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ABSTRACT Gait is a fundamental aspect of human mobility, and disruptions in normal gait can significantly
reduce quality of life (QOL). Although recent advances in 3D gait analysis (3DGA) enable precise,
quantitative assessments, these methods are typically confined to controlled laboratory environments and
thus fail to accurately capture natural gait variability. Conversely, wearable IMU sensors offer cost-effective,
portable solutions for capturing movements across diverse settings but face challenges such as invasiveness
and sensor drift. In this study, we propose “Gait Inertial Poser (GIP),” a novel method estimating 3D full-
body pose during straight walking on flat ground, using only two shoe-embedded IMU sensors. GIP initially
estimates personalized body shapes from user attributes (height, weight, age, gender) and then employs a
Transformer-based module to infer gait motion parameters from IMU data. To ensure temporal continuity
and smoothness of the estimated motion, we further introduce a smoothing module based on a Variational
Autoencoder (VAE), which further incorporates a specialized loss function that explicitly enforces kinematic
constraints during foot-ground contact, thereby improving the overall estimation accuracy. Comprehensive
experiments conducted on two public datasets quantitatively and qualitatively demonstrate that GIP achieves
high accuracy in straight-line walking. This approach overcomes limitations of traditional laboratory-
based methods, opening new opportunities for real-time monitoring and remote rehabilitation in everyday
environments. The code will be available at https://github.com/RyosukeHori/GaitInertialPoser

INDEX TERMS Human motion capture, 3D pose estimation, gait analysis, IMU, deep learning.

I. INTRODUCTION

Gait is the most fundamental mode of human locomotion,
encompassing critical information about a person’s health
and physical capabilities, such as gait phase, stride length, and
muscle strength. Quantitative analysis of this information,
known as gait analysis, is widely utilized in medical fields
for diagnosing patients, monitoring disease progression, and
evaluating treatment and rehabilitation effectiveness [1],
[2]. It also plays a significant role in sports science and
rehabilitation research. Traditionally, clinical gait analysis
has relied heavily on subjective evaluations through visual
observation by healthcare professionals and self-reports by
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patients. However, these methods are prone to variability
among evaluators and human error. While Instrumented Gait
Analysis (IGA), utilizing optical motion capture systems
and force plates, provides objective and precise measure-
ments [3], it is confined to laboratory settings and often
fails to accurately reflect natural walking behaviors in daily
life [4], [5], [6].

Recently, there has been growing interest in gait analysis
methods employing Inertial Measurement Units (IMUs) to
overcome these limitations [7], [8]. IMUs are compact,
lightweight, cost-effective, and easily wearable, making
them suitable for continuous gait measurement in var-
ious everyday environments. A conventional IMU-based
method reconstructs foot trajectories by double integrating
acceleration data [9], [10], [11]. Additionally, numerous
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FIGURE 1. Overview of the proposed Gait Inertial Poser (GIP). (a) User wearing minimal inertial measurement units (IMUs) attached only to shoe soles,
enabling unobtrusive daily gait measurement. (b) Input data consisting of easily obtainable user attributes (height, weight, age, gender) and IMU
measurements (acceleration and angular velocity). These inputs allow estimation of the user’s personalized body model and gait parameters, including
gait phase, velocity, and joint angles. (c) Final output visualizing smooth, accurate full-body walking motions tailored to the user’s characteristics.

machine learning-based approaches have been proposed to
estimate lower-limb or full-body joint angles during gait
from IMU data [12], [13], [14], [15]. More recently, methods
have emerged capable of estimating not only joint angles
but also full-body motion trajectories using only a few
body-worn IMUs [16], [17], [18], [19]. However, these
methods suffer from reduced estimation accuracy due to
drift issues, including cumulative trajectory errors resulting
from integration, and inaccuracies in global orientation
information input into neural networks. These drift issues
arise from the lack of absolute positioning in IMU sensors,
as well as the inherent noise and measurement errors in IMU
data.

To address these issues, we propose a novel method named
“Gait Inertial Poser (GIP).” As illustrated in Figure 1, (a) GIP
employs only two IMU sensors embedded in shoes, enabling
non-invasive and highly accurate full-body gait motion
estimation during straight walking on flat ground, suitable
for unobtrusive measurements in daily life. (b) Additionally,
the method leverages individual user attributes such as height,
weight, age, and gender, enabling precise motion estimation
tailored to each user’s body shape. Specifically, user-specific
body models are estimated from these attributes, and detailed
gait parameters, including gait phases, walking velocity, and
joint angles, are derived from IMU acceleration and angular
velocity data via deep learning models. (c) By integrating
these estimations, our approach enables the reconstruction of
natural and precise full-body gait poses reflecting individual
characteristics.

A key feature of our proposed method is intentionally
limiting motion estimation to linear gait patterns. This design
choice is critical to enabling highly accurate and practical
gait motion estimation. It achieves this using only two
shoe-embedded IMUs and requires no additional wearable
devices or global positioning, making the approach realistic
and widely applicable. Such a focus is well aligned with
IGA, which primarily aims to quantify gait motion itself
rather than absolute travel direction, and reflects typical
clinical protocols (e.g., 10 m Walk Test) where straight
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and level walkways are standard. By restricting motion
estimation to straight-line walking, we can avoid the drift
issues typically observed in the conventional IMU-based full-
body motion estimation methods. Unlike these methods, our
approach does not require integrating angular velocities for
global orientation or integrating accelerations to reconstruct
displacement, and instead relies solely on IMU measurements
within the sensor’s local coordinate system, thereby avoiding
integration-induced drift accumulation and enabling highly
accurate gait motion estimation. Furthermore, we incorporate

a Transformer-based deep learning model and a loss function

inspired by Zero Velocity Update (ZUPT), achieving stable

and accurate gait pattern estimation. We also employ a

Variational Autoencoder (VAE) to enhance the temporal

smoothness of the estimated motions.

To validate the effectiveness of our proposed method,
we conducted quantitative and qualitative experiments using
publicly available datasets such as the AIST Gait Database
2019 [20] and UnderPressure dataset [21]. Additionally,
we developed a practical demonstration system utilizing
commercially available IMU-equipped shoes to confirm
the practical applicability of our method in real-world
environments. In particular, we adopted a consumer-grade
IMU device, ORPHE CORE [22], embedded in sneakers
designed specifically for this device. This setup allows
consistent and vibration-resistant sensor placement inside
the shoe sole, mitigating variability due to IMU mounting
positions or shoe type.

The main contributions of this study are summarized as
follows:

1) We propose a non-invasive and highly accurate gait
motion estimation method (Gait Inertial Poser) that
naturally integrates into daily life using only two IMUs
embedded in shoes.

2) Our model comprises multiple modules that estimate
personalized body models from user attributes and
accurately predict gait parameters from IMU data. It also
incorporates a VAE to ensure smooth motion reconstruc-
tion.
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3) The effectiveness and practicality of the proposed method
are experimentally validated using publicly available
datasets and a demonstration system with commercial
IMU devices.

Il. RELATED WORKS

A. MOTION SENSING FOR GAIT ANALYSIS

Gait analysis plays a critical role in evaluating and preventing
declines in quality of life (QOL) caused by deviations from
normal gait patterns [23], [24]. Specifically, gait parameters
such as joint angles, velocities, and stride lengths provide
quantitative and objective measures that are valuable for med-
ical diagnostics and rehabilitation assessments. Traditional
clinical approaches typically rely on subjective assessments,
including visual observation by medical professionals or self-
reports by patients. However, these subjective methods can
lead to inter-observer variability and human error [25], [26],
[27].

IGA, which employs optical motion capture (MoCap)
systems and force plates, offers objective and highly accurate
measurement capabilities [3]. Despite their precision, these
systems are restricted to specialized laboratory environments.
Consequently, concerns have been raised regarding the
potential discrepancy between laboratory-measured gait and
natural daily walking patterns due to factors such as
the Hawthorne effect—where subjects alter their behavior
under observation—and the absence of complex real-world
conditions like uneven surfaces or obstacles [4], [5], [6].

To overcome these limitations, recent research has actively
explored the use of inertial measurement units (IMUs) for
gait analysis [7], [8], [28], [29], [30]. IMUs, characterized
by their compact size, lightweight, ease of attachment, and
affordability, enable the collection of gait data in natural
daily settings across extended periods. Wearable IMU-based
systems also facilitate patient-driven, long-term monitoring
and remote rehabilitation programs.

Common IMU-based gait analysis methods [9], [10], [11]
reconstruct foot trajectories by integrating acceleration data
obtained from IMUSs attached to the feet. However, the
inherent noise in IMU measurements accumulates through
double integration, causing significant drift in positional
and velocity estimates, especially during prolonged measure-
ments. To mitigate this drift problem, correction methods
such as the zero-velocity update (ZUPT)—which resets
velocity to zero when the foot is stationary—are widely
employed [31], [32], [33].

