Plan2vec: Unsupervised Representation Learning by Latent Plans

Ge Yang∗† GE.IKE.YANG@GMAIL.COM
Amy Zhang∗† AMYZHANG@FB.COM
Ari S. Morcos† ARIMORCOS@FB.COM
Joelle Pineau†‡ JPINEAU@CS.MCGILL.CA
Pieter Abbeel§ PABBEEL@CS.BERKELEY.EDU
Roberto Calandra† RCALANDRA@FB.COM

†Facebook AI Research, ‡McGill University, §UC Berkeley

Abstract

In this paper we introduce plan2vec, an unsupervised representation learning approach that is inspired by reinforcement learning. Plan2vec constructs a weighted graph on an image dataset using near-neighbor distances, and then extrapolates this local metric to a global embedding by distilling path-integral over planned path. When applied to control, plan2vec offers a way to learn goal-conditioned value estimates that are accurate over long horizons that is both compute and sample efficient. We demonstrate the effectiveness of plan2vec on one simulated and two challenging real-world image datasets. Experimental results show that plan2vec successfully amortizes the planning cost, enabling reactive planning that is linear in memory and computation complexity rather than exhaustive over the entire state space. Additional results and videos can be found at https://geyang.github.io/plan2vec.

1. Introduction

A good representation of the state space is essential to an intelligent agent that is trying to accomplish tasks in the world. For this reason, we look at representation learning through the lens of reinforcement learning. Under the standard Markov decision process (MDP, Bellman 4) formulation, the state space S appears as the input domain for two types of functions. The first type is local, such as the transition probability P and the step-wise reward R. The second type is non-local and requires integration along paths, such as the state value $V(s)$ or the Q-function [12; 37; 22; 1]. For a specific type of task that can be formulated as accomplishing goals [16], the goal-conditioned value function $V(s, g)$ becomes a (negative) metric. The very focus of modern reinforcement learning is to learn V, for it parametrically encodes optimal plans. In policy search, such distance function acts are useful as a shaped reward [12; 14; 41].

In this paper, we ask the question: is there a way to learn this type of metric representation without explicitly involving interactions with the environment, using only offline exploratory data that are abundantly available? Our key insight is that one can remove the need for learning dynamics by modeling these local relationships between near-neighbors as the edges of a graph, then use heuristic search to generate optimal long horizon plans for path integration. Our proposed method – plan2vec – appears in two variants: the first uses regression towards a planned trajectory similar to dynamic distance learning [14] but with a strong search expert, whereas the second uses fitted value iteration [8; 5; 31].

Figure 1: High-level schematics of plan2vec. The dataset contains sequences of observations. The graph building step can be considered semi-supervised learning, where the real transitions are the labeled data, and the task is to find new transitions by learning a local metric d that generalizes. The representation learning step can be considered learning an embedding ϕ of the graph. Plan2vec uses plans made on the graph to generate value targets for D, the shortest-path-distance metric.

To help illustrate our method, we lead the introduction of plan2vec with a set of simulated visual navigation tasks. We show the importance of using graph search as a sampling policy as opposed to a memory-less planner by looking at the planning success rate for k-steps of plan-ahead (see Fig. 6). Then we demonstrate our approach on deformable object manipulation with a rope dataset [46] that is otherwise difficult to model. Finally, we tackle a challenging real-world navigation dataset Street Learn [25] to show that plan2vec is able to learn to navigate from sequences of Street View images driving through the streets, with no access to the ground-truth GPS location data. Interestingly, we found that the representation plan2vec learns contains an interpretable metric map, despite that the graph it distills from is topological in nature.

2. Technical Background

The goal of reinforcement learning is to find a policy distribution $\pi(a|s)$ that maps from the state space S to the action space A for a given Markov decision process (MDP) [4], such that it maximizes the return, defined as the discounted sum of future rewards $J_\pi = \sum_t \gamma^t R(s_t, a_t)$. The optimality of a