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ABSTRACT

In this work, we prove that, in linear MDPs, the feature dimension d is lower
bounded by S{U in order to aptly represent transition probabilities, where S is
the size of the state space and U is the maximum size of directly reachable states.
Hence, d can still scale with S depending on the direct reachability of the envi-
ronment. To address this limitation of linear MDPs, we propose a novel structural
aggregation framework based on dynamics, named as the dynamics aggregation.
For this newly proposed framework, we design a provably efficient hierarchical
reinforcement learning algorithm in linear function approximation that leverages
aggregated sub-structures. Our proposed algorithm exhibits statistical efficiency,
achieving a regret of rO

`

d
3{2
ψ H3{2

?
NT

˘

, where dψ represents the feature dimen-
sion of aggregated subMDPs and N signifies the number of aggregated subMDPs.
We establish that the condition d3ψN ! d3 is readily met in most real-world environ-
ments with hierarchical structures, enabling a substantial improvement in the regret
bound compared to LSVI-UCB, which enjoys a regret of rOpd3{2H3{2

?
T q (Jin

et al., 2020). To the best of our knowledge, this work presents the first HRL
algorithm with linear function approximation that offers provable guarantees.

1 INTRODUCTION

Recent theoretical research in reinforcement learning (RL) has seen a surge in studies focusing on
function approximation. Such a research direction seeks to address the generalization problem faced
in tabular Markov Decision Processes (MDPs) (Jiang et al., 2017; Yang & Wang, 2019; 2020; Jin
et al., 2020; Zanette et al., 2020; Modi et al., 2020; Du et al., 2020; Cai et al., 2020; Ayoub et al., 2020;
Wang et al., 2020; Weisz et al., 2021; He et al., 2021; Zhou et al., 2021a;b; Ishfaq et al., 2021; Hu
et al., 2022). The linear MDP (Bradtke & Barto, 1996; Jin et al., 2020) serves as a foundational model
for function approximation, modeling the transition probability as Pps1 | s, aq “ ϕps, aqJµps1q

with known features ϕ P Rd and unknown measures tµps1qus1PS . Numerous prior studies have
demonstrated regret bounds that are not dependent on the size of the state space S (or the action
space size A), but instead on the feature dimension d. (Jin et al., 2020; Zanette et al., 2020; Du
et al., 2020; Cai et al., 2020; Weisz et al., 2021; He et al., 2021; Zhou et al., 2021a;b; Ishfaq et al.,
2021). Consequently, many of these algorithms proposed for linear MDPs are proven to achieve
regret bounds independent of the size of the state space, and depend only on the intrinsic complexity
measure of the feature space, d, once the parameterization is applied. However, whether such
replacement of the state space dependence with the dependence on feature dimension d induces
learning independently of the state space entirely for all MDPs still requires an investigation. Hence,
we pose a critical research question:

Q1: Does the linear MDP invariably yield regrets that are independent of the state space size S?

In this paper, we rigorously investigate the conditions under which linear MDPs induce learning
that is independent of the state space and the conditions under which they do not. Our findings,
as detailed in Section 4, prove that the feature dimension d is lower bounded by S{U in order to
aptly represent the probability space, where U is the maximum size of directly reachable states (see
Definition 2). Thus, if the cardinality of directly reachable states does not grow with the entirety of
the state space, that is, U “ opSq — a condition that holds true in most real-world situations and
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becomes more pronounced as S expands — the feature dimension d has to grow proportionally with
S to properly encode the probability distribution over next states. Hence, unless the size of reachable
states scales with the entire state space, regret bounds under linear MDPs still implicitly have S
dependence through the dependence of d on S.1 To the best of our knowledge, our study presents
the first comprehensive exposition of the fundamental limitations of the linear MDP, particularly its
intrinsic dependence on state space.

Our results on the limitations of linear MDPs suggest that simply because function approximation
is employed, it may not necessarily enable efficient learning where the feature dimension d is
independent of the state space. However, should additional structures, such as hierarchies, be present
within linear MDPs — facilitating the decomposition of the MDP into smaller sub-problems — it
paves the way for the development of a refined framework, possibly enabling efficient learning.
Ideally, a well-constructed learning algorithm should then leverage such structures for more efficient
learning. Yet, to the best of our knowledge, there is no existing model or algorithm for hierarchical
reinforcement learning (HRL) with function approximation that provides regret guarantees. Therefore,
the following research question arises:

Q2: Can we formulate a new hierarchical framework for linear MDPs that enables provably efficient
learning independent of state space?

To answer this question, we first introduce the framework of dynamics aggregation, which clusters
similar sub-structures based on their dynamics of MDPs. Notably, this concept not only includes the
extensively studied notion of state aggregation (or state abstraction) (Singh et al., 1994; Van Roy,
2006; Li et al., 2006; Abel et al., 2020; Dong et al., 2019) but also integrates the equivalence mapping
proposed in Wen et al. (2020). A key benefit of dynamics aggregation lies in its reusability for similar
problems. This new notion of aggregation not only allows efficient learning in technical perspectives
but also is very natural in practical perspectives. Then, we propose linear transition models for
aggregated subMDPs, a generalized approach that extends both non-hierarchical linear MDPs (Jiang
et al., 2017; Jin et al., 2020) and tabular MDPs with equivalent subMDPs (Wen et al., 2020).

Under this newly proposed model, we design a model-based HRL algorithm that leverages the
hierarchical structure of MDPs and employs optimistic planning. This algorithm is provably efficient
and, to our knowledge, is the first HRL algorithm that offers provable guarantees with function
approximation. In numerical experiments, our proposed method consistently outperforms existing
algorithms by significant margins. Our main contributions can be summarized as follows:

• We establish that the feature dimension d is lower bounded by S{U , where U represents the
maximum size of directly reachable states (Theorem 1). We also provide examples of various
environments where d does not scale with S. Consequently, in such scenarios, the regret
bound can indeed depend on the size of the state space S despite function approximation.
To the best of our knowledge, this is the first work to provide a rigorous proof showing how
the feature dimension d relates to the state space size S in linear MDPs. We strongly believe
that this finding provides significant implications and will be of independent interest to the
broader RL community.

• To address this fundamental issue of the vanilla linear MDP framework, we introduce a new
comprehensive framework of dynamics aggregation, encompassing both state aggregation
and equivalence mapping (Wen et al., 2020). One of the key benefits of this framework lies
in its inherent ability to be reused for similar sub-problems.

• Under this newly proposed framework, we present a statistically efficient algorithm that
exploits the hierarchical structure of the problem, thereby reducing dependency on the size
of the entire state space. Then, we establish a regret bound of rO

`

d
3{2
ψ H3{2

?
NT ` THϵp

˘

(Theorem 2), where dψ represents the feature dimension of aggregated subMDPS,N denotes
the number of aggregated subMDPs, and ϵp is the aggregation error. If an MDP adheres to
the conditions of Corollary 1 (a common circumstance) and exhibits a hierarchical structure,
the condition d3ψN ! d3 can be readily fulfilled, dramatically reducing the regret upper
bound compared to LSVI-UCB (Jin et al., 2020), which enjoys a regret of rOpd3{2H3{2

?
T q.

1It is important to note that our results do not contradict the previously known S-independent regret bounds
of the algorithms for linear MDPs (Jin et al., 2020). Rather, we focus on the representation ability of linear
MDPs and its feature dimension d’s potential dependence on S.
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• We also conduct numerical experiments in environments with suitable hierarchical structures
and show that our proposed framework enables our algorithm to leverage the structure and
consistently outperform the existing RL algorithms with provable guarantees.

2 RELATED WORK

Reinforcement Learning with Linear Function Approximation. In recent years, there has been
a surge in research on function approximation with provable guarantees (Jiang et al., 2017; Yang
& Wang, 2019; 2020; Jin et al., 2020; Zanette et al., 2020; Modi et al., 2020; Du et al., 2020; Cai
et al., 2020; Ayoub et al., 2020; Wang et al., 2020; Weisz et al., 2021; He et al., 2021; Zhou et al.,
2021a;b; Ishfaq et al., 2021). All of these works assume certain linear structures of underlying MDP
and appear to handle large state spaces effectively, as their regret scales only polynomially in d and
not S. However, it remains unclear how d is related to S in linear MDPs. In Theorem 1, we provide
proof showing that d is lower bounded by S{U , where U represents the maximum size of directly
reachable states. And in Corollary 1, 2, and 3, we establish that d can be proportional to S in the
majority of real-world environments.

State Aggregation The study of state aggregation (or state abstraction) in RL has a long and rich
history, dating back to early works on approximating dynamic programs and the identification of
states that exhibit similar behaviors (Fox, 1973; Whitt, 1978; Bean et al., 1987; Dean & Givan, 1997;
Bertsekas et al., 1988). In a similar vein, Li et al. (2006) introduced a unified framework for state
aggregation in MDPs, examining the conditions under which such aggregations can preserve optimal
behavior and affect the existing convergence guarantees of well-known RL algorithms. However,
unlike our proposed dynamics aggregation which embraces a hierarchical structure, these past studies
did not explicitly leverage this concept.

Hierarchical Reinforcement Learning (HRL). Several studies have explored the decomposition of
MDP into sub-problems (Dean & Lin, 1995; Singh & Cohn, 1997; Meuleau et al., 1998) and then
solved independently under the weakly coupled resource constraints. The concept of HRL, which
allows an agent to act and plan at various levels of temporal abstraction, was established bySutton
et al. (1999); Barto & Mahadevan (2003). However, there has been limited research quantifying
the theoretical benefits of HRL. The work most closely related to ours is by Wen et al. (2020),
who introduced a model-based tabular HRL algorithm designed to leverage repeating sub-structures.
Nevertheless, their research focused solely on tabular MDPs when utilizing hierarchical structures,
leaving the development of an efficacious HRL algorithm for linear MDPs an open question.

3 PROBLEM SETTING

3.1 NOTATIONS

We denote by rns the set t1, 2, . . . , nu for a positive integer n. For a real-valued matrix A, we use
}A}2 :“ supx:}x}2“1 }Ax}2 to denote the maximum singular value of A. With a positive definite
matrix Λ, we denote }x}2Λ :“ xJΛx. We denote | ¨ | as the cardinality of a set.

3.2 INHOMOGENEOUS, EPISODIC MDPS

We consider inhomogeneous episodic Markov decision processes (MDPs) denoted by
MpS,A, H, tPhuHh“1, trhuHh“1q, where S is a measurable space, potentially with an infinite num-
ber of elements, and has a cardinality of S, A is a finite set with cardinality A, H P Z` is
the length of each episode, Ph is the collection of transition probability distributions, and rh is
a reward function. We assume that every state is accessible from at least one other state, i.e.
@s1,

ř

ps,aqPSˆA Phps1 | s, aq ě 0 2.

In each episode, an initial state s1 is picked arbitrarily by an adversary. Then, for every h P rHs in an
episode, an agent takes action ah P A for state sh P S and receives reward rhpsh, ahq P r0, 1s. Then,
the next state sh`1 is is drawn from the transition probability distribution Php¨ | sh, ahq and repeats
its interactions until the end of the episode.

2If a specific state is not accessible, we can exclude it without losing generality.
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The agent aims to find a policy π : S ˆ rHs Ñ A that maximizes its expected cumulative reward
starting from every state s. We define the value function of policy π, V πh : S Ñ R as the expected
sum of rewards under the policy π until the end of the episode when starting from sh “ s, i.e.,
V πh psq :“ Eπ

”

řH
h1“hrh1 psh1 , πpsh1 , h1qq |sh “ s

ı

. We also denote the action-value function of
policy π, Qπh : S ˆ A Ñ R as the expected sum of rewards when following π starting from
step h until the end of the episode after taking action a in state s; that is, Qπhps, aq :“ rhps, aq `

Eπ
”

řH
h1“h`1rh1 psh1 , πpsh1 , h1qq |sh “ s, ah “ a

ı

.

A policy π˚ is said to be an optimal policy if it achieves the maximal possible value at every state-step
pair ps, hq P S ˆ rHs. Then, we define the optimal value and action-value functions as V ˚

h psq :“

V π
˚

h psq “ supπ V
π
h psq and Q˚

hps, aq :“ Qπ
˚

h ps, aq “ supπ Q
π
hps, aq. For a simple notation, by

denoting PhVh`1ps, aq :“ Es1„Php¨|s,aqrVh`1ps1qs, both Qπ and Q˚ can be conveniently written
as the result of the Bellman equations as Qπhps, aq “ prh ` PhV πh`1qps, aq and Q˚

hps, aq “ prh `

PhV ˚
h`1qps, aq, where, for all s P S, V πH`1psq “ V ˚

H`1psq “ 0 and V ˚
h psq “ maxaPAQ

˚
hps, aq.

4 LIMITATIONS OF LINEAR MDPS

There exists a large amount of literature on function approximation in which linear MDPs serve as
a foundational model (Yang & Wang, 2019; Jin et al., 2020; Zanette et al., 2020; Hu et al., 2022).
Despite the growing body of research, the limitations associated with linear MDPs have not been
adequately addressed. In this section, we provide a comprehensive analysis of inherent limitations in
linear MDPs. First, linear transition models of linear MDPs are defined as follows:

Definition 1 (Linear transition model). Let there exist a known feature map ϕ : S ˆ A Ñ Rd and
unknown µh : S Ñ Rd. Then, the transition operator Ph : S ˆ A Ñ ∆pSq is defined as follows: for
all s, s1 P S, a P A, Phps1 | s, aq “ ϕps, aqJµhps1q.

The linear structure of the transition probabilities offers the advantage of reducing the number of
parameters that need to be estimated, subsequently decreasing the statistical and computational
complexity of learning and planning algorithms. However, it is crucial to acknowledge that the set of
MDPs that can be accurately represented using linear transition models with small d relative to the
size of the state space is notably limited.

