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ABSTRACT

Activation shaping has proven highly effective for identifying out-of-distribution
(OOD) samples post-hoc. Activation shaping prunes and scales network activations
before estimating the OOD energy score; such an extremely simple approach
achieves state-of-the-art OOD detection with minimal in-distribution (ID) accuracy
drops. This paper analyzes the working mechanism behind activation shaping.
We directly show that the benefits for OOD detection derive only from scaling,
while pruning is detrimental. Based on our analysis, we propose SCALE, an
even simpler yet more effective post-hoc network enhancement method for OOD
detection. SCALE attains state-of-the-art OOD detection performance without
any compromises on ID accuracy. Furthermore, we integrate scaling concepts
into learning and propose Intermediate Tensor SHaping (ISH) for training-time
OOD detection enhancement. ISH achieves significant AUROC improvements for
both near- and far-OOD, highlighting the importance of activation distributions
in emphasizing ID data characteristics. Our code and models are available at
https://github.com/kaid422/SCALE.

1 INTRODUCTION

Out-of-distribution (OOD) detection for neural networks distinguishes samples which deviate from
the training distribution. Standard OOD detection concerns semantic shifts (Yang et al., 2022; Zhang
et al., 2023), where OOD data is defined as test samples from semantic categories unseen during
training. Ideally, a neural network should be able to reject such samples as being OOD, while
still maintaining strong performance on in-distribution (ID) test samples belonging to seen training
categories.

Methods for detecting OOD samples work by scoring network outputs such as logits or softmax
values (Hendrycks & Gimpel, 2017; Hendrycks et al., 2022), by making post-hoc network adjustments
during inference (Sun & Li, 2022; Sun et al., 2021; Djurisic et al., 2023), or by adjusting model
training (Wei et al., 2022; Ming et al., 2023; DeVries & Taylor, 2018). These approaches can be used
either independently or in conjunction with one another. Typically, post-hoc adjustment together with
OOD scoring is the preferred combination since it can discern OOD samples with minimal ID drop
and can be applied directly to already-trained models off the shelf. Examples of post-hoc adjustment
methods include ReAct (Sun et al., 2021), DICE (Sun & Li, 2022) and more recently, ASH (Djurisic
etal., 2023).

On the surface, post-hoc methods take different and sometimes even contradictory approaches. For
example, ReAct rectifies penultimate activations which exceed a threshold. ASH, on the other hand,
prunes penultimate activations that are too low while amplifying remaining activations. ASH cur-
rently achieves state-of-the-art performance but lacks a comprehensive explanation of its underlying
operational principles.

This work seeks to understand the working principles behind ASH. Through experimental observa-
tions and mathematical derivations, we demonstrate that ID and OOD datasets respond differently
to pruning, attributable to their unique activation distributions. We also demonstrate the significant
role of activation scaling in enhancing OOD detection while highlighting that low activation pruning
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Figure 1: ID-OOD Trade-off on ImageNet on Near-OOD Dataset. Unlike existing methods such
as ASH, ReAct, and DICE, our proposed SCALE does not have any ID accuracy trade-off while
improving OOD detection accuracy. Our training method, ISH, achieves outstanding OOD results by
emphasizing the training of samples with high ID characteristics.

hinders OOD detection. This understanding leads directly to our proposed approach, SCALE, for
post-hoc OOD detection enhancement; notably, SCALE attains state-of-the-art results, achieving
significant enhancements without compromising ID accuracy.

Our study on activation distributions highlights the importance of activation magnitude as a metric to
assess a sample’s ID nature. We further propose to incorporate this finding by scaling the activation
to emphasize the optimization priors on the sample’s ID-ness during network training. To that end,
we propose intermediate tensor shaping (ISH), which explores the concept of ID-ness as a learning
rate weighting factor at the penultimate layer. Remarkably, ISH achieves outstanding performance
in both near-OOD and far-OOD detection tasks, with only one-third of the training effort required
compared to current state-of-the-art approaches.

Our contributions can be summarized as follows:

* We analyze and explain the working principles of pruning and scaling for OOD detection
and reveal that the benefits come only from scaling, while pruning, in some scenarios, may
actually hurt OOD detection.

* Based on our analysis, we devise SCALE, a new post-hoc network enhancement method for
OOD detection, which achieves state-of-the-art results on OOD detection without any ID
accuracy trade-off.

* We incorporate scaling concepts into learning to emphasize the training sample’s ID charac-
teristics by introducing ISH. ISH is a lightweight and innovative method that uses ID-ness
as a learning rate weighting factor at the penultimate layer; it surpasses state-of-the-art with
a large margin on both near- and far-OOD.

