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Abstract

Abstract
While Large Language Models (LLMs) have dominated a wide diver-
sity of natural language tasks, improving their capabilities on structured
inputs such as graphs remains an open challenge. We introduce TREE-
TOP, a fine-tuning framework for LLMs that significantly improves their
ability to reason over structural relationships in multi-party discussion
trees, e.g. on social media platforms. TREETOP is a novel set of 17
tasks designed to test the ability of LLMs to selectively focus on the
structure and/or content of conversation tree graphs. We find that LLMs
fine-tuned on TREETOP significantly outperform all baseline models
(including state-of-the-art GNNs) in multiple settings: generalizing to
unseen TREETOP tasks, and performance on downstream social media
inference tasks (e.g. controversy detection), including their challenging
“early-detection” variants. TREETOP charts new ground toward LLMs
with generalized understanding of structured inputs.

1 Introduction

Large Language Models (LLMs) have achieved state-of-the-art over a vast landscape of tasks that can
be cast as token sequence-to-sequence problems (Zhao et al., 2023b; Srivastava et al., 2022), partially
through the combined effect of instruction fine-tuning (Wei et al., 2021) and scaling (Chung et al.,
2024). A current open challenge for LLM capabilities is the handling of structured inputs (such as
tables, e.g. Sui et al. (2024)), where the output depends strictly on tokens distributed throughout the
input according to a certain pattern.

Recently, graph-structured inputs have emerged as one of the next frontiers in structured inputs for
LLMs (Pan et al., 2024; Chen et al., 2024b), with a wide variety of models being crafted for graphs
representing complex systems like social and biological networks (Wu et al., 2020; Zhang et al.,
2020). As such, enabling LLMs to perform graph-structured tasks has the potential to considerably
expand their scope. Existing efforts evaluate and improve LLM performance on graph problems such
as edge existence and counting (Fatemi et al., 2023; Wu et al., 2024). There is already evidence that
some LLMs, appropriately trained or prompted, can outperform Graph Neural Networks (Scarselli
et al., 2008; Chami et al., 2022) on graph learning tasks such as node classification and link prediction
(Ye et al., 2024).

In this paper, we continue this line of research by developing LLM capabilities for conversation graph
inputs: graphs that encode online forum discussions by mapping replies to their parent comments,
stemming from the root post. Often called conversation “trees”, these graphs are ubiquitous due to
the proliferation of online social platforms, and they are the input to many important learning tasks,
such as misinformation detection, controversy detection, and trend prediction (Olteanu et al., 2019;
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Figure 1: TREETOP framework (in ) provides a dataset of 12 structural tasks to improve the LLM’s
ability to understand and reason over structure via fine-tuning. It also provides 5 unseen tasks to
evaluate generalization of the LLM-TT model.

Zeng and Tang, 2021; Ji et al., 2021). Furthermore, conversation trees are directed, acyclic, and
temporal, creating unique topological learning challenges, and distinguishing them from the usually
undirected, cyclic, and static graphs found in standard GNN benchmarks (Hu et al., 2020a). For these
reasons, conversation trees have been studied in their own sub-field of machine learning, admitting a
wide range of approaches from GNNs (Xu et al., 2023) to LSTMs (Mukiri and Burra, 2023) to novel
combinations thereof (Patel et al., 2022).

Another distinguishing aspect of conversation trees is that the graph itself defines a flow through
a multi-agent discussion. Each node is attributed with a natural-language utterance, which can be
informed by any existing utterances in the conversation at the time of posting. Also, the graph
topology and the discussion can interact in potentially meaningful ways: a linear, back-and-forth
sub-graph between two discussants has a signature quite different from the star-like pattern created,
e.g., by a comment that receives many one-off replies. We observe that these phenomena create a
rich space of new challenges for LLMs. However, the application of LLMs to conversation trees has
yet to receive attention. As a first step in this space, we introduce Tree Topology-Aware Fine-Tuning
(TREETOP): a novel learning framework for LLMs that significantly increases their performance
across a range of tasks on conversation trees. As shown in Figure 1, TREETOP provides a collection
of structural QA tasks defined over conversation trees that can be used to fine-tune an LLM before
zero/few-shot deployment or downstream fine-tuning. Specifically, our contributions are:

1. We introduce novel machinery for LLM handling of conversation trees, including a prompt
framework and tree-specific text encoding. We also make the code for the TREETOP framework
available here1 to advance further research in this field.

2. We propose TREETOP, a conversation graph fine-tuning framework including 17 structural tasks
that target an LLM’s ability to reason about the conversation, such as tree navigation and user-user
reply counting. We show that fine-tuning using the TREETOP framework allows LLMs to generalize
to even to unseen structural tasks.

3. Through extensive experimentation, we show that LLMs fine-trained with the TREETOP frame-
work significantly outperform non-TREETOP counterparts – whether the LLMs are zero-shot, few-
shot, or fine-tuned – on four social media tasks, including controversial post detection (Hessel and
Lee, 2019), rumor detection (Zubiaga et al., 2016), fake news detection (Nakamura et al., 2019),
and winning argument detection (Tan et al., 2016). Furthermore, TREETOP LLMs that are further

1https://tinyurl.com/treetopframework
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fine-tuned for these tasks achieve new SOTA compared with GNN approaches, including on “early
detection” versions of the four tasks.

2 Related Work

LLM-based approaches to graph problems. Graph learning with LLMs is a nascent area of
research (Tang et al., 2023; He et al., 2023). Guo et al. (2023) study whether LLMs can understand
graph structural information, and Huang et al. (2023) show that LLMs tend to process graphs like
contextual paragraphs. Among other works, Chen et al. (2024b) leverage LLMs both as a generator
for explanations and a classifier for graph problems. Zhao et al. (2023a) encode graphs into natural
language, and Ye et al. (2024) extend their work by instruction-tuning LLMs, but they primarily focus
on node classification tasks. Both Müller et al. (2023); Fatemi et al. (2023) introduce novel schemes
for encoding graphs in prompts. By-and-large, these studies have tackled tasks on undirected, cyclic,
static graphs, with applications geared toward standard GNN benchmarks (Hu et al., 2020a). In a
parallel line of work, language models have been used to improve GNN performance. We expand on
this related work in Appendix B. Extending this area of research, we focus on fine-tuning LLMs to
solve learning tasks on conversation trees, which are directed, acyclic, and temporal graphs capable
of representing a wide variety of complex human interaction sequences.

Conversation Trees. The ubiquity of social media has created a global shift in information con-
sumption and human discussion (Akram and Kumar, 2017). Information on social media is frequently
presented as a central post and its subsequent comments, creating a dynamic exchange between
the original poster and other users. The study of these graphs, or “conversation trees" has been
motivated by several tasks which are central themes in social media datagraphs (Yan et al., 2023).
Some canonical problems in this domain are information flow (Bakshy et al., 2012), controversial
post detection (Benslimane et al., 2021; Garimella et al., 2018), and fake news detection (Lillie and
Middelboe, 2019; Han et al., 2020), among others. Similarly, bias detection (Chen et al., 2022; Zhu
et al., 2022), fraud detection (Liu et al., 2023b; Zeng and Tang, 2021), event detection (Gao et al.,
2021; Ji et al., 2021) and malicious behaviour detection (Wu et al., 2022; Dou, 2022) are other active
research areas. Early detection (Zhou et al., 2019; Tian et al., 2020) in such cases is also critical,
since it enables proactive interventions by social media platforms. Here, we propose methodology for
enabling LLM competency across this entire space of problems.

(a) Post Comment Tree (b) User space mapping of a Post Comment Tree

Figure 2: In TREETOP, we encode the graph in Figure 2a (actual conversation tree) directly within
the prompt, and TREETOP reasons over the user-user graph (Figure 2b) on its own.

3 Methodology

We now describe our core contribution: TREETOP, an instruction-tuning framework for LLM
generalization on conversation tree learning problems. Figure 1 illustrates the high-level pipeline
(see Appendix Figure 5 for a flow diagram). TREETOP consists of a novel set of structural tasks on
conversation trees to fine-tune an LLM. The purpose of these tasks is to improve the LLM’s ability to
understand structure of conversation trees, allowing the model to follow both the content and the flow
of the discussion between the constituent users.
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3.1 Representation of Social Media as Conversation Trees

Figure 2a shows a typical social media conversation which we directly encode as a prompt in our
framework. Here, c0 represents the top-level post, i.e. the root node of the conversation tree. Other
posts ci are replies to either the top-level post or other replies. In our framework, we encode only
the tree structure (Figure 2a) in our prompt, leaving the interaction graph (Figure 2b) to be learned
through fine-tuning on structural tasks.

Encoding. We encode a tree node, and the entire tree from Figure 2a as follows:

encoding(comment) := 〈Comment-ID, User-ID, Content, Parent, Node Features〉
encoding(conversation tree) :=

[
〈encoding(comment0)〉〈encoding(comment1)〉 . . .

]
For example, if we choose timestamp as a node feature, the tuple representation of the node
corresponding to c2 in Figure 2a is 〈c2, u2, -content-, c0, t2〉. Multiple types of node-level features,
such as “verified status” or “karma”, may be available on different platforms and can also be captured
in our encoding. We sort the comments by timestamp in the tree encoding, i.e. the main post is the
first element (comment0) in the tree encoding. We use timestamp to sort to mimic the natural user
experience on social media platforms – a user who views a post at time t can see all the comments
prior to time t on that post. 2

3.2 Structural Tasks

The core idea of TREETOP is to enhance LLM understanding of tree topology, and use this enhanced
understanding alongside their inherent language understanding for downstream applications. Thus, to
achieve this goal, we train LLMs on primitive topological tasks on conversation trees. Our approach
is analogous to the use of graph motifs (Paranjape et al., 2017) for complex graph-based computations
– we believe that LLMs will be able to compose multiple topological primitives together to solve
general tree inference problems.

The primary workhorse of our framework is thus a collection of 17 reasoning tasks over conversation
trees, illustrated in Figure 3. 12 of these tasks are used for fine-tuning, and the remaining used for
evaluation. We designed these tasks to enable/evaluate four different “proficiency” categories on
trees: (i) comment × comment tasks, that focus on the relationships between comments; (ii) user ×
user tasks, that focus on the relationships between users - which TREETOP-tuned LLMs infer from
the conversation trees (refer Figure 2b); (iii) node characteristics tasks, that focus on the topological
properties of nodes; and (iv) tree characteristics tasks, that focus on the topological properties of the
entire conversation tree.

Figure 3: Structural tasks used in the TREETOP framework. These structural tasks are divided into
four “proficiency” classes, as described in Section 3.2. The tasks used during fine-tuning are shown
in blue, and the tasks used for evaluation are shown in green.