Furthermore, recent studies have proposed numerous
approaches [12], [13], [14], [29], [34] leveraging machine
learning techniques to estimate joint angles during various
movements, including gait, from IMU data. These approaches
typically involve attaching multiple IMUs to the lower limbs
and incorporating human body models to achieve precise
estimation of body segment positions and motions. While
such methods enable more detailed gait analysis, the increase
in the number of sensors can make the setup cumbersome and
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raise invasiveness concerns for users. Thus, minimizing the
number of IMU sensors is essential to reduce invasiveness
and facilitate long-term usage in daily life.

To address this, our method adopts an approach using
only two IMUs embedded in shoes, significantly minimizing
invasiveness, and aims to accurately capture natural gait
motions during daily activities.

B. FULL-BODY HUMAN MOTION CAPTURE

In gait analysis, considering full-body poses—including
arm swing and trunk movements in addition to lower
limb motions—enables more comprehensive and accurate
assessments and diagnoses.

One of the methods widely used for accurately capturing
full-body human poses is the optical MoCap system [35],
[36], [37], [38]. This system involves attaching small
reflective markers to the subject’s body and tracking their
movement with multiple infrared cameras. While optical
MoCap systems achieve high precision and frame rates, they
come with significant constraints, including high costs and
the requirement to attach markers to the body. To address
these challenges, markerless MoCap methods using RGB
cameras or depth cameras have been proposed, significantly
reducing the cost and complexity of the setup [39], [40],
[41], [42], [43], [44], [45], [46], [47], [48], [49], [50], [51],
[52], [53]. However, even these methods face challenges such
as the synchronization and calibration of multiple camera
systems.

Moreover, with advances in machine learning technol-
ogy, 3D human pose estimation (HPE) methods based on
monocular RGB cameras have also been proposed [54], [55],
[56], [57], [58], [59], [60], [61], [62], [63]. These methods
allow for relatively accurate pose capture in scenarios where
camera pre-calibration or marker attachment is impractical.
However, these third-person camera methods still face issues
such as occlusion caused by obstacles between the camera
and the subject, as well as the limitation that the subject’s
range of motion is confined within the camera’s field
of view. In response to these challenges, egocentric pose
estimation methods [64], [65], [66], [67], [68], [69], [70],
[711, [72], [731, [741, [75], [76], [77], [78], [79], [80], [81]
using wearable cameras have been developed, enabling pose
estimation over a wide range of user activities. However,
due to the nature of wearing the camera on the body, there
are inherent difficulties, such as the need to use special
fisheye cameras and the possibility that large portions of
the body may fall outside the field of view depending on
the pose. Additionally, a common issue across all camera-
based methods is the concern for privacy when measuring
movements in various daily life scenarios.

Motion capture using IMU sensors is considered an
effective solution to this problem. Unlike camera-based
systems, IMUs are not constrained by occlusions or the field
of view of the camera, offering a broader capture range
and avoiding privacy issues. However, high-end commercial
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products [82], [83], [84] require a large number of IMUs
to be attached to the body, making them unsuitable for
capturing motion in everyday life. Recently, research on full-
body pose estimation using a small number of wearable
sensors, leveraging machine learning techniques, has been
advancing [16], [17], [18], [85], [86], [87], [88], [89], [90],
[91]. For example, while traditional commercial products
like Xsens require 17 IMUs, these new methods propose
innovative approaches that estimate full-body motion with
only 6 IMUs. Additionally, methods aiming to minimize
the number of IMUs have been proposed [15], [92], [93].
These approaches estimate upper-body or full-body poses
using only one to three sensors embedded in everyday
items such as mobile phones, earbuds, watches, clothing, or
shoes.

Some of these methods partially mitigate drift issues by
leveraging foot-ground contacts and anatomical or kinematic
constraints of the human body. Nevertheless, they still
encounter accumulated errors from IMU orientation data in
the global coordinate system, as these data are directly input
to neural networks, leading to decreased estimation accuracy
over prolonged measurements.

In this study, in contrast to previous methods that require
IMU orientation data in a global reference frame to estimate
diverse motions, we deliberately restrict our target to linear
walking motions. This approach allows highly accurate gait
motion estimation using solely IMU data within the sensor
coordinate system, effectively avoiding errors associated with
global coordinate transformations.

lll. METHOD
We propose a novel approach, Gait Inertial Poser (GIP),
enabling non-invasive and accurate full-body motion esti-
mation using a minimal number of IMU sensors naturally
integrated into daily life. This method aims to enable
gait analysis in diverse everyday environments beyond the
constraints of laboratory settings. As illustrated in Figure 2,
our framework consists primarily of three modules: the Body
Module, the Gait Module, and the Smoothing Module.
(a) First, subject-specific attributes, such as height, weight,
age, and gender, along with acceleration and angular velocity
data obtained from IMUs, serve as inputs. (b) The Body
Module estimates personalized body shape parameters based
on these individual attributes. (c) The Gait Module employs
a Transformer-based deep learning model to simultaneously
estimate multiple gait-related parameters from IMU data,
including gait phase, joint angles, root joint velocity, root
joint height, and foot height. (d) The Smoothing Module
utilizes a Variational Autoencoder (VAE) to enhance the
temporal smoothness and continuity of the estimated motion
sequences. (e) Integrating these modules yields natural and
smooth full-body gait motions.

In the following subsections, we describe the sensor
configuration used in the proposed method, detailed network
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architecture including each module, and the loss functions
employed.

A. SENSOR CONFIGURATION

IMUs are widely used for gait analysis and full-body MoCap
due to their compatibility with human motion measurement,
stemming from their wearability, low cost, high sampling
rate, and real-time capabilities. An IMU consists of an
accelerometer, gyroscope, and magnetometer, which together
allow for tracking the velocity, position, and orientation
of the body part to which the sensor is attached. The
accelerometer measures the linear acceleration of an object
along three axes, with a high capability to detect minute
changes in acceleration. However, when acceleration data
is double-integrated to determine position, noise and bias
can accumulate, resulting in drift. The gyroscope measures
the rotational velocity of an object along three axes and
can respond immediately to dynamic movements to measure
angular velocity, but it is prone to bias accumulation over
time. The magnetometer detects the orientation of an object
by measuring the Earth’s magnetic field, but it is highly
sensitive to magnetic disturbances (e.g., interference from
electronic devices or metal), which can cause significant drift
compared to the other two sensors. Therefore, in this study,
we exclude magnetometer data and use the accelerometer
and gyroscope values as inputs to the network, addressing
their potential drift issues through network and loss function
design.

Furthermore, sensor placement is also a critical factor in
gait motion measurement. To capture natural gait patterns
during everyday life, it is necessary to select a non-invasive
sensor configuration that does not interfere with users’
daily activities. The widely used commercial IMU sensor
system by Xsens [83] requires attaching 17 IMUSs across
the body for accurate full-body motion capture, making
it unsuitable for long-term measurement in daily life or
public settings. Recent advancements in machine learning-
based pose estimation methods using IMU data have enabled
diverse motion estimation with fewer IMUs, such as six
sensors placed on the head, waist, hands, and legs [16], [17],
[18], [86], [87], [88], [89], [90], [91], or just three sensors
located on the wrist (smartwatch), pocket (smartphone), and
head (earbuds) [19], [92]. In contrast, this study adopts
an even more practical sensor configuration for daily use
specifically for gait analysis, utilizing only two IMU sensors
embedded in shoe soles. As smart insoles and smart shoes are
becoming commercially available, embedding IMU sensors
into regular footwear is increasingly feasible, enabling
non-invasive, long-term monitoring of everyday movements
without imposing additional user burden.

In this study, the acceleration data are denoted as A =
{A"}T_, and angular velocity data as R = {R'}’_,, where
t represents the 7-th frame in a sequence of length 7. Given
that our method uses two IMUs embedded in the shoe soles,
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FIGURE 2. Detailed network architecture of the proposed method. (a) Input includes user attributes (height, weight, age, gender) and IMU measurements
(acceleration, angular velocity). (b) The Body Module estimates personalized body shape parameters. (c) The Gait Module, based on a Transformer,
simultaneously estimates gait phase, joint angles, velocities, root positions, and foot trajectories using IMU data. (d) The Smoothing Module employs a
Variational Autoencoder (VAE) to enhance temporal smoothness and stability of the estimated motion, effectively reducing IMU drift through loss
functions inspired by zero velocity updates (ZUPT). (e) Final output is a smooth, stable full-body walking motion reconstruction.

the data at each frame are represented as A’ € R>*® and
R' € R?*3, respectively.