2 RELATED WORKS

OOD scoring methods indicate how likely a sample comes from the training distribution, i.e. is
in-distribution, based on the sample’s features or model outputs. From a feature perspective, Lee et al.
(2018) proposed to score a sample via the minimum Mahalanobis distance of that sample’s features
to the nearest ID class centroid. For model outputs, two common variants are based on the maximum
softmax prediction (Hendrycks & Gimpel, 2017) and the maximum logit scores (Hendrycks et al.,
2022). The raw softmax or logit scores are susceptible to overconfidence so Liu et al. (2020)
proposed to use an energy-based function to transform the logits as an improved score. A key benefit
of deriving OOD scores from feature or model outputs is that it does not impact the model or the
inference procedure, so the ID accuracy will not be affected.
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Post-hoc model enhancement methods modify the inference procedure to improve OOD detection
and are often used together with OOD scoring methods. Examples include ReAct (Sun et al., 2021),
which rectifies the penultimate activations for inference, DICE (Sun & Li, 2022), which sparsifies
the network’s weights in the last layer, and ASH (Djurisic et al., 2023), which scales and prunes the
penultimate activations. Each method is combined with energy-based scoring (Liu et al., 2020) to
detect the OOD data. While effective at identifying OOD data, these methods may have a reduced
ID accuracy as the inference procedure is altered. Our proposed SCALE is also a post-hoc model
enhancement; however, as we shape each sample’s activations by a constant value, the argmax
remains unaffected and preserves the ID accuracy.

Training-time model enhancement methods aim to make OOD data more distinguishable directly
at training. Strategies include the incorporation of additional network branches (DeVries & Taylor,
2018), alternative forms of training (Wei et al., 2022), or data augmentation (Pinto et al., 2022;
Hendrycks et al., 2020). The underlying assumption behind these techniques is that training can
provide more discriminative features for OOD detection. A significant drawback of training-time
enhancement is the additional computational cost. For example, AugMix (Hendrycks et al., 2020)
requires double training time and extra GPU memory cost. Our intermediate tensor shaping (ISH) im-
proves the OOD detection with one-third of the computational cost compared to the most lightweight
method, without modifying the model architecture.

Activation and intermediate tensor shaping have been explored in deep learning for various
purposes. Perhaps the best-known example is Dropout (Srivastava et al., 2014), which sparsifies
activations for regularization. Similar ideas have been applied by Li et al. (2023) for transformer
regularization, as well as for efficient training and inference. (Kurtz et al., 2020; Chen et al., 2023b).
Shaping operations on intermediate tensors differ from those applied to activations. Activation
shaping affects both forward-pass inference and backward-gradient computation during training. In
contrast, shaping intermediate tensors exclusively influences the backward gradient computation.
Since intermediate tensors tend to consume a significant portion of GPU memory, techniques for
shaping intermediate tensors have gained widespread use in memory-efficient training, while leaving
the forward pass unaltered (Evans & Aamodt, 2021; Liu et al., 2022; Chen et al., 2023a).

3 ACTIVATION SCALING FOR POST-HOC MODEL ENHANCEMENT

We start by presenting the preliminaries of Out-of-Distribution (OOD) detection in Sec. 3.1, to set
the stage for our subsequent analysis of the ASH method in Sec. 3.2. The results of our analysis
directly leads to our own post-hoc OOD detection enhancement in Sec. 3.3. Finally, we introduce our
intermediate tensor shaping approach for training-time OOD detection enhancement in Sec. 3.4.

3.1 PRELIMINARIES

While OOD is relevant for many domains, we follow previous works (Yang et al., 2022) and focus
specifically on semantic shifts in image classification. During training, the classification model is
trained only with ID data Dyp, that fall into a pre-defined set of K classes Vip: V(z,y) ~ Dip,y € Vip.
During inference, in addition to ID samples, there are also samples from OOD data Doop; the latter
are samples from classes unobserved during training, i.e. V(x,y) ~ Doop,y ¢ Vip-

Consider a neural network consisting of two parts: a feature extractor f(-), and a linear classifier
parameterized by weight matrix W € R%*P and a bias vector b € R¥. The network logit z can be
mathematically represented as:

z=W-a+b,  a=f(z), (1)

where a € RP is the D-dimensional feature vector in the penultimate layer of the network and
z € R¥ is the logit vector from which the class label can be estimated by § = arg max(z). In line
with other OOD literature (Sun et al., 2021), an individual dimension of feature a, denoted with index
J as aj, is referred to as an “activation”.

For a given test sample , an OOD score can be calculated to indicate the confidence that x is
in-distribution. By convention, scores above a threshold 7 are ID, while those equal or below are
considered OOD. A common setting is the energy-based OOD score Sgpo () together with indicator
function G(-) that applies the thresholding (Liu et al., 2020):
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where 7T’ is a temperature parameter and k is the logit index for the K classes.

3.2 ANALYSIS ON ASH

One state-of-the-art method for OOD detection is ASH (Djurisic et al., 2023). ASH stands for
activation shaping and applies a rectified scaling to the feature vector a post-hoc during inference.
Activations in a up to the p'" percentile across the D dimensions are rectified (“pruned” in the
original text); activations above the p™ percentile are scaled. More formally, ASH introduces a
shaping function sy that is applied to each activation a; for a given sample. If we define P,(a) as
the value of the p percentile of the elements in feature a, ASH produces the “enhanced” logit zasy:

0 ifa; < Py(a),

exp(r(a)) ifa; > P,(a). 3

zasu = W - (aoss(a)) +b, wheress(a); = {

In the equation above, o denotes an element-wise multiplication. The scaling factor r is defined as
the ratio of the sum of all activations versus the sum of un-pruned activations in a:

D
r(a) = gp((aa))’ where Q(a) = ZJ: a; and Q,(a) :avzp:(a) a;. ()

Since @, (a) < Q(a), the factor r(a) > 1; the higher the percentile p, i.e. the greater the extent of
pruning, the smaller ), (a) w.r.t. Q(a) and the larger the scaling factor r(a). To distinguish OOD
data, ASH passes the logit from Eq. 3 to the score and indicator function as given in Eq. 2.