For instance, Are_one_hop_neighbors tests if one provided comment is a direct response to
another provided comment. Similarly, In_triangle if two provided users participate in a triangular

2In case a dataset doesn’t provide us with the timestamp, we implement a breadth-first sort order in the
encoding.
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discussion with a third user, as explained in Example 1 of Section 3.2. We provide descriptions of all
these tasks in Tables 6 and 7 in Appendix C.1. Each task is encoded as a Yes or No question. We
design multiple prompt styles to phrase the question for each structural task. Some of these prompts
use graph-topology based language (e.g. “Whether 〈C2〉 has more than 3 children?") and
some use language relevant to social media platforms (e.g. “Whether comment 〈C2〉 has more
than 3 replies?"). All the variations in the prompts are described in Appendix C.3.

3.2.1 Structural Task Corpus Creation

We created our structural task dataset using a small subset of the Pushshift Reddit data released by
the authors of the Pushshift platform (Baumgartner et al., 2020), available for download here. This
dataset contains all the posts and comments of Reddit that were posted in the month of April 2019.
Our fine-tuning corpi are built from a random sample S of 100K conversation trees from this dataset.
For each task, we sample an equal number of positive and negative examples by mining the trees from
S , described further in the next section. Using this approach, we are able to generate any number of
labeled questions, for any task. As described further in Section 4, we fine-tune both closed-source
and open-source LLMs using the TREETOP framework. We create a corpus with 10k questions per
task for these experiments; we provide multiple data ablation studies on this corpus in Appendix H.

3.2.2 Structural Task Examples

We describe three tasks here, and detail the rest in the Appendix C.1. To sample questions for a given
task, we go through our conversation tree corpus S , and detect the structure of interest (e.g. wedge /
triangle / long chain / etc.) in each conversation tree. Each time a structure is detected, we create a
positive sample, and we create an analogous negative sample (from the same tree) from node tuples
that do not participate in that structure.

(a) User “wedge” discussion. (b) Triangular discussion. (c) 2-user discussion chain.

Figure 4: Illustrations for structural tasks. These figures are subtrees of the conversation tree in fig
2a. The prompts to the model only capture the conversations depicted in green.

Examples (i) Task 1 - User wedge detection: A “wedge” is an important topological construct (Al-
bert and Barabási, 2002), and is formed when two users respond to a single comment (see Figure 4a
for illustration). (ii) Task 2 - Triangle Detection between 3 users: This task builds upon wedge
detection. We define a discussion between three users A, B and C as triangular if there exists an
instance where, for example, both User B and User C comment on a single comment by User A. In
addition to this, if User C also comments on User B’s comment (or vice-versa), a triangle is formed.
See Figure 4b for an illustration. (iii) Task 3 - Existence of long chain between two users: We define
a long chain of to and from discussion between two users A and B when there exists an instance
where User B comments on a comment by User A followed by User A commenting on User B’s
comment to his comment and so on. See Figure 4c for illustration.

3.3 Structural Task Performance of Native LLMs

We evaluated different LLM model families with different model sizes on our unseen structural tasks
using 100 randomly sampled instances. We report these results in Table 1, which shows that none of
the existing models can successfully understand and reason over topology of these conversation trees.

3We report zero-shot results in this table because multiple of these models only afford a short context length.
All models are IT variants, and are hyperlinked to their corresponding repositories.
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Table 1: Results of structural tasks for zero-shot inference using different model families and model
sizes.3 We report accuracy numbers in this table. The results show that all these model families and
model sizes exhibit headroom to improve understanding and reasoning over structure.

GEMMA PHI MISTRAL GEMMA GEMINI PaLM
Task 2B MINI 7B 9B PRO BISON

Same_level 13.4 34.0 39.0 52.0 52.3 53.0
Has_comment_wedge 27.5 40.0 40.0 59.0 49.2 54.9
Are_interacting 22.1 52.0 49.0 65.0 52.1 72.9
Are_fighting 20.9 42.0 56.0 55.0 57.9 59.3
Has_user_wedge 34.7 40.0 43.0 53.0 50.8 54.5

4 Experiments

We now describe experiments testing our primary hypothesis: that fine-tuning an LLM on primitive
structural tasks over conversation trees enables generalization and further fine-tuning on downstream
tree problems. For brevity, we refer to LLMs fine-tuned with TREETOP as LLM-TTs, and others as
“native” LLMs. We show that (i) LLM-TTs can decisively solve seen structural tasks and generalize to
unseen structural tasks, whereas native LLMs cannot; (ii) LLM-TTs further fine-tuned on downstream,
real-world tasks outperform both GNN baselines and native LLMs fine-tuned on those same tasks;
and (iii) representations learned by LLM-TTs are robust and explainable. Throughout, we present
results for the TREETOP framework with LLMs fine-tuned with 10K samples per task.

4.1 Results on Primitive Structural Tasks

We present results of fine-tuning using the TREETOP framework with GEMMA, PaLM-Bison, and
GEMINI models.4 Table 2 shows GEMINI’s performance on our novel collection of 17 primitive
structural tasks, described in Section 3.2, 12 of which were used to fine-tune GEMINI-TT. We find
that via our fine-tuning procedure, TREETOP achieves near-perfect performance across these tasks,
whereas the first columnar set titled GEMINI (zero-shot evaluation) shows that GEMINI lacks any
inherent structural understanding. Additionally, GEMINI-TT decisively outperforms on unseen tasks,
strongly validating the promise of our framework and task collection for generalization. We compare
interactions with GEMINI and GEMINI-TT for one example each from three different structural tasks
in Appendix K.

We also fine-tuned both GEMMA and PaLM-Bison using the TREETOP framework. We present
these results in Appendix G. Our results show that the efficacy of the TREETOP framework can be
replicated across different LLM families and sizes.

4.2 Results on Downstream Social Media Tasks

We chose the following collection of discussion tree classification tasks to test the application potential
of LLM-TTs: (i) Controversial post detection (Hessel and Lee, 2019), or identification of “posts
that split the preferences of a community, receiving both significant positive and significant negative
feedback.” (ii) Rumor detection using the PHEME9 dataset (Kochkina et al., 2018), (iii) Fake
news detection using the Fakeddit dataset (Nakamura et al., 2019), and (iv) Winning argument
detection (Tan et al., 2016), i.e. identification if a viewpoint of the original post author has been
changed by any of the replies, collected from the r/changemyview subreddit. We provide statistics
and download links for all these datasets in Appendix D.1 (Table 12) and license descriptions
in Appendix L. We show that LLM-TTs fine-tuned on these tasks outperform both native LLMs
(likewise fine-tuned) and non-LLM state-of-the-art, showing the promise of TREETOP toward
important applications. We discuss results from tasks (i) and (iv), leaving discussions of (ii) and (iii)
to Appendix E. Additionally, we also explore early detection variants of (i) and (ii) in Appendix E.

4While we showed inference results on multiple model size across multiple model families, we only chose
one open-source and two closed-source models for fine-tuning due to compute limitations.
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Table 2: Results of structural tasks for zero-shot and two-shot inference using GEMINI, and for
zero-shot inference using GEMINI-TT. We show results with two-shot to provide one instance of
both positive and negative class, and we couldn’t test with more examples because of context length
limitations. Standard error for all reported results is reported in Appendix H.2 (Table 21).

GEMINI (Zero-shot) GEMINI (Two-shot) GEMINI-TT
Fine-tuning Tasks Acc Rec Pre F1 Acc Rec Pre F1 Acc Rec Pre F1
Are_one_hop_neighbors 39.0 27.3 35.5 30.9 47.9 84.5 48.8 61.9 100.0 100.0 100.0 100.0
Are_two_hop_neighbors 58.1 48.4 61.0 54.0 56.2 93.8 53.6 68.2 99.9 99.8 100.0 99.9
Are_three_hop_neighbors 45.5 27.5 42.2 33.3 40.3 58.2 42.9 49.4 100.0 100.0 100.0 100.0
Within_subtree 83.3 84.4 82.9 83.6 86.3 90.5 83.5 86.9 100.0 100.0 100.0 100.0

In_triangle 57.6 38.1 57.2 45.7 60.4 63.3 59.8 61.5 91.6 92.1 91.1 91.6
In_long_chain 59.1 3.0 74.6 5.8 58.1 43.3 61.6 50.9 96.5 98.7 94.6 96.6
Num_conversations 60.3 65.6 59.7 62.5 64.3 98.3 58.5 73.3 99.9 99.9 100.0 99.9

Num_children 53.5 32.3 53.8 40.3 55.3 97.6 52.9 68.6 99.8 100.0 99.6 99.8
Node_level 58.1 77.8 55.5 64.8 74.8 87.5 69.8 77.6 94.5 99.2 90.7 94.8
Is_leaf 57.4 37.7 56.5 45.2 68.7 80.9 65.1 72.1 99.9 99.9 100.0 99.9

Depth 55.1 16.5 73.5 26.9 61.5 93.9 57 70.9 93.7 90.7 96.6 93.5
Num_leaf_nodes 56.2 50.5 56.9 53.5 51.0 98.8 50.5 66.8 87.7 96.7 81.9 88.7

Unseen Tasks
Same_level 52.3 6.2 76.8 11.4 47.5 28.7 46 35.3 76.1 81.1 73.6 77.1
Has_comment_wedge 49.2 10.6 47.3 17.3 53.5 83.3 52.2 64.2 63.0 78.8 59.8 68.0

Are_interacting 52.1 6.2 78.1 11.5 70.0 73.6 68.7 71.0 78.2 59.1 95.7 73.0
Are_fighting 57.9 16.1 84.2 27.0 68.4 51.5 77.8 62.0 86.2 99.9 78.4 87.9
Has_user_wedge 50.8 12.7 50.9 20.3 51.3 54.8 51.2 53.0 61.6 43.3 68.3 53.0

4.2.1 Experimental Design

We divided each dataset into a random 70:15:15 split for fine-tuning, validation, and testing. The
validation set was used to select the best LLM checkpoint from the fine-tuning phase. We use 5-way
cross-validation with a bootstrapping approach to derive test-set standard errors, described fully in
Appendix H.2.2. During fine-tuning, each LLM receives each discussion tree input in the TREETOP
encoding (see Section 3.1), along with a yes/no prompt: "Whether the post is a [X] post?",
where [X] is controversial, rumor, fake news, or winning argument, depending on the data
set. Across our different experiments, we compare five models: GEMINI (zero-shot and two-shot),
GEMINI fine-tuned for that specific social media task, GEMINI-TT (zero-shot), and GEMINI-TT
fine-tuned for that specific social media task. We also compared with 3 GNN-baselines of GCN, GAT
and GraphSage where applicable. For the GNN baselines, we use the BERT model to embed the text
content of posts and comments in the conversation tree. Additionally, we also provide the SOTA
GNN-based benchmark for comparison.