B. NETWORK DETAILS

The proposed method, Gait Inertial Poser (GIP), is a deep
learning-based framework designed for full-body motion
estimation using a minimal number of IMU sensors.
As illustrated in Figure 2, the network comprises three main
modules: the Body Module, the Gait Module, and the
Smoothing Module. The Body Module takes attribute data
Xat as input and estimates the body shape parameters (3
of a parametric human mesh model. The Gait Module uses
IMU data Xjy, (acceleration A and angular velocity R) and
body shape parameters 3 to estimate multiple gait parameters
simultaneously, including the gait phase p, 6D joint angle
representation g4, root joint velocity (walking speed) v, root
joint height r, and foot height f. The Smoothing Module takes
the gait parameters X ELTN estimated by the Gait Module
using a sliding-window approach as input, incorporating
overlapping frames from the subsequent window based on
stride N /2 to reduce discontinuities at window boundaries.
Subsequently, a Variational Autoencoder (VAE) is employed
to enhance the temporal smoothness of the estimated motion
sequences. Details of each module are provided in the
following subsections.

1) BODY MODULE
The Body Module estimates body shape from simple
attribute information without requiring a full-body scan.
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IMU data do not contain direct information about body
shape; thus, IMU-based pose estimation methods typically
use a common default body shape model for all subjects.
However, differences in individual body shapes affect walk-
ing motions, making the use of personalized body models
essential for accurate motion reconstruction. In particular,
limb lengths influence stride length and IMU measurements.
Accurately reproducing these individual differences is crucial
for improving the precision of motion estimation.

To represent user-specific body shapes, we adopt the
SMPL (Skinned Multi-Person Linear) model [94], a para-
metric human body model widely utilized in recent pose and
shape estimation studies. This model effectively represents
complex and diverse human poses and shapes using a limited
number of parameters. The SMPL parameters consist of pose
parameters § € R?**3, describing the relative rotations of
23 joints and the global rotation of the root joint, and shape
parameters § € R!9, reflecting individual characteristics
such as height, weight, and limb proportions. Using these
parameters, the SMPL regression model estimates triangular
mesh vertices M € R0%3 and 3D joint positions J €
R?#*3 Additionally, it incorporates the parameter d € R3
to capture the global translation of the person.

The Body Module estimates the body shape parameters
B from subject attributes Xox = {xp, Xy, Xa, X¢} (height,
weight, age, and gender) using a multi-layer perceptron
(MLP). The SMPL model includes three variants: male,
female, and neutral, and the appropriate variant is selected
based on the gender attribute. The shape parameters 3 form
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a 10-dimensional vector comprising the top 10 principal
components extracted via principal component analysis from
a large-scale body scan dataset. By inputting these estimated
body shape parameters along with IMU data into subsequent
modules, our approach achieves highly accurate motion
estimation that accounts for individual body differences.

2) GAIT MODULE

The Gait Module simultaneously estimates multiple gait-
related parameters such as gait phases, joint angles, walking
speed, and foot trajectories from the body shape parameters
and IMU sensor data. The network structure employs a
Transformer-based deep learning model, effectively captur-
ing temporal variations in IMU data for highly accurate
motion estimation.

Human gait is characterized as periodic and repetitive
movements of body segments, commonly described through
““gait phases.” Incorporating gait phases facilitates a deeper
understanding and analysis of the periodic gait mechanism.
The gait cycle primarily consists of two phases: the stance
phase, which accounts for approximately 62% of the cycle
when the foot contacts the ground, and the swing phase,
comprising about 38% when the foot is off the ground. For
detailed analysis, the stance phase can be further divided
into initial contact, loading response, mid-stance, terminal
stance, and pre-swing phases. Similarly, the swing phase can
be subdivided into initial swing, mid-swing, and terminal
swing. This study specifically focuses on four key phases
segmented by the following gait events: heel contact, toe
contact, heel-off, and toe-off. The Gait Module identifies
these gait phases using the input IMU sequential data and
outputs the corresponding gait phase logits p € R*. The final
gait phase is determined by selecting the maximum value
from these logits.

In addition to gait phases, accurate gait motion estimation
requires consideration of kinematic parameters such as joint
movements, walking speed, and foot trajectories. Therefore,
the module leverages the body shape parameter /3 estimated
by the Body Module to simultaneously predict gait phase
p, 6-dimensional joint angle representation fg4, root joint
velocity v, and root joint height r, based on the SMPL human
body model. The 6D representation (f¢;z) is a continuous
and rotation-invariant representation of joint angles [95],
widely used in pose estimation tasks to mitigate issues like
discontinuity and ambiguity inherent in other representations
such as Euler angles or axis-angle. Parameters such as
walking speed and stride length are particularly influenced
by subject-specific body attributes like limb length, thus
improving estimation accuracy through incorporating indi-
vidual body shape parameters. Furthermore, the Transformer
architecture is specifically designed to extract temporal
features, ensuring stable temporal estimations of these
parameters, inspired by prior studies [17], [96] that adopted
similar architectures for pose estimation from IMU data.
Subsequently, by solving forward kinematics (FK) using a

VOLUME 13, 2025

pre-trained SMPL joint estimation model with the predicted
joint angles and body shape parameters, the module obtains
full-body joint positions and derives foot trajectories f. The
estimated gait parameters are then input into the subsequent
Smoothing Module for further motion refinement.

3) SMOOTHING MODULE

The Smoothing Module is designed to reduce temporal
discontinuities in the motion parameter sequences estimated
by the Gait Module, resulting in smooth and natural motion
estimation. Because the Gait Module performs motion
estimation using a sliding-window approach, discontinuities
may arise at the boundaries between estimation windows.
To address this issue, the Smoothing Module processes
overlapping frames between adjacent windows by using a
stride N /2, enabling continuous correction of motion near
these boundaries.

Specifically, when utilizing the gait parameter sequence
X é;:rN estimated by the Gait Module, frames from the latter
half of each estimation window overlap with frames from
the first half of the subsequent window, thereby seamlessly
connecting otherwise discontinuous estimations. Moreover,
we introduce a loss function inspired by the classical Zero
Velocity Update (ZUPT) algorithm, a widely used technique
in IMU-based gait analysis that reduces integration-induced
positional drift by resetting sensor velocity to zero during
foot-ground contact. By leveraging the gait phase information
estimated by the Gait Module, our proposed loss function
explicitly imposes kinematic constraints on foot velocity
and height during identified foot-ground contact periods,
thereby effectively mitigating IMU drift and improving
motion estimation accuracy. The details of this loss function
are described in subsequent sections.

The module employs a network architecture based on a
Variational Autoencoder (VAE). Sequential input data are
first processed by an LSTM to estimate the mean u and
standard deviation o of latent variables, from which a latent
representation z is sampled. This latent representation is then
fed into a decoder to reconstruct a continuous and smooth
motion sequence. This design ensures temporal stability in
the estimated motions, resulting in smooth gait patterns well-
suited for practical applications in real-world environments.

C. LOSS FUNCTIONS

Our network architecture allows each module to be trained
separately, ensuring stable learning without mutual interfer-
ence and facilitating efficient convergence. Below, we detail
the loss functions employed for individual module training.

1) BODY MODULE

The loss function Lyogy used for training the Body Module
consists of two terms: a shape loss Lghape and a height loss
Lheight, as described in Equation 1. Here, Ashape and Apejgne
are weighting coefficients used as hyperparameters to balance
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each loss component effectively.

Ebody = /\shapeﬁshape + )\heightﬁheight (1
shape =|68- 5|1 2
Lheight = |h — hi3 3

The shape loss Lgnape calculates the mean absolute error
(MAE) between the estimated shape parameters 3 and the
ground truth [3 Since each dimension of 3 corresponds to
principal components obtained via PCA on body shape data,
dimensions may have different variance scales. Therefore,
using MAE ensures stable training by preventing dispropor-
tionately large contributions from dimensions with higher
variance.

Although Lgpape effectively optimizes multiple aspects
such as limb length and body thickness, height is particularly
crucial in gait analysis due to its significant influence on
stride length and joint angle estimations. Thus, we introduce
an additional height-specific loss term, Lpejgnt, which explic-
itly guides the model to more accurately predict body height.
Here, body height is defined as the distance from the soles of
the feet to the top of the head when applying the estimated
and ground truth shape parameters (6 and ) to the SMPL
model in the default T-pose. This loss term calculates the
mean squared error (MSE) between the predicted height &
and the ground truth height h.

In practice, the height loss is computed by generating a
body mesh using the estimated § parameters with gender-
specific SMPL models (male or female) and measuring the
vertical distance between the vertex at the top of the head and
the midpoint of the left and right heel vertices. This calculated
height is then compared with the ground truth to compute
the height loss. This formulation ensures accurate and stable
estimation of individual-specific body shapes, contributing to
precise gait analysis.

2) GAIT MODULE

The loss function Lg for training the Gait Module
combines multiple components, each measuring the accuracy
of different gait-related parameters:

Lgait = Aphaseﬁphase + /\poseﬁpose + AoriLori
+ AvelLvel + ArootLroots )

where each \ represents a hyperparameter balancing the
contribution of each component.