ASH is highly effective but the original paper has no explanation of the working mechanism'. We
analyze the rectification and scaling components of ASH below and reveal that scaling helps to
separate ID versus OOD energy scores, while rectification or pruning has an adverse effect.

Dataset | p value Z; N
ImageNet 0.296 fors

SSB-hard 0.262 ;’ ;" 06
NINCO 0.181 o g0

iNaturalist 0.083 s A
Textures 0.099 " 203
Openlmage-O | 0.155 H 0

Table 1: Average p-values ™ i snims ko im0 todes s et SSplard - NINGO Openimage 0 Texures Naturlit
for all samples under the Chi- o

square test; values greater than Figure 2: Mean and variance Figure 3: u/o of pre-ReLU ac-
0.05 verify that a Gaussian as- of pre-ReLU activations for ID tivations for ID (blue) vs. OOD
sumption is reasonable. (blue) vs. OOD datasets (pink).  (pink).

Assumptions: Our analysis is based on two assumptions. First, we assume that the penultimate
activations of ID and OOD samples follow rectified Gaussian distributions. The Gaussian assumption
is commonly used in the literature (Sun et al., 2021) and we verify it empirically in Tab. 1. The
rectification of the Gaussian follows naturally if a ReLU is applied as the final operation of the
penultimate layer. Secondly, we assume that the mean of ID activations is higher than that of OOD
activations, with the variances remaining equivalent; this assumption is supported by Liu et al. (2020),

'In fact, the authors put forth a call for explanation in their Appendix L.
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Figure 4: (a) The relationship between the parameter C(p) and the percentile p. A higher value of
C(p) indicates better separation of scales between ID and OOD datasets. (b) AUROC vs. percentile
p. Up to p = 0.85, as highlighted by the orange box, AUROC for scaling increases while for pruning
it decreases. The results of ASH sit between the two as the method is a combination of pruning plus
scaling. (c) Histograms of scaling factor 7(a) = Q(a)/Q,(a) for the ID dataset (ImageNet) and
OOD dataset (iNaturalist); the scales exhibit a clear separation from each other.

who suggested that well-trained networks have higher responses to samples resembling those seen in
training. Combining these two assumptions, we can specify, for the ID and OOD rectified Gaussians

parameterized by (', o'P) and (u99P, 09°P) respectively, ff‘—:z > % Figure 2 and 3 visualize
statistical corroboration of these assumptions; for the ID dataset ImageNet (blue bar), various OOD
datasets (pink bars) all have a consistently smaller £. Based on these assumptions, we make the
following proposition:

Proposition 3.1. Assume that ID activations @' ~ N (u'”,o'P) and OOD activations a9°” ~

NE(u09P 590P) ywhere N denotes a rectified Gaussian distribution. If u'® /o™ > p90P / 590D,
p(VZeri~ (2p-1))
1-®(V2erf~1(2p—1))

There exists a range of percentiles p for which a factor C(p) =
such that Q,(a’®)/Q(a'®) < Q,(a%?)/Q(a”P).

The proof of the proposition is given in Appendix A. Above, ¢ and ® denote the probability density
function and cumulative distribution function of the standard normal distribution, respectively. The
factor C(p), plotted in Fig. 4a, relates the percentile of activations that distinguishes ID from OOD
data. Specifically, the proposition states that the sum of p'* percentile strongest activations for OOD
data is higher (relatively) than for ID data.

is large enough

Rectification (Pruning) sets activations smaller than P,(a) to 0. The relative reduction of activations
can be expressed as:

DI (a) = (Q(a) - Qy(@)/Q(a) = 1 - Qy(a)/Q(a). )

Note that a reduction in activations also leads to a reduction in the energy score. Since
Qp(a®)/Q(a?) < Q,(a%P)/Q(a’0P), it directly implies that DP"in8(q/P) > DFruning(qO0D),
i.e. the decrease in ID samples will be greater than that in OOD samples. Building upon Remark 2
presented by ReAct (Sun et al., 2021), which demonstrates the proportionality between changes in
logits and activations, it can be deduced that, for ID samples, the relative decrease in the final energy
scores due to rectification will surpass that of OOD samples.

The result above shows that rectification or pruning creates a greater overlap in energy scores between
ID and OOD samples, making them more difficult to distinguish. Empirically, this result is shown in
Fig. 4b, where AUROC steadily decreases with stand-alone pruning as the percentile p increases.