4.2.2 Performance on Controversial Post Detection

Table 3 presents controversial post detection results across all models, including the DFE-GCN
algorithm (Hua et al., 2023), the prior state-of-the-art GNN-based model that combines sentence-
BERT with GCNs.5 GEMINI-TT fine-tuned for this task has the highest performance across all
metrics, even exceeding GNN baselines and DFE-GCN. We note that this dominant performance is
due both to topology-aware capacities gained from TREETOP, as well as fine-tuning on this particular
task. TREETOP’s effect can be seen by the marked improvement of GEMINI-TT 0-shot F1 against
GEMINI 0-shot F1. Fine-tuning GEMINI-TT on this task is then much more efficient, leading to SotA.

5These are results as reported in Hua et al. (2023) and Tan et al. (2016), acknowledging that the inputs and
test sets might not have parity. (Tan et al., 2016) only provide accuracy, and precision/recall/f1 are not reported
in the paper.
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Table 3: Results for controversial post detection task across all models. “ZS" means zero-shot, “2S"
means two-shot, and “FT" refers to fine-tuning on the detection task. GSG refers to the GraphSage
GNN baseline. All models have a standard error < 1.3 for the accuracy metric, and are reported in
Appendix H.2 (Table 22).

GEMINI GEMINI-TT GNN Baselines SOTA
Metric ZS 2S FT ZS FT GCN GAT GSG DFE-GCN5

Acc 50.0 56.4 68.6 50.6 84.6 64.0 68.0 66.0 76.6
Rec 27.4 53.4 85.9 90.5 87.7 92.0 75.0 85.0 67.2
Pre 58.2 56.9 64.0 50.4 82.6 59.0 66.0 62.0 67.4
F1 37.3 55.1 73.3 64.7 85.0 72.0 70.0 72.0 67.3

4.2.3 Winning Argument Thread Detection

In Table 4 we give the results for the winning argument thread detection task. We compare with
the approach in Tan et al. (2016), combining multiple linguistic and interaction-based features of
conversation trees, comprising the most recent prior benchmark.5 GEMINI-TT outperforms Tan et
al. and GEMINI across all metrics. Even zero-shot performance of GEMINI-TT is better than GEMINI
fine-tuned for this specific task. We attribute this result to the enhanced topological understanding
brought about by TREETOP fine-tuning.

Table 4: Results for the winning argument detection task. All reported results have a standard error
< 1.4 for accuracy, and are reported in Appendix H.2 (Table 23).

GEMINI GEMINI-TT SOTA
Metric ZS 2S FT ZS FT Tan et al. (2016)5

Acc 50.2 47.3 51.5 52.5 76.6 70.0
Rec 3.2 5.6 12.3 45.2 83.5 -
Pre 51.3 60.0 57.5 53.0 73.4 -
F1 6.1 10.3 20.3 48.8 78.1 -

4.3 Explanability and Robustness of Representations Learned by LLM-TTs

To further demonstrate the robustness and repeatability of our work, we performed a variety of
ablation studies and similar exercises. We perform model ablations using GEMMA and PaLM-
Bison in Appendix G, data ablations in Appendix H, regression analysis in Appendix I, and analyze
TREETOP embeddings in Appendix J.

5 Conclusions

In this paper, we introduced TREETOP, a framework and suite of tasks for fine-tuning LLMs to
perform well on topological reasoning tasks over conversation tree inputs. As we showed through our
experiments, LLMs fine-tuned with TREETOP generalize significantly better to out-of-distribution
reasoning tasks, and have achieved state-of-the-art on a variety of downstream tasks in various social
media domain applications. We now address limitations and future directions.

As LLMs become better-able to handle multimodality (Zhang et al., 2024), an important next step in
this line of research is to allow large models to learn signals from the joint distribution of topology
and non-text modes such as images and videos. Future efforts in this direction should be inspired
and motivated by existing non-LLM work in multimodal cascade prediction (Xie et al., 2020; Zhang
et al., 2018), and by the importance of multimedia content in such applications (Nakamura et al.,
2019). More generally, we hope that the concepts underlying TREETOP– fine-tuning on structural
tasks after pre-training on language tasks – may be a re-usable recipe for teaching LLMs to become
performant on structured data.
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B Supplementary: Related Work

One of the most seminal advances that has spurred the current wave of LLM research has been the
attention mechanism, and the transformer architecture (Vaswani et al., 2017). This led to development
of newer language encodings, notably BERT (Devlin et al., 2018). Radford et al. (2018) popularized
generative pre-training followed by discriminative fine-tuning for downstream tasks - an approach
that is highly leveraged in the application of LLMs. Raffel et al. (2020) introduced the T5 paradigm,
a unified framework to convert all text-based language problems into a text-to-text format. This work
also inspired modeling graph problems into text prompts. Wei et al. (2021) provided an instruction-
tuning framework to fine-tune LLMs for improved for zero-shot performance, whereas Brown et al.
(2020) showed an improvement in LLM performance under few-shot training. Given this success of
LLMs on language understanding, they have been subsequently been applied to other modalities as
well, notably images (Alayrac et al., 2022), and now to the creation of multimodal models (Team
et al., 2023; Huang et al., 2024; Reid et al., 2024).

Similarly, graph neural networks (Scarselli et al., 2008) were introduced for machine learning on
graphs, and their expressive power has been extensively studied theoretically (Xu et al., 2018) and
across multiple benchmarks (Chien et al., 2021). Extensive surveys (Wu et al., 2020; Zhou et al.,
2020; Chami et al., 2022) on GNNs demonstrate that they have been a prominent approach to reason
over graphs. Graphs have been successfully applied to a variety of problem domains, for instance,
cryptography (Priyadarsini, 2015), transportation networks (Bisen, 2017), quantum physics (Gilmer
et al., 2020), chemistry (Gilmer et al., 2017; Hu et al., 2020b), and in multiple domains of everyday
use and technology (Kaundal, 2017). For example, knowledge graphs have seen widespread use and
adoption in retrieval and query-based systems (Schlichtkrull et al., 2018; Yasunaga et al., 2022a).

Multiple recent studies have leveraged cross-pollination of ideas between GNNs and LLMs. Zhang
et al. (2023) look at solving spatio-temporal problems on dynamic graphs using large language
models. Zhang (2023) notes that using tools can help an LLM reason over graph structures. On
the other hand, Yasunaga et al. (2022b) view a text corpus as a graph of documents, and propose
LinkBERT, an LM pre-training method that leverages links between documents. Similarly, Zhu et al.
(2021) and Qin et al. (2023) propose methods that use GNNs to improve the performance of a text
encoder. Alternatively, Duan et al. (2023) use LLM embeddings to initialize the GNN node features,
and along with Perozzi et al. (2024), contribute to the area of work which integrates LLMs and GNNs
at the level of tokens and embeddings. In a parallel line of work, language models have been used to
improve GNN performance. Xu et al. (2023) use a BERT model to encode textual features on nodes
whereas He et al. (2023) leverage explanations from an LLM to improve performance of downstream
GNNs.

Similarly, in the domain of social media analysis, multiple studies have been performed that discuss
the impacts of consuming social media information on the individual and the population (Amedie,
2015; Bail et al., 2018; Akram and Kumar, 2017; Olan et al., 2024). Conversation trees are central to
how information is consumed in social media – there is a central post that an original poster makes,
and there are comments in response to this post. Information flow on social media has motivated
several lines of work (Lerman and Ghosh, 2010; Bakshy et al., 2012; Liu et al., 2023a; Pröllochs
and Feuerriegel, 2023; Hardy et al., 2023). Controversial post detection is of central importance
to ensure that social media users are not exposed to potentially harmful content (Benslimane et al.,
2021; Madhu et al., 2023; Garimella et al., 2018; Qiu et al., 2019). Similarly, a growing body of
research is dedicated to addressing the issue of fake news, with studies exploring various detection
methods and their effectiveness (Han et al., 2020; Shu et al., 2017; Nakamura et al., 2019; Lillie
and Middelboe, 2019; Ma and Gao, 2020; Dou et al., 2021). Multilingual generalization (Li and Li,
2022; Wen, 2023; Li et al., 2022), bias detection (Olteanu et al., 2019; Chen et al., 2022; Zhu et al.,
2022), fraud detection (Liu et al., 2023b; Zeng and Tang, 2021; Chen et al., 2024a), event detection
(Abagissa et al., 2024; Gao et al., 2021; Ji et al., 2021) and malicious behaviour detection (Wu et al.,
2022; Toshevska et al., 2023; Dou, 2022) are other important problems in this area.
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C Supplementary: Methodology

Figure 5 represents the pipeline for the creation of models using the TREETOP framework. We first
begin here by providing the detailed listing of all the structural tasks, and follow that up with the
prompts used for each task.

Figure 5: TREETOP’s Process Flow Diagram. The blue boxes represent the core TREETOP framework.
SM stands for Social Media, and is generalizable to all conversation tree tasks.

C.1 Structural Tasks Description

We provide the descriptions of all the 17 tasks provided in the TREETOP framework in Table 6 and
Table 7. The four classes of tasks are described in Section 3.2.

Table 6: Structural tasks and their explanation. The set of tasks are clustered into 4 categories with
different semantic application to conversation trees. This table shows the tasks TREETOP is trained
on.

Tasks for fine-tuning
Comment × comment tasks

Are_one_hop_neighbors Are two comments one-hop neighbors of each other
Are_two_hop_neighbors Are two comments two-hop neighbors of each other
Are_three_hop_neighbors Are two comments three-hop neighbors of each other
Within_subtree Is a comment in the subtree rooted at another given comment

User × user tasks
In_triangle Does there exist a triangular discussion between three users
In_long_chain Does there exist a to-and-fro conversation between two users
Num_conversations Given a user, are more than k comments by the user in the tree

Node characteristics tasks
Num_children Given a comment, are more than k replies to it
Node_level Given a node, detect its level
Is_leaf Is a given node a leaf node i.e. it has zero replies

Tree characteristics tasks
Depth Given a post-comment tree, detect its depth
Num_leaf_nodes Are there more than k nodes in the tree with zero replies
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Table 7: This table is similar to Table 6, except it lists the set of unseen tasks that are used to assess
TREETOP’s structural understanding.