The gait phase loss Lpnase evaluates the accuracy of gait
phase estimation through cross-entropy loss for a multi-class
classification task, defined as follows:

T
1 Ge ) @ri )
Lphase = o7 <logple;tflt't + Ingrigﬁtlzt ) &)
t=1
where pgt , and prl n. Tepresent the predicted probabilities

for class ¢ of the left and right feet, respectively, at frame ¢.
The ground truth labels for the left and right feet at frame ¢
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are denoted as Jiefr,; and Jrigne,r, respectively, each indicating
one of the classes. T denotes the total number of frames.

The remaining losses (pose, orientation, velocity, and
root height) are computed using mean squared error (MSE)
between predicted and ground truth values:

T K
1 ~k
Lpose = = ZZ 167 = 0,15, ©)
d 0
Lori = ;Z 169 — 6,113, )
1 T
Lo =7 2 v = 0ill3, ®)
t=1
Lroot = Z ||r(Z) A(Z) 9)

where K is the number of joints, Qf represents the estimated
6-dimensional joint angle representation for the k-th joint
at frame ¢, 99 is the estimated 6-dimensional orientation
of the root joint at frame ¢, v, denotes the estimated root
joint velocity (walking speed) at frame 7, and rEZ) indicates
the estimated root joint height at frame ¢. Corresponding
ground truth values are denoted with hats (*). By integrating
these multiple loss components, the Gait Module accurately
estimates the diverse and crucial parameters essential for
detailed gait analysis.

3) SMOOTHING MODULE

The loss function for the Smoothing Module, Lgsmooth,
is designed based on a Variational Autoencoder (VAE) frame-
work and comprises multiple components. These components
include reconstruction loss, smoothing loss, translation loss,
foot-ground contact constraints, and the KL divergence term.
Specifically, it is defined as follows:

Esmoolh = >\rec£rec + )\smooth[rsmooth

+ )\fposﬁfpos + Atvel Ltvel + AKLLKL, (10)

where each A represents a weighting hyperparameter to
balance the contribution of each term.

The reconstruction loss L. is calculated as the Mean
Squared Error (MSE) between the predicted gait parameters
(joint angles, orientations, velocities, root joint height, foot
joint height) and their ground truth values, ensuring accurate
reproduction of the input motion sequences:

rec=—ZZ||z,d—z,d||2, (1)

t=1d=1

where z; 4 and Z; 4 denote the predicted and ground truth
motion parameters at frame ¢ and dimension d, respectively.
D represents the total number of gait parameter dimensions.

The smoothing 10ss Lsmooth is defined by minimizing the
second-order temporal derivative of the predicted motion
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parameters. This encourages temporal smoothness and conti-
nuity in motion estimations:

1 T-1

D
= 2 2 a3, (12)

t=2 d=1

Acsmooth =

where the second derivative term X, is approximated via finite
differences as follows:
Xl — 2% X

¥ A 3 . (13)

Here, x; € RK *3 denotes 3D joint positions at frame ¢, which
are obtained via the forward kinematics function FK(3, 6;, r;)
using the pre-trained SMPL joint regressor.

Moreover, inspired by the classical Zero Velocity Update
(ZUPT) algorithm, we introduce constraints during periods
identified as foot-ground contact phases, leveraging gait
phase information p from the Gait Module. Specifically,
we define two loss functions: a foot height loss, Lpos, and
a foot velocity loss, Leye.

The foot height loss Lf,0s minimizes the vertical displace-
ment of foot sole vertices, promoting accurate foot-ground
contact constraints:

1
Lipos = — > I3, (14)
€l teC

where f §Z> is the predicted vertical position of the foot sole at
frame ¢, and C is the set of foot-ground contact frames and
vertices identified by gait phase predictions.

FIGURE 3. Example of the gait motion data from the AIST Gait Database.
Subjects walked naturally along a straight path, stepping on force plates

(indicated in blue), allowing simultaneous capture of motion and ground
reaction force (GRF) data (indicated in red and green). The GRF data were
used to define gait phases such as heel-strike and toe-off.

Similarly, the foot velocity loss Lyye] suppresses horizontal
and vertical foot movements during identified ground-contact
periods:

1 .
Liva = — > Ifl5, (15)
€l ieC

where f ; denotes the velocity of foot sole at frame ¢.
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Lastly, the KL divergence term Lgp regularizes the
latent variable distribution to approximate a standard normal
distribution, following the standard VAE objective:

L
ﬂKLZ—%Z(1+10gUZZ—M12—612), (16)
=1

where L is the dimensionality of the latent space, and u;,
012 represent the mean and variance of the latent distribution,
respectively.

This combined loss function ensures accurate recon-
struction, temporal smoothness, robust velocity integration,
effective drift suppression during foot contact, and stable
latent representations, thereby significantly enhancing the
accuracy and smoothness of gait motion estimation.

IV. EXPERIMENTS

A. DATASETS

Our proposed approach is a data-driven motion estimation
framework utilizing machine learning models. Thus, in this
study, we used the following two existing gait datasets for
model training and evaluation.

The first dataset is the “AIST Gait Database 2019 [20],
published by the National Institute of Advanced Industrial
Science and Technology (AIST). This database comprises
gait motion data collected according to protocols approved
by the AIST Human Ergonomics Experiment Committee.
After excluding data with confirmed measurement errors, the
dataset consists of 3,424 walking trials conducted by a total
of 352 healthy adults, including 1,609 trials from 167 males
and 1,815 trials from 185 females. The participants span a
wide demographic range, with ages from 20 to 78 years (mean
51.1 £ 18.7), heights from 138 to 185 cm (mean 162.9 £ 8.4),
and body weights from 34 to 100 kg (mean 59.5 £ 10.2).
The data were captured at 200 FPS, amounting to a total
of 1 million frames. Measurements were performed using
a Vicon optical MoCap system, with subjects instructed to
walk naturally along a straight line at their preferred walking
speed. Additionally, the dataset includes ground reaction
force (GRF) data captured using force plates. During data
collection, participants walked over force plates located near
the center of the laboratory setup, allowing simultaneous
recording of motion data and GRF data (Figure 3).

Gait phase labels used for training our method were derived
using this GRF data. The gait cycle was segmented into four
phases based on gait events: ‘“heel-strike,” *‘toe-contact,”
“heel-off,” and “toe-off.” Heel-strike and toe-off timings
were defined based on the initiation and cessation of ground
reaction forces, respectively. In contrast, toe-contact and
heel-off phases were labeled when the velocity of specific
mesh vertices on the foot soles fell below a predefined
threshold. This dataset is highly suitable for evaluating gait
estimation methods due to the diversity of its subjects.
However, because the dataset relies on force plates, each
trial contains only a very short sequence of a few seconds
and does not include actual IMU sensor measurements.
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To address these limitations, we supplemented the evaluation
using synthesized IMU data (described later) and also utilized
another dataset, which contains longer gait sequences and
actual IMU measurement data.

The second dataset used is the “UnderPressure dataset”
[21], originally created to address the foot-skating issue
common in computer graphics-based motion estimation
tasks. This dataset contains motion data recorded from
10 participants wearing insoles equipped with IMU sensors
and foot-pressure sensors. The participants consist of 8 males
and 2 females, aged 21-55 years (mean 31.4 £ 11.7),
with heights ranging from 167 to 184 cm (mean 176.4 +
7.7 cm) and weights from 65 to 91 kg (mean 77.9 =+
9.3 kg). Each participant performed motion sequences with
an average duration of about 1.5 minutes. It includes diverse
movements such as walking at slow, medium, and fast
speeds, walking with random directional changes, interacting
with objects, and stair climbing. Since our experiments
focus on straight-line gait motions, we excluded sequences
involving interactions with objects and extracted segments
where the yaw angular velocity of the root joint remained
below a specified threshold. The total duration of these
extracted segments amounted to 170K frames (28.5 minutes
at 100 FPS). For gait phase labeling, we defined the four
phases mentioned above based on pressure detection using
the 16 foot-pressure sensors per foot, divided into front and
rear sections.

B. DATA SYNTHESIS

Creating extensive motion capture datasets requires sig-
nificant effort. Consequently, many IMU-based approaches
typically employ synthesized IMU data in addition to real
data for training and evaluation. Following this common prac-
tice, we generated synthetic acceleration and angular velocity
data for cases in the AIST Gait Database and UnderPressure
datasets where actual IMU data was unavailable.

Accurate synthesis of IMU data requires reproducing not
only skeletal poses but also individual-specific body shapes.
Therefore, we generate mesh models as pseudo-ground-truth
data to represent the actual body shape of each subject. For
the AIST Gait Database, we reproduced individual body
shapes using “Mosh++"" [97], [98], an optimization method
that fits the SMPL human mesh model to optical marker
trajectory data. Prior to optimization, we manually estab-
lished correspondences between optical marker positions and
SMPL mesh vertices to accurately generate subject-specific
mesh models. In contrast, the UnderPressure dataset contains
motion data recorded using commercial high-performance
IMU sensors (Xsens) without optical markers. Therefore,
we fitted the SMPL model by solving an inverse kinematics
(IK) algorithm based on skeletal landmarks common to both
the Xsens model and the SMPL model.