Scaling on the other hand behaves in a manner opposite to the derivation above. Again, given
that Q,(a®)/Q(a?) < Q,(a%?)/Q(a®°P), we have r(a®) > r(a®P). Figure 4c depicts the
histograms for r(a') versus r(a?°P); they are well separated and therefore scale activations of ID
and OOD samples differently. The relative increase in activation can be expressed as:

15<ing (@) = r(a) — 1 = Q(a)/Qp(a) — 1, (6)
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(a) Demonstration of SCALE post-hoc model improve- (b) The process of ISH training. During training,
ment. We prune activations to calculate the scaling factor. we keep the forward pass unchanged. In the back-
The original activations are then multiplied by the com- ward pass, we scale activations for parameter op-
puted scales before being fed into the fully connected timization weighted by s (a'), which varies for
layer. different samples and reflects the sample’s ID-ness.

Figure 5: Illustrations of our post-hoc model enhancement method SCALE and training-time model
enhancement method ISH.

where we can get I*°"8(a/P) > [s@ling(qO0P) This increase is then transferred to logit spaces z
and energy-based scores, thereby increasing the gap between ID and OOD samples.

Discussion on percentile p: Note that C(p) does not monotonically increase with respect to p (see
Fig. 4a). When p ~ 0.95, there is an inflection point and C'(p) rapidly decreases. A similar inflection
follows on the AUROC for scaling (see Fig. 4b), though it is not exactly aligned to C(p) and drops off
earlier. The difference is likely due to the approximations made to estimate C(p). Furthermore, as p
gets progressively larger, fewer activations (DD = 2048 total activations) are considered for estimating
r, leading to unreliable logits for the energy score. Curiously, pruning also drops off, which we
believe comes similarly from the extreme reduction in activations.

3.3 SCALE CRITERION FOR OOD DETECTION

From our analyses and findings above, we propose SCALE, a new post-hoc model enhancement
method. As the name suggests, it shapes the activation with (only) a scaling:

2 =W. (aosf(a))+b, where Sf(a)j :exp(T), )

where r is the same scaling factor as defined in Eq. 4 for ASH based on percentile p. Figure 5a
provides an illustration of the SCALE procedure. Note that instead of pruning, SCALE retains and
scales all the activations, i.e. sf (a) ;j is never set to 0. Doing so has two benefits. First, it enhances the
energy-score separation between ID and OOD samples. Secondly, scaling all the activations equally
preserves the ordinality of the logits z’ compared to z. As such, the arg max is not affected, and
there is no trade-off for ID accuracy. Such is not the case with rectification, be it pruning, like in
ASH or clipping, or like ReAct (see Fig. 1). Results in Tab. 2 and 3 verify that SCALE outperforms
ASH-S (the variant with the best performance) on all datasets and model architectures.

3.4 INCORPORATING SCALE INTO TRAINING

In practice, the semantic shift from ID to OOD data may be ambiguous. For example, the iNaturalist
dataset features different species of plants yet similar objects may be found in ImageNet. Our
hypothesis is that, during training, we can further emphasize the impact of samples possessing more
distinct in-distribution characteristics. A direct way is simply to reweight the loss of each training
sample to be proportional to the “ID-ness” of each sample. To measure “ID-ness”, we directly rely
on the scale factor r, as defined in Eq. 4. To have a reliable measure on r, the network must already
be well-trained; we therefore apply the re-weighting only for additional fine-tuning. To prevent the
network from over-fitting to the upweighted samples, we apply the reweighting only for updates on
the linear classifier weights W in the final layer, while other network weights are updated with a
gradient based on the standard cross-entropy loss. Implementation-wise, it is more direct to simply
scale the gradient for W as follows:
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Wt+1 = Wt — nZ[(ai ° sf(ai))TVzi], ®)

where V denotes the gradient regarding the cross entropy loss, ¢ denotes the training step ¢, and n
represents the learning rate. The activations a’ are already stored from the forward pass for estimating
gradients so computing r(a’) requires no additional memory and only minimal computational
resources. As a’ are often referred to as intermediate tensors in the context of backpropagation,
we name our method Intermediate tensor SHaping (ISH). Fig. 5b illustrates the gradient scaling
procedure.

The methods described in Sec. 3.3 and Sec. 3.4 can be integrated, where ISH adjusts f(-) and W
during the training phase, and SCALE modifies the activation a during inference, leading to improved
results. We present experimental results in Sec. 4.3.

4 EXPERIMENTS

4.1 SETTINGS

We experiment with CIFAR10, CIFAR100 (Krizhevsky, 2009), and ImageNet-1K (Deng et al., 2009)
ID data sources.

CIFAR. We used SVHN (Netzer et al., 2011), iSUN (Xu et al., 2015), Places365 (Zhou et al., 2018),
and Textures (Cimpoi et al., 2014) as OOD datasets. For consistency with previous work, we use
the same model architecture and pretrained weights, namely, DenseNet-101 (Huang et al., 2017),
in accordance with the other post-hoc approaches DICE, ReAct, and ASH. Table 3 compares the
FPR@95 and AUROC averaged across all four datasets; detailed results are provided in Appendix B.