For a linear MDP, we generally expect that the transition kernel Php¨ | ¨, ¨q P RSAˆS has a low-
dimensional structure, i.e., d ! S. However, the following statements show that the feature dimension
is closely related to the size of the state space, highlighting the inherent limitations associated with
linear transition models.

Definition 2 (Directly reachable states). For each ps, aq P S ˆ A, “directly reachable states” of
ps, aq is defined to be the set of all states which can be reached by taking action a in state s within a
single transition, Ss,a :“ ts1 P S : Phps1 | s, aq ą 0u. Also, we denote U :“ maxps,aqPSˆA |Ss,a|

to be the maximum size of directly reachable states.

Theorem 1. For an MDP M with a finite state space, the feature dimension d is lower bonded by

d ě tS{U u,

where U is the maximum size of directly reachable states (Defitiontion 2).

Corollary 1. If the maximum size of directly reachable states U does not scale with the entire state
space by a constant factor, i.e., U “ ΘpSpq ă 8, where 0 ď p ă 1, then d ě ΩpS1´pq.

Theorem 1 and Corollary 1 imply that unless the size of directly reachable states (one-step transitable
states) scales with the entire state space S — a scenario rarely true in most real-world cases — the
feature dimension d would eventually scale with the size of the entire state space polynomially.
Consequently, the learning efficiency (e.g., regret) would still depend on S even when function
approximation is employed. Furthermore, Theorem 1 can be generalized to an infinite (or even
continuous) state space.

Corollary 2 (Infinite S & finite U ). For an MDP M with a state space that is either countably
infinite or normed, compact, and uncountably infinite, and with a finite U , d is infinite.
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(a) Gridworld (b) First-person Navigation (c) Board Games (d) Robot Control

Figure 1: Various environments where the feature dimension scales with the size of the state space.

Corollary 3 (Euclidean continuous state space). Consider an MDP M with state space S in
the p-dimensional Euclidean space. Let Volp¨q represent the volume of a set. Denote the set of
directly reachable states with the maximum volume as U “ argmaxSs,a VolpSs,aq and assume that
VolpUq ą 0. Then, we have d ą 2p ¨ VolpSq{VolpUq ´ 1.

One can observe that most real-world environments, as well as many simulation environments, have
a small U compared to the size of the state space. This implies that the statement in Corollary 1
is widely applicable and persuasive. Identifying environments that do not meet the condition of
Corollary 1 is rather a challenging endeavor. The following examples, which are widely studied in
the RL literature, fulfill the condition:
Example 1 (Gridworld). In Figure 1 (a), the agent is allowed to move to neighboring states (left,
right, up, down, or stay in the same state), resulting in U “ 5. Thus, by Theorem 1, d ě tS{5u. In a
special case where the transitions are deterministic (U “ 1), we get d “ S.
Example 2 (First-person navigation). In Figure 1 (b), although the entire state space is extremely
large, the agent can only move to the neighboring states, resulting in a constant U . Thus, d ě ΩpSq.
Example 3 (Board games). Board games like Go, depicted in Figure 1 (c), have an immense state
space, approximately 10400, but the number of directly reachable states is relatively small, fewer than
192. Hence, d Á 2.5 ˆ 10397.
Example 4 (Control problems). The state spaces in control problems, as depicted in Figure 1 (d),
are continuous (uncountable). The volume of sets of directly reachable states is typically much
smaller—especially in cases with minimal stochasticity—than the volume of the full state space.
Therefore, d ě ΩpVolpSqq.

To sum up, many existing studies that assume linear MDPs establish regret bounds that depend on
the embedding dimension d rather than the size of the state space S. However, in most practical
environments, d is often proportional to S. Consequently, it is crucial to take the state space size
into account when employing linear MDPs in real-world applications, as the assumption of linear
transition model may (and often does) fail to yield significant improvements in computational or
statistical complexity. Motivated by these findings, in the following sections, we study approaches
where additional structure may alleviate the limitations of vanilla linear MDPs.

5 HIERARCHICAL STRUCTURE

In the context of MDPs, we introduce a notion of modularity (Wen et al., 2020), which divides a
large problem into smaller ones. Modularity could be addressed separately and solved independently.
Then, sub-problem solutions could be stitched together to solve the original problem. This approach
can lead to statistically efficient learning if sub-problems are reasonably small and recurring.
Definition 3 (Sub-problems, Wen et al. 2020). Assume that the state space S is divided into L disjoint
subgroups tSiuLi“1. Then, induced subMDPs MipSi Y E i,A, tPihuHh“1, tr

i
huHh“1, E iq are defined as:

• The internal state set Si is disjoint subset of S and the action space is still A.

• The exit state set E i :“ te P S zSi : Dps, aq P Si ˆ A s.t. Pipe | s, aq ą 0u.

• The state space of Mi is Si Y E i.
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• The supports of Pih and rih are restricted to Si ˆ A.

• The subMDP Mi terminates once the agent reaches an exit state, i.e. s P E i.

Given a partition of M, we examine the collection of induced subMDPs, represented as tMiuLi“1.
If these sub-problems exhibit similarity or identical characteristics, it is possible to solve a single
instance and apply the derived solution to other equivalent or analogous cases.

5.1 HIERARCHICAL STRUCTURE VIA DYNAMICS AGGREGATION

(a) Original MDP (b) Aggregated  subMDPs

Figure 2: Dynamics aggregation

To formalize the hierarchical structure, we
employ a concept of state aggregation (or
abstraction) method that groups subMDPs
exhibiting ”behavioral equivalence” (Singh
et al., 1994; Li et al., 2006; Wen & Van Roy,
2017; Dong et al., 2019). Employing state
aggregation leads to a reduction in state
space size or complexity, thereby acceler-
ating the learning process. Inspired by this
concept, we propose a new concept called
dynamics aggregation, which groups sub-
MDPs based on the similarity of their dy-
namics. This approach involves dividing the
set of states into N aggregated subMDPs,
denoted by MpnqpSpnq Y Epnq,A, tPpnq

h uHh“1, tr
pnq

h uHh“1, Epnqq for n P rN s. By employing dynam-
ics aggregation, we can efficiently learn and generalize across different sub-problems with similar
dynamics, leading to more effective and faster learning. Formally, we can define an approximate
dynamics aggregation as follows:

Definition 4 (Approximate dynamics aggregation). For all h P rHs, i, j P rLs, let ψi )pnq

h : SiYE i Ñ

SpnqYEpnq be a mapping that maps the state space of i’th subMDP Si to its corresponding aggregated
state space Spnq, where n P rN s. Let ψi )pnq

h and ψj )pnq

h exist. Then, for all states s1 P Si, s2 P Sj

where ψi )pnq

h ps1q “ ψ
j )pnq

h ps2q and all a P A, the following conditions hold:

|rihps1, aq ´ rjhps2, aq| ď ϵr,
›

›

›
PihΨ

i )pnq

h p¨ | s1, aq ´ PjhΨ
j )pnq

h p¨ | s2, aq

›

›

›

1
ď ϵp,

where ϵr, ϵp P R` Y t0u, and Ψ
i )pnq

h P RSˆS̄ , S “
ř

iPrLs |Si| “ |S| and S̄ “
ř

nPrNs |Spnq|, is a
kernel that satisfying:

Ψ
i )pnq

h ps1, s̄1q “ I
´

s1 P Si Y E i, s̄1 P Spnq Y Epnq, ψ
i )pnq

h ps1q “ s̄1
¯

,

where Ip¨q is an indicator function that maps to 1 when the condition is true, and 0 otherwise.

Note that PihΨ
i )pnq

h p¨ | s, aq collapses the transition distribution over Si Y E i into Spnq Y Epnq, and
if the dynamics aggregation mapping is exact, then ϵr “ 0 and ϵp “ 0.

Dynamics aggregation partitions the original MDPs into subMDPs and projects these subMDPs into
aggregated subMDPs, while explicitly considering repeating structures (see Figure 2). This concept
encompasses both state aggregation (refer Definition 3 in Li et al. (2006)) and equivalence mapping
introduced by Wen et al. (2020). It not only aggregates similar (usually neighboring) states like state
aggregation but also aggregates subMDPs that have similar dynamics, akin to equivalence mapping
This methodology enables a significant simplification of the representation compared to the other
two frameworks. For a more in-depth comparison with other existing frameworks, please refer to
Section D in the Appendix.

Intuitively, if all subMDPs are unique, i.e., there are no duplicate substructures, then N “ L. And if
there are subMDPs have the similar dynamics to each other, i.e., some sub-structures are repeated,
N ă L. Thus, we can expect dramatic improvements over the standard algorithms when MDP M
has a hierarchical structure such that M ¨ N ! S, where M “ maxn |Spnq Y Epnq|. If M is small,
the sizes of all aggregated subMDPs are small, making each subMDP relatively easy to solve. If N is
small, a solution to one aggregated subMDP can be reused in other aggregated subMDPs.
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5.2 LINEAR TRANSITION MODEL UNDER THE HIERARCHICAL STRUCTURE

We assume that the transition probabilities of aggregated subMDP Mpnq are linear.
Assumption 1 (Linear transition models for aggregated subMDPs). Denote dψ as the feature
dimension of aggregated subMDPs. For each ps̄, aq P Spnq ˆ A, let known feature vector ϕps̄, aq P

Rdψ be given as a prior. Then, for all n P rN s, there exist S̄ unknown d-dimensional measures
µ

pnq

h “ pµhp1q, . . . , µhpS̄qq P RdψˆS̄ , where S̄ “
ř

nPrNs |Spnq|, such that

Ppnq

h p¨ | s̄, aq “ ϕps̄, aqJµ
pnq

h p¨q, @s̄ P Spnq,

where each columns of µpnq

h corresponds to a unknown vector µpnq

h ps̄1q P Rdψ for @s̄1 P Spnq Y Epnq

and 0 P Rdψ for @s̄1 R Spnq Y Epnq.

We make the following bounded assumptions, similar to existing literature (Yang & Wang, 2019;
Jin et al., 2020): For all h P rHs (i) sups,a }ϕpψ

i )pnq

h psq, aq}2 ď Cϕ, and (ii) }µ
pnq

h v}2 ď Cµ ¨
a

dψ
for any vector v P RS such that }v}8 ď 1. We further assume that the reward function r is
known for simplicity3. Since we consider low-rank linear subMDPs, the dimension of the feature
space dψ is upper-bounded by the cardinality of the image of the (linear) transition mapping, i.e.,
dψ ď maxn |Spnq Y Epnq| “ M .

When the aggregated state space is just a subset of the original state space with N “ 1, implying
the aggregated state space is just the original state space S, this model reduces to classical non-
hierarchical linear MDPs Jiang et al. (2017); Jin et al. (2020). Furthermore, when the feature
representation is a one-hot encoding, i.e., dψ “ S̄A, this model corresponds to tabular MDPs with
equivalence mappings between subMDPs, as indroduced by Wen et al. (2020). Thus, this model
generalizes tabular MDPs with the hierarchical structure as well as non-hierarchical linear MDPs.

Thanks to dynamics aggregation, we only need to learn tµ
pnq

h uNn“1 and can reuse them to solve
similar sub-problems, highlighting the reusability as a key advantage of this approach.

6 ALGORITHM: UC-HRL

The purpose of the algorithm is to learn the transitions for each aggregated subMDP, denoted by
MpnqpSpnq YEpnq,A, tPpnq

h uHh“1, tr
pnq

h uHh“1, Epnqq. Let ψi )pnq

h : SiYE i Ñ Spnq YEpnq are known
dynamics aggregations. To simplify the presentation, we denote s̄ “ ψ

i )pnq

h psq. The indices i and n
can be abbreviated as they are determined by the state s. Specifically, i represents the index of the
current subMDP to which the state s belongs, while n denotes the index of the aggregated subMDP
that the current subMDP (i) is mapped to via an aggregation mapping. We can learn each transition
Ppnq

h p¨ | s̄, aq “ ϕps̄, aqJµ
pnq

h by approximating µ
pnq

h using data that has been collected so far.
Denote δps̄q P RS̄ as a one-hot vector that has zero everywhere except that the entry corresponding
to s̄ is one. For episode k ď K and horizon h ď H , let ϵpnq

k,h :“ Ppnq

h p¨ | s̄k,h, ak,hq
J

´ δ ps̄k,h`1q.
Then, conditioned on history Hk,h, all information from the beginning of the learning process up
to and including ps̄k,h, ak,hq, we have Erϵ

pnq

k,h | Hk,hs “ 0 for n P rN s. This implies that δ ps̄k,h`1q

is an unbiased estimate of Ppnq

h p¨ | s̄k,h, ak,hq
J conditioned on ps̄k,h, ak,hq. Define a collection of

(s̄, a, s̄1) triplet interacted with any aggregated subMDP Mpnq until the end of episode k ´ 1 as

Dpnq

k,h :“
!

ps̄k1,h, ak1,h, s̄k1,h`1q : sk1,h P Si, s̄k1,h “ ψ
i )pnq

h psk1,hq

)k´1

k1“1
(1)

Then, for all n P rN s, it is reasonable to learn µ
pnq

h via the following ridge linear regression:

pµ
pnq

k,h “ argmin
µ

ÿ

ps̄,a,s̄1qPDpnq

k,h

›

›ϕps̄, aqJµ ´ δps̄1qJ
›

›

2

2
` λ}µ}2F .