Next, we synthesized IMU data from the obtained SMPL
mesh models. Specifically, to evaluate our proposed method
and baseline methods described later, we created synthetic
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FIGURE 4. Synthetic IMU sensor positions defined on SMPL mesh vertices
(blue labels indicate SMPL vertex IDs). The foot soles correspond to the
proposed method, while positions on the left wrist, left ear, and right
thigh simulate IMU signals for baseline methods (smartwatch, earphone,
smartphone in pocket). The yellow arrows indicate vectors used to define
the mesh face normal for establishing IMU coordinate systems.

IMU data for five locations: the left wrist, left ear, right
pocket, and both foot soles, as shown in Figure 4. The
IMU coordinate systems were defined based on selected
triangular mesh faces by using the vectors of triangle edges,
the normal vector to the triangle face, and their cross
product. Using this IMU coordinate system, we computed the
orientation and acceleration in the global coordinate system
during motions and subsequently transformed these data into
synthetic acceleration and angular velocity data in the IMU
sensor coordinate system.

C. IMPLEMENTATION DETAILS

We implemented our proposed and baseline methods using
PyTorch as the deep learning framework. Model training and
evaluation were conducted on a Linux server equipped with
an NVIDIA RTX A6000 GPU. Specifically, the Body Module
consisted of a three-layer multi-layer perceptron (MLP) with
hidden layers of 128, 256, and 128 units, respectively. The
Gait Module employed a Transformer-based encoder with
8 attention heads and 4 encoder layers, a latent dimension of
256, and an input window size of 50 frames. The Smoothing
Module was implemented as a Variational Autoencoder
(VAE) with a latent dimension of 64 and an LSTM dimension
of 256.

For training, we employed the Adam optimizer [99] with
an initial learning rate of 1x 1073, trained for 500 epochs. The
dataset was divided into training, validation, and test subsets
with a ratio of 8:1:1, and a mini-batch size of 32 was used.
Model training and testing were conducted at 200 fps for the
AIST Gait Database and at 100 fps for the UnderPressure
dataset. Loss function weights were empirically optimized
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through preliminary experiments and set as follows:

(/\shapev )\height) = (0.1, 100),
(/\phase, )\posev Aoris Avels Aroot) = (1, 100, 100, 10, 10),
(Arec, Asmooths )\fpos, Atvel, AKL) = (1000, 1 x 105, 1,0.1).

To identify foot-ground contact phases in the AIST Gait
Database, we set the velocity threshold of the toes and
heels on the foot sole to 0.1 m/s. For the UnderPres-
sure dataset, straight-walking segments were extracted by
analyzing the root joint velocity direction. The method
compares the mean horizontal heading over 15-past and
future windows and labels frames as non-straight when the
heading change exceeds 2°, also excluding a margin of neigh-
boring 10 frames—all parameter values were empirically
determined. During inference, the root joint trajectory was
calculated by integrating the estimated root joint velocity,
starting from the origin on the horizontal plane, combined
with the estimated root joint height.

Finally, following Zhang et al. [17], we applied low-pass
filtering to both synthetic and real IMU data to reduce
differences in waveform characteristics. Specifically, a 4th-
order Butterworth low-pass filter with a cutoff frequency
of 10 Hz and a sampling frequency of 100 Hz was employed.

D. BASELINE METHODS

To evaluate the performance of our proposed method,
we employed the following four baseline methods for
comparison:

o Integration: The simplest baseline method, which
estimates trajectories by directly integrating acceleration
and angular velocity data from shoe-embedded IMU
sensors. The initial position and orientation are assumed
to be known. However, it is widely recognized that
this method suffers from cumulative integral drift,
significantly degrading accuracy over time.

« Integration 4+ ZUPT: An enhanced integration method
that incorporates Zero-Velocity Update (ZUPT) to
mitigate drift. Using gait-phase information estimated
by our proposed method, foot-ground contact periods
are identified. In addition to setting velocities to zero
during ground contacts, the method also removes
accumulated velocity drift between successive ground
contacts. Specifically, drift correction is applied by
linearly interpolating velocities between the start of each
ground contact and the end of the next, subtracting
the interpolated drift from the original velocity data.
Furthermore, positional drift along the vertical axis
is corrected by adjusting trajectories so that the foot
positions align with the ground plane at the beginning
and end of each swing phase.

o IMUPoser [92]: A pose estimation method utilizing
consumer-grade wearable devices such as smartphones,
smartwatches, and earbuds. In this experiment, IMU
data from three locations (left wrist, right pocket, and left
ear) were used. While IMUPoser accurately estimates
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root-relative body pose and segment movements, it does
not estimate the absolute position (translation) of the
root joint. Following prior work [89], we employed
the Versatile Quaternion-based Filter (VQF), a high-
precision orientation estimation method that accounts
for gravity, to transform 6-DoF IMU data (acceleration
and angular velocity) into orientation and acceleration
in the global coordinate system.

o MobilePoser [19]: An extension of IMUPoser [92],
employing the same IMU sensor configuration but addi-
tionally estimating the absolute position (translation) of
the root joint. Thus, MobilePoser estimates both pose
and overall body translation, enhancing its applicability
to a broader range of environments. As with IMUPoser,
we utilized VQF to convert IMU data into the global
coordinate frame.

E. EVALUATION METRICS
We employed the following metrics to evaluate the perfor-
mance of the proposed method and baseline methods:

o Pose-G, Pose-L: These metrics evaluate the accuracy
of pose estimation. Pose-G measures the mean per
joint position error (MPJPE), calculated as the average
Euclidean distance between the estimated and ground
truth (GT) joint positions in global coordinates over
all joints and frames. Pose-L, or Pelvis-MPJPE (PEL-
MPJPE), evaluates joint errors after aligning the root
joint positions of predictions and GT. The unit is
centimeters (cm), computed as:

T K
1 ~
MPIPE = — > > ok —Juilla (A7)

t=1 k=1

where T is the number of frames, K is the number of
joints, and J; x and j 1.k are the predicted and GT joint
coordinates for frame ¢ and joint k.

o Mesh-P, Mesh-T: These metrics assess SMPL mesh
vertex prediction accuracy. They calculate the mean
per vertex error (MPVPE), averaging the Euclidean
distances between estimated and GT mesh vertices
across all vertices and frames. Mesh-P evaluates errors
with aligned root coordinates, thus incorporating pose
information (‘P for Pose). Since Mesh-P combines
shape and pose errors, Mesh-T evaluates the pure shape
estimation accuracy by measuring errors at the default
T-pose. Units are centimeters (cm), calculated as:

T 0

1 N
MPVPE = _ le Z; IMey =Myl (18)
= q:

where Q is the number of vertices, and M ,; and M t.q
represent the predicted and GT vertex coordinates for
frame ¢ and vertex q.

« Joint Angle: This metric measures joint angle esti-
mation accuracy. Although SMPL uses axis-angle
representation, angles are converted to Euler angles
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TABLE 1. Performance comparison of foot trajectory and pose estimation methods across different datasets (AIST Gait Database and UnderPressure
Dataset) and evaluation metrics. Bold values indicate the highest accuracy achieved by each metric within each dataset.

Pose-G Pose-L Mesh-P Mesh-T

JointAngle  InterFoot  FootTraj FootVel RootVel Phase ()

Dataset Method feml () fem] () feml () [em] () [degree] (1) [eml () [em](}) [em/s] (1) [em/s] () [FI Score]

Integration - - - - - 8.25 11.44 18.63 - -

Integration + ZUPT - - - - - 7.26 8.04 17.93 - 0.96
AIST Gait DB IMUPoser (3IMUs) - 3.06 3.69 4.40 2.69 5.30 - - - -
MobilePoser (3IMUs) 9.11 2.90 3.60 4.40 2.74 4.12 9.59 33.07 19.19 -

Ours (2IMUs) 5.73 3.18 4.36 1.58 2.26 3.11 5.32 22.84 8.25 0.96
Integration - - - - - 24.47 28.20 36.15 - -

Integration + ZUPT - - - - - 14.83 19.91 37.23 - 0.89
UnderPressure IMUPoser (3IMUs) - 4.26 4.90 4.37 3.10 8.08 - - - -
MobilePoser (3IMUs) 28.83 4.14 4.711 4.37 3.12 6.99 31.74 44.58 26.89 -

Ours (2IMUs) 10.51 3.87 4.84 2.06 2.29 4.25 12.35 26.70 8.45 0.89

(ZYX order) for evaluation. Angle differences between
predicted and GT values are computed for each axis,
joint, and frame, and averaged. Units are degrees (°):

T K
Angle Error = 3% Z Z Z 16 k.a — ét,k,a|

t=1 k=1 ae{x,y,z}

(19)

where 6;  , and ét’ k.a denote the predicted and GT joint
angles for frame ¢, joint &, and axis a.