ImageNet. We follow the OpenOOD v1.5 (Zhang et al., 2023) benchmark, which distinguishes
between near- and far-OOD data. We employed SSB-hard (Vaze et al., 2022) and NINCO (Bitterwolf
et al., 2023) as near-OOD datasets and iNaturalist (Horn et al., 2018), Textures (Cimpoi et al., 2014),
and Openlmage-O (Wang et al., 2022) as far-OOD datasets. Our reported metrics are the average
FPR@95 and AUROC values across these categories; detailed results are given in Appendix B. The
OpenOOD benchmark includes improved hyperparameter selection with a dedicated OOD validation
set to prevent overfitting to the testing set. Additionally, we provide results following the same dataset
and test/validation split settings as ASH and ReAct in the appendix. We adopted the ResNet-50 (He
et al., 2016) model architecture and obtained the pretrained network from the torchvision library.

Metrics. We evaluate with (1) FPR@95, which measures the false positive rate at a fixed true positive
rate of 95%, where lower scores are better and (2) AUROC (Area under the ROC curve). It represents
the probability that a positive ID sample will have a higher detection score than a negative OOD
sample; higher scores indicate superior discrimination.

4.2 SCALE FOR PosT-Hoc OOD DETECTION

Comparison of ODD score methods and post-hoc model enhancement methods (separated with a
solid line) on the ImageNet and CIFAR are illustrated in the Tab. 2 and 3. Notably, SCALE attains
the highest OOD detection scores.

OOD detection accuracy. Compared to the current state-of-the-art ASH-S, SCALE demonstrates
significant improvements on ImageNet — 1.73 on Near-OOD when considering AUROC. For FPR @95,
it outperforms ASH-S by 2.27 and 0.33. On CIFAR10 and CIFAR100, SCALE has even greater
improvements of 3.28 and 2.03 for FPR@95, as well as 0.91 and 0.68 for AUROC , respectively.

ID accuracy. One of SCALE’s key advantages is it only applies linear transformations on features,
so ID accuracy is guaranteed to stay the same. This differentiates it from other post-hoc enhancement
methods that rectify or prune activations, which invariably compromise the ID accuracy. SCALE’s
performance surpasses ASH-S by a substantial margin of 0.67 on the ID dataset, ImageNet-1K. This
capability is pivotal for establishing a unified pipeline that excels for ID and OOD.

Comparison with TempScale. Temperature scaling (TempScale) is widely used for confidence
calibration (Guo et al., 2017). SCALE and TempScale both leverage scaling for OOD detection,



Published as a conference paper at ICLR 2024

Near-OOD Far-OOD ID ACC
Model Postprocessor FPR@95 AUROC FPR@95 AUROC
\ T 1 i i
MSP (Hendrycks & Gimpel, 2017) 65.67 76.02 51.47 85.23 76.18
EBO (Liu et al., 2020) 68.56 75.89 38.40 89.47 76.18
RMDS (Ren et al., 2021) 65.04 76.99 40.91 86.38 76.18
MLS (Hendrycks et al., 2022) 67.82 76.46 38.20 89.58 76.18
ResNet-50 GEN (Liu et al., 2023) 65.30 76.85 35.62 89.77 76.18
TempScale (Guo et al., 2017) 64.51 77.14 46.67 87.56 76.18
ReAct (Sun et al., 2021) 66.75 77.38 26.31 93.67 75.58
ASH-S (Djurisic et al., 2023) 62.03 79.63 16.86 96.47 75.51
SCALE (Ours) 59.76 81.36 16.53 96.53 76.18

Table 2: OOD detection results on ImageNet-1K benchmarks. Model choice and protocol are
the same as existing works. SCALE outperforms other OOD score methods and post-hoc model
enhancement methods, achieving the highest OOD detection scores and excelling in the ID-OOD
trade-off. Detailed results for each dataset are given in Appendix B.

CIFAR-10 CIFAR-100
Model Postprocessor FPR@95 AUROC FPR@95 AUROC
\ i \ i
MSP (Hendrycks & Gimpel, 2017) 54.18 91.18 83.76 72.84
EBO (Liu et al., 2020) 36.55 92.53 81.34 77.39
DenseNet-101 ReAct (Sun et al., 2021) 35.31 93.77 77.38 80.24
DICE (Sun & Li, 2022) 30.21 93.09 62.00 83.15
ASH-S (Djurisic et al., 2023) 21.12 95.25 47.89 87.76
SCALE (Ours) 17.84 96.16 45.86 88.44

Table 3: OOD detection results on CIFAR benchmarks. SCALE outperforms all postprocessors.
Detailed results for each dataset are in the appendix.

but with two distinctions. Firstly, TempScale directly scales logits for calibration, whereas SCALE
applies scaling at the penultimate layer. Secondly, TempScale employs a uniform scaling factor for
all samples, whereas SCALE applies a sample-specific scaling factor based on the sample’s activation
statistics. The sample-specific scaling is a crucial differentiator that enables the discrimination
between ID and OOD samples. Notably, our SCALE model significantly outperforms TempScale in
both Near-OOD and Far-OOD scenarios.