Unseen tasks for evaluation
Comment × comment tasks

Same_level Given a comment pair, whether they are at same level
Has_comment_wedge Whether the given user pair reply to a same comment

User × user tasks
Are_interacting Given a user pair (U1, U2), whether U1 replies to U2’s comment
Are_fighting Given a user pair (U1, U2), whether U1 comments on U2 more than 2

times
Has_user_wedge Given three users (U1, U2, U3), whether U1 replies to both U2 and U3.

C.2 Prompt Encoding

The TREETOP framework presents an encoding which captures both the topology and content of
conversation trees. This encoding captures the content of both the main post and comments along
with the structure of the comments tree for that post. Here, each element in the encoding of the
conversation tree has all the richness that we can provide from the dataset.

The complete prompt employed by the TREETOP framework is:

Given is a social media conversation tree, where each comment (node) in
the tree is of the following structure: (<node_id> <user_id> <content>
<parent_id>). The first node (<C0>) is the main post on Reddit followed by
the comments to the main post. <parent_id> refers to the comment/post to
which the current comment is a reply to.

{Explanation}

QUESTION: {question}

OPTIONS:
- Yes
- No

POST-COMMENT TREE: 〈encoding(comment0)〉〈encoding(comment1)〉〈encoding(comment2)〉 . . .

Here, {question} is the task posed as a Yes|No question. If some additional explanation of the
question is required, it is added in the {Explanation} section. For example, we first define what a
triangular discussion is in a conversation tree and then ask the question about it. Detailed prompts are
provide in the next section.
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C.3 Instruction Prompts for Structural Tasks

We now provide the specific details for the prompts used for all our tasks in four tables - Table 8 to
Table 11 for all the four categories of structural tasks.

Table 8: This table specifies all the prompts used for all the comment × comment tasks.
Prompts for comment × comment tasks

Are_one_hop_neighbors
1. whether <C{node2}> is a direct comment to <C{node1}> ?
2. whether <C{node2}> is a one-hop neighbor to <C{node1}> ?
Are_two_hop_neighbors
1. whether <C{node2}> is a comment to one of the direct comment to <C{node1}> ?
2. whether <C{node2}> is a two-hop neighbor to <C{node1}> ?
Are_three_hop_neighbors
1. whether <C{node2}> is a three-hop neighbor to <C{node1}> ?
Within_subtree
1. whether <C{node2}> is in the subtree rooted at <C{node1}>
Same_level
1. whether <C{node1}> and <C{node2}> are at the same level ?
Has_comment_wedge
1. whether users <U{user1}> and <U{user2}> reply to a same comment ?
2. whether users <U{user1}> and <U{user2}> reply to <C{node}> ?
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Table 9: This table specifies all the prompts used for all the user × user interaction tasks.
Prompts for user × user tasks

In_triangle
1. whether users <U{user1}> <U{user2}> and <U{user3}> are involved in a

triangular discussion between each other?
2. whether there is a triangular discussion between three users ?
Explanation: We define a discussion between three users A, B and C as
triangular if there exists an instance where lets say User B comments on
a comment by User A and User C also comments on the same comment by User
A and one of User B or C comments on each other’s comment on User A’s
comment.
In_long_chain
1. whether users <U{user1}> and <U{user2}> are involved in a long chain of to

and fro discussion of atleast length {chain_length} between each other ?
2. whether there is a long chain of to and fro discussion of at least length

{chain_length} between two users ?
Explanation: We define a long chain of to and fro discussion between two
users A and B when there exists an instance where User B comments on a
comment by User A followed by User A commenting on User B’s comment to his
comment and so on.
Num_conversations
1. whether there are more than {num_comments} comments by <U{user}> ?
2. whether there are multiple comments by <U{user}> ?
Are_interacting
1. whether users <U{user1}> and <U{user2}> interact with each other i.e. one

of them replies to other’s comment ?
Are_fighting
1. whether user <U{user1}> replies to user <U{user2}> more than two times ?
Has_user_wedge
1. whether there is a user that replies to both user <U{user1}> and <U{user2}>

?
2. whether user <U{user}> replies to both user <U{user1}> and <U{user2}> ?

Table 10: This table specifies all the prompts used for all the node characteristics tasks.
Prompts for node characteristics tasks

Num_children
1. whether there are more than {num_comments} direct comments to <C{node}> ?
2. whether there are more than {num_comments} children of <C{node}> ?
3. whether there are more than {num_comments} one-hop neighbors of <C{node}> ?
Node_level
1. whether <C{node}> is at level {level} ? (Assuming the root node is at

level 0)
Is_leaf
1. whether <C{node}> is a leaf node ?
2. whether <C{node}> has zero children ?
3. whether <C{node}> has no replies ?

20



Table 11: This table specifies all the prompts used for all the tree characteristics tasks.
Prompts for tree characteristics tasks

Depth
1. whether the depth of the tree is {depth} ?
2. whether the depth of the tree is more than {depth} ?
Num_leaf_nodes
1. whether there are more than {num_leaf_nodes} leaf nodes in the given tree ?
2. whether there are more than {num_leaf_nodes} nodes in the given tree that

have zero replies ?
3. whether there are more than {num_leaf_nodes} nodes in the given tree that

have zero children ?
4. whether there are {num_leaf_nodes} leaf nodes in the given tree ?
5. whether there are {num_leaf_nodes} nodes in the given tree that have zero

children ?
6. whether there are {num_leaf_nodes} nodes in the given tree that have zero

replies ?

D Dataset Statistics

D.1 Social Media Dataset Statistics

We used popular social media datasets for the evaluation of downstream tasks. The sources and
statistics for the social media datasets are presented in Table 12. The winning argument thread
dataset collected data from the r/changemyview subreddit. Note that all the datasets are not evenly
balanced between positive and negative samples, and we do not employ any under-sampling or
over-sampling techniques to artificially balance the dataset. Similar to the creation of TREETOP, we
used a 70 : 15 : 15 split ratio to create training, validation and test datasets for each downstream
social media task. The license descriptions for all the datasets are given in Appendix L.

Table 12: Datasets and their statistics.

Dataset (Download Links) Paper Source +ves -ves
Controversial Post [link] Hessel and Lee (2019) Reddit 7515 7518
PHEME9 (rumor detection) [link] Kochkina et al. (2018) X 1616 3058
Fakeddit [post] [comments] Nakamura et al. (2019) Reddit 75215 172371
Winning Argument Thread [link] Tan et al. (2016) Reddit 6557 6557

D.2 Early Detection in Rumor and Controversy Datasets

The following table shows how much of the conversation tree is available at different timestamps to
facilitate our early detection task variation. This table shows what fraction of comments are observed
within the first hour, first two hours, and so on (assuming inf time is 100%).

E Supplementary Downstream Task Experiments

For controversial post detection, we use the task definition and the dataset provided in Hessel and
Lee (2019). The task is to detect Reddit “posts that split the preferences of a community, receiving
both significant positive and significant negative feedback.” This dataset only has posts which have at
least 30 comments in the conversation tree. Similarly, for rumor detection, we use the PHEME9
dataset from Kochkina et al. (2018) for this task. In this work, the authors have collected, identified
and annotated X posts as rumors associated with newsworthy events. Additionally, for fake news
detection, we use the Fakeddit dataset from Nakamura et al. (2019) for this task. In this work,
the authors have collected and annotated Reddit posts as being fake news or not. The results of
controversial post detection have already been provided in Section 4.2.2; we now provide results for
rumor detection in Appendix E.2 and fake news detection in Appendix E.1.
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Table 13: This table shows the percentage of comments posted within the time elapsed since the main
post.

Controversy Detection Dataset Rumor Detection PHEME9 Dataset
Percentage of Percentage of

Time Duration comments received Time Duration comments received

0 0.00 0 0.00
1 hr 12.13 10 mins 34.00
2 hrs 21.29 20 mins 48.18
4 hrs 38.23 30 mins 55.74
6 hrs 51.92 45 mins 61.33

12 hrs 76.63 1 hr 68.16
24 hrs 93.18 6 hrs 89.66

inf 100.00 inf 100.00

E.1 Fakeddit

Table 14 shows the results of fake news detection on the Fakeddit dataset (Nakamura et al., 2019).
Fakeddit is a multi-modal Reddit dataset and contains both text and images. For our experiments, we
only use those samples that have at least 5 comments in the conversation tree while performing fine-
tuning. For our algorithms, we ignore any image content in the posts and comments. The statistics
for this dataset are in Table 12, and show approximately a 1:2 class imbalance between positive and
negative samples. As before, we compare the performance of GEMINI (zero-shot), GEMINI fine-tuned
on Fakeddit, GEMINI-TT zero-shot, and GEMINI-TT further fine-tuned on Fakeddit. In addition, we
also show results for the P and PC encodings for GEMINI. We also compare our approaches with
Nakamura et al. (2019), who combine BERT-encodings with a ResNet-50 image encoding model. Our
results show that fine-tuned GEMINI-TT (accuracy of 96.0%) outperforms both fine-tuned GEMINI
(accuracy of 89.8%) and the approach by Nakamura et al. (2019) (accuracy of 89.1%).6 The standard
error for our experiments is reported in Appendix H.2.

Table 14: Results for Fake News detection task. The results in bold shows that fine-tuned GEMINI-TT
beats the performance of both fine-tuned GEMINI and the approach by Nakamura et al. (2019). Also,
we do not have zero-shot and fine-tuned variants for Nakamura et al. (2019). Standard error for this
evaluation is provided in Appendix H.2.2 (Table 24) and are below 0.2 for accuracy for all models.

GEMINI GEMINI-TT GNN Baselines SOTA
Metric ZS 2S FT ZS FT GCN GAT GraphSAGE Nakamura et al. (2019)6

Acc 76.3 63.6 89.8 77.2 96.0 77.0 79.0 81.0 89.1
Rec 3.9 52.9 82.7 2.8 88.6 71.0 78.0 77.0 -
Pre 34.9 67.3 75.1 56.8 93.5 55.0 57.0 61.0 -
F1 7.1 59.3 93.5 5.3 91.0 62.0 66.0 68.0 -

E.2 Rumor Detection

Table 15 shows the performance on rumor detection PHEME9 dataset (Kochkina et al., 2018). The
statistics for this dataset are in Table 12, and show approximately a 1:2 class imbalance between
positive and negative samples. For our experiments, we only use those samples that have at least
5 comments in the conversation tree while performing fine-tuning. As before, we compare the
performance of GEMINI (zero-shot, and two-shot), GEMINI fine-tuned for rumor detection, GEM-
INI-TT (zero shot) and GEMINI-TT fine-tuned for rumor detection. We also compare these with
GNN baselines. Additionally, we also compare our models with two prior published research: (i)
PHAROS algorithm (Nguyen et al., 2024), which integrates label information with graph homophily

6These are results as reported in Nakamura et al. (2019), acknowledging that their and our test sets might
not have parity. We only report accuracy since it is the only metric reported in the paper.
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measures, and is among the state-of-the-art published result in this domain7; and (ii) NRA MOS-
GAT algorithm (Patel et al., 2022), which uses oversampling and BERT embeddings along with
an attention-based GNN model.7 Our results show that fine-tuned GEMINI-TT model (accuracy of
87.1%) outperforms all three of fine-tuned GEMINI (accuracy of 72.5%), PHAROS (accuracy of
75.9%) and NRA MOS-GAT (accuracy of 78.4%). The standard error for all the results is below 4%,
except for the precision number for GEMINI-TT-FT which had an error of around 15% (computation
methodology is described in Appendix H.2).