« InterFoot: This metric evaluates stride length accuracy
by measuring the difference between the predicted and
GT distances between feet, averaged over all frames.
Units are centimeters (cm):

T
1 L R L oR
InterFoot Error = T Z) e —fille =W —fi 2],

t=1

(20)

where fL, fR represent the predicted positions of the

left and right feet at frame ¢, and ftL, ff are the
corresponding ground-truth positions.

o FootTraj: This metric evaluates the accuracy of foot
trajectory estimation by measuring the Euclidean dis-
tance between the predicted and ground truth 3D foot
positions for both left and right feet. The result is
averaged over all frames and both feet. Units are
centimeters (cm):

T
, 1 ¢
FootTraj Error = ——- D D> Wy —Fisla

t=1 se{left,right}
(2D

where f, ; and f 1.s Tepresent the predicted and ground
truth positions of foot s (left or right) at frame 7.

o FootVel: This metric evaluates the accuracy of foot
velocity by comparing the temporal derivatives of the
predicted and ground truth foot trajectories. The velocity
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is computed using finite differences, and the error is
defined as:

T—1
1 . 5
FootVel Error= m Z Z ”ft,s _ft,s”Zv

t=1 se{left,right}
(22)

where f 1.s denotes the velocity of foot s (left or right) at
frame ¢, approximated asf'm A (frr1s —Fr9)/ AL

« RootVel: This metric evaluates the accuracy of trans-
lational velocity of the root joint. Similar to FootVel,
velocity is computed using finite differences, and the
error is defined as:

= ]

RootVel Error = ——— ; l# —Filla,  (23)
where 7, denotes the root joint velocity at frame ¢,
approximated by 7, ~ (ry41 —r;)/At.

« Phase: This metric evaluates the accuracy of gait phase
classification using the macro-averaged F1 score across
the four gait phases. At each frame, the predicted gait
phase label is compared with the ground truth label,
and the F1 score is computed for each class individually
across all frames. The final metric is the macro-average
over all classes:

c ..
1 2 - Prec - Recall,
Macro-F1 = — E r. .1510nc = S 2
C 4 Precision, + Recall,
where C = 4 is the number of gait phase classes,

and Precision, and Recall, represent the precision and
recall for class ¢, calculated across the entire sequence
of frames.

F. COMPARISON WITH BASELINE METHODS

In this section, we present quantitative and qualitative
evaluation results from comparative experiments conducted
using the AIST Gait Database and the UnderPressure dataset
to compare our proposed method against baseline methods.
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FIGURE 5. Qualitative comparison of foot trajectory (left) and full-body pose estimation (right) results using the AIST Gait DB. The results
show side and top views for baseline methods (Integration, Integration + ZUPT, IMUPoser, MobilePoser) and our method (Ours), compared
with the Ground Truth. Our method demonstrates accurate and stable trajectory and pose estimations, effectively mitigating drift and

reconstructing natural walking motions.
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FIGURE 6. Qualitative comparison of foot trajectory estimation results on the UnderPressure. The side and top views illustrate estimated foot
trajectories for Integration, Integration + ZUPT, Ours, and the Ground Truth. Our method effectively suppresses drift, accurately reconstructing

stable foot trajectories.

across both datasets for Pose-G, Mesh-T, and JointAngle
metrics, demonstrating its effectiveness in accurately estimat-
ing absolute joint positions and reconstructing body shapes.

1) QUANTITATIVE EVALUATION
Table 1 summarizes the quantitative evaluation results.
Firstly, our proposed method exhibited superior performance
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FIGURE 7. Qualitative comparison of full-body pose estimation results on the UnderPressure. Side and top views show results from IMUPoser,
MobilePoser, Ours, and the Ground Truth. Compared to baseline methods, our approach achieves more accurate and natural full-body pose
reconstructions, demonstrating stable performance even with real IMU data.

The improved Pose-G accuracy compared to MobilePoser
is primarily attributed to two factors. First, the estimation
accuracy of the root joint velocity (RootVel) during straight
walking significantly affects the accuracy of joint positions.
Our proposed method estimates velocity more accurately than
MobilePoser, resulting in root joint positions that are closer to
the ground truth (GT) and consequently reducing the relative
joint position error (Pose-G). Second, MobilePoser utilizes
IMU data in the global coordinate system, potentially causing
drift errors during extended measurements. Consumer-grade
devices often include 6DoF IMUs without magnetometers,
making global orientation estimation challenging and sus-
ceptible to drift over time. Following previous research [89],
we applied the Versatile Quaternion-based Filter (VQF) for
global coordinate transformations. However, VQF accumu-
lates errors for data recordings longer than several tens of
seconds. In contrast, our method utilizes IMU data directly in
the sensor coordinate system, thereby significantly mitigating
drift issues and maintaining stable accuracy during straight
walking motions.

Conversely, our method slightly underperformed IMU-
Poser and MobilePoser in the Pose-L and Mesh-P metrics.
This minor discrepancy likely arises because IMUPoser
employs more IMUs (three sensors) compared to our two
sensors. However, the observed differences were minimal,
on the order of a few millimeters. Furthermore, the strong
performance in Mesh-T indicates the efficacy of our method’s
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personalized body shape reconstruction approach, consider-
ing individual attributes such as height and weight. Regarding
JointAngle evaluation, our method achieved the best perfor-
mance, although the differences among all methods were
minor. This suggests that even with fewer IMUs, accurate
pose estimation is feasible for simple motions like walking.

Additionally, our method demonstrated high accuracy
across both datasets in metrics like InterFoot (inter-foot
distance) and FootTraj (foot trajectory), highlighting its
ability to reconstruct personalized body shapes and effec-
tively suppress drift. Regarding FootVel (foot velocity),
Integration+ZUPT performed best with the synthetic IMU
data of the AIST Gait Database, whereas our method
was superior with the real, noisy IMU data from the
UnderPressure dataset. This indicates that the quality of
the IMU data influences the accuracy of the foot velocity
estimation.

For gait phase estimation (F1 score), our method showed
strong performance overall, particularly excelling with syn-
thetic IMU data from the AIST Gait Database. This outcome
suggests synthetic IMU data more distinctly represents
features such as ground contact states.

2) QUALITATIVE EVALUATION
Figures 5, 6 and 7 illustrate the qualitative evaluation
results. Figures 5 and 6 shows that the Integration and
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TABLE 2. Performance comparison under identical IMU placement (two IMUs on foot soles). Bold indicates the best-performing methods per dataset.
“Ours B+G+S" is the full model with Body, Gait, and Smoothing Modules; “Ours G+S” excludes the Body Module; and “Ours B+G" excludes the

Smoothing Module, enabling evaluation of the contribution of each module.

Dataset Method Pose-G Pose-L Mesh-P Mesh-T JointAngle  InterFoot  FootTraj FootVel RootVel Phase
[eml () [em] () [em]{) [em] () [degree]() [em] () [em](D) [em/s](d) [em/s](})  [F1 Score] (1)
IMUPoser (2IMUs) 3.40 4.45 4.40 2.83 4.84 - - -
MobilePoser (2IMUs) 16.58 3.37 4.39 4.40 293 4.37 17.46 55.84 26.10
AIST Gait DB Ours G+S (2IMUs) 6.93 4.13 5.17 3.10 223 3.70 8.48 24.45 8.92 0.96
Ours B+G (2IMUs) 4.79 3.18 4.35 1.58 2.22 3.32 4.28 50.18 8.84 0.96
Ours B+G+S (2IMUs) 5.73 3.18 4.36 1.58 2.26 3.11 532 22.84 8.25 0.96
IMUPoser (2IMUs) 7.36 9.22 437 3.79 5.92 - - -
MobilePoser (2IMUs) 47.36 6.67 8.18 4.37 3.63 6.39 49.60 42.97 34.02
UnderPressure Ours G+S (2IMUs) 11.38 4.60 5.41 2.97 2.38 6.89 15.24 29.33 8.18 0.90
Ours B+G (2IMUs) 11.21 4.27 537 2.06 2.48 4.74 13.28 93.12 10.58 0.89
Ours B+G+S (2IMUs) 10.51 3.87 4.84 2.06 2.29 4.25 12.35 26.70 8.45 0.89

Integration+ZUPT methods resulted in unrealistic trajecto-
ries due to integration drift, such as floating above the ground
or unnatural deviations. While ZUPT correction addressed
unnatural vertical deviations and floating, it was insufficient
in mitigating lateral drift relative to the walking direction.
In contrast, our proposed method generated trajectories
remarkably close to the ground truth, confirming stable
trajectory estimation. This demonstrates that our method
effectively employs anatomical constraints via human body
modeling, significantly suppressing drift.