3Note that we do not lose generality since learning r is much easier than learning P . This assumption
regarding r is typical in the literature on model-based RL (Yang & Wang, 2019; 2020; Ayoub et al., 2020; Zhou
et al., 2021a).
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Algorithm 1 Upper Confidence Hierarchical RL with Transition-Targeted Regression (UC-HRL)

1: Inputs: M, K, ϕ, N , ψi )pnq

h , β, λ
2: Initialize: Λpnq

1,h “ λI P Rdψˆdψ , pµpnq

1,h “ 0 P RdψˆS , Dpnq

k,h “ H.
3: for episode k “ 1, 2, ¨ ¨ ¨ ,K do
4: Set t pQ

ψpiq
k,h uHh“1 as described in Eq. 2 using pµ

pnq

k .
5: for horizon h “ 1, 2, ¨ ¨ ¨ , H do
6: ak,h Ð argmaxaPA

pQ
ψpiq
k,h pψ

i )pnq

h psk,hq, aq, where sk,h P Si and Dψ
i )pnq

h psk,hq.
7: Play an action ak,h and observe sk,h`1.
8: end for
9: Update Dpnq

k`1,h by Eq. 1.

10: Λ
pnq

k`1,h Ð λI `
ř

ps̄,a,s̄1qPDpnq

k`1,h

ϕps̄, aqϕps̄, aqJ.

11: pµ
pnq

k`1,h Ð pΛ
pnq

k`1,hq´1
ř

ps̄,a,s̄1qPDpnq

k`1,h

ϕps̄, aqδps̄1qJ.

12: end for

In convention, in case of Dpnq

k,h “ H, the summation over Dpnq

k,h is zero. The full algorithm is
summarized in Algorithm 1. For every episode k, we form an UCB bonus term β }ϕps̄, aq}´

Λ
pnq

k,h

¯´1 .

With that, for s P S , a P A and h P rHs, we construct the optimistic aggregated Q-value functions.
Definition 5 (Optimistic aggregated Q-values). For any ps, aq P S ˆ A and h P rHs, let s P Si,
Dψ

i )pnq

h , and s̄ “ ψ
i )pnq

h psq. Then, for all i P rLs, optimistic aggregated Q-values are defined as:

pQ
ψpiq
k,h ps̄, aq :“ min

"

rhps̄, aq ` ϕps̄, aqJ
pµ

pnq

k,h
pV
ψpiq
h`1 ` β }ϕps̄, aq}´

Λ
pnq

k,h

¯´1 , H

*

, (2)

where pV
ψpiq
h`1 P RS̄ such that pV ψpiq

h`1 pψ
i )pnq

h ps1qq for s1 P Si, pV ψpjq

h`1 pψ
j )pnq

h ps1qq for s1 P E i X Sj , and
0 for otherwise.

Note that pV ψpiq
k,H`1psq :“ 0 since the agent obtains no reward after H’th step. We also point out that

for any states from different subMDPs s1 P Si, s2 P Sj where ψi )pnq

h ps1q “ ψ
j )pnq

h ps2q “ s̄, the Q-
value estimates can have different values, i.e., pQψpiq

k,h ps̄q ‰ pQ
ψpjq

k,h ps̄q. Thus, the estimated Q-values in

the original state space S are defined as pQk,hps, aq :“ pQ
ψpiq
k,h pψ

i )pnq

h psq, aq for @ps, aq P SiYE iˆA.
By choosing a proper value for β, we can prove that, with high probability, the Q-value estimates are
always optimistic estimates of the actual Q values. Then, in each ph, kq P H ˆK, the agent selects
an action that maximized these Q-values t pQ

ψpiq
k,h uHh“1.

7 REGRET ANALYSIS

Theorem 2 (Regret upper bound). Let π “ tπkuKk“1 be a collection of policies over K episodes and
sk,1 be the initial state at episode k. Denote dψ as the maximum rank of the transition kernels for
aggregated subMDPs, and N as the number of aggregated subMDPs. Then, under Assumption 1,
there exists an absolute constant C ą 0 such that, for any fixed δ P p0, 1q, if we set β “ C ¨

dψH lnp2dψT {δq, then with probability at least 1 ´ δ, the regret of UC-HRL policy π is bounded by

K
ÿ

k“1

pV ˚
1 ´ V πk1 qpsk,1q “ rO

`

d
3{2
ψ H3{2

?
NT ` THϵp

˘

.

Discussion of Theorem 2. Theorem 2 implies that if ϵp is sufficiently small — that is, if the aggre-
gation mapping is precise enough — our algorithm enjoys favorable provable guarantees on regret
performances. For example, if ϵp “ rOp1{

?
T q, the regret is still bounded by rO

`

d
3{2
ψ H3{2

?
NT

˘

.
We show that the hierarchical structure can enable statistically more efficient learning compared
to preceding algorithms that do not utilize the hierarchical structure. Specifically, if d3ψN ! d3,
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Figure 3: Episodic returns over 10 independent runs under the Block-RiverSwim environment

the regret bound can be significantly improved compared to LSVI-UCB (Jin et al., 2020), which
has a regret bound of d3{2H3{2

?
T , where d represents the dimension of the feature vector in the

original MDP M. Recall Theorem 1 and Corollary 1, which posit that in the majority of real-world
environments, particularly those where the maximum number of directly reachable states U is not
proportional to the state space size S, the dimension of the feature vector d is lower bounded by
S{U 4. It’s always the case that dψ ď M , as we consider low-rank linear subMDPs. Hence, when
MN ! S (indicative of a hierarchical structure), M2 ď S2{U3 (signifying a small number of
directly reachable states compared to S, a common scenario), the inequality d3ψN ! d3 can be easily
satisfied. We can show this by the following inequality: d3ψN ď M3N ! SM2 ď S3{U3 ď d3.

8 NUMERICAL EXPERIMENTS

We run our numerical experiments on Block-RiverSwim, a variant of RiverSwim (Strehl & Littman,
2008), which repeats the sub-structures called “Block” (refer Appendix H for detailed descriptions).
Thus, if the agent can make use of the repeated sub-structures by re-using the learned solution to
other blocks, it can learn the optimal policy efficiently.

Baselines. We compare our algorithm to other provably efficient RL algorithms with linear func-
tion approximation: model-based algorithms such as UC-MatrixRL (Yang & Wang, 2020) and
UCRL-VTR (Ayoub et al., 2020), and model-free algorithms such as LSVI-UCB (Jin et al., 2020) and
LSVI-PHE (Ishfaq et al., 2021). We also included the results of UC-HRL(N=L), which is the variant
of UC-HRL that naively learns the transition probabilities without the aggregation mappings, in order
to directly verify the effect of leveraging hierarchical structure.

Results. For a fair comparison, we sweep over the hyper-parameters for each algorithm over certain
ranges. Figure 3 depicts learning curves over varying state sizes (and the number of blocks) for
UC-HRL and other baseline algorithms. When the size of the state space is small and few sub-structures
are repeated (e.g., L “ 4, R “ 2, S “ 8), our algorithm, as well as other model-based algorithms
perform relatively well. However, as the sub-structures repeat more (R increases), our algorithm
learns the optimal policy far more quickly than the other algorithms. The results demonstrate that
our proposed algorithm is not only provably but also experimentally efficient when the hierarchical
structure is presented in the environment.

9 CONCLUSION

In this work, we first show that in the majority of real-world environments, the regret can be dependent
on the size of the state space S by showing that the dimension of features, d, can be proportional
to S. To mitigate this issue, we formalize a hierarchical decomposition in aggregated state space
and propose a UC-HRL that can significantly enhance the regret bound if repeated sub-structures are
present. However, utilizing a known hierarchical structure is not the sole solution. We leave the
exploration of other milder methods as a direction for future research. We anticipate that our research
will serve as a pioneering study in rigorously highlighting the limitations of linear models and in
enhancing the understanding of provably efficient hierarchical RL with function approximation.

4For the Euclidean continuous state space, d Á VolpSq{VolpUq.
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bandits. Advances in neural information processing systems, 24:2312–2320, 2011.

David Abel, Nate Umbanhowar, Khimya Khetarpal, Dilip Arumugam, Doina Precup, and Michael
Littman. Value preserving state-action abstractions. In International Conference on Artificial
Intelligence and Statistics, pp. 1639–1650. PMLR, 2020.

Alex Ayoub, Zeyu Jia, Csaba Szepesvari, Mengdi Wang, and Lin Yang. Model-based reinforcement
learning with value-targeted regression. In International Conference on Machine Learning, pp.
463–474. PMLR, 2020.

Andrew G Barto and Sridhar Mahadevan. Recent advances in hierarchical reinforcement learning.
Discrete event dynamic systems, 13(1):41–77, 2003.

James C Bean, John R Birge, and Robert L Smith. Aggregation in dynamic programming. Operations
Research, 35(2):215–220, 1987.

Dimitri P Bertsekas, David A Castanon, et al. Adaptive aggregation methods for infinite horizon
dynamic programming. 1988.

Steven J Bradtke and Andrew G Barto. Linear least-squares algorithms for temporal difference
learning. Machine learning, 22(1):33–57, 1996.

Qi Cai, Zhuoran Yang, Chi Jin, and Zhaoran Wang. Provably efficient exploration in policy optimiza-
tion. In International Conference on Machine Learning, pp. 1283–1294. PMLR, 2020.

Thomas Dean and Robert Givan. Model minimization in markov decision processes. In AAAI/IAAI,
pp. 106–111, 1997.

Thomas Dean and Shieu-Hong Lin. Decomposition techniques for planning in stochastic domains.
In IJCAI, volume 2, pp. 3. Citeseer, 1995.

Shi Dong, Benjamin Van Roy, and Zhengyuan Zhou. Provably efficient reinforcement learning with
aggregated states. arXiv preprint arXiv:1912.06366, 2019.

Simon S. Du, Sham M. Kakade, Ruosong Wang, and Lin F. Yang. Is a good representation suffi-
cient for sample efficient reinforcement learning? In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020, 2020.

Bennett L Fox. Discretizing dynamic programs. Journal of Optimization Theory and Applications,
11:228–234, 1973.

Ronan Fruit, Matteo Pirotta, Alessandro Lazaric, and Emma Brunskill. Regret minimization in mdps
with options without prior knowledge. Advances in Neural Information Processing Systems, 30,
2017.

Jiafan He, Dongruo Zhou, and Quanquan Gu. Logarithmic regret for reinforcement learning with
linear function approximation. In International Conference on Machine Learning, pp. 4171–4180.
PMLR, 2021.

Pihe Hu, Yu Chen, and Longbo Huang. Nearly minimax optimal reinforcement learning with linear
function approximation. In International Conference on Machine Learning, pp. 8971–9019. PMLR,
2022.

Audrey Huang, Jinglin Chen, and Nan Jiang. Reinforcement learning in low-rank mdps with density
features. In International Conference on Machine Learning, pp. 13710–13752. PMLR, 2023.

10



Published as a conference paper at ICLR 2024

Taehyun Hwang and Min-hwan Oh. Model-based reinforcement learning with multinomial logistic
function approximation. arXiv preprint arXiv:2212.13540, 2022.

Haque Ishfaq, Qiwen Cui, Viet Nguyen, Alex Ayoub, Zhuoran Yang, Zhaoran Wang, Doina Precup,
and Lin Yang. Randomized exploration in reinforcement learning with general value function
approximation. In International Conference on Machine Learning, volume 139, pp. 4607–4616.
PMLR, 2021.

Zeyu Jia, Lin Yang, Csaba Szepesvari, and Mengdi Wang. Model-based reinforcement learning with
value-targeted regression. In Learning for Dynamics and Control, pp. 666–686. PMLR, 2020.

Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, John Langford, and Robert E Schapire. Contex-
tual decision processes with low bellman rank are pac-learnable. In International Conference on
Machine Learning, pp. 1704–1713. PMLR, 2017.

Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. Provably efficient reinforcement
learning with linear function approximation. In Conference on Learning Theory, pp. 2137–2143.
PMLR, 2020.

Lihong Li, Thomas J Walsh, and Michael L Littman. Towards a unified theory of state abstraction for
mdps. In AI&M, 2006.

Timothy A Mann, Shie Mannor, and Doina Precup. Approximate value iteration with temporally
extended actions. Journal of Artificial Intelligence Research, 53:375–438, 2015.

Nicolas Meuleau, Milos Hauskrecht, Kee-Eung Kim, Leonid Peshkin, Leslie Pack Kaelbling,
Thomas L Dean, and Craig Boutilier. Solving very large weakly coupled markov decision
processes. In AAAI/IAAI, pp. 165–172, 1998.

Aditya Modi, Nan Jiang, Ambuj Tewari, and Satinder Singh. Sample complexity of reinforcement
learning using linearly combined model ensembles. In International Conference on Artificial
Intelligence and Statistics, pp. 2010–2020. PMLR, 2020.

Aditya Modi, Jinglin Chen, Akshay Krishnamurthy, Nan Jiang, and Alekh Agarwal. Model-free
representation learning and exploration in low-rank mdps. Journal of Machine Learning Research,
25(6):1–76, 2024.

Ian Osband, Daniel Russo, and Benjamin Van Roy. (more) efficient reinforcement learning via
posterior sampling. Advances in Neural Information Processing Systems, 26, 2013.

David Pollard. Empirical processes: theory and applications. Ims, 1990.

Satinder Singh and David Cohn. How to dynamically merge markov decision processes. Advances in
neural information processing systems, 10, 1997.

Satinder Singh, Tommi Jaakkola, and Michael Jordan. Reinforcement learning with soft state
aggregation. Advances in neural information processing systems, 7, 1994.

Alexander L Strehl and Michael L Littman. An analysis of model-based interval estimation for
markov decision processes. Journal of Computer and System Sciences, 74(8):1309–1331, 2008.

Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A framework
for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–211, 1999.