Table 15: Results for Rumor Detection task. The results in bold show that fine-tuned GEMINI-TT
beats the performance of fine-tuned GEMINI, PHAROS, and NRA MOS-GAT. Given PHAROS and
NRA MOS-GAT are not LLM based, we do not have zero-shot and fine-tuned variants for them.
Standard error for this evaluation is provided in Appendix H.2.2 (Table 25) and are below 1.9 for
accuracy for all models.

GEMINI GEMINI-TT GNN Baselines SOTA
Metric ZS 2S FT ZS FT GCN GAT GraphSAGE PHAROS7 NRA MOS-GAT7

Acc 64.0 54.8 72.5 65.9 87.1 78.0 80.0 79.0 75.9 78.4
Rec 6.1 76.2 47.1 3.1 78.1 80.0 71.0 73.0 - -
Pre 41.3 41.9 63.7 76.5 83.6 65.0 71.0 69.0 - -
F1 10.6 54.1 54.1 5.8 80.7 72.0 71.0 71.0 77.9 73.1

We acknowledge that the zero-shot performance (recall and f1) for both GEMINI and GEMINI-TT
is sub-par. It is quite likely that these models considers the tree topology content of the TREETOP
encoding as noise for this task. This may also be because our prompt is simply asking these models
"whether the post is a rumor?", only relying on their innate language understanding of the
word ‘rumor’ independent of any other context. In contrast, the performance of the fine-tuned
variants of both GEMINI and GEMINI-TT see a major boost once they are able to learn our definition
of ‘rumor’ from the fine-tuning dataset.

E.3 Early Detection of Controversial Posts

Early detection of future conversation properties is a significantly important challenge with real-world
impact (Akram and Kumar, 2017), given the ubiquity of social media platforms. In Figure 6, we
report results of zero-shot early detection of controversial posts for both GEMINI and GEMINI-TT
fine-tuned for the controversy detection task. For each dataset, we take views of each conversation
tree at different timestamps, where a “view” at timestamp t contains the original post and all replies
up to time t. We use t = 0, 1, 2, 4, 6, 12, 24 and inf hours in our experiments. Appendix D.2 shows
the statistics on what fraction of comments are seen at different time durations.

(a) Accuracy (b) Recall (c) Precision (d) f1

Figure 6: These graphs show the early-detection results comparing the versions of GEMINI and
GEMINI-TT both fine-tuned for detection of controversial post detection tasks. Error bars are shown
in the plot and all the standard errors for model accuracy are less than 1.3.

The fine-tuned GEMINI-TT achieves the same performance of fine-tuned GEMINI 20 hrs in advance.
Specifically, GEMINI’s accuracy at 24 hrs is 68.6% - GEMINI-TT has an accuracy of 62.6% and
68.9% at 2hrs and 4hrs respectively. Additionally, GEMINI-TT achieves 73.7% accuracy at 6hrs, and

7These are results as reported in PHAROS (Nguyen et al., 2024) and NRA MOS-GAT algorithm (Patel et al.,
2022), acknowledging that their and our test sets might not have parity. We only report accuracy and f1 since
those are the only reported metrics in the papers; precision and recall have not been reported.
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83.3% accuracy at 24hrs. These results show that these models can be effective at early detection of
controversial post in just 4 to 6 hours.

We provide the same results on rumor detection in Appendix E.4, we see similar dominance of
fine-tuned GEMINI-TT over fine-tuned GEMINI there as well.8

E.4 Early Detection of Rumors

Similar to the early detection of controversial posts described in Section E.3, we collect and evaluate
fine-tuned GEMINI and fine-tuned GEMINI-TT at t = 0, 10 min, 20 min, 30 min, 45 min, 1 hr, 6 hr
and inf hours after the original post respectively for the rumor detection task. Our result shows that
fine-tuned GEMINI-TT (accuracy of 87.0% at t = 0) outperforms fine-tuned GEMINI (accuracy of
73.7% at t = 24hrs). This shows that models fine-tuned with the TREETOP framework can also be
used for extremely early detection of rumors. We also see that for all models, the performance stays
quite flat over the different timespans after t = 20 mins. We hypothesize that this is because in the
PHEME9 dataset, most of the comments appear in the first hour itself (see Table 13), and that this
dataset is such where the main post itself is highly discriminative of rumors.

(a) Accuracy (b) Recall (c) Precision (d) F1

Figure 7: These graphs show the results comparing fine-tuned GEMINI and fine-tuned GEMINI-TT
for early detection of rumor post tasks. The error bars are also shown in the column charts, and all
error bars are within 1.9 (for accuracy).

F Model Hyper-parameters and Hardware Details

The base LLM used in most of our experiments was GEMINI (Team et al., 2023). We use the GEMINI
model available on the Google Cloud API (Cloud, 2023), with a learning rate of 5e-7 and inferred
with a temperature of 0. The input token length was set to 8196 tokens, and output token length was
capped at 512 tokens (our outputs were binary Yes | No responses) - if our input prompt exceeded
8196 tokens, in accordance with our desire to capture the complete tree, we kept the complete main
post but restricted the number of words in other comments to 12 words (this truncation was not
needed in any of our structural tasks, and for about 5% of the samples in the downstream tasks). Our
batch size for all the experiments was set to 128. The number of steps vary across our experiments
depending on the size of the dataset - GEMINI was fine-tuned for 3000 steps for the creation of
GEMINI-TT. Similarly, GEMINI-TT was further fine-tuned for 500 steps for every downstream social
media task other than Fakeddit, for which we fine-tuned it for 1500 steps. Each experiment was run
on 512 TPU v3 chips. Every 100 steps of the experiment took approximately 1 hour to complete.

8We do not evaluate early detection on the other two tasks, as the Fakeddit dataset does not provide
timestamps, and the winning thread detection task requires the entire thread.
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G Model Ablations

We also changed the base LLM from GEMINI to GEMMA and PaLM-Bison to demonstrate that the
TREETOP framework works with different models as well. We show these results in this section.

G.1 Results with GEMMA

G.1.1 GEMMA Results on Structural Fine-tuning

Our results for GEMMA-TT are shown in Table 16, and show that GEMMA-TT is also able to perform
well on unseen structural tasks.

Table 16: Results of structural tasks for GEMMA (Zero-shot evaluation), GEMMA-TT (GEMMA
fine-tuned with the TREETOP framework). The results show that the fine-tuning process of TREETOP
works for smaller LLM models like GEMMA as well.

GEMMA (Zero-shot) GEMMA-TT
Fine-tuning Tasks Acc Rec Pre F1 Acc Rec Pre F1
Are_one_hop_neighbors 26.3 44.4 32.6 37.6 100 100 100 100
Are_two_hop_neighbors 25.9 41.9 31.8 36.1 100 100 100 100
Are_three_hop_neighbors 23.4 41.2 30.4 35.0 100 100 100 100
Within_subtree 28.2 48.7 34.4 40.3 98.0 98.0 98.0 98.0

In_triangle 23.3 43.0 31.1 36.1 86.4 99.3 79.1 88
In_long_chain 26.0 47.7 33.0 39.0 92.7 98.7 88.2 93.1
Num_conversations 19.6 29.3 24.4 26.7 99.0 100 98.0 99.0

Num_children 18.6 23.4 21.4 22.4 99.3 99.3 99.3 99.3
Node_level 21.6 37.3 28.3. 32.2 98.7 98.7 98.7 98.7
Is_leaf 17.7 14.0 15.1 14.5 100 100 100 100

Depth 6.3 12.7 11.2 11.9 96.3 98.0 94.8 96.4
Num_leaf_nodes 22.0 33.8 27.1 30.1 78.0 87.2 73.4 79.8

Unseen Tasks
Same_level 13.4 14.9 14.5 14.7 42.4 23.2 37.7 28.7
Has_comment_wedge 27.5 47.9 34 39.8 47.7 51.2 47.8 49.5

Are_interacting 22.1 40.9 29.7 34.4 80.8 78.3 82.4 80.3
Are_fighting 20.9 20.5 20.9 20.7 70.5 95.4 63.8 76.5
Has_user_wedge 34.7 60.0 39.8 47.9 49.5 57.3 49.5 53.2

G.1.2 GEMMA Results on Downstream Social Media Tasks

Table 17 shows the results of using GEMMA as the base model for the four different social media
tasks evaluated in this paper.

Table 17: GEMMA results on downstream social media tasks. These results show that the TREETOP
framework helps smaller models like GEMMA as well to improve their downstream performance.

GEMMA GEMMA GEMMA-TT
(Zero-shot) (Fine-tuned) (Fine-tuned)

Task Acc Rec Pre F1 Acc Rec Pre F1 Acc Rec Pre F1
Controversial Post Detection 17.6 31.7 24.7 27.8 64.4 96.8 58.7 73.1 80.0 79.5 80.2 79.9
Winning Thread Detection 8.3 4.5 4.9 4.7 50.3 98.3 50.2 66.5 71.0 79.9 66.6 72.7
Rumor Detection 9.5 4.0 2.4 3.0 64.9 1.6 57.1 3.1 81.8 87.9 69.0 77.3
Fake News Detection 22.0 33.5 10.9 16.5 84.0 76.0 62.4 68.5 90.5 63.4 93.1 75.4
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G.2 Results with PaLM-Bison

Our results for PaLM-TT are shown in Table 18, and confirm that the increased benefit of TREETOP
framework is repeatable for PaLM-Bison as well.

Table 18: Results of structural tasks for PaLM-Bison (Zero-shot evaluation), PaLM-TT (PaLM-
Bison fine-tuned with the TREETOP framework). The results show that the fine-tuning process of
TREETOP works for other LLM models like PaLM-Bison as well.