In Figure 7, full-body pose estimations from IMUPoser
(without root translation), MobilePoser (with root transla-
tion), and our method (with root translation) were compared.
All methods performed reasonably well in pose estima-
tion; however, MobilePoser displayed noticeable directional
errors, causing lateral drift in trajectories. Conversely, our
method accurately reproduced the actual walking direction
and trajectories, demonstrating superior directional estima-
tion performance. This advantage arises because our method
uses IMU data directly in the sensor coordinate system,
thereby avoiding cumulative errors typically encountered
with global coordinate transformations, particularly evident
during extended measurements such as those captured by the
UnderPressure dataset.

Overall, the quantitative and qualitative evaluations val-
idate that our proposed method, utilizing only two IMUs
placed on the foot soles, can achieve highly accurate gait
motion estimation compared to existing methods. Clear
advantages include effective drift suppression and stable
estimation of walking direction, speed, and pose.

3) RELATIONSHIP BETWEEN JOINT POSITION ERROR AND
IMU PLACEMENT

Figure 8 illustrates the distribution of joint position errors
for each method in the UnderPressure dataset. Observing
the heatmaps at the top, we can clearly identify a general
trend: the joint position error is smaller in areas where
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IMUs are attached (indicated by pink stars), and increases
as the distance from IMU attachment sites grows. This trend
is consistent across all methods (IMUPoser, MobilePoser,
and Ours), demonstrating that the direct motion information
obtained from IMU-attached areas significantly improves
joint position estimation accuracy.

% IMU Position

*

Joint Position Error [cm]

-

©

IMUPoser

©

(o]

IS

*%é +$% =

L-Leg

Joint Position Error [cm]

#@% o=

R-Leg L-Arm R-Arm Head Torso

FIGURE 8. Visualization of joint position error distributions. (Top)
Heatmaps illustrating that joints closer to IMU attachment sites
(indicated by pink stars) exhibit lower positional errors. (Bottom) Box
plots detailing joint position errors for different body segments. Our
method, utilizing IMUs attached to the soles of both feet, achieves
notably higher accuracy in the lower limbs, essential for gait analysis.

Examining the box plots at the bottom of Figure 8§ more
specifically, IMUPoser and MobilePoser exhibit relatively
higher accuracy for the left arm where an IMU is attached,
while accuracy tends to degrade for the right arm and lower
limbs. In contrast, our proposed method, which attaches
IMUs to the soles of both feet, significantly reduces joint
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position errors in the lower limbs, crucial for gait analysis.
This confirms that attaching IMUs to both feet effectively
captures lower limb motion more directly and accurately.
As for the torso and head regions, there was little difference
in accuracy among methods, suggesting that for straight-line
walking movements, these regions are less affected by IMU
placement.

These results clearly highlight the significant influence
of IMU sensor placement on the estimation accuracy of
limb joint positions. Particularly for gait-centered analyses,
attaching IMUs to the foot soles proves highly effective,
indicating that the sensor configuration adopted in our
proposed method provides superior performance for lower-
body motion estimation.

G. COMPARATIVE EXPERIMENT UNDER IDENTICAL IMU
PLACEMENT CONDITIONS

In this section, we conducted experiments under conditions
where all methods used IMUs attached at two locations on
the soles of the feet, enabling a fair comparison between
our proposed method and baseline methods. The results
are summarized in Table 2. Additionally, we conducted an
ablation study on the proposed method, which consists of
three modules (Body, Gait, and Smoothing). Specifically,
we compared three configurations: the full model (Ours
B+G+-S), a model without the Body Module (Ours G+5S),
and a model without the Smoothing Module (Ours B+G),
to examine the contribution of each module.

From Table 2, it is clear that our proposed method,
especially the full model (Ours B+G+S), consistently
outperformed baseline methods on both the AIST Gait
Database and the UnderPressure dataset. Specifically, the
proposed method achieved the best performance across
metrics related to pose and shape estimation, such as Pose-
G, Pose-L, Mesh-P, Mesh-T, and JointAngle, demonstrating
high accuracy in both pose estimation and body shape recon-
struction. On the other hand, the lower accuracy observed
for MobilePoser in the Pose-G and FootTraj metrics on the
UnderPressure dataset can be attributed to the use of actual
IMUs embedded within insole sensors. These IMUs are of the
6DoF type, lacking magnetometers, and thus cannot provide
absolute orientation information in the Yaw (horizontal
rotation) direction. Although the VQF was employed to
transform IMU data into a global coordinate system, it was
not able to completely eliminate noise and drift in the
Yaw direction. Consequently, positional errors accumulated,
degrading estimation accuracy. In contrast, our proposed
method uses IMU data directly in the sensor coordinate
system, thus avoiding error accumulation associated with
coordinate transformations and effectively overcoming this
issue.

The configuration without the Body Module (Ours G+S)
exhibits reduced accuracy in metrics related to body shape
and pose estimation—such as Pose, Mesh, and InterFoot—
indicating that estimating and incorporating a personalized
body model from user attributes plays a crucial role in
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FIGURE 9. Foot Velocity Error of estimated poses over two consecutive
windows, comparing the Gait Module (blue) and Smoothing Module
(red). The results are computed on the UnderPressure dataset.

accurately determining body-part positions and stride length.
In addition, removing the Smoothing Module (Ours B+4G)
caused a marked degradation of performance, particularly
in the FootVel and RootVel metrics, demonstrating that
the Smoothing Module effectively enhances the stability
of velocity estimation. Figure 9 shows the Foot Velocity
Error of the estimated poses from the Gait Module and the
Smoothing Module, plotted over two consecutive windows.
In this experiment, the Gait Module estimates gait motion in
50-frame segments from the IMU data of the UnderPressure
dataset, while the Smoothing Module processes 50-frame
segments shifted by half the window length (25 frames) as the
stride width. As a result, around the 50th frame at the center
of the plot, the Gait Module alone exhibits discontinuities
in pose estimation due to inter-window motion estimation
errors, which appear as large peaks in the velocity error.
By contrast, applying the Smoothing Module eliminates such
discontinuities and, combined with the loss-function design
described in Section III-C3, further reduces the velocity error
across the entire sequence. These results demonstrate that
the Smoothing Module plays an essential role in producing
smoother and more accurate motion outputs in the proposed
method.

Overall, these results confirm that our method demon-
strates superior performance even under identical conditions
with IMUs fixed to the soles of the feet. Specifically, the
design of our method, which utilizes IMU data in the sensor
coordinate system, effectively resolves potential drift issues
in the Yaw direction when employing real IMU sensor data.
Moreover, the combination of the Gait Module with the
Body Module and Smoothing Module notably improves the
stability of velocity estimations during gait analysis.

V. DISCUSSION AND FUTURE WORK

A. PRACTICAL DEMONSTRATION SYSTEM

To demonstrate the practical applicability of our pro-
posed method, we constructed a demonstration system
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Laptop
Computer

FIGURE 10. Demonstration system of our proposed method using
consumer-grade IMU devices (ORPHE CORE). IMU data captured by
sensors embedded in shoe soles are transmitted either directly to a
laptop computer via Bluetooth (blue arrow), or relayed through a
smartphone (magenta arrows) to minimize BLE interference. This setup
ensures reliable gait pose estimation in practical scenarios.

for gait motion estimation using consumer-grade IMU
devices (Figure 10). Specifically, we adopted the ORPHE
CORE [22], a commercial device consisting of specialized
shoes with IMUs embedded in the soles. In our demonstration
system, the IMU data captured by the ORPHE CORE
sensors are transmitted via Bluetooth Low Energy (BLE)
to a laptop PC, allowing instantaneous estimation of gait
poses. However, BLE communication is highly susceptible
to interference from environmental factors, and transmitting
data directly from the IMU sensors to a remote PC can be
challenging due to limited communication range. To address
this, assuming users typically carry their smartphones in
hand or in a pocket, we developed an Android application
to relay IMU data. As the smartphone remains in close
proximity to the ORPHE CORE sensors, it significantly
reduces data loss due to BLE interference. The collected data
is then transmitted from the smartphone to the PC via Wi-Fi,
enabling reliable operation even when the PC is not near the
user.

TABLE 3. Quantitative comparison of estimation accuracy across various
motions, including straight walking at multiple speeds (Normal, Slow,
Fast), non-straight walking, and jogging in the UnderPressure dataset.

Method Pose-G Pose-L JointAngle RootVel
[eml () [em]()) [degree] () [em/s] ({)
Normal Walk 9.20 3.68 2.24 8.16
Slow Walk 7.66 3.87 2.47 7.67
Fast Walk 13.86 3.80 2.28 9.27
Non-Straight Walk 50.18 11.97 4.24 36.09
Jogging 73.87 9.66 10.24 48.48

VOLUME 13, 2025

Human Start
£ Y

Straight Walking

Non-Straight Walking

FIGURE 11. Example of straight-walking segmentation in the
UnderPressure dataset. Blue indicates straight-walking segments and red
indicates non-straight segments. Only the straight-walking segments
were used for training and evaluation of the proposed method.

