix E.4: impact of the tokenization;
• In Appendix E.5: extension to dynamical systems.

E.2 IMPACT OF THE NUMBER OF STATES d

We further analyze the effect of the number of states d on the risk and consider randomly generated
d-state transition matrices in Fig. 9. After a first stage of stagnation, the risk tends to take the correct
scaling law coefficient. As in (Liu et al., 2024), we notice that considering randomly generated
transition matrices seems to be difficult for an LLM to learn when there are more than 9 states. We
interpret this behavior as the distribution shift term in Theorem 4.4. Indeed, the lack of structure in
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these transition matrices can hinder the correct decay of this term. Note also that the increase in d
tends to implicitly increase tmin, which could have an impact on the upper bound on Ricl (both in the
generalization term and in the distribution shift term). We will now consider more structured Markov
chains, and look at their impact on decay.
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Figure 9: Impact of the number of states d. We plot the risk Ricl as functions of Nicl, with 95%
confidence intervals. Upper Left. 2−states Markov transition matrices. Upper Right. 4−states
Markov transition matrices. Lower Left. 6−states Markov transition matrices. Lower Right.
8−states Markov transition matrices.

E.3 MORE STRUCTURED MARKOV CHAINS

In this section, we empirically verify our theoretical results on more general Markov chains that do
not verify pmin > 0.

E.3.1 RANDOM WALKS

Random walks are a simple example of more structured Markov chains. Although we still have the
possibility of discretizing the kernel of Markov chains with infinite state spaces as it is done in (Liu
et al., 2024), we consider two types of random walks on finite state spaces.

0 1 2 3
1

0.5

0.5

0.5

0.5

1

Figure 10: Constrained random walk with d = 3.

Constrained random walk. We define the transition matrix P of a constrained random walk of d
states as in Eq. (35). We draw the probabilistic graph in Fig. 10 for the case d = 3.

Pij =



1, if i = 0 and j = 1,

1, if i = d − 1 and j = d − 2,

0.5, if 1 ≤ i ≤ d − 2 and j = i− 1,

0.5, if 1 ≤ i ≤ d − 2 and j = i+ 1,

0, otherwise.

(35)
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Fig. 11 highlights the scaling laws of Theorem 4.4, as well as the log(d) dependency. As before, the
best-performing models generalize almost perfectly.
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Figure 11: Constrained random walks. We plot the risk Ricl as functions of Nicl, with 99%
confidence intervals. We consider different size d. Upper Left. Llama2 7B Upper Right.
Llama2 13B Lower Left. Mistral 7Bv0.1 Lower Right. Gemma 2B

Polygonal random walk. We define the transition matrix P of a polygonal random walk of d states
as in Eq. (36). We draw the probabilistic graph in Fig. 12 for the case d = 4.

Pij =


0.5, if j = (i+ 1) mod d (clockwise transition),
0.5, if j = (i− 1) mod d (counterclockwise transition),
0, otherwise.

(36)

We draw the same conclusions as above for this second type of random walk, in Fig. 13.

0

1

2

3

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

Figure 12: Polygonal random walk with d = 4.

46



2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2025

100 101 102 103

Context Length Nicl

10 1

100

Er
ro

r 
icl

100 101 102 103

Context Length Nicl

10 1

100

Er
ro

r 
icl

100 101 102 103

Context Length Nicl

10 1

100

Er
ro

r 
icl

100 101 102 103

Context Length Nicl

10 1

100

Er
ro

r 
icl

d = 6 d = 5 d = 4 d = 3 N 1/2
icl

Figure 13: Polygonal random walks. We plot the risk Ricl as functions of Nicl, with 99% confidence
intervals. We consider different size d. Upper Left. Llama2 7B Upper Right. Llama2 13B
Lower Left. Mistral 7Bv0.1 Lower Right. Gemma 2B

E.3.2 INNER CLIQUES AND OUTER RIMS

Inner Cliques and Outer Rims. We also want to test our method on the class of Markov chain
put forward in (Wolfer & Kontorovich, 2019) to derive their lower bound. Let η > 0 and d = 3k for
some k ∈ N, and define the collection of Markov matrices Hη = {Mη,τ : τ ∈ {0, 1}d/3}. Every
element of this set consists of an inner clique and an outer rim. Mη,τ is the block matrix defined as
follows,

Mη,τ =

(
Cη Rτ

R⊺
τ Lτ

)
,

where Cη ∈ Rd/3×d/3, Lτ ∈ R2d/3×2d/3, and Rτ ∈ Rd/3×2d/3 are given by

Lτ =
1

8
diag

(
7− 4τ1ε, 7 + 4τ1ε, . . . , 7− 4τd/3ε, 7 + 4τd/3ε

)
,

Cη =


3
4 − η η

d/3−1 . . . η
d/3−1

η
d/3−1

3
4 − η

. . .
...