SCALE with different percentiles p. Table 2 uses p = 0.85 for SCALE and ASH-S, which is
verified on the validation set. As detailed in Sec. 3.2, in order to ensure the validity of scaling, it is
essential for the percentile value p to fall within a specific range where the parameter C'(p) exhibits a
sufficiently high value to meet the required condition. Our experimental observations align with this
theoretical premise (Tab. 4). Specifically, we have empirically observed that, up to the 85" percentile
threshold, the AUROC values for both Near-OOD and Far-OOD scenarios consistently show an
upward trend. However, a noticeable decline becomes apparent beyond this percentile threshold. This
empirical finding corroborates our theoretical insight, indicating that the parameter C'(p) experiences
a reduction in magnitude as p approaches the 90" percentile.

P 65 70 75 80 85 90 95

Near-OOD  62.45/79.31 61.65/79.83 61.12/80.41 60.12/81.01 59.76/81.36 63.19/80.14 78.62/73.40
Far-OOD  24.08/94.43 2221/95.02 20.20/95.61 1826/96.17 16.53/96.53 18.58/96.20 32.42/93.28

Table 4: FPR@95 / AUROC results on ImageNet benchmarks under different p.

4.3 ISH FOR TRAINING-TIME MODEL ENHANCEMENT

We used the same dataset splits as the post-hoc experiments in Sec. 4.1. For training, we fine-tuned the
torchvision pretrained model with ISH for 10 epochs with a cosine annealing learning rate schedule
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initiated at 0.003 and a minimum of 0. We additionally observed that using a smaller weight decay
value (5e-6) enhances OOD detection performance. The results are presented in Tab. 5. We compare
ISH with other training-time model enhancement methods.

Comparison with training-time methods. The work LogitNorm (Wei et al., 2022) focuses on diag-
nosing the gradual narrowing of the gap between the logit magnitudes of ID and OOD distributions
during later stages of training. Their proposed approach involves normalizing logits, and the scaling
factor is applied within the logits space during the backward pass.

The key distinction between their LogitNorm method and our ISH approach lies in the purpose of
scaling. LogitNorm scales logits primarily for confidence calibration, aiming to align the model’s
confidence with the reliability of its predictions. In contrast, ISH scales activations to prioritize
weighted optimization, emphasizing the impact of high ID-ness data in the fine-tuning process.

Comparison with data augmentation-based methods. Zhang et al. (2023) indicate that data
augmentation methods, while not originally designed for OOD detection improvement, can simulta-
neously enhance both ID and OOD detection accuracy. In comparison to AugMix and RegMixup,
our ISH approach, while slightly inferior in ID accuracy, delivers superior OOD detection perfor-
mance with significantly fewer computational resources. When compared to AugMix, ISH achieves
substantial improvements, enhancing AUROC by 0.46 and 0.80 for Near-OOD and Far-OOD, re-
spectively, with just 0.1x the extended training epochs. Notably, ISH sets the highest AUROC
records, reaching 84.01% on Near-OOD scores and 96.79% on Far-OOD scores among all methods
on the OpenOODv1.5 benchmark.

Near-OOD Far-OOD

Model Training OBOhS  postprocessor  FPR@IS AUROC FPR@95 AUROC D ACC
ri.+Ext.
+ ) { T T
LogitNorm (Wei et al., 2022) 90+30 MSP 6856 7462 3133 9154 7645
CIDER (Ming et al., 2023) 90430 KNN 7169 6897 2869 9218 -
ResNet-50 _ TorchVision Model 9% SCALE 5976 8136 1653 9653  76.13
TorchVision Model Extended 90+10 SCALE 59.25 82.67 18.48 96.24 76.84
AugMix (Hendrycks et al., 2020) 180 SCALE 6058 8355 2101 9599  77.64
RegMixup (Pinto et al., 2022) 90+30 SCALE 6355 8085 1987 9594 7688
ISH (Ours) 90+10 SCALE 5573 8401 1562 9679 7674

Table 5: Comparisons between our training-time ISH and state-of-the-art methods on ImageNet-
1K. Our ISH method achieves the highest scores for both Near-OOD and Far-OOD with the least
training epochs. “Ori.” denotes the original training epochs for the pretrained network, while “Ext.”
denotes the extended training epochs in our training scheme.

5 CONCLUSION

In this paper, we have conducted an in-depth investigation into the efficacy of scaling techniques in
enhancing out-of-distribution (OOD) detection. Our study is grounded in the analysis of activation
distribution disparities between in-distribution (ID) and OOD data. To this end, we introduce SCALE,
a post-hoc model enhancement method that achieves state-of-the-art OOD detection accuracy when
integrated with energy scores, without compromising ID accuracy. Furthermore, we extend the
application of scaling to the training phase, introducing ISH, a training-time enhancement method
that significantly bolsters OOD detection accuracy.
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A DETAILS OF PROOF

Proposition 3.1. Assume that ID activations a;D ~ NBulP o'P) and OOD activations aJOOD ~

NE(u09P 590D) ywwhere N denotes a rectified Gaussian distribution. If u'® /o' > p99P / 590D,
p(v2erf”'(2p—1))
1-®(v/2erf~1(2p—1))

then there is a range of percentiles p for which a factor C(p) = is large enough

such that QI /Q™” < Q9°P /QOOP.