PaLM (Zero-shot) PaLM-TT
Fine-tuning Tasks Acc Rec Pre F1 Acc Rec Pre F1
Are_one_hop_neighbors 59.5 92.1 55.8 69.5 99.9 99.7 100.0 99.9
Are_two_hop_neighbors 45.6 90.1 47.7 62.4 99.3 99.1 99.6 99.3
Are_three_hop_neighbors 58.1 99.5 54.4 70.3 99.6 99.5 99.7 99.6
Within_subtree 87.2 92.0 83.9 87.7 99.6 99.3 99.9 99.6

In_triangle 61.4 72.6 59.3 65.3 93.9 92.4 95.2 93.8
In_long_chain 76.9 89.3 71.5 79.5 98.0 98.5 97.5 98.0
Num_conversations 61.1 98.5 56.4 71.7 99.0 98.3 99.7 99.0

Num_children 51.6 99.2 50.8 67.2 99.5 99.1 99.9 99.5
Node_level 57.2 93.1 54.2 68.5 92.5 88.8 95.8 92.2
Is_leaf 63.6 75.9 60.9 67.6 99.6 99.3 99.9 99.6

Depth 68.2 59.8 72.0 65.3 86.4 72.8 100.0 84.3
Num_leaf_nodes 50.7 24.9 51.4 33.5 90.1 96.5 85.5 90.7

Unseen Tasks
Same_level 53.0 10.3 70.8 18.0 65.3 64.8 65.5 65.1
Has_comment_wedge 54.9 62.2 54.2 57.9 58.1 93.6 54.8 69.1

Are_interacting 72.9 70.8 73.9 72.3 82.2 67.4 95.7 79.1
Are_fighting 59.3 98.5 55.2 70.7 93.7 97.9 90.3 93.9
Has_user_wedge 54.5 49.7 55.0 52.2 59.1 51.4 60.7 55.7
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H Data Ablations

We perform multiple data ablations, cross-validation, and bootstrapping tests to ensure that the
TREETOP framework is stable and our results are not dependent on (i) a particular selection of
fine-tuning data corpus, or (ii) a particular train / validation split of our data corpus, (iii) or a particular
sampling of the test set. We provide details of these ablation studies here.

H.1 Increasing the Size of the Structural Task Dataset

H.1.1 Results on Structural Tasks

For our first data ablation study, we increase the size of the training dataset. Instead of using 10K
samples per question as described in the previous results, we trained a version of GEMINI-TT with
100K samples per task. Like before, half of these were positive samples and the other half, negative
samples. We refer to this version of GEMINI-TT as GEMINI-TT-100 and show the comparison results
in Table 19.

Table 19: Results of structural tasks for GEMINI-TT and GEMINI-TT-100. Acc, Rec, Pre refer to
Accuracy, Recall and Precision respectively. Standard error for all reported results is less than 1.3
for model accuracy for GEMINI-TT-100 and is reported in Appendix H.2 (Table 21). The results
show that there is a small gain in performance of GEMINI-TT-100 over GEMINI-TT. The results of
GEMINI-TT are same as shown in Table 2, and only presented for comparison purposes.

GEMINI-TT GEMINI-TT-100
Fine-tuning Tasks Acc Rec Pre F1 Acc Rec Pre F1
Are_one_hop_neighbors 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Are_two_hop_neighbors 99.9 99.8 100.0 99.9 100.0 100.0 100.0 100.0
Are_three_hop_neighbors 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Within_subtree 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

In_triangle 91.6 92.1 91.1 91.6 95.4 94.1 96.6 95.3
In_long_chain 96.5 98.7 94.6 96.6 99.7 99.7 99.6 99.7
Num_conversations 99.9 99.9 100.0 99.9 100.0 100.0 100.0 100.0

Num_children 99.8 100.0 99.6 99.8 100.0 100.0 100.0 100.0
Node_level 94.5 99.2 90.7 94.8 100.0 100.0 100.0 100.0
Is_leaf 99.9 99.9 100.0 99.9 100.0 100.0 100.0 100.0

Depth 93.7 90.7 96.6 93.5 100.0 100.0 100.0 100.0
Num_leaf_nodes 87.7 96.7 81.9 88.7 99.6 99.6 99.6 99.6

Unseen Tasks
Same_level 76.1 81.1 73.6 77.1 78.9 85.0 75.7 80.0
Has_comment_wedge 63.0 78.8 59.8 68.0 67.4 87.7 62.3 72.8

Are_interacting 78.2 59.1 95.7 73.0 75.8 52.6 98.6 68.6
Are_fighting 86.2 99.9 78.4 87.9 92.7 99.7 87.3 93.1
Has_user_wedge 61.6 43.3 68.3 53.0 63.9 46.3 71.6 56.2

H.1.2 Results on Downstream Social Media Tasks

We now show the performance of GEMINI-TT-100 (i.e. GEMINI-TT trained with 100K samples per
task) on downstream social media tasks. Table 20 shows the results, and like before, GEMINI-TT-100
consistently shows small gains of GEMINI-TT.
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Table 20: Results comparing GEMINI, GEMINI-TT, and GEMINI-TT-100 for downstream social
media tasks. All results are statistically significant and the standard error is reported in Appendix H.2.
Results for GEMINI and GEMINI-TT are same as before; and are only reported for comparison
purposes.

Controversial Post Detection
Zero-shot Fine-tuned

Model Acc Rec Pre F1 Acc Rec Pre F1
GEMINI 50.0 27.4 58.2 37.3 68.6 85.9 64.0 73.3
GEMINI-TT 50.6 90.5 50.4 64.7 84.6 87.7 82.6 85.0
GEMINI-TT-100 52.5 70.0 51.9 59.6 84.5 87.7 82.6 85.1

Winning Argument Detection
Zero-shot Fine-tuned

Model Acc Rec Pre F1 Acc Rec Pre F1
GEMINI 50.2 3.2 51.3 6.1 51.5 12.3 57.5 20.3
GEMINI-TT 52.5 45.2 53.0 48.8 76.6 83.5 73.4 78.1
GEMINI-TT-100 54.6 31.4 58.9 40.9 75.5 82.7 72.4 77.2

Fake News Detection
Zero-shot Fine-tuned

Model Acc Rec Pre F1 Acc Rec Pre F1
GEMINI 76.3 3.9 34.9 7.1 89.8 82.7 75.1 78.7
GEMINI-TT 77.2 2.8 56.8 5.3 96.0 88.6 93.5 91.0
GEMINI-TT-100 76.9 1.4 41.8 2.7 96.7 91.5 93.8 92.6

Rumor Detection
Zero-shot Fine-tuned

Model Acc Rec Pre F1 Acc Rec Pre F1
GEMINI 64.0 6.1 41.3 10.6 72.5 47.1 63.7 54.1
GEMINI-TT 65.9 3.1 76.5 5.8 87.1 78.1 83.6 80.7
GEMINI-TT-100 65.7 2.0 100.0 3.9 87.0 79.3 83.1 81.1

H.2 Bootstrapping Analysis of Test Set

In our next ablation study, we perform bootstrapping of the test set and evaluate against a single
version of GEMINI-TT. Bootstrapping is performed using random sampling with replacement within
the test data corpus. The methodology and statistical analysis for bootstrapping is described in Efron
and Tibshirani (1993) - the process is visualized in Figure 8 and our implementation is given in
Algorithm 1. When performing bootstrapping test analysis for structural fine-tuning, the ‘model’ in
Figure 8 refers to GEMINI-TT. However, when performing bootstrapping test analysis for downstream
social media tasks, the ‘model’ in Figure 8 refers to the version of GEMINI-TT-FT specifically fine-
tuned for that downstream task. We perform bootstrapping to ensure proper estimation of our test set
metrics (accuracy, recall, precision and f1).
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Figure 8: We perform bootstrapping analysis on the test set (Efron and Tibshirani, 1993) to ensure
that our reported test results are statistically reliable.

Algorithm 1 Estimate Standard Error (SE) Bars via Bootstrap

1: Input: Test data T = {x1, . . . , xn}, Number of bootstrap samples B, Metric M : T → R
2: Output: SE of the metric evaluated at T
3: for i = 1 to B do
4: Sample n data points from T with replacement to form Si where |Si| = n
5: Compute Mi = M(Si).
6: end for
7: Compute the metric for the original population M∗ = M(T )
8: Compute Standard Error as SE =

√
1

B−1
∑B

i=1(Mi −M∗)2

9: Return SE
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H.2.1 Bootstrapping Tests for Structural Fine-tuning

We first show the standard error for structural fine-tuning tasks in Table 21 (for ‘mean’, refer to
Table 2).

Table 21: Mean and standard error from the bootstrapping analysis for structural fine-tuning tasks.
The table demonstrates that all standard errors for models in this work are less than 2.0 for accuracy.

Bootstrapping Test Set: Standard Error for Structural Tasks (↓ is better)
GEMINI (Zero-shot) GEMINI-TT GEMINI-TT-100

Fine-tuning Tasks Acc Rec Pre F1 Acc Rec Pre F1 Acc Rec Pre F1
Are_one_hop_neighbors 1.3 1.7 2.1 1.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Are_two_hop_neighbors 1.2 1.8 2.2 1.7 0.1 0.2 0.0 0.1 0.0 0.0 0.0 0.0
Are_three_hop_neighbors 1.3 1.7 2.4 1.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Within_subtree 1.0 1.3 1.5 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

In_triangle 2.0 2.7 3.3 2.7 0.7 1.0 1.0 0.7 0.3 0.6 0.4 0.3
In_long_chain 1.8 1.1 14.7 2.0 0.4 0.4 0.7 0.4 0.0 0.1 0.1 0.0
Num_conversations 1.5 10.2 1.8 5.1 0.1 0.1 0.0 0.1 0.0 0.0 0.0 0.0

Num_children 1.5 2.0 2.7 2.1 0.1 0.0 0.2 0.1 0.0 0.0 0.0 0.0
Node_level 1.2 1.4 1.5 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Is_leaf 1.9 3.1 3.5 3.0 0.1 0.1 0.0 0.1 0.0 0.0 0.0 0.0

Depth 1.3 1.4 3.4 1.9 0.1 0.2 0.2 0.1 0.0 0.0 0.0 0.0
Num_leaf_nodes 1.3 2.0 2.1 1.7 1.0 0.7 1.4 0.9 0.1 0.1 0.1 0.1

Unseen Tasks
Same_level 1.3 0.9 5.9 1.6 1.2 1.6 1.6 1.3 1.2 1.4 1.6 1.2
Has_comment_wedge 1.5 1.1 3.9 1.7 1.2 1.5 1.4 1.3 1.3 1.3 1.5 1.2

Are_interacting 1.2 0.8 5.3 1.4 1.1 1.8 0.9 1.4 1.1 1.9 0.6 1.6
Are_fighting 1.2 1.4 3.1 2.0 0.9 0.1 1.3 0.8 0.7 0.2 1.1 0.7
Has_user_wedge 1.4 1.2 3.9 1.8 1.3 1.9 2.1 1.8 1.2 1.9 2.1 1.6

H.2.2 Bootstrapping Tests for Downstream Social Media Tasks

We now report the standard error for the controversial post detection task in Table 22 (for ‘mean’,
refer to Table 3). Similarly, we report standard error for winning argument detection task in Table 23
(for ‘mean’, refer to Table 4), for fake news detection in Table 24 (for ‘mean’, refer to Table 14), and
for rumor detection in Table 25 (for ‘mean’, refer to Table 15).