Masatoshi Uehara, Xuezhou Zhang, and Wen Sun. Representation learning for online and offline rl
in low-rank mdps. arXiv preprint arXiv:2110.04652, 2021.

Benjamin Van Roy. Performance loss bounds for approximate value iteration with state aggregation.
Mathematics of Operations Research, 31(2):234–244, 2006.

Ruosong Wang, Russ R Salakhutdinov, and Lin Yang. Reinforcement learning with general value
function approximation: Provably efficient approach via bounded eluder dimension. Advances in
Neural Information Processing Systems, 33, 2020.

11



Published as a conference paper at ICLR 2024
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A RELATED WORK

In this section, we provide the expanded version of Section 2.

Reinforcement Learning with Linear Function Approximation. In recent years, there has been
a surge in research on function approximation with provable guarantees (Jiang et al., 2017; Yang
& Wang, 2019; 2020; Jin et al., 2020; Zanette et al., 2020; Modi et al., 2020; Du et al., 2020; Cai
et al., 2020; Ayoub et al., 2020; Wang et al., 2020; Weisz et al., 2021; He et al., 2021; Zhou et al.,
2021a;b; Ishfaq et al., 2021). All these works assume certain linear structures of underlying MDP. Jin
et al. (2020) examined linear MDPs and proposed LSVI-UCB, which achieves an rOpd3{2H3{2

?
T q

regret bound. Zanette et al. (2020) proposed an optimistically initialized variant of the randomized
least-squares value iteration (RLSVI) algorithm, where exploration is induced by perturbing the
estimates of the action-value functions and provided a regret bound rOpd2H2

?
T q.

In the realm of model-based algorithms with linear function approximation, Yang & Wang (2020)
proposed a model-based algorithm under the assumption that the transition probability kernel is
bilinearly parameterized by two feature mappings, enjoying a regret of rOpd3{2H2

?
T q. Another

popular MDP model for RL with linear function approximation is linear mixture model (Modi
et al., 2020; Jia et al., 2020; Ayoub et al., 2020), where the transition probability kernel is a linear
mixture of some basis kernels. Jia et al. (2020) proposed the UCRL-VTR algorithm under the linear
mixture model, where the transition probability kernel is a linear mixture of some basis kernels, with
rOpdH3{2

?
T q regret. Zhou et al. (2021a) proposed a variant of the method proposed by Jia et al.

(2020) and proved rOpdH
?
T q regret bound with a matching lower bound ΩpdH

?
T q.

These algorithms seem to cope with large state space, as their regret scales only polynomially in d.
However, it remains unclear the relationship between the feature dimension d and the state space
size S in linear MDPs. What is known is that in the worst case, d “ SA, a scenario referred to as
the tabular MDP (Example 2.1 in Jin et al. (2020)). Moreover, Du et al. (2020) showed that there
exists a family of MDPs where the sample complexity can be lower bounded by S even with good
representations under linear function approximation. However, they considered only special instances.
Furthermore, Hwang & Oh (2022) showed that UC-MatrixRL (Yang & Wang, 2020) can depend
on the size of the state space despite the use of function approximation. However, their analysis
is specifically applicable to bilinear models and does not include linear MDPs. In Theorem 1, we
rigorously examine the relationship between d and S in linear MDPs, establishing that d can be
proportional to S in the majority of real-world environments. To the best of our knowledge, this is
the first work to demonstrate the conditions under which d is large or small. In Corollary 1, 2, and 3,
we establish that d can be proportional to S in the majority of real-world environments. This implies
that the low-rank assumption, as suggested in many existing works (Zanette et al., 2020; Uehara et al.,
2021; Modi et al., 2024; Huang et al., 2023), often does not hold in the real world.

On the other hand, a key distinction between our algorithm and LSVI-UCB (Jin et al., 2020) lies in our
approach being model-based. This distinction primarily offers the benefit of reusability. In model-free
approaches, Q-values are defined by features and specific parameters, as exemplified by wπh in Jin
et al. (2020). Therefore, when two different states are mapped to the same aggregated state, they
become indistinguishable in terms of their Q-values because they share the same feature. However,
it’s important to note that the actual Q-values for these two states may still differ (refer Appendix D.3).
Essentially, model-free approaches fail to effectively leverage the hierarchical structure, even with
perfectly learned sub-structures and accurate mapping. Conversely, our model-based approach enables
the reuse of learned dynamics of subMDPs µ̂pnq

k,h in similar subMDPs. Therefore, it’s important to note
the fundamental intuition and significance of using a model-based approach to exploit the hierarchical
structure.

State Aggregation The study of state aggregation (or state abstraction) in RL has a long and rich
history, dating back to early work on approximating dynamic programs (Fox, 1973; Whitt, 1978; Bean
et al., 1987; Bertsekas et al., 1988). The pioneering work of Whitt (1978) laid a critical foundation
for comprehending the impact of state aggregation on value loss in MDPs. Building upon this, Dean
& Givan (1997) devised a method for identifying states with similar behaviors through the application
of the bisimulation property. In a similar vein, Li et al. (2006) introduced a unified framework for
state aggregation in MDPs, examining the conditions under which such aggregations can preserve
optimal behavior and affect existing convergence guarantees of well-known RL algorithms. More
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recent work has continued to clarify the conditions under which state abstractions preserve value
in MDPs (Abel et al., 2020). Previous research has also suggested regret or learning time bounds
with aggregated states (Wen & Van Roy, 2017; Dong et al., 2019). However, unlike our work, these
past studies did not explicitly leverage the hierarchical structure, a key component that our research
embraces.

Hierarchical Reinforcement Learning. There are several works that addressed the decomposition
of MDP into sub-problems (Dean & Lin, 1995; Singh & Cohn, 1997; Meuleau et al., 1998). Meuleau
et al. (1998) decomposed the original MDP into subMDPs and then solved independently under the
weakly coupled resource constraints. The concept of hierarchical RL, defined as an agent’s ability to
act and plan at multiple temporal abstraction levels, was established by Sutton et al. (1999); Barto
& Mahadevan (2003). However, few works have quantified the benefits of Hierarchical RL (HRL)
from a theoretical perspective. For instance, Fruit et al. (2017) introduced semi-MDP versions of
exploration-exploitation algorithms, and Mann et al. (2015) proposed an algorithm that quickly learns
policies and models in new circumstances by solving smaller problems. The closest related to our
work is Wen et al. (2020), which proposed a model-based Thompson sampling-style HRL algorithm
that exploits repeating subMDP structures. They provided a regret bound that shows a significant
improvement when the maximum size of subMDPs multiplied by the number of equivalent subMDPs
is much smaller than the state space size. However, their work only considered tabular MDPs for
hierarchical structure utilization, leaving the question of designing a provably efficient HRL algorithm
for linear MDPs with sub-structure still unanswered.

B ADDITIONAL EXPLANATION FOR SECTION 4

B.1 PROOF OF THEOREM 1

Proof of Theorem 1. For horizon h P rHs, let Php¨ | ¨, ¨q P RSAˆS be the transition kernel of an
MDP M.

We first show that the feature dimension d is greater than or equal to the rank of the transition kernel
rankpPhq. In the linear MDPs, the transition kernel can be expressed as Php¨ | ¨, ¨q “ ΦJµh, where
Φ “ rϕps1, a1q, ϕps1, a2q, ¨ ¨ ¨ , ϕpsS , aAqs P RdˆSA and µh “ rµhps1q, . . . , µhpsSqs P RdˆS .
Thus, d cannot be smaller than rankpPhq.

Now, we select any row, which corresponds to a specific state-action pair ps, aq, from the transition
kernel Ph and label it as vector v1. By rearranging the columns, we can make v1 have zero probabili-
ties for U ` 1, . . . , S-th entries and have non-zero probabilities for at least one of 1, . . . , U -th entries.
This is possible due to the condition that the maximum number of directly reachable states is less
than equal to U , i.e., for any ps, aq, there are non-zero transition probabilities for transitioning from
ps, aq to a subset of at most U states.

Furthermore, given the condition that every state is accessible from at least one other state (refer
problem setting in Section 3), there exists a row vector that has non-zero probabilities for at least one
of U ` 1, . . . , S-th entries. We denote this vector as v2. By reordering the U ` 1, . . . , S-th columns,
we can make v2 have zero probabilities for 2U ` 1, . . . , S-th entries and have non-zero probabilities
for at least one of U ` 1, . . . , 2U -th entries. Consequently, it is evident that v1 and v2 are linearly
independent.

Following a similar logic, we can choose a row vector v3 that has zero probabilities for 3U`1, . . . , S-
th columns and have non-zero probabilities for at least one of 2U`1, . . . , 3U -th entries, by reordering
the columns properly. It is also clear that v1, v2, and v3 are linearly independent from one another.

By recursively applying this logic, we can choose row vectors v1, . . . , vtS{Uu that are linearly
independent from one another. This directly implies that rankpPhq ě tS{U u. Therefore, we derive
that

d ě rankpPhq ě tS{U u.
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B.2 EXAMPLE FOR THEOREM 1

For a better explanation, we provide an example for Theorem 1. Consider an MDP where S “

ts1, s2, . . . , s9u, A “ tau, and the transition kernel is as follows:

Ph “

s1 s2 s3 s4 s5 s6 s7 s8 s9
¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

ps1, aq 1{3 1{3 1{3 0 0 0 0 0 0 Ñ v1
ps2, aq 0 0 1{2 0 1{2 0 0 0 0
ps3, aq 1{5 1{5 3{5 0 0 0 0 0 0
ps4, aq 0 0 0 1{4 0 1{4 1{2 0 0
ps5, aq 0 0 0 0 0 0 0 0 1
ps6, aq 0 1{2 1{2 0 0 0 0 0 0
ps7, aq 0 0 0 0 0 2{3 0 1{3 0 Ñ v2
ps8, aq 0 0 0 1{3 1{3 1{3 0 0 0
ps9, aq 1{2 0 1{2 0 0 0 0 0 0

Note that U “ 3 ď S and every state is accessible from at least one other state. First, choose any row
of the transition kernel. Assume that we choose the first row and denote it as v1. The row vector v1
has zero probabilities for 4, . . . , 9-th entries and has non-zero probabilities for 1, 2, 3-th entries.

Second, we can choose the seventh row and denote it as v2. By switching the columns corresponding
to s4 and s8, we get

Ph “

s1 s2 s3 s8 s5 s6 s7 s4 s9
¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

ps1, aq 1{3 1{3 1{3 0 0 0 0 0 0 Ñ v1
ps2, aq 0 0 1{2 0 1{2 0 0 0 0
ps3, aq 1{5 1{5 3{5 0 0 0 0 0 0
ps4, aq 0 0 0 0 0 1{4 1{2 1{4 0
ps5, aq 0 0 0 0 0 0 0 0 1
ps6, aq 0 1{2 1{2 0 0 0 0 0 0
ps7, aq 0 0 0 1{3 0 2{3 0 0 0 Ñ v2
ps8, aq 0 0 0 0 1{3 1{3 0 1{3 0 Ñ v3
ps9, aq 1{2 0 1{2 0 0 0 0 0 0

Now, the row vector v2 has zero probabilities for 7, 8, 9-th columns and has non-zero probabilities
for at least one of 4, 5, 6-th columns.

Finally, we choose the eighth row for v3. Since v1, v2 and v3 are linearly independent of one another,
the rank of Ph is lower bounded by S{U “ 3.

B.3 PROOF OF COROLLARY 2

Proof of Corollary 2. We provide the proof by examining two cases: 1) when the state space is
countably infinite, and 2) when it is normed, compact, and uncountably infinite.

Case 1. countably infinite state space.
We prove this by contradiction. Assume that the feature dimension d is finite. Then, the transition
kernel possesses a finite number of linearly independent rows and columns. Note that for a countably
infinite state space, the transition kernel can be viewed as an infinite matrix with both its rows and
columns being infinite.

Now, we follow the same logic from the proof of Theorem 1. We choose any row, which corresponds
to a specific state-action pair ps, aq, from the transition kernel Ph and label it as vector v1. Since the
maximum number of directly reachable states is less than equal to U , by rearranging the columns
of Ph properly, we can make v1 have zero probabilities for U ` 1, . . . -th entries and have non-zero
probabilities for at least one of 1, . . . , U -th entries.

Furthermore, given the condition that every state is accessible from at least one other state (refer
Section 3), there exists a row vector that has non-zero probabilities for at least one of U ` 1, . . . ,-th
entries. We denote this vector as v2. By reordering the U ` 1, . . . -th columns, we can make v2
have zero probabilities for 2U ` 1, . . . -th entries and have non-zero probabilities for at least one of
U ` 1, . . . , 2U -th entries. Consequently, it is evident that v1 and v2 are linearly independent.
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By recursively applying this logic, we can identify a set of linearly independent row vectors Γ :“
tv1, v2 . . . }. Since the cardinality of the state space is infinite, the cardinality of the set Γ is also
infinite. This contradicts our initial assumption that the transition kernel possesses a finite number of
linearly independent rows. Therefore, we conclude that d must be infinite.

Case 2. normed, compact, and uncountably infinite state space.
For the normed, uncountably infinite (or continuous), and compact state space, we can utilize the
ε-covering. Let N pS, ε, ρq be the the minimal ε-covering number of S with respect to a distance
metric ρ. Further, we define rS Ď S as the set of all center points of the covering balls. Note that rS is
a finite space since the state space is compact and | rS| “ N pS, ε, ρq. Let rZ Ď S ˆA be the minimum
size subset of the state-action space containing every element in rS , i.e., rZ Ě rS , such that every state
in rS is accessible from at least one state-action pair in rZ , i.e.,

ř

ps,aqP rZ Phps1 | s, aq ą 0 for all

s1 P rS and rZ Ě rS . Note that | rS| ď | rZ| ď 2| rS| ă 8. This is because if s1 P rS is not accessible from
rS ˆ A, we only need to add one state-action pair ps, aq to rZ that can transition to s1 P rS. Hence,
every state is accessible from at least one state-action pair in the reduced form of the transition kernel
rPh P R| rZ|ˆ| rS|.