Beyond ensuring robust data transmission, it is equally
important for real-world applications that the estimation can
be performed under limited computational resources. The
proposed model contains 3.05 M parameters and requires
about 1.94 M FLOPs per frame, achieving an inference speed
of 255 FPS on a workstation running Ubuntu 22.04.5 with
an AMD EPYC 7453 (28 cores) CPU and an NVIDIA RTX
A6000 GPU. By contrast, the baseline method MobilePoser
has 6.67 M parameters, requires about 6.70 M FLOPs per
frame, and achieves 93.2 FPS. These results demonstrate that
the proposed method is lighter and faster than the baseline.
An important future direction is to further reduce the model
size and improve efficiency so that real-time operation can be
achieved even on smartphones and other mobile or low-power
devices.

B. HANDLING STRAIGHT-LINE WALKING CONSTRAINTS

Our proposed method accurately estimates gait pose from
minimal IMU data with instantaneous computation. How-
ever, the current model is trained specifically on straight-line
walking. Consequently, when a user performs motions other
than straight-line walking, unnatural movements may be
estimated. Table 3 presents the estimation accuracy for three
straight-walking speeds (Normal, Slow, and Fast) as well as
for non-straight walking and jogging. For the three straight-
walking speeds, although some speed-dependent variation is
observed in metrics related to walking speed such as Pose-G
and RootVel, the estimation maintains reasonable accuracy,
confirming that the proposed method can adequately handle
changes in walking speed. In contrast, for non-straight
walking—examples of which are illustrated by the red
trajectories in Figure 1l—accuracy drops substantially,
particularly in metrics other than joint angle estimation,
and jogging shows decreased accuracy across all metrics.
These results indicate that turning motions, such as those
represented by the red line that exceed the range of body sway
observed during straight walking (blue line) in Figure 11,
as well as jogging motions, produce acceleration and angular
velocity waveforms that fall outside the distribution of the
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training data, and thus the current model does not yet support
such movements.

Moreover, during the training phase, the straight-line
segments of the walking data must be manually extracted,
and the demonstration system currently lacks a mechanism
to identify straight-line walking segments in real-time.
To address this limitation, future development should focus
on implementing real-time classification of IMU waveform
data to automatically detect straight-line walking segments.
By incorporating this functionality, we could naturally and
continuously collect long-term gait data in everyday life
without requiring conscious effort from the user, ultimately
facilitating detailed analysis of long-term gait changes due to
aging or medical conditions.

C. ADDRESSING DEVICE AND FOOTWEAR VARIABILITY
Practical deployment of our method requires robustness to
real-world factors that can affect sensing and estimation
accuracy. Variations in footwear type and IMU attach-
ment position may introduce measurement inconsistencies
even for identical gait patterns. Possible alternative IMU
placements—such as on the instep (e.g., shoelaces), shoe
sides, or the heel—would lead to different sensor orientations
and measurements, potentially degrading model performance
due to inconsistencies in the input—output relationship.
Moreover, attaching IMUs to soft shoe parts can introduce
additional sensor noise from foot contact-induced vibrations.
To mitigate these effects, we intentionally adopted the
ORPHE CORE device embedded inside the shoe sole,
ensuring a completely fixed and vibration-resistant position
that minimizes sensitivity to placement variability.

Similarly, footwear type can influence IMU signals
through differences in material stiffness, geometry, and fit,
causing waveform variations even for the same motion.
To reduce such variability and ensure consistent evaluation,
we standardized footwear to sneakers, which are common
in everyday use and specifically designed to house the
ORPHE CORE device for robust and reproducible IMU
placement. While this standardized setup enables highly
accurate motion estimation, real-world usage may deviate
from these conditions. Future work should therefore explore
adaptive calibration strategies and robust model general-
ization techniques to maintain reliable performance across
diverse footwear and sensor placement conditions.

D. TOWARD REAL-WORLD GAIT ANALYSIS

Our proposed method has demonstrated that gait motion
can be accurately estimated from only two foot-mounted
IMUs under controlled conditions of straight-line walking on
level ground. However, comprehensive gait analysis in real-
world conditions requires validating the proposed method in
naturalistic settings, such as outdoor walkways, residential
spaces, and other daily-life environments, to ensure reliable
operation beyond controlled laboratory conditions. Long-
term, in-the-wild evaluations will be critical to assess
performance across ground surfaces of varying compliance
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(e.g., asphalt, concrete, grass, sand), thereby bridging the gap
between laboratory demonstrations and everyday application.

In addition, comprehensive gait analysis in real-world con-
ditions necessitates capturing and analyzing gait in diverse
environments, including stairs and slopes. Developing robust
algorithms capable of accurately estimating gait pose in
these non-flat environments is an important future challenge.
Leveraging multiple wearable sensors tailored to the specific
movements and environmental contexts under investigation
could further enhance motion estimation accuracy and versa-
tility. Promising future directions include integrating insole
foot-pressure sensors to perform biomechanical-informed
pose estimation, employing smartwatches for detailed full-
body motion reconstruction, and using first-person wearable
cameras for combined environmental reconstruction and
analysis of human interactions with surroundings. By inte-
grating these complementary technologies, we anticipate the
development of more comprehensive, versatile gait analysis
methods that can be effectively applied across various aspects
of everyday life.

E. TOWARD CLINICAL APPLICATIONS

In this study, we proposed a method aimed at accurately
reproducing normal gait motions of healthy individuals, but
for future clinical applications two aspects will be crucial:
constructing detailed, personalized human body models
that represent individual patients, and accurately estimating
pathological or otherwise abnormal gait patterns.

In this work we employed the SMPL model, a statistical
body model built from the body shapes of healthy individuals,
which assumes normal body morphology and therefore
struggles to represent patients whose body structures have
changed. For example, patients with knee osteoarthritis
(KOA) are known to exhibit unique skeletal and gait char-
acteristics caused by joint degeneration, pain, and muscular
atrophy—features that standard statistical models may fail
to capture. To address such clinical scenarios, it will be
important to reconstruct high-resolution 3D personalized
human body models from medical imaging data such as
CT or MRI scans, allowing more accurate reproduction
of pathological body structures and motions. Incorporating
such personalized models will enable quantitative analysis of
disease-specific gait patterns and is expected to contribute
to clinical applications such as diagnosis, longitudinal
monitoring, and treatment evaluation.

Furthermore, acquiring the ability to estimate abnor-
mal gait unique to non-healthy populations is equally
indispensable. Examples include asymmetric gait caused
by hemiparesis, shuffling gait associated with Parkinson’s
disease, and spastic gait observed in cerebral palsy. To capture
these conditions, it will be necessary to build and train
on datasets that reflect the characteristic motion patterns
of each disease. Since these pathological gaits often differ
markedly from those of healthy individuals in foot-pressure
distribution and muscle activation patterns, combining
complementary sensing modalities such as insole pressure
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sensors or electromyography is also expected to be effective.
Advancing such data-driven model extensions and sensor
integration will enable high-accuracy joint motion estimation
and quantitative characterization of disease-specific gait,
further supporting diagnostic assistance and the evaluation of
rehabilitation outcomes in clinical practice.

In addition, collecting large, well-annotated datasets of
disease-specific gait is inherently challenging in clinical
settings. To mitigate this data scarcity, it will be important
to draw on strategies surveyed by Alzubaidi et al. [100]—
including domain-specific transfer learning, self-supervised
representation learning, deep generative approaches such
as GANs and DeepSMOTE, and physics-informed neural
networks (PINNSs). Building on these insights to design new
learning frameworks tailored to wearable sensor data, such as
IMU and insole pressure signals, will be crucial for robustly
modeling patient-specific body structures and pathological
gait patterns and for translating our method to future clinical
applications.

VI. CONCLUSION

In this paper, we introduced “Gait Inertial Poser (GIP)”,
a novel method for accurately estimating full-body human
poses using only two shoe-embedded IMUs. Our gait-aware
deep learning framework effectively addresses common
IMU-based issues such as integration drift and orienta-
tion inaccuracies, without relying on global coordinate
transformations. Experimental results on the AIST Gait
Database and UnderPressure datasets demonstrated that our
approach consistently outperforms baseline methods across
multiple metrics. Additionally, an ablation study confirmed
the significant contribution of our Smoothing Module in
enhancing velocity estimation stability. We further developed
a demonstration system utilizing commercially available
IMU shoes (ORPHE CORE), verifying the real-world appli-
cability of our method through stable and near-instantaneous
gait estimation in practical conditions. Future work includes
extending the method to recognize and handle diverse
walking patterns and terrains, as well as integrating additional
wearable sensors to further enhance the applicability and
versatility of gait analysis in everyday life.
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