Table 22: Standard error for the Controversial Post detection task. The table demonstrates that all
standard errors for model accuracy in this evaluation are less than 1.3.

Bootstrapping Test for Controversial Post Detection
Standard Error (↓ is better)

Zero-shot Fine-tuned
Model Acc Rec Pre F1 Acc Rec Pre F1
GEMINI 1.3 1.6 2.4 1.8 1.0 1.0 1.3 1.0
GEMINI-TT 1.0 0.9 1.1 1.0 0.8 1.0 1.1 0.8
GEMINI-TT-100 1.1 1.5 1.3 1.2 0.7 0.9 1.1 0.7
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Table 23: Standard error for the Winning Argument detection task. The table demonstrates that all
standard errors for model accuracy in this evaluation are less than 1.4.

Bootstrapping Test for Winning Argument Detection Task
Standard Error (↓ is better)

Zero-shot Fine-tuned
Model Acc Rec Pre F1 Acc Rec Pre F1
GEMINI 1.4 0.7 7.6 1.2 1.1 1.1 3.2 1.6
GEMINI-TT 1.1 1.6 1.7 1.4 0.9 1.2 1.3 1.0
GEMINI-TT-100 1.0 1.5 1.7 1.5 1.0 1.2 1.3 1.0

Table 24: Standard error for the Fake News detection task. The table demonstrates that all standard
errors for model accuracy in this evaluation are less than 0.2.

Bootstrapping Test for Fake News Detection Task
Standard Error (↓ is better)

Zero-shot Fine-tuned
Model Acc Rec Pre F1 Acc Rec Pre F1
GEMINI 0.2 0.2 1.7 0.4 0.2 0.4 0.4 0.3
GEMINI-TT 0.2 0.2 2.3 0.3 0.1 0.4 0.3 0.3
GEMINI-TT-100 0.2 0.1 2.8 0.2 0.1 0.3 0.3 0.2

H.3 TREETOP Framework Fine-tuning Corpus Ablations

In the second ablation study, we change the entire corpus of the structural task data set multiple times
to create multiple versions of GEMINI-TT. Our process is described in Figure 9. We perform this
ablation study ensure that our process of fine-tuning using a structural task dataset is repeatable and
not dependent on just one specific selection of data set. In our study, we created four independent
non-overlapping dumps of the dataset, and we report the mean and standard error across this data
dump ablation in Table 26.

Table 25: Standard error for the Rumor detection task. The table demonstrates that all standard errors
for model accuracy in this evaluation are less than 1.9.

Bootstrapping Test for Rumor Detection Task
Standard Error (↓ is better)

Zero-shot Fine-tuned
Model Acc Rec Pre F1 Acc Rec Pre F1
GEMINI 1.5 1.8 9.5 3.0 1.9 3.9 4.5 3.7
GEMINI-TT 1.8 1.2 15.1 2.3 1.3 2.6 2.6 2.1
GEMINI-TT-100 1.8 0.9 0.0 1.8 1.2 2.4 2.8 2.0
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Figure 9: We change the entire structural task fine-tuning corpus and train multiple versions of
GEMINI-TT to ensure that our results are not sensitive to any particular choice of structural task data
corpus, and that our methodology of fine-tuning using the structural tasks is repeatable.

Table 26: Standard error across four data dump ablation study for GEMINI-TT. As the table shows,the
standard errors are less than 1.54 for accuracy.

TREETOP Framework Corpus Ablation Study
Mean Standard Error

(↑ is better) (↓ is better)
Fine-tuning Tasks Acc Rec Pre F1 Acc Rec Pre F1
Are_one_hop_neighbors 100.00 100.00 100.00 100.00 0.00 0.00 0.00 0.00
Are_two_hop_neighbors 99.78 99.73 99.83 99.78 0.1 0.07 0.11 0.1
Are_three_hop_neighbors 99.95 99.95 100.00 99.95 0.03 0.03 0.00 0.03
Within_subtree 100.00 100.00 100.00 100.00 0.00 0.00 0.00 0.00

In_triangle 89.13 91.43 87.48 89.38 0.8 0.40 1.36 0.76
In_long_chain 96.80 98.90 94.93 96.90 0.24 0.16 0.49 0.24
Num_conversations 99.93 99.90 99.98 99.93 0.03 0.07 0.03 0.03

Num_children 99.65 99.95 99.33 99.65 0.09 0.03 0.16 0.09
Node_level 95.68 99.08 92.98 95.90 1.47 0.35 2.39 1.39
Is_leaf 99.98 99.98 100.00 99.98 0.03 0.03 0.00 0.03

Depth 95.18 93.78 96.53 95.10 1.54 2.02 1.21 1.66
Num_leaf_nodes 86.80 94.48 81.93 87.73 0.54 1.14 0.62 0.53

Unseen Tasks Mean Standard Error

Same_level 75.40 77.17 74.60 75.80 0.35 1.81 0.65 0.65
Has_comment_wedge 61.97 76.10 59.33 66.63 0.54 1.31 0.32 0.7

Are_interacting 78.43 59.40 95.97 73.40 0.31 1.13 0.81 1.13
Are_fighting 86.10 99.77 78.37 87.80 0.10 0.06 0.13 0.10
Has_user_wedge 62.07 42.83 69.73 53.03 0.36 0.32 0.63 0.18
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H.4 K-Fold Cross-Validation for Downstream Social Media Tasks

Figure 10: We perform the standard k-fold cross validation for each downstream social media task
with GEMINI-TT to ensure that our results are not over-fitted for any particular fold of the dataset.

In our third ablation study, we perform standard k-fold cross-validation for each downstream task.
We create multiple versions of fined-tuned GEMINI-TT for each downstream task. Our process is
described in Figure 10. We perform this ablation study ensure that our process of fine-tuning using a
structural task dataset is not over-fitted to any one particular training data corpus. Our results and
standard error are shown in Table 27.

Table 27: Mean and standard error for the k-fold cross-validation study for the different algorithms
for GEMINI-TT. The standard errors are less than 0.32 for accuracy.

Mean Standard Error
(↑ is better) (↓ is better)

Task Acc Rec Pre F1 Acc Rec Pre F1
Controversial Post Detection 84.22 87.88 81.96 84.78 0.16 1.29 0.86 0.17
Winning Thread Detection 76.52 79.58 74.98 77.18 0.18 1.36 0.52 0.39
Rumor Detection 86.60 79.12 82.02 80.5 0.27 0.36 0.80 0.31
Fake News Detection 97.14 92.88 94.6 93.72 0.32 1.25 0.49 0.76
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I Regression Analysis

Table 28: Evaluation of regression loss (model
accuracy is reported).

Benchmark GEMINI GEMINI-TT
MMLU 65.65 65.47
GSM8K 83.5 83.0

We ran MMLU and GSM8K benchmarks com-
paring both zero-shot GEMINI and zero-shot
GEMINI-TT to understand the regression loss
incurred by the native LLM due to TREETOP.
We show the model accuracies in Table 28. The
results show that TREETOP fine-tuning does not
incur any substantial loss in LLM performance
as measured against the MMLU and GSM8K
benchmarks. This serves as an empirical stamp
of robustness for the TREETOP framework.

J Embeddings Analysis

We also analyzed the embeddings of PaLM-TT, with an intent to test whether the model actually
understood the topology - we designed our experiment to evaluate whether the topological character-
istics are directly captured in the learnt embeddings output by the model. We used PaLM-TT for this
analysis, given it was not possible for us to obtain embeddings from GEMINI-based models.

Our experimental results show a clear presence of clustering in the embedding space for inputs that
conform to similar topologies. In fact, a classifier trained purely on topological embeddings obtains
a 77% accuracy on the multi-class topology classification task using a simple logistical regression
classifier. We now describe the experimental setup that leads to these conclusions.

J.1 Experimental Setup

In this section, we describe our experimental setup. The goal of these experiments is to show that
embeddings learnt by the PaLM-TT model show clustering — i.e. topologies that are similar,
by some independent analytical metric, cluster together. Towards this goal, we chose 5 different
topologies, which are shown in Figure 11. These five topologies are chosen so that they vary in their
depth and breadth. The hypothesis at the outset is to show that embeddings cluster by topology.

We first begin by presenting the statistics of our topologies in Table 29. While the topologies are
illustrated in Figure 11, we list them out in our table with an equivalent depth-first crawl of the tree:
the list of children of a node are captured with a pair of parenthesis, and the letter v represents a leaf.

Figure 11: Five topologies used for PaLM-TT embedding analysis.

We now describe the method by which we obtain the embeddings. The embedding is obtained by
doing a forward pass of the PCT encoding in PaLM-TT for each conversation tree in our dataset. We
believe that the last input token’s embedding is sufficient capture the entire prompt at inference time,
and so we only use the embedding of the last input token in our analysis. Let’s call such an embedding
as E(PCT). Similarly, we forward pass the Post Comments encoding (refer Appendix C.2) from the
same conversation tree, and obtain E(PC). The embedding dimension for each token in PaLM-TT
(as in PaLM-Bison) is 4096. Now we are left with the task of obtaining embeddings – call this
E(Topo) that refer purely to the embeddings of the topology. We define this as

E(Topo) = E(PCT)− E(PC) (1)
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Table 29: We randomly chose some topologies to evaluate clustering of embeddings. These topologies
vary given the first one has high depth and the last one has high breadth. They are shown in Figure 11.

Topology Number of Samples
(((((v))))) 659
(v,((((v))))) 436
((v),(((v)))) 602
(v,v,v,v,(v)) 1252
(v,v,v,v,v,v,v,v) 382

Our assumption is that E(Topo) is a good approximation for the topological structure, and we
show our analysis on these E(Topo) embeddings. Our hypothesis is that E(Topo) will demonstrate
correlation with the actual tree topology.