11



Published as a conference paper at ICLR 2024

Proof. The proof schema is to derive equivalent conditions. Under the assumption that data in the
latent space follows an independent and identically distributed (IID) Gaussian distribution prior to
the ReLLU activation (Sun et al. (2021)), we can derive that each coefficient ag»D ~N R(u’D ,olP )

and OOD activations a9?? ~ NF(p0%P, g%9P) where N'* denotes a rectified Gaussian distribution.

Moreover if we denote high activation b’ = a'” if a; > P,(a) and zeros elsewhere. Then we have

hP ~ NT (4P, 0'™) and identically 9P ~ NT(u%%P,599P), where N denotes a truncated
Gaussian distribution. Then, we can calculate the expectations as follows:

Ela;] = 1 [1 = (~5)] +o(-£)o ©)
E[hj]:U‘F%O’,m:s;M (10)

Here, ¢(+) is the probability density function of the standard normal distribution, and ®(-) is its
cumulative distribution function.

Qp/Q = %’ Z; = E[hﬁgg]_g)[). Let us consider the notation 8 = (1-p)Q/Q, = E%Zﬁ QP QP <
QYOP/QUP = pP > 99 So we focus on:

_n[l-e=B)]+e(-5e  1-@(-14) p(=5)o
B = ©(m) T o(m) o ©(m) D
Kt =5y @ 1o Ft oo ©
Let’s introduce some notations for ease of analysis:
e y=U
* A=9(—)
* B=¢(=7)
e (= _em) _ _p(H
C— 17¢(m) - 1—{)(5;”)’
With these definitions, we can express 3 as:
1-A Bo
B = (12)

1+C’7*1+/L+CJ

We consider that 72 > v9°P Hence, we also have:

. AID < AOOD

. BID < BOOD

By definition we have that sP(p) = P +0Py2erf ' (2p—1) and s°°P(p)

pOo 4 500D\ /3 erf =1 (2p — 1) where p is the proportion of data that we want to keep. So we
have:

D_ ID _
CID(p) — w(mID) — SO(S o’”él‘ ) — @(\/ierf 1(2p B 1)) (13)
1—2(mP) 1 -0 1-d(V2erf'(2p—1))
00D (%) () p(VEer~} (2p-1))
Moreover, we can prove that C (p) = T—®(mooP) — 174)(500350%000) = T—e(Vaerf-l(2p—1))
C™(p).
Now, if we consider the approximation:
Ela;] = p |1 - o(~5)] (14)

12
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We assume that ¢ (—g) o =~ 0 since the sigma term is very small, and the second term is below one.
With this approximation, we have:

1-A
BZW (15)

We want to compare /3 for in-distribution (ID) denoted 3P and out-of-distribution (OOD) data
denoted 399P. Moreover, we have:

1 _ AD 1 _ A0OOD 1 _ AP 1+ 0710—1
=7 2 - 00D = -1
1+ CHIP 1 + C~00DP 1— A00P = 1 4 CH00D

B > g% = (16)

We can use the approximation: W ~ 1— (9P~ by applying a first-order Taylor expansion.
Then we have:
1— AP -1 —1
Toop = (107 )1 =07 (17
>1+ 0(710—1 _ 7000—1) _ 02(710—1700D—1) (18)
Note that by definition C should be positive. The given inequality can be expressed as:
1— AP -1 —1 —1 -1
We can rewrite it as:
01C% +9,C +93 >0 (20)
Here we have the following notations: D; = (y2 4%~ !) and Dy = — (4" — 40001} and

O3 = % — 1. Let us define A = 03 — 40,03 Then we have:

-1 -1 -1 -1, [ 1— AP
A = (4271 _j00Dy2 g 0=t 00D~y <1 - 1) @1
—2 —2 -1 -1 1— AP
0 400P™2 _ o 0=t 0001 <21 s 1) 22)
_1 —1\2 -1 -1 1— AP
(,YID 00D ) (P y0op7 Ty (1 - OOD) 23)

Since 01 > 0, there are two possible cases:

 if A < 0then C(p) € R

D—1 D—1
* if A > Othen C(p) € {max ((7 2@,;1(1)200[,),?%, O*) 7Jroo). Note that another side

(4P — 40071y < 50 (4271 — 400Dy _ \/A < 0. So we do not consider this.

In summary, there is a valid range of pruning p value satisfying the valid range of C(p) so that the
statistics @, /@ of the ID distribution is smaller than that of the OOD distributions. p with a larger
C(p) is more applicable to any case. O

B FULL EXPERIMENTS

In this section, we provide full results for SCALE post-hoc model enhancement. Table 6 shows full
results on ImageNet and Tab. 8 and 9 show full results on CIFAR10 and CIFAR100. We also provide
ImageNet results following the dataset setting of ReAct and ASH in Tab. 7 for more comparison.