...
. . . . . . η

d/3−1
η

d/3−1 . . . η
d/3−1

3
4 − η

 ,

Rτ =
1

8


1 + 4τ1ε 1− 4τ1ε 0 . . . . . . . . . 0

0 0 1 + 4τ2ε 1− 4τ2ε 0 . . . 0
...

...
...

...
...

...
...

0 . . . . . . . . . 0 1 + 4τd/3ε 1− 4τd/3ε

 .

We provide in Fig. 14 a probabilistic graph of the case Mη,0 and d = 9.

Fig. 15 compares different LLMs with the frequentist method, on the case depicted in Fig. 15 with
η = 0.02. Although the frequentist method achieves a lower loss, the power laws seem to be the
same with LLMs.
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Figure 14: Probabilistic graph of Mη,0 when d = 9.
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Figure 15: We plot the risk Ricl as functions of Nicl, with 95% confidence intervals. Upper
Left. Llama2 7B Upper Right. Llama2 13B Lower Left. Mistral 7Bv0.1 Lower Right.
Gemma 2B
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E.4 RECENT MODELS: IMPACT OF THE TOKENIZATION

As explained in Appendix E.1, models like Llama 3 tokenize 3-digit numbers with a single token. This
saves a lot of inference compute time, but not necessarily in terms of performance when considering
Markov chains with a few number of states d, since we have to separate the states by a comma to
force tokenization into a single digit (e.g. the transitions 1 → 0 → 1 will be prompted as 1,0,1 (5
tokens) instead of 101 (1 token). In Fig. 16, we reproduce the same experiment as in Fig. 5(left), but
with Llama 3 models. The scaling laws are quite good, but much less so than those obtained with
Gemma 2B and Mistral 7Bv0.1 on the same inputs. On the other hand, with these models, it
can be extremely interesting to consider Markov chains with many states, as we did in Fig. 6(right). In
the next section, we will use LLama3 to learn other dynamic systems presented in Liu et al. (2024).
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Figure 16: In-context scaling laws for LLama3 herd of models. We plot the risk Ricl as functions
of Nicl, with 95% confidence intervals.

E.5 DYNAMICAL SYSTEMS

We consider four of the dynamic systems highlighted in (Liu et al., 2024) : a geometric Brownian
motion, a correlated Gaussian, an uncorrelated Gaussian and an uncorrelated uniform processes. We
display in Fig. 17 the risks of LLama3 8B and the frequentist method, which once again highlight
the emerging capacity of in-context learning.
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Figure 17: LLama3 8B on dynamical systems. We plot the risks Ricl as functions of Nicl for
LLama3 8B and the frequentist approach (Wolfer & Kontorovich, 2019) with 95% confidence
intervals. Upper Left. Geometric Brownian motion. Upper Right. Correlated Gaussian. Lower
Left. Uncorrelated Gaussian. Lower Right. Uncorrelated Uniform.
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F EXTENDED RESULTS WITH THE KL DIVERGENCE

As explained in Remark 4.1, the total variation is the natural choice to define the risks in Eq. (2).
Another possibility in the Markov chain literature is to use the KL divergence to compare probability
distributions (Hao et al., 2018). This is an interesting candidate as the KL divergence is naturally
connected to the cross-entropy loss commonly used to train neural networks (the cross-entropy
corresponds to the KL divergence between the true distribution and the predicted softmax distri-
bution (Blondel et al., 2019). In this section, we discuss the extension of the theoretical results of
Section 4 by replacing the TV distance with the KL divergence in the risks’ definition, i.e.,

R(Θ) := ES∼PL [dKL(Q
∗(S, ·)||Qf (S, ·))], R̂(Θ) :=

1

N

N∑
n=1

dKL(PL(· | Sn)||PΘ(· | Sn)). (37)

F.1 PRE-TRAINING GENERALIZATION BOUNDS

Theorem 4.1, Corollary 4.2 and Corollary 4.3 related to the pre-training phase in Section 4.1 can be
obtained similarly if the risks are defined with the KL divergence following Eq. (37). Indeed, the key
step to derive the proofs is to obtain a similar result to Lemma D.6 but with the KL divergence. The
next lemma provides this result.

Lemma F.1. Consider two probability distributions P,Q defined on a measure space (Ω,F)
and a σ-finite measure ν on (Ω,F). Let p, q be the corresponding probabilities densities, i.e.,
we have P(dω) = q(ω)ν(dω) and Q(dω) = p(ω)ν(dω). If there exists a non-negative constant

B such that for any z ∈ Ω,
∣∣∣log√ P(z)

Q(z)

∣∣∣ ≤ B, then we have

dKL(P||Q) ≤ B.

Proof. We have

0 ≤ dKL(P||Q) = |dKL(P||Q)|

=

∣∣∣∣∫ P(z) log(
P(z)
Q(z)

)dz

∣∣∣∣
≤
∫
|P(z)||log( P(z)

Q(z)
)|dz

≤ B

∫
|P(z)|dz

= B

∫
P(z)dz

= B,

which concludes the proof.

We can now state the results similar to Theorem 4.1, Corollary 4.2 and Corollary 4.3 from the
pre-training phase when the risk is defined according to Eq. (37).

Theorem F.2 (Pre-training generalization bound). Consider an LLM fΘ ∈ F . We denote by
Γ the mixing matrix of the pre-training sequences of tokens (S1, . . . ,SNtrain). Let 0 < δ < 1,
then with probability at least 1− δ,

Rpre(Θ) ≤ R̂pre(Θ) +
B̄√
Ntrain

√
log

(
2

δ

)
,
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where B̄ =
√
2∥Γ∥max{log (T ) + 2BU/τ, log (1/c0)} is a constant depending on the param-

eters of the problem.

Proof. The proof simply follows from the proof of Theorem 4.1 by replacing the upper bound
√
2B

by B (with the appropriate upper-bound B) when Lemma D.6 is used in the proof.

Corollary F.3 (Depth-dependent bound). Consider an LLM fΘ ∈ F̃ := {fΘ | Θ ∈ W̃}. With
the same assumptions as in Theorem 4.1, we have

Rpre(Θ) ≤ R̂pre(Θ) +
B̄√
Ntrain

√
log

(
2

δ

)
,

where B̄ =
√
2∥Γ∥max{log (T ) + 2(BΘ)L/τ, log (1/c0)} is a constant depending on the

parameters of the problem, and BΘ = [(1 + rmB1B2)(1 +
r3

HBOBV )](BtokBU )
1/L.

Proof. The proof simply follows from the proof of Theorem 4.1 by replacing the upper bound
√
2B

by B (with the appropriate upper-bound B) when Lemma D.6 is used in the proof.

Corollary F.4 (Sample complexity). Let B̄ be the parameter-dependent constant of Theorem F.2
or Corollary F.3. Let δ ∈ [0, 1] and let ϵ > 0. If Ntrain ≥ N∗ := ⌈ 4B̄2

ϵ2 log
(
2
δ

)
⌉ and if we

assume a perfect pre-training error for fΘ, then we have with probability at least 1− δ,

ES∼PL∥Q∗(S, ·)−Qf (S, ·)∥1 ≤ ϵ.

Proof. The proof simply follows from the proof of Theorem 4.1 by replacing the upper bound
√
2B

by B (with the appropriate upper-bound B) when Lemma D.6 is used in the proof.

F.2 LIMITATIONS

We recall from Remark 4.1 that the TV distance is a natural choice to compare transition matrices
in the Markov chain literature. In addition, while the KL divergence can be used to compare
probability distributions, it does not define a metric space. Hence, we cannot straightforwardly extend
Theorem 4.4 with the KL divergence because the proof relies on the use of the triangular inequality.
As Theorem 4.4 is one of our main results and enables us to show that the theory and the practice align
(Section 5), this also contributed to our preference for the TV distance instead of the KL divergence.

51


	1 Introduction
	2 Background Knowledge
	3 blue Large Language Models as Markov Chains
	3.1 Markov chain formalization
	3.2 Illustration on a toy model

	4 Generalization Bounds for Large Language Models
	4.1 Pre-training Theoretical Analysis
	4.2 In-context Learning of Markov Chains

	5 Numerical Experiments
	6 Conclusion
	A Notations
	B Background on blue Large Language Models
	B.1 blue Large Language Models
	B.2 Transformer Architecture
	B.3 Autoregressive Transformer-based LLM

	C Background on Markov Chains
	C.1 Basic Notions
	C.2 Ergodic Unichains
	C.3 Marton Couplings
	C.4 An (Almost) Distance between Markov Chains

	D Proofs
	D.1 Proof of prop:LLMformaldef
	D.2 Proof of prop:ergodicunichains
	D.3 Proof of prop:stationarydistrib
	D.4 Proof of thm:pretrainingriskboundllm
	D.5 Proof of cor:pretrainingriskboundllmdepth
	D.6 Proof of cor:samplecomplexity
	D.7 Proof of thm:riskboundllm

	E Additional Experiments
	E.1 Experimental Setup and Tokenization
	E.2 Impact of the Number of States d
	E.3 More Structured Markov Chains
	E.4 Recent Models: Impact of the Tokenization
	E.5 Dynamical Systems

	F blue Extended Results with the KL Divergence
	F.1 blue Pre-training Generalization Bounds
	F.2 blue Limitations