To demonstrate that our embeddings capture patterns from the respective topologies, we examine
two types of metrics. First, we aim to show separability between embeddings from different clusters.
We hypothesize that if a linear (or logistic) classifier can effectively learn the classes using the
embeddings, this would demonstrate such separability. Next, we look at a clustering distance metric
– called the variance ratio criterion. We hope to show that the VRC metrics reflects the distances of
another independent metric, for example the tree edit-distance metric as proposed by the Zhang
Shasha algorithm (Zhang and Shasha, 1989). We describe these experiments in the next two sections.

J.2 Multi-class Topological Classifier using PaLM-TT’s Embeddings

In the first study, we utilized embeddings to classify various topological classes, achieving impressive
performance metrics as detailed in Table 30. We studied two different types of models to explain the
complexity of the dataset – (i) logistical classifier (ii) a two-layer MLP. If the data cannot be learnt by
the first classifier, but can be learnt by the second, it would show that the data has complex patterns.
If it can be learnt by both, then the embeddings show clean separation between the different classes.
If it cannot be learnt by either model, then the embeddings may not capture the topological patterns
(or otherwise the patterns are too complex to be learnt by these simple models).

Table 30: Performance metrics for Neural Network and Logistic Regression models on the topological
embedding to classify the topological class.

Neural Network
Topology Accuracy Precision Recall F1
(((((v))))) 73.0 71.0 72.0
(v,((((v))))) 40.0 31.0 35.0
((v),(((v)))) 55.0 62.0 58.0
(v,v,v,v,(v)) 84.0 89.0 87.0
(v,v,v,v,v,v,v,v) 74.0 67.0 70.0
Overall 72.0 71.0 72.0 72.0

Logistic Regression
(((((v))))) 79.0 77.0 78.0
(v,((((v))))) 45.0 50.0 47.0
((v),(((v)))) 65.0 62.0 63.0
(v,v,v,v,(v)) 90.0 90.0 90.0
(v,v,v,v,v,v,v,v) 78.0 77.0 78.0
Overall 77.0 77.0 77.0 77.0

We show the topological classes in Figure 11 and their statistics in Table 29. Note that both the models
can learn the dataset, to the extent of 77% accuracy! This shows that the embeddings cleanly capture
the topological patterns. These metrics underscore the efficacy of our approach in capturing the
characteristics of topological classes using embeddings.
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J.3 Clustering Metrics from the Embedding

Our topological embeddings show that the tree distance metric is highly correlated with the variance
ratio criterion (VRC) metric. The VRC is defined as follows:

VRC = Tr(Bk)
Tr(Wk) ×

N − k

k − 1 (2)

where the Tr(Bk) is the trace of the between-cluster dispersion matrix, Tr(Wk) is the trace of the
within-cluster dispersion matrix, and N and k are the number of data points and the number of
clusters respectively (and listed in Table 29).

Here the trace of Bk and Wk are defined as follows:

Tr(Bk) =
k∑

j=1
nj(cj − c)2 and Tr(Wk) =

k∑
j=1

∑
x∈Cj

(x− cj)2 (3)

Here, each topology is its own cluster, and cj is the centroid of cluster j. c is the centroid of all data
points in the dataset. Further, nj is the number of data points in cluster j, and the set of all points in
cluster j is Cj . x represents the embedding, E(Topo), for the sample in question.

The tree distance metric is an edit distance between the topologies of the respective trees. This is
implemented using the Zhang Shasha (Zhang and Shasha, 1989) algorithm. One notices that the
VRC metric of the trees in the cluster closely follows the edit distance between the topologies of the
clusters.

(a) Tree edit distance between our topologies based
on the Zhang Shasha algorithm.

(b) Variance ratio criterion (VRC) metric for dif-
ferent clusters of E(Topo).

Figure 12: Comparison of PaLM-TT embeddings with VRC criterion and tree edit distance. Each
cell shows the value of the pairwise distance metric (self distances are 0 for tree edit distance and
not defined for VRC), the ordinal ranking of the cell in the top-left corner, and is color coded by this
ordinal rank. The ordinal ranking ranks the topologies in the columns based on their distance from
the topology specified in the row. Figure 12a shows the color map with the ordinal rankings based on
the tree edit distance measure, whereas Figure 12b shows the color map based on the variance ratio.
The comparison is of the ordinal ranking and not of the absolute metric values. The similar color
coding of the two plots implies similar ordinal ranking and demonstrates that VRC metric of the
trees in the cluster closely follows the edit distance between the topologies of the clusters - thereby
implying that embeddings are indeed learning the topology.
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K Prompt Interactions with GEMINI and GEMINI-TT

We randomly chose few examples to probe GEMINI and GEMINI-TT models for our structural tasks.
We present the tasks and the interactions with the models in Tables 31, 32, and 33. For this table, we
changed our prompt slightly and asked the model to provide more details (instead of only responding
with a yes or a no). We present three example interactions here: one for a In_long_chain task, one
for In_triangle task, and one for a Are_three_hop_neighbors task. In all the three examples
below, GEMINI gave the wrong response whereas GEMINI-TT gave the correct response with the
correct reasoning.
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Table 31: Example Task 1: Interacting with GEMINI and GEMINI-TT with our structural tasks.

Task In_long_chain

Input
Topology

Prompt
Question

Whether there exist a long chain of to and fro
discussion of at least length 4 between two users
in the tree ?

GEMINI
Response

No, there is no long chain of to and fro discussion
of at least length 4 between two users.

The conversation tree given only has a maximum chain
length of 3, between U0 and U1. The chain goes as
follows:
1. U0 comments on the main post <C0>
2. U1 comments on U0’s comment <C1>
3. U0 comments on U1’s comment <C2>

There is no instance where U1 comments on U0’s
comment to U1’s comment, or vice versa. Therefore,
there is no long chain of to and fro discussion of
at least length 4 between two users.

GEMINI-TT
Response

Yes, there is a long chain of to and fro discussion
of length 4 between users U0 and U1. The relevant
comments are:
- C1: U1 comments on a comment by U0 (C0).
- C2: U0 comments on U1’s comment (C1).
- C3: U1 comments on U0’s comment (C2).
- C4: U0 comments on U1’s comment (C3).
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Table 32: Example Task 2: Interacting with GEMINI and GEMINI-TT with our structural tasks.

Task Are_three_hop_neighbors

Input
Topology

Prompt
Question Whether <C4> is a three-hop neighbor to <C0> ?

GEMINI
Response

No, <C4> is not a three-hop neighbor to <C0>.

In the given post-comment tree:
- <C0> is the main post.
- <C1>, <C2>, and <C3> are direct replies to <C0>,
making them one-hop neighbors to <C0>.
- <C4> is a reply to <C3>, which is two hops away
from <C0>.

Therefore, while <C4> is a neighbor of <C0>, it is
not a three-hop neighbor because the path from <C0>
to <C4> consists of only two hops: <C0> -> <C3> ->
<C4>.

users <U0>, <U1>, and <U2> are not involved in a
triangular discussion between each other.

GEMINI-TT
Response

Yes, <C4> is a three-hop neighbor to <C0>.

The path from <C0> to <C4> is as follows:
<C0> -> <C2> -> <C3> -> <C4>

The users and comment IDs of the relevant comments
are:
- <U0> (<C0>)
- <U2> (<C2>)
- <U0> (<C3>)
- <U2> (<C4>)
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Table 33: Example Task 3: Interacting with GEMINI and GEMINI-TT with our structural tasks.

Task In_triangle

Input
Topology

Prompt
Question

Whether users <U0>, <U1>, and <U2> are not involved
in a triangular discussion between each other. ?

GEMINI
Response

No, users <U0>, <U1>, and <U2> are not involved in a
triangular discussion between each other.

Although users <U1> and <U2> have commented on each
other’s comments, user <U0> has not commented on
either of their comments. Therefore, there is no
triangular discussion between the three users.

GEMINI-TT
Response

Yes, users <U0>, <U1> and <U2> are involved in a
triangular discussion.
- User <U1> comments on a comment by User <U0> (C1).
- User <U2> comments on the same comment by User <U0>
(C2).
- User <U1> and User <U2> comment on each other’s
comment on User <U0>’s comment (C3).

Therefore, the three users are involved in a
triangular discussion.
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L Licenses and Copyrights Across Assets

1. The Pushshift Reddit Dataset
• Citation: (Baumgartner et al., 2020)
• Asset Link: [link]
• License: CC By 4.0

2. Controversial Post
• Citation: (Hessel and Lee, 2019)
• Asset Link: [link]
• License: CC By 4.0

3. PHEME9 (rumor detection)
• Citation: (Kochkina et al., 2018)
• Asset Link: [link]
• License: CC By 4.0

4. Fakeddit
• Citation: (Nakamura et al., 2019)
• Asset Link: [post] [comments]
• License: CC By 4.0

5. Winning Argument Thread
• Citation: (Tan et al., 2016)
• Asset Link: [link]
• License: ACM Copyright

6. GEMINI

• Citation: (Team et al., 2023)
• Asset Link: [link]
• License: Google APIs Terms of Service

7. PaLM-Bison
• Citation: (Google and et al., 2023)
• Asset Link: [link]
• License: Google APIs Terms of Service

8. Huggingface Assets
• GEMMA-2-2B-IT: [link]
• PHI-3.5-Mini-Instruct: [link]
• MISTRAL-7B-Instruct-v0.2: [link]
• GEMMA-2-9B-IT: [link]
• MMLU: [link]
• GSM8K: [link]
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https://zenodo.org/records/3608135
https://zenodo.org/records/3608135
https://drive.google.com/file/d/1G4F9gNk1v_qWHHII93uYtQbQJHyzK2LR/view
https://aclanthology.org/N19-1166/
https://figshare.com/articles/dataset/PHEME_dataset_for_Rumour_Detection_and_Veracity_Classification/6392078
https://figshare.com/articles/dataset/PHEME_dataset_for_Rumour_Detection_and_Veracity_Classification/6392078
https://drive.google.com/corp/drive/folders/1jU7qgDqU1je9Y0PMKJ_f31yXRo5uWGFm
https://drive.google.com/corp/drive/folders/150sL4SNi5zFK8nmllv5prWbn0LyvLzvo
https://aclanthology.org/2020.lrec-1.755/
https://chenhaot.com/data/cmv/cmv.tar.bz2
https://www.acm.org/publications/policies/software-copyright-notice
https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/gemini-pro?pli=1
https://developers.google.com/terms
https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/text-bison
https://developers.google.com/terms
https://huggingface.co/google/gemma-2-2b-it
https://huggingface.co/microsoft/Phi-3.5-mini-instruct
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
https://huggingface.co/google/gemma-2-9b-it
https://huggingface.co/datasets/cais/mmlu
https://huggingface.co/datasets/openai/gsm8k
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