13
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Near-OOD Far-OOD
Method SSB-hard NINCO Average iNaturalist Textures Openlmage-O Average D ACC
EBO 76.54/72.08 60.59/79.70 68.56/75.89 31.33/90.63 45.77/88.7 38.08/89.06  38.40/89.47 76.18
MSP 74.49/72.09 56.84/79.95 65.67/76.02 43.34/88.41 60.89/8243 50.16/84.86 51.47/85.23 76.18
MLS 76.19/72.51 59.49/80.41 67.84/76.46 30.63/91.16 46.11/88.39 37.86/89.17  38.20/89.58 76.18
GEN 75.72/72.01 54.88/81.70 65.30/76.85 26.12/92.44 46.23/87.60 34.52/89.26  35.62/89.77 76.18
RMDS 77.88/71.77 52.20/82.22 65.04/76.99 33.67/87.24 48.80/86.08 40.27/85.84  40.91/86.38 76.18
TempScale 73.90/72.87 55.12/81.41 64.51/77.14 37.70/90.50 56.92/84.95 4539/87.22  46.67/87.56 76.18
ReAct 77.57/73.02 55.92/81.73 66.75/77.38 16.73/96.34 29.63/92.79  32.58/91.87  26.31/93.67 75.58
ASH-S 70.80/74.72 53.26/84.54 62.03/79.63 11.02/97.72 10.90/97.87 28.60/93.82  16.86/96.47 75.51
SCALE (Ours) 67.72/77.35 51.80/85.37 59.76/81.36 9.51/98.02 11.90/97.63  28.18/93.95 16.53/96.53 76.18

Table 6: FPR@95 / AUROC for ResNet-50 on ImageNet on OpenOOD v1.5 benchmark.

iNaturalist SUN Places365 Textures Average ID ACC
Method FPR@95 AUROC FPR@95 AUROC FPR@95 AUROC FPR@95 AUROC FPR@95 AUROC

1 I 1 I 1 I 1 T 4 T T
MSP 54.99 87.74 70.83 80.86 73.99 79.76 68.00 79.61 66.95 81.99 76.12
EBO 55.72 89.95 59.26 85.89 64.92 82.86 53.72 85.99 58.41 86.17 76.12
ReAct 20.38 96.22 24.20 94.20 33.85 91.58 47.30 89.80 31.43 92.95 -
DICE 25.63 94.49 35.15 90.83 46.49 87.48 31.72 90.30 34.75 90.77 -
DICE + ReAct 18.64 96.24 25.45 93.94 36.86 90.67 28.07 92.74 27.25 93.40 -
ASH-S 11.49 97.87 27.98 94.02 39.78 90.98 11.93 97.60 22.80 95.12 74.98
SCALE (Ours) 9.50 98.17 23.27 95.02 34.51 92.26 12.93 97.37 20.05 95.71 76.12

Table 7: Results for ResNet-50 on ImageNet following same testing splits as Sun et al. (2021).

SVHN

iSUN

Textures

Places365

Average

Method FPR@95S ~ AUROC FPR@95S AUROC ~FPR@SS AUROC ~FPR@9S AUROC FPR@95  AUROC ~DACC
| i 4 i + T l T 4 1 1
MSP 47.24 93.48 4231 94.52 64.15 88.15 63.02 88.57 54.18 91.18 94.53
EBO 40.61 93.99 10.07 98.07 56.12 86.43 39.40 91.64 36.55 92.53 94.53
ReAct 41.64 93.87 12.72 97.72 43.58 92.47 4331 91.03 3531 93.77 -
DICE 25_9915.10 95_9011.08 4_3610.71 99_14i(l.15 41_9014.41 88.1 811.&0 48_5911 53 89_1310.111 30_2112 94 93_0910.84 -
ASH-S 651 98.65 5.17 98.90 24.34 95.09 48.45 88.34 2112 95.25 94.02
SCALE (Ours)  5.80 98.72 343 99.21 23.42 94.97 38.69 91.74 17.84 96.16 94.53
Table 8: Detailed results for CIFAR-10.
SVHN iSUN Textures Places365 Average ID ACC
Method FPR@95 ~ AUROC ~ FPR@95S ~ AUROC ~ FPR@95  AUROC ~ FPR@95  AUROC ~ FPR@95  AUROC
4 T 4 i 4 T 4 i) 4 1 T
MSP 81.70 75.40 85.99 70.17 84.79 71.48 82.55 7431 83.76 72.84 75.04
EBO 87.46 81.85 74.54 78.95 84.15 71.03 79.20 77.72 81.34 77.39 75.04
ReAct 83.81 81.41 65.27 86.55 71.78 78.95 82.65 74.04 77.38 80.24 -
DICE 5465494 88.84+039 48 72EL30 90 08E130 65041006 76.42E0-35 79 583234 7726105 62 00+23T  83,15%0-80 -
ASH-S 25.02 95.76 46.67 91.30 34.02 92.35 85.86 71.62 47.89 87.76 71.65
SCALE (Ours)  22.05 96.29 42.14 92.47 34.20 92.34 85.04 72.66 45.86 88.44 75.04

Table 9: Detailed results for CIFAR-100.
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