Let rU be the maximum number of directly reachable states for rPh. Then, by Theorem 1, we can
identify linearly independent row vectors every rU columns. Therefore, we have that

rankprPhq ě t| rS|{rU u.

On the other hand, we know that d cannot be smaller than rankprPhq; thus, we have d ě rankprPhq.
Hence, for any ε ą 0, we have that

d ě rankprPhq ě t| rS|{rU u ě t| rS|{U u “ tN pS, ε, ρq{U u ą N pS, ε, ρq{U ´ 1,

where the third inequality is by the fact that rU ď U . Since N pS, ε, ρq is non-decreasing as ε goes to
zero, we get

sup
εą0

N pS, ε, ρq{U “ lim
εÑ0

N pS, ε, ρq{U “ 8,

where the last inequality holds since U is finite. Therefore, d is infinite.

B.4 PROOF OF COROLLARY 3

Proof of Corollary 3. For the p-dimensional Euclidean state space S Ă Rp, we can use the ε-covering
method. Let U represent the set of directly reachable states with the maximum volume, i.e., U :“ Ss̄,ā,
where ps̄, āq “ argmaxps,aqPSˆA VolpSs,aq. Then, we denote the minimal ε-covering number of U
with respect to a distance metric ρ as N pU , ε, ρq and define rUpεq as the sets of all center points of the
ε-covering balls for U . We further denote the minimal ε-covering number of X :“ SzU “ S Y Uc
with respect to a distance metric ρ as N pX , ε, ρq and define rX pεq as the sets of all center points
of the ε-covering balls for X . Note that | rUpεq| “ N pU , ε, ρq ă 8, | rX pεq| “ N pX , ε, ρq ă 8,
and rUpεq X rX pεq “ H since the center points of the ε-covering balls are interior points of the
corresponding set.

Now we denote ĂWpεq “ rUpεq Y rX pεq. Let rZpεq Ď S ˆ A be the minimum size subset of the
state-action space containing every element in ĂWpεq, i.e., rZpεq Ě ĂWpεq, such that every state in
ĂWpεq is accessible from at least one state-action pair in rZpεq, i.e.,

ř

ps,aqP rZpεq
Phps1 | s, aq ą 0

for all s1 P rSpεq. Note that |ĂWpεq| ď | rZpεq| ď 2|ĂWpεq| ă 8. This is because if s1 P ĂWpεq is
not accessible from ĂWpεq ˆ A, we only need to add one state-action pair ps, aq to rZpεq that can
transition to s1 P ĂWpεq. Hence, every state is accessible from at least one state-action pair in the
reduced form of the transition kernel rPhpεq P R| rZpεq|ˆ| ĂWpεq|.
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Note that rUpεq is the set of directly reachable states for rPhpεq. By applying Theorem 1, we can
identify linearly independent row vectors every | rUpεq| columns. Hence, for all ε ą 0, we have

rankprPhpεqq ě

[

|ĂWpεq|

| rUpεq|

_

. (B.1)

Moreover, by the definition of covering number, we know that

VolpSq ď Vol pεBq ¨ N pS, ε, ρq ď Vol pεBq ¨ |ĂWpεq|, (B.2)

where the operator Volp¨q represents a volume of a set, B is the unit ball norm; thus εB denotes
the norm ball with radius ε, N pS, ε, ρq is the minimal ε-covering number of S with respect to a
distance metric ρ, and the last inequality holds since N pS, ε, ρq ď N pU , ε, ρq ` N pX , ε, ρq “

| rUpεq| ` | rX pεq| “ |ĂWpεq|.

Furthermore, we have

| rUpεq| “ N pU , ε, ρq ď T pU , ε, ρq ď
VolpU `̀̀ ε

2Bq

Volp ε2Bq
, (B.3)

where `̀̀ is the Minkowski addition, T pU , ε, ρq is the maximal ε-packing number with respect to
a distance metric ρ, the first inequality holds by Lemma G.3, and the last inequality holds by the
definition of ε-packing; ε{2 packing norm balls are disjoint.

On the other hand, we know that d cannot be smaller than rankprPhpεqq; thus, we have

d ě rankprPhpεqq. (B.4)

Combining Eq. B.1, B.2, B.3, and B.4, for all ε ą 0, we get

d ě rankprPhpεqq ě

[

|ĂWpεq|

| rUpεq|

_

ě

[

VolpSq{VolpεBq

| rUpεq|

_

“

Z

VolpSq{VolpBpεqq

VolpU `̀̀ ε
2Bq{Volp ε2Bq

^

“

Z

2p ¨
VolpSq

VolpU `̀̀ ε
2Bq

^

ą 2p ¨
VolpSq

VolpU `̀̀ ε
2Bq

´ 1.

Hence, by taking supremums over ε ą 0, we derive that

d ą 2p ¨ sup
εą0

VolpSq

VolpU `̀̀ ε
2Bq

´ 1 “ 2p ¨ lim
εÑ0

VolpSq

VolpU `̀̀ ε
2Bq

´ 1

“ 2p ¨
VolpSq

VolpUq
´ 1,

where the first equality is by the fact that VolpU `̀̀ ε
2Bq is non-increasing as ε decreases. This

concludes the proof.

C EXAMPLE ENVIRONMENT: RIVERSWIM

In this section, we provide a toy example to offer an in-depth explanation of the main point of our
paper. First, we validate Theorem 1 in this environment. Subsequently, we demonstrate the benefits
of using a hierarchical structure by showing that d3ψN ! d3.

The RiverSwim, as illustrated in Figure C.1, is comprised of S states arranged sequentially, with each
edge value representing the transition probability. From the starting point at the far left state, noted
as s1, the agent has the option to navigate to the left — an action represented by the dashed lines —
thereby earning a small reward, i.e., rps1, leftq “ 0.005. Alternatively, the agent can opt to move to
the right — an action depicted by the solid lines — in each successive state. The objective for the
agent is to maximize its total return by attempting to arrive at the far right state, denoted as sS . Here,
the agent can earn a large reward rpsS , rightq “ 1 by choosing to navigate to the right.
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s1 s2 ... sS´1 sS
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Figure C.1: The “RiverSwim” environment Osband et al. (2013)

The transition kernel of the environment is as follows:

Ph “

¨

˚

˚

˚

˚

˚

˚

˝

˛

‹

‹

‹

‹

‹

‹

‚

Phps1 | s1, leftq Phps2 | s1, leftq Phps3 | s1, leftq Phps4 | s1, leftq . . .
Phps1 | s1, rightq Phps2 | s1, rightq Phps3 | s1, rightq Phps4 | s1, rightq . . .
Phps1 | s2, leftq Phps2 | s2, leftq Phps3 | s2, leftq Phps4 | s2, leftq . . .
Phps1 | s2, rightq Phps2 | s2, rightq Phps3 | s2, rightq Phps4 | s2, rightq . . .
Phps1 | s3, leftq Phps2 | s3, leftq Phps3 | s3, leftq Phps4 | s3, leftq . . .
Phps1 | s3, rightq Phps2 | s3, rightq Phps3 | s3, rightq Phps4 | s3, rightq . . .

. . . . . . . . . . . . . . .

“

¨

˚

˚

˚

˚

˚

˚

˝

˛

‹

‹

‹

‹

‹

‹

‚

1 0 0 0 . . .
0.4 0.6 0 0 . . .
1 0 0 0 . . .

0.05 0.6 0.35 0 . . .
0 1 0 0 . . .
0 0.05 0.6 0.35 . . .
. . . . . . . . . . . . . . .

(C.1)

The agent is allowed to move left, right, or stay in the same state. This means the maximum number
of directly reachable states is 3, i.e., U “ 3. Regardless of an increase in the total number of states,
U stays fixed at 3. Consequently, even in this simple example, we can’t sidestep a feature dimension
that depends on S, which means the learning complexity will proportionally increase with S, even
when using linear function approximation.

We will now demonstrate, using the toy example, how our main claim presented in Section 7 –
specifically that d3ψN ! d3 – is valid. Let the number of state is 100, i.e., S “ 100. In this
environment, each of the 100 states can be considered as a separate subMDP, and consequently, the
number of subMDPs is equal to the size of the state space, i.e., L “ S “ 100. Then, we have

• The maximum size of aggregated subMDPs, M “ 3: One internal state and its neighboring
states.

• The number of aggregated subMDPs, N “ 3: All subMDPs, excluding s1 and s100, which
means s2, s3, . . . , s99, are grouped into a single aggregated subMDP. Meanwhile, s1 and
s100 each form distinct aggregated subMDPs.

• MN “ 32 ! S.

• The maximum size of directly reachable states, U “ 3.

• The feature dimension of aggregated subMDPs, dψ ď M “ 3: This always holds true.

• The feature dimension of the original MDP, d “ S “ 100: The transition kernel has full
rank.

Hence, we get

• d3ψN ď 34.

• M3N “ 34.

• SM2 “ 100 ¨ 32.

• S3{U3 “ 1003{3.

Therefore, we derive that d3ψN ď M3N ! SM2 ă S3{U3 ă d3.
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D DYNAMICS AGGREGATION

D.1 COMPARISON TO EXISTING FRAMEWORKS

In this section, we provide a comprehensive description of our proposed framework described in
Section 5.
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a) Original MDP b) State Aggregation c) Equivalence Mapping d) Dynamics Aggregation

Figure D.1: (a) A simple Gridworld MDP, (b) the aggregated MDP induced by the state aggregation,
(c) the partitioned subMDPs with equivalence mappings, and (d) the aggregated MDP induced by the
dynamics aggregation

As a motivating example, an agent is placed in a wide hallway, and tasked with reaching an exit
located at the far end of the hall (see Figure D.1). The traditional problem setup might use a Cartesian
grid, where the agent’s location is determined by x and y coordinates, and it navigates using up,
down, left, and right actions. Please note that the reduced number of states (circles) in Figure D.1
does not imply a change in the actual MDP structure. Instead, it suggests a simplification in terms of
learning complexity.

A careful analysis of the problem reveals that the agent’s x coordinate is irrelevant for achieving
optimal behavior. Therefore, a state aggregation in this context would be a function that projects the
original state to an aggregated state that only tracks the y coordinate. This way, all original states
with the same x coordinate belong to the same abstract state, significantly reducing the size of the
state space. To intuitively grasp this concept, consider the scenario where you are walking down a
hallway without obstacles: if your objective is truly to make forward progress toward the exit of the
hall, then there is little need to pay attention to horizontal movement.

In contrast to state aggregation, equivalence mapping (Wen et al., 2020) does not project states into a
latent space. Instead, it partitions the original MDPs into disjoint subMDPs and groups them based
on identical or similar structures. In the example, the states in the third row (subMDP M2) and
the fourth row (subMDP M3) have the same transitions and reward functions, and therefore, an
equivalence mapping can be established between them. As these subMDPs are indistinguishable
in terms of their structures, an agent employing a hierarchical structure can treat them as a single
subMDP. This also significantly reduces the size of the state space. However, equivalence mapping
necessitates that every aspect of the states is identical, even when certain details may not be crucial
for discovering the optimal policy. This requirement can potentially constrain the range of scenarios
where this framework can be effectively applied.

Our framework, dynamics aggregation, combines the benefits of both state aggregation and equiva-
lence mapping. It operates by partitioning the original MDPs into subMDPs. These subMDPs are
then projected into aggregated subMDPs that focus solely on the y coordinate: the subMDP M1

into Mp1q, the subMDPs M2,M3 into Mp2q (their dynamics are the same), and the subMDP M4

into Mp3q. Notably, our framework is explicitly designed to account for repeating structures in the
data, enhancing its effectiveness. This approach results in a considerably simplified representation
compared to the other two frameworks. Moreover, dynamics aggregation only demands that the
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aggregated states are identical, not minute details. This broadens its applicability compared to
equivalence mapping, making it a more versatile framework for a wide range of scenarios.

D.2 INTUITION BEHIND THE DYNAMICS AGGREGATION

Dynamics aggregation has practical implications for human learning. For instance, a driver who can
navigate New York is likely not only to adapt quickly to driving in San Francisco but also to have
a high probability of being able to drive in Paris. Similarly, a driver who has practiced exclusively
within Manhattan and possesses a driver’s license should have no trouble driving to JFK in Queens.
This adaptability largely stems from the existence of repeating structures and the mappings between
similar structures. Often, such mappings are readily available, and we humans excel at leveraging
them. These mappings need not be perfect; approximations are sufficient, as discussed in this paper.
We incorporate these insights into our proposed framework.

D.3 COMPARISON TO MISSPECIFIED LINEAR MDP

At first glance, one might think it feasible to learn directly from an aggregated MDP (which includes
a misspecification error) without employing Dynamics Aggregation, since the misspecified Linear
MDP (Jin et al., 2020) also considers the features with a misspecified transition error. However, this
approach is not feasible. The critical issue is that the Q-value can differ for two different states, even
if they are mapped to the same aggregated (or latent) state. This discrepancy renders direct learning
from such an aggregated MDP impossible. Let’s provide an example:

Consider an MDP with S “ ts1, s2u, A “ tau, and rps1, aq “ 1 and rps2, aq “ 0. Let the horizon
length H be 1. And assume that s1 and s2 are exactly mapped into one aggregated state s̄1. Then, it
is clear that Qps1, aq “ 1 and Qps2, aq “ 0 since H “ 1.

Therefore, if we consider only the aggregated MDP, we cannot differentiate between Qps1, aq and
Qps2, aq. Note that in our definition of Q-values in Definition 5, we distinctly define the aggregated
Q-values depending on the subMDP to which the state s belongs. Hence, they have the subMDP
index i.

E NOTATION

We offer a Table E.1 for convenient reference.

We denote H as the episode length, K as the total number of episodes, and T “ HK as the time
elapsed. We denote k P rKs as the current episode and h P rHs as the current horizon step. We use
subscript k, h to indicate the quantity at horizon step h in episode k. We denote L as the number of
subMDPs induced by Definition 3. We denote N as the number of aggregated subMDPs defined by
Definition 4 and M as the maximum size of the state space of aggregated subMDPs.

For all s P S, we can always specify one corresponding internal state set Spnq of the aggregated
subMDPs Mpnq, because the entire state space is divided into disjoint subMDPs and each subMDP
i has an unique corresponding aggregated subMDPs Mpnq. Therefore, for all s P S, if s P Si and
Dψ

i )pnq

h psq, we can simply denote s̄ “ ψ
i )pnq

h psq. We can abbreviate i or n index, because those
indexes are determined by the state s. In this section, for the sake of simplicity, we will use d to
denote the feature dimension of the aggregated state space, i.e., d “ dψ .

F PROOF OF THEOREM 2

In this section, we prove the regret bound in Theorem 2. We begin by propose a useful lemma:

Lemma F.1. For any ps, aq P S ˆ A and h P rHs, let s P Si, Dψ
i )pnq

h psq, and s̄ “ ψ
i )pnq

h psq. Given
any distributions ppnq )ip¨ | s̄q P ∆pSiq, define MpnqpSpnq Y Epnq,A,Ppnq

h , r
pnq

h , Epnqq for n P rN s,
where rpnq

h ps̄, aq “ Es„ppnq )ip¨|s̄qrrihps, aqs, and Ppnq

h ps̄1 | s̄, aq “ Es„ppnq )ip¨|s̄qrPihΨ
i )pnq

h ps̄1 | s, aqs.
Then, we have

|r
pnq

h ps̄, aq ´ rihps, aq| ď ϵr, }Ppnq

h p¨ | s̄, aq ´ PihΨ
i )pnq

h p¨ | s, aq}1 ď ϵp.
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Table E.1: Symbols

sk,h state encountered in horizon h of episode k
ak,h action taken by the algorithm in horizon h of episode k

ψ
i )pnq

h known aggregation mapping from Si Y E i to Spnq Y Epnq in horizon h

Ψ
i )pnq

h aggregation mapping kernel satisfying

Ψ
i )pnq

h ps1, s̄1q “ I
´

s1 P Si Y E i, s̄1 P Spnq Y Epnq, ψ
i )pnq

h ps1q “ s̄1

¯

Mpnq aggregated subMDPs induced by ψi )pnq

h

s̄k,h “ ψ
i )pnq

h psk,hq where sk,h P Si and Dψ
i )pnq

h psq

δps̄q S̄-dimensional one-hot vector where the entry corresponding to s̄ is
one

ϵ
pnq

h ps̄k,h, ak,h, s̄k,h`1q “ Ppnq

h p¨ | s̄k,h, ak,hq
J

´ δ ps̄k,h`1q

Dpnq

k,h “

!´

s̄k1,h, ak1,h, s̄k1,h`1q : sk1,h P Si, s̄k1,h “ ψ
i )pnq

h psk1,hq

¯)k´1

k1“1
λ regularization parameter

Λ
pnq

k,h “ λI `
ř

ps̄,a,s̄1qPDpnq

k,h

ϕps̄, aqϕps̄, aqJ

pµ
pnq

k,h “

´

Λ
pnq

k,h

¯´1
ř

ps̄,a,s̄1qPDpnq

k,h

ϕps̄, aqδps̄1qJ,

pPpnq

k,hp¨ | s̄, aq “ ϕps̄, aqJ
pµ

pnq

k,h

d “ dψ , the feature dimension of the aggregated state space

pQ
ψpiq
k,h ps̄, aq “ min

"

rhps̄, aq ` ϕps̄, aqJ
pµ

pnq

k,h
pV
ψpiq
h`1 ` β }ϕps̄, aq}´

Λ
pnq

k,h

¯´1 , H

*

Proof. We only prove for the transition part; the reward part follows from a simi-
lar (and easier) argument. Consider any fixed s̄ and a. By Definition 4, we have
›

›

›
PihΨ

i )pnq

h p¨ | s1, aq ´ PihΨ
i )pnq

h p¨ | s2, aq

›

›

›

1
ď ϵp for any ψi )pnq

h ps1q “ ψ
i )pnq

h ps2q. And let Ψpnq )i
h

is the inverse image function of Ψi )pnq

h . Then, we get

}Ppnq

h p¨ | s̄, aq ´ PihΨ
i )pnq

h p¨ | s, aq}1

“

›

›

›

›

›

›

ÿ

rsPΨ
pnq )i
h ps̄q

ppnq )iprs | s̄qPihΨ
i )pnq

h p¨ | rs, aq ´ PihΨ
i )pnq

h p¨ | s, aq

›

›

›

›

›

›

1

“

›

›

›

›

›

›

ÿ

rsPΨ
pnq )i
h ps̄q

ppnq )iprs | s̄q
´

PihΨ
i )pnq

h p¨ | rs, aq ´ PihΨ
i )pnq

h p¨ | s, aq

¯

›

›

›

›

›

›

1

ď
ÿ

rsPΨ
pnq )i
h ps̄q

ppnq )iprs | s̄q
›

›

›

´

PihΨ
i )pnq

h p¨ | rs, aq ´ PihΨ
i )pnq

h p¨ | s, aq

¯
›

›

›

1

ď
ÿ

rsPΨ
pnq )i
h ps̄q

ppnq )iprs | s̄qϵp “ ϵp.

Now, we provide essential lemmas for the proof of the theorem.

Lemma F.2 (Difference between pµ
pnq

k,h and µ
pnq

h ). For all k P rKs, h P rHs, and n P rN s, we have:

pµ
pnq

k,h ´ µ
pnq

h “ ´λ
´

Λ
pnq

k,h

¯´1

µ
pnq

h `

´

Λ
pnq

k,h

¯´1 ÿ

ps̄,a,s̄1qPDpnq

k,h

ϕps̄, aqϵ
pnq

h ps̄, a, s̄1qJ,
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where ϵ
pnq

h ps̄, a, s̄1q :“ Ppnq

h p¨ | s̄, aq
J

´ δ ps̄1q

Proof.

pµ
pnq

k,h “

´

Λ
pnq

k,h

¯´1 ÿ

ps̄,a,s̄1qPDpnq

k,h

ϕps̄, aqδps̄1qJ

“

´

Λ
pnq

k,h

¯´1 ÿ

ps̄,a,s̄1qPDpnq

k,h

ϕps̄, aq

´

Ppnq

h p¨ | s̄, aq ` ϵ
pnq

h ps̄, a, s̄1qJ
¯

“

´

Λ
pnq

k,h

¯´1 ÿ

ps̄,a,s̄1qPDpnq

k,h

ϕps̄, aq

´

ϕps̄, aqJµ
pnq

h ` ϵ
pnq

h ps̄, a, s̄1qJ
¯

“

´

Λ
pnq

k,h

¯´1 ÿ

ps̄,a,s̄1qPDpnq

k,h

ϕps̄, aqϕps̄, aqJµ
pnq

h `

´

Λ
pnq

k,h

¯´1 ÿ

ps̄,a,s̄1qPDpnq

k,h

ϕps̄, aqϵ
pnq

h ps̄, a, s̄1qJ

“

´

Λ
pnq

k,h

¯´1 ´

Λ
pnq

k,h ´ λI
¯

µ
pnq

h `

´

Λ
pnq

k,h

¯´1 ÿ

ps̄,a,s̄1qPDpnq

k,h

ϕps̄, aqϵ
pnq

h ps̄, a, s̄1qJ

“ µ
pnq

h ´ λ
´

Λ
pnq

k,h

¯´1

µ
pnq

h `

´

Λ
pnq

k,h

¯´1 ÿ

ps̄,a,s̄1qPDpnq

k,h

ϕps̄, aqϵ
pnq

h ps̄, a, s̄1qJ.

We conclude the proof by rearranging terms.

Lemma F.3. Fix V : S Ñ r0, HsS and δ1 P p0, 1q. For all k P rKs, h P rHs and n P rN s, with
probability at least 1 ´ δ1, we have
›

›

›

›

›

›

›

ÿ

ps̄,a,s̄1qPDpnq

k,h

ϕps̄, aq
`

ϵ
pnq

h ps̄, a, s̄1qJV
˘

›

›

›

›

›

›

›

´

Λ
pnq

k,h

¯´1

ď 3H

˜

ln
´ 1

δ1

¯

`
d

2
ln

˜

pk ´ 1qC2
ϕ ` λ

λ

¸¸1{2

.

Proof. Denote Hk,h by all information from the beginning of the learning process up to and including
ps̄k,h, āk,hq. Then, we first check the noise terms tϵ

pnq

h ps̄k,h, ak,h, s̄k,h`1qJV u
ps̄k,h,ak,h,s̄k,h`1qPDpnq

k,h

.

Note that V is independent of the data because it is pre-fixed. Thus, we have

Erϵ
pnq

h ps̄k,h, ak,h, s̄k,h`1qJV | Hk,hs “ 0

|ϵ
pnq

h ps̄k,h, ak,h, s̄k,h`1qJV | ď }ϵ
pnq

h ps̄k,h, ak,h, s̄k,h`1q}1}V }8 ď 2H.

Therefore, this is a martingale difference sequence.

By lemma G.1, all k P rKs and n P rN s, with probability at least 1 ´ δ1, we have:
›

›

›

›

›

›

›

ÿ

ps̄,a,s̄1qPDpnq

k,h

ϕps̄, aq
`

ϵ
pnq

h ps̄, a, s̄1qJV
˘

›

›

›

›

›

›

›

´

Λ
pnq

k,h

¯´1

ď 3H

˜

ln

˜

detpΛ
pnq

k,hq1{2 detpλIq´1{2

δ1

¸¸1{2

ď 3H

˜

ln
´ 1

δ1

¯

`
d

2
ln

˜

pk ´ 1qC2
ϕ ` λ

λ

¸¸1{2

,

where the last inequality is by Eq. F.4.

Lemma F.4 (ε-covering lemma). For a quadruplet of pµ, V, β,Λq where V P r0, HsS , µ P RdˆS

and }µV }2 ď CµH
?
d, β P r0, Bs, and the minimum eigen value of Λ satisfying λminpΛq ě λ, we

define Oµ,V,β,Λ : S Ñ R as follows:

Oµ,V,β,Λpsq “ min
!

max
a

`

rps, aq ` ϕps, aqJµV ` β}ϕps, aq}Λ´1

˘

, H
)

,@s P S.
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We also denote the function class O as:

O “ tOµ,V,β,Λ : }µV }2 ď CµH
?
d, β P r0, Bs, λminpΛq ě λu.

Suppose }ϕps, aq}2 ď Cϕ for all ps, aq. Denote ε-covering number of O as Nε with respect to the
distance distpO,O1q “ supx |Opxq ´O1pxq|. Then, we have

lnp|Nε|q ď d ln

˜

1 `
4CϕCµH

?
d

ε

¸

` d2 ln

˜

1 `
8B2C2

ϕ

?
d

λε2

¸

.

Proof. Equivalently, we can reparametrize the function class O by defining A “ β2Λ´1. Then, we
get

Oµ,V,Apsq “ min
!

max
a

`

rps, aq ` ϕps, aqJµV ` }ϕps, aq}A
˘

, H
)

, (F.1)

where }µV }2 ď CµH
?
d and }A}F ď B2

?
d{λ. Consider any two functionsO1, O2 P O taking the

form in Eq. F.1, parameterized by pµ1, V1,Λ1q and pµ2, V2,Λ2q, respectively. Since both mint¨, Hu

and maxa are contraction maps, we have

distpO1, O2q

ď sup
s,a

ˇ

ˇ

`

rps, aq ` ϕps, aqJµ1V1 ` }ϕps, aq}A1

˘

´
`

rps, aq ` ϕps, aqJµ2V2 ` }ϕps, aq}A2

˘
ˇ

ˇ

ď sup
ϕ:}ϕ}2ďCϕ

ˇ

ˇ

`

ϕJµ1V1 ` }ϕ}A1

˘

´
`

ϕJµ2V2 ` }ϕ}A2

˘
ˇ

ˇ

ď sup
ϕ:}ϕ}2ďCϕ

|ϕpµ1V1 ´ µ2V2q| ` sup
ϕ:}ϕ}2ďCϕ

b

|ϕJpA1 ´ A2qϕ|

ď Cϕ}pµ1V1 ´ µ2V2q}2 ` Cϕ
a

}A1 ´ A2}F , (F.2)

where the third inequality holds due to the fact that for any x, y ě 0, |
?
x´

?
y |ď

a

|x´ y|. Now
we consider the ε{p2Cϕq-Net Nε{p2Cϕq,µV over tµV P Rd : }µV }2 ď CµH

?
du and ε2{p4C2

ϕq-Net
Nε2{p4C2

ϕq,A over tA P Rdˆd : }A}F ď B2
?
d{λu. By applying Lemma G.2, we can bound the size

of ε-net Nε for O as follows:

lnp|Nε|q ď ln |Nε{p2Cϕq,µV | ` ln |Nε2{p4C2
ϕq,A|

ď d ln

˜

1 `
4CϕCµH

?
d

ε

¸

` d2 ln

˜

1 `
8B2C2

ϕ

?
d

λε2

¸

.

Lemma F.5. For all pk, hq P rKs ˆ rHs and all n P rN s, we have:

ÿ

pk1,s̄,aqPY
pnq

k,h

min

#

1, }ϕps̄, aq}2́

Λ
pnq

k1,h

¯´1

+

ď 2 ln
detpΛ

pnq

k`1,hq

detpλIq
ď 2d ln

˜

C2
ϕk ` λ

λ

¸

,

where Y pnq

k,h :“
␣`

k1, s̄k1,h, ak1,hq : s̄k1,h P Spnq
˘(k

k1“1
.

Proof. Since, for any x P r0, 1s, it holds that x ď 2 lnp1 ` xq, we have

ÿ

pk1,s̄,aqPY
pnq

k,h

min

"

1, }ϕps̄, aq}2́

Λ
pnq

k1,h

¯´1

*

ď
ÿ

pk1,s̄,aqPY
pnq

k,h

2 ln

˜

1 ` }ϕps̄, aq}2́

Λ
pnq

k1,h

¯´1

¸

. (F.3)
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Now, we bound the right hand side of Eq. F.3. Since Λ
pnq

k`1,h “ Λ
pnq

k,h `

I
`

s̄k,h P Spnq
˘

ϕps̄k,h, ak,hqϕps̄k,h, ak,hqJ, we have

detpΛ
pnq

k`1,hq

“ detpΛ
pnq

k,hq ¨ det

˜

I `

c

´

Λ
pnq

k,h

¯´1

I
´

s̄k,h P Spnq
¯

ϕps̄k,h, ak,hqϕps̄k,h, ak,hqJ

c

´

Λ
pnq

k,h

¯´1
¸

“ detpΛ
pnq

k,hq ¨

˜

1 ` I
´

s̄k,h P Spnq
¯

}ϕps̄k,h, ak,hq}2́

Λ
pnq

k,h

¯´1

¸

“ . . .

“ detpΛ
pnq

0,hq ¨

k
ź

k1“1

˜

1 ` I
´

s̄k1,h P Spnq
¯

}ϕps̄k1,h, ak1,hq}2́

Λ
pnq

k1,h

¯´1

¸

“ detpΛ
pnq

0,hq ¨
ź

pk1,s̄,aqPY
pnq

k,h

˜

1 ` }ϕps̄, aq}2́

Λ
pnq

k1,h

¯´1

¸

“ detpλIq ¨
ź

pk1,s̄,aqPY
pnq

k,h

˜

1 ` }ϕps̄, aq}2́

Λ
pnq

k1,h

¯´1

¸

,

where Y pnq

k,h :“
␣`

k1, s̄k1,h, ak1,hq : s̄k1,h P Spnq
˘(k

k1“1
. Note that empty product, in case of Y pnq

k,h “

H, is one in convention. Therefore, we have

ÿ

pk1,s̄,aqPY
pnq

k,h

min

"

1, }ϕps̄, aq}2́

Λ
pnq

k1,h

¯´1

*

ď
ÿ

pk1,s̄,aqPY
pnq

k,h

2 ln

#

1 ` }ϕps̄, aq}2́

Λ
pnq

k1,h

¯´1

+

ď 2 ln
detpΛ

pnq

k`1,hq

detpλIq
,

which proves the first inequality of the lemma.
Next, we consider the second inequality. For the trace of Λpnq

k`1,h, we get

trpΛ
pnq

k`1,hq “ tr

¨

˚

˝

λI `
ÿ

pk1,s̄,aqPY
pnq

k,h

ϕps̄, aqϕps̄, aqJ

˛

‹

‚

“ λd`
ÿ

pk1,s̄,aqPY
pnq

k,h

}ϕps̄, aq}22 ď C2
ϕdk ` λd.

Then, since Λ
pnq

k`1,h is positive definite, we have

detpΛ
pnq

k`1,hq

detpλIq
ď

˜

trpΛ
pnq

k`1,h{dq

trpλI{dq

¸d

ď

˜

C2
ϕk ` λ

λ

¸d

, (F.4)

which concludes the proof.

We now can construct a uniform convergence argument for all O P O defined in Lemma F.4.

Lemma F.6. Fix δ1 P p0, 1q. Suppose that s̄k,h P Spnq. Then, for all k P rKs, h P rHs, and O P O,
there exists an constant C ą 0 such that, if we denote E as the event that

ˇ

ˇ

ˇ

´

ppPpnq

k,h ´ Ppnq

h qp¨ | s̄k,h, ak,hq

¯

¨O
ˇ

ˇ

ˇ
ď C ¨ dH lnpdT {δ1q ¨ }ϕps̄k,h, ak,hq}´

Λ
pnq

k,h

¯´1 ,

then P pEq ě 1 ´ δ1.
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Proof.

ˇ

ˇ

ˇ

´

ppPpnq

k,h ´ Ppnq

h qp¨ | s̄k,h, ak,hq

¯

¨O
ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ
ϕps̄k,h, ak,hqJppµ

pnq

k,h ´ µ
pnq

h q ¨O
ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ϕps̄k,h, ak,hqJλ
´

Λ
pnq

k,h

¯´1

µ
pnq

h ¨O

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ϕps̄k,h, ak,hqJ
´

Λ
pnq

k,h

¯´1 ÿ

ps̄,a,s̄1qPDpnq

k,h

ϕps̄, aqϵ
pnq

h ps̄, a, s̄1qJ ¨O

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

,

(F.5)

where ϕps̄k,h, ak,hq “ ϕps̄k,h, ak,hq and the last inequality is by Lemma F.2. First, we bound the
first term of Eq. F.5.

ˇ

ˇ

ˇ

ˇ

ϕps̄k,h, ak,hqJλ
´

Λ
pnq

k,h

¯´1

µ
pnq

h ¨O

ˇ

ˇ

ˇ

ˇ

ď
?
λ}ϕps̄k,h, ak,hq}´

Λ
pnq

k,h

¯´1}µ
pnq

h ¨O}2

ď Cµ

?
λdH}ϕps̄k,h, ak,hq}´

Λ
pnq

k,h

¯´1 , (F.6)

where the first inequality follows the fact that
´

Λ
pnq

k,h

¯´1

is at most 1{λ. Now, we bound the second
term of Eq. F.5.

ˇ

ˇ

ˇ

ˇ

ˇ

ϕps̄k,h, ak,hqJ
´

Λ
pnq

k,h

¯´1 ÿ

ps̄,a,s̄1qPDpnq

k,h

ϕps̄, aqϵ
pnq

h ps̄, a, s̄1qJ ¨O

ˇ

ˇ

ˇ

ˇ

ˇ

ď }ϕps̄k,h, ak,hq}´
Λ

pnq

k,h

¯´1

›

›

›

›

›

›

›

ÿ

ps̄,a,s̄1qPDpnq

k,h

ϕps̄, aqϵ
pnq

h ps̄, a, s̄1qJ ¨O

›

›

›

›

›

›

›

´

Λ
pnq

k,h

¯´1

.

(F.7)

For arbitrary O P O, by the definition of ε-cover, there exists a V P Nε, such that }O ´ V }8 ď ε.
Hence, we get

›

›

›

›

›

ÿ

ps̄,a,s̄1qPDpnq

k,h

ϕps̄, aq
`

ϵ
pnq

h ps̄, a, s̄1qJ ¨O
˘

›

›

›

›

›

´

Λ
pnq

k,h

¯´1

ď

›

›

›

›

›

›

›

ÿ

ps̄,a,s̄1qPDpnq

k,h

ϕps̄, aq
`

ϵ
pnq

h ps̄, a, s̄1qJV
˘

›

›

›

›

›

›

›

´

Λ
pnq

k,h

¯´1

`

›

›

›

›

›

›

›

ÿ

ps̄,a,s̄1qPDpnq

k,h

ϕps̄, aq
`

ϵ
pnq

h ps̄, a, s̄1qJpV ´Oq
˘

›

›

›

›

›

›

›

´

Λ
pnq

k,h

¯´1

ď

›

›

›

›

›

›

›

ÿ

ps̄,a,s̄1qPDpnq

k,h

ϕps̄, aq
`

ϵ
pnq

h ps̄, a, s̄1qJV
˘

›

›

›

›

›

›

›

´

Λ
pnq

k,h

¯´1

`
2εCϕkH

?
λ

ď 3H

˜

ln
1

δ1
`
d

2
ln

˜

pk ´ 1qC2
ϕ ` λ

λ

¸

` ln |Nε|

¸1{2

`
2εCϕkH

?
λ

,
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where the second inequality is by the fact that
›

›

›

›

›

›

›

ÿ

ps̄,a,s̄1qPDpnq

k,h

ϕps̄, aq
`

ϵ
pnq

h ps̄, a, s̄1qJpV ´Oq
˘

›

›

›

›

›

›

›

´

Λ
pnq

k,h

¯´1

ď 2εH

›

›

›

›

›

›

›

ÿ

ps̄,a,s̄1qPDpnq

k,h

ϕps̄, aq

›

›

›

›

›

›

›

´

Λ
pnq

k,h

¯´1

ď
2εH
?
λ

›

›

›

›

›

›

›

ÿ

ps̄,a,s̄1qPDpnq

k,h

ϕps̄, aq

›

›

›

›

›

›

›

2

ď
2εCϕkH

?
λ

,

and in the last inequality, we use Lemma F.3 with applying union bound over all functions in Nε.
Therefore, by applying Lemma F.4, we have
›

›

›

›

›

ÿ

ps̄,a,s̄1qPDpnq

k,h

ϕps̄, aq
`

ϵ
pnq

h ps̄, a, s̄1qJ ¨O
˘

›

›

›

›

›

´

Λ
pnq

k,h

¯´1

ď 3H

g

f

f

eln
1

δ1
`
d

2
ln

˜

pk ´ 1qC2
ϕ ` λ

λ

¸

` d ln

˜

1 `
4CϕCµH

?
d

ε

¸

` d2 ln

˜

1 `
8B2C2

ϕ

?
d

λε2

¸

`
2εCϕkH

?
λ

.

Now, we choose the hyperparameter B “ C ¨ dH lnpdT {δ1q where C is an absolute constant. Set
ε “ d{k, then there exists a absolute constant C 1 ą 0 such that

›

›

›

›

›

›

›

ÿ

ps̄,a,s̄1qPDpnq

k,h

ϕps̄, aq
`

ϵ
pnq

h ps̄, a, s̄1qJ ¨O
˘

›

›

›

›

›

›

›

´

Λ
pnq

k,h

¯´1

ď C 1 ¨ dH lnpdT {δ1q. (F.8)

Combining the results of Eq. F.6, Eq. F.7 and Eq. F.8 together, there exists a absolute constant C ą 0
such that

ˇ

ˇ

ˇ

ˇ

´

pPpnq

k,h ´ Ppnq

h

¯

p¨ | s̄k,h, ak,hq ¨O

ˇ

ˇ

ˇ

ˇ

ď Cµ

?
λdH ¨ }ϕps̄k,h, ak,hq}´

Λ
pnq

k,h

¯´1 ` C 1 ¨ dH lnpdT {δ1q ¨ }ϕps̄k,h, ak,hq}´
Λ

pnq

k,h

¯´1

ď C ¨ dH lnpdT {δ1q ¨ }ϕps̄k,h, ak,hq}´
Λ

pnq

k,h

¯´1 .

Lemma F.7 (Optimism). Suppose that event E defined in Lemma F.6 happens. Then, for all k P rKs

and h P rHs, we have

pQk,hps, aq ě Q˚
hps, aq ´HpH ` 1 ´ hqϵp, @s, a.

Proof. First, consider a fixed episode k. We prove via induction on h. For h “ H , the statement is
true since pQk,Hps, aq “ rps, aq “ Q˚

Hps, aq. Assume the lemma holds for some 1 ă h ` 1 ď H .
Then, for all s P S, we have

pVk,h`1psq “ max
a

pQk,h`1ps, aq ě V ˚
h`1psq ´HpH ´ hqϵp.
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For any ps, aq P S ˆ A and h P rHs, let s P Si, Dψ
i )pnq

h psq, and s̄ “ ψ
i )pnq

h psq. Then, we have

rhps̄, aq ` pPpnq

k,hp¨ | s̄, aqpV
ψpiq
k,h`1 ` β }ϕps̄, aq}´

Λ
pnq

k,h

¯´1 ´Q˚
hps, aq

“ β }ϕps̄, aq}´
Λ

pnq

k,h

¯´1 ` pPpnq

k,hp¨ | s̄, aqpV
ψpiq
k,h`1 ´ Pihp¨ | s, aqV ˚

h`1

ě β }ϕps̄, aq}´
Λ

pnq

k,h

¯´1 ` pPpnq

k,hp¨ | s̄, aqpV
ψpiq
k,h`1 ´ Pihp¨ | s, aqpVk,h`1 ´HpH ´ hqϵp

“ β }ϕps̄, aq}´
Λ

pnq

k,h

¯´1 ` ppPpnq

k,h ´ Ppnq

h qp¨ | s̄, aqpV
ψpiq
k,h`1 ` Ppnq

h p¨ | s̄, aqpV
ψpiq
k,h`1 ´ Pihp¨ | s, aqpVk,h`1

´HpH ´ hqϵp

“ β }ϕps̄, aq}´
Λ

pnq

k,h

¯´1 ` ppPpnq

k,h ´ Ppnq

h qp¨ | s̄, aqpV
ψpiq
k,h`1 `

´

Ppnq

h p¨ | s̄, aq ´ PihΨ
i )pnq

h p¨ | s, aq

¯

pV
ψpiq
k,h`1

´HpH ´ hqϵp

ě β }ϕps̄, aq}´
Λ

pnq

k,h

¯´1 ` ppPpnq

k,h ´ Ppnq

h qp¨ | s̄, aqpV
ψpiq
k,h`1 ´HpH ` 1 ´ hqϵp ě ´HpH ` 1 ´ hqϵp,

where the first inequality is by the inductive hypothesis that pVk,h`1ps1q ě V ˚
h`1ps1q ´HpH ´ hqϵp

for all s1 P S, the third equality is by the fact that pVh`1ps1q “ pV
ψpiq
h`1 ps̄1q for s1 P Si Y E i and

Pihps1 | s, aq “ 0 for s1 R Si Y E i, the second inequality is by Lemma F.1, and the last inequality is
by applying Lemma F.6 with pV

ψpiq
h`1 P O. This concludes the proof.

Lemma F.8 (Regret decomposition). On the event E defined in Lemma F.6, we have

K
ÿ

k“1

pV ˚
1 ´ V πk1 qpsk,1q ď

N
ÿ

n“1

H
ÿ

h“1

ÿ

pk,s̄,aqPY
pnq

K,h

2β

g

f

f

emin

#

1, }ϕps̄, aq}2́

Λ
pnq

k,h

¯´1

+

`

K
ÿ

k“1

H
ÿ

h“1

ζk,h

` 2THϵp,

where Y pnq

K,h :“
␣`

k, s̄k,h, ak,hq : s̄k,h P Spnq
˘(K

k“1
, ζk,h “ ErppVk,h ´ V πkh qpsk,hq | sk,h, ak,hs ´

ppVk,h ´ V πkh qpsk,hq and β “ C ¨ dH lnpdT {δ1q for some absolute constant C ą 0.

Proof. Assume that the event E holds true. For any k P rKs, without loss of generality, suppose
sk,1 P Si, sk,2 P Si1 , ¨ ¨ ¨ , and s̄k,1 P Spnq, s̄k,2 P Spn1

q, ¨ ¨ ¨ , then we have that

pV ˚
1 ´ V πk1 qpsk,1q ď ppVk,1 ´ V πk1 qpsk,1q `H2ϵp

“ p pQk,1 ´Qπk1 qpsk,1, ak,1q `H2ϵp

“ β }ϕps̄k,1, ak,1q}´
Λ

pnq

k,1

¯´1 ` pPpnq

k,1p¨ | s̄k,1, ak,1qpV
ψpiq
k,2 ´ Pi1p¨ | sk,1, ak,1qV πk2 `H2ϵp

“ β }ϕps̄k,1, ak,1q}´
Λ

pnq

k,1

¯´1 ` ppPpnq

k,1 ´ Ppnq

1 qp¨ | s̄k,1, ak,1qpV
ψpiq
k,2 ` Ppnq

1 p¨ | s̄k,1, ak,1qpV
ψpiq
k,2

´ Pi1p¨ | sk,1, ak,1qV πk2 `H2ϵp

ď β }ϕps̄k,1, ak,1q}´
Λ

pnq

k,1

¯´1 ` ppPpnq

k,1 ´ Ppnq

1 qp¨ | s̄k,1, ak,1qpV
ψpiq
k,2 ` Pi1Ψ

i )pnq

1 p¨ | sk,1, ak,1qpV
ψpiq
k,2

´ Pi1p¨ | sk,1, ak,1qV πk2 `HpH ` 1qϵp

“ β }ϕps̄k,1, ak,1q}´
Λ

pnq

k,1

¯´1 ` ppPpnq

k,1 ´ Ppnq

1 qp¨ | s̄k,1, ak,1qpV
ψpiq
k,2 ` Pi1p¨ | sk,1, ak,1qppVk,2 ´ V πk2 q

`HpH ` 1qϵp

ď 2β }ϕps̄k,1, ak,1q}´
Λ

pnq

k,1

¯´1 ` Pi1p¨ | sk,1, ak,1qppVk,2 ´ V πk2 q `HpH ` 1qϵp

“ 2β }ϕps̄k,1, ak,1q}´
Λ

pnq

k,1

¯´1 ` ErppVk,2 ´ V πk2 qpsk,2q | sk,1, ak,1s `HpH ` 1qϵp,
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where the first equality is by Lemma F.7, the second inequality is by Lemma F.1, the fourth equality
is by the fact that pVk,2ps1q “ Ψ

i )pnq

h
pV
ψpiq
k,2 ps1q for s1 P Si Y E i and Pi1ps1 | sk,1, ak,1q “ 0 for

s1 R Si Y E i, and the third inequality is by Lemma F.6.

Define ζk,h as ErppVk,h ´ V πkh qpsk,hq | sk,h, ak,hs ´ ppVk,h ´ V πkh qpsk,hq. Then, we get
pV ˚

1 ´ V πk1 qpsk,1q

ď 2β }ϕps̄k,1, ak,1q}´
Λ

pnq

k,1

¯´1 ` ζk,h ` ppVk,2 ´ V πk2 qpsk,2q `HpH ` 1qϵp

ď 2β}ϕps̄k,1, ak,1q}´
Λ

pnq

k,h

¯´1 ` 2β}ϕps̄k,2, ak,2q}´
Λ

pn1q

k

¯´1 ` ζk,1 ` ζk,2 ` ppVk,3 ´ V πk3 qpsk,3q `HpH ` 2qϵp

ď . . .

ď

N
ÿ

n“1

H
ÿ

h“1

I
´

s̄k,h P Spnq
¯

2β}ϕps̄k,h, ak,hq}´
Λ

pnq

k,h

¯´1 `

H
ÿ

h“1

ζk,h ` 2H2ϵp.

Further, since we immediately have pV ˚
1 ´ V πk1 qpsk,1q ď H , we derive that

K
ÿ

k“1

pV ˚
1 ´ V πk1 qpsk,1q

ď

K
ÿ

k“1

min

«

N
ÿ

n“1

H
ÿ

h“1

I
´

s̄k,h P Spnq
¯

2β}ϕps̄k,h, ak,hq}´
Λ

pnq

k,h

¯´1 `

H
ÿ

h“1

ζk,h ` 2H2ϵp, H

ff

ď

K
ÿ

k“1

min

«

N
ÿ

n“1

H
ÿ

h“1

I
´

s̄k,h P Spnq
¯

2β}ϕps̄k,h, ak,hq}´
Λ

pnq

k,h

¯´1 , H

ff

`

K
ÿ

k“1

H
ÿ

h“1

ζk,h ` 2THϵp

ď

K
ÿ

k“1

N
ÿ

n“1

H
ÿ

h“1

I
´

s̄k,h P Spnq
¯

2β

g

f

f

emin

#

1, }ϕps̄k,h, ak,hq}2́

Λ
pnq

k,h

¯´1

+

`

K
ÿ

k“1

H
ÿ

h“1

ζk,h ` 2THϵp

“

N
ÿ

n“1

H
ÿ

h“1

K
ÿ

k“1

I
´

s̄k,h P Spnq
¯

2β

g

f

f

emin

#

1, }ϕps̄k,h, ak,hq}2́

Λ
pnq

k,h

¯´1

+

`

K
ÿ

k“1

H
ÿ

h“1

ζk,h ` 2THϵp

“

N
ÿ

n“1

H
ÿ

h“1

ÿ

pk,s̄,aqPY
pnq

K,h

2β

g

f

f

emin

#

1, }ϕps̄, aq}2́

Λ
pnq

k,h

¯´1

+

`

K
ÿ

k“1

H
ÿ

h“1

ζk,h ` 2THϵp,

where Y pnq

K,h :“
␣`

k, s̄k,h, ak,hq : s̄k,h P Spnq
˘(K

k“1
and T “ KH . This completes the proof.

Proof of Theorem 2. On the event E defined in Lemma F.6, by Lemma F.8, we have
K
ÿ

k“1

pV ˚
1 ´ V πk1 qpsk,1q ď

N
ÿ

n“1

H
ÿ

h“1

ÿ

pk,s̄,aqPY
pnq

K,h

2β

g

f

f

emin

#

1, }ϕps̄, aq}2́

Λ
pnq

k,h

¯´1

+

`

K
ÿ

k“1

H
ÿ

h“1

ζk,h

` 2THϵp. (F.9)
First, we bound the first term of Eq. F.9. Then, we have

N
ÿ

n“1

H
ÿ

h“1

ÿ

pk,s̄,aqPY
pnq

K,h

2β

g

f

f

emin

#

1, }ϕps̄, aq}2́

Λ
pnq

k,h

¯´1

+

ď 2β
?
KH

g

f

f

f

e

N
ÿ

n“1

H
ÿ

h“1

ÿ

pk,s̄,aqPY
pnq

K,h

min

#

1, }ϕps̄, aq}2́

Λ
pnq

k,h

¯´1

+

ď 2β
?
KH

g

f

f

eNH ¨ 2d ln

˜

C2
ϕk ` λ

λ

¸

, (F.10)
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where the first inequality is by Cauchy-Schwarz inequality, the last inequality is by Lemma F.5.
For the second term of Eq. F.9, since E rζk,h | Hk,h´1s “ 0 and |ζk,h| ď 2H for all pk, hq, ζk,h is
a bounded martingale difference sequence. Therefore, by the Azuma-Hoeffding inequality, for any
t ą 0, we have

P

˜

K
ÿ

k“1

H
ÿ

h“1

ζk,h ą t

¸

ě exp

ˆ

´t2

2TH2

˙

.

Hence, with probability at least 1 ´ δ{2, we have

K
ÿ

k“1

H
ÿ

h“1

ζk,h ď
a

2TH2 lnp2{δq ď 2H
a

T lnp2{δq. (F.11)

Finally, combining Eq. F.9, Eq. F.10, Eq. F.11, and with choice of β “ C ¨ dH lnp2dT {δq for some
absolute constant C, with probability at least 1 ´ δ, we have

K
ÿ

k“1

pV ˚
1 ´ V πk1 qpsk,1q

ď 2C ¨ dH lnp2dT {δq
?
KH

g

f

f

eNH ¨ 2d ln

˜

C2
ϕk ` λ

λ

¸

` 2H
a

T lnp2{δq ` 2THϵp

“ rOp
?
d3H3NT ` THϵpq

“ rOp

b

d3ψH
3NT ` THϵpq,

where the last equality is by the fact that d “ dψ . This concludes the proof.

G TECHNICAL LEMMAS

Lemma G.1 (Self-normalized process, Abbasi-Yadkori et al. 2011). Let txtu
8
t“1 be a real-valued

stochastic process over the filtration tFtu8
t“0. Let xt be conditionally B-subgaussian given Ft´1.

Let tϕtu
8
t“1 with ϕt P Ft´1 be a stochastic process in Rd. Assume that Λ0 is a dˆ d positive definite

matrix, and let Λt “ Λ0 `
řt
s“1 ϕsϕ

J
s . Then, for any δ ą 0, with probability at least 1 ´ δ, we have

for all t ě 0:
›

›

›

›

›

t
ÿ

s“1

ϕsxs

›

›

›

›

›

2

Λ´1
t

ď 2B2 ln

ˆ

detpΛtq
1{2 detpΛ0q´1{2

δ

˙

.

Lemma G.2 (Covering numbers, Pollard 1990). The ε-covering number of an euclidean ball of
radius B in Rd is upper bounded by p1 ` 2B{εqd.
Lemma G.3 (Relation between packing and covering numbers, Pollard 1990). Let pG, } ¨ }q be a
normed space, and Θ Ă G. Then,

T pΘ, 2ε, } ¨ }q ď N pΘ, ε, } ¨ }q ď T pΘ, ε, } ¨ }q,

where T pΘ, ε, } ¨ }q is the ε-packing number and N pΘ, ε, } ¨ }q is the ε-covering number.

H BLOCK-RIVERSWIM ENVIRONMENT

In this section, we provide a detailed explanation of the structure of the Block-RiverSwim environment.
In our experiments, we use the tabular setting as it is easy to construct linear transitions. Note that the
tabular setting is a special case of the linear model (Jin et al., 2020).

Block-RiverSwim is constituted of S states, including the initial state s1, R blocks each containing 3
states, and a rewarding end state sS . Hence, the equation S “ 3R ` 2 naturally holds true. Each
of these blocks has identical structures: the same transitions and reward functions. Please note that
the number of subMDPs L amounts to R ` 2 (made up of R blocks, s1, and sS) and the total of
aggregated subMDPs N equals to 3 (comprising one aggregated block, s1, and sS).
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Figure H.1: The Block-RiverSwim environment with 4 repeating sub-structures (R) with size 3
(Blocks) and S “ 14 states. State s1 has a small reward of rps1, leftq “ 5{1000, while state s14
has a large reward of rps14, rightq “ 1. The dashed arrows indicate deterministic transitions caused
by left actions. And line arrows refer to stochastic transitions caused by right actions.

Starting at s1, the agent can select to move left, an action denoted by the gray dashed lines, and as a
result, obtain a minor reward, rps1, leftq “ 0.005. Alternatively, the agent can choose to navigate
to the right, an action represented by the black solid lines, in each successive state. The objective for
the agent is to maximize its total return by attempting to arrive at the far right state, denoted as sS ,
and move to the right to earn a large reward rpsS , rightq “ 1.

Figure H.1 depicts the diagram of Block-RiverSwim with L “ 6 (4 repeating substructures, i.e.,
R “ 4, and 2 unique substructures, thus N “ 3) and S “ 14. This environment consists of the initial
state s1, the big reward state s14, and 4 blocks, each of which consists of three states. The goal of the
agent is to maximize its return by learning the policy that reaches the rightmost state, where the large
reward rps14, rightq “ 1 can be obtained, as fast as possible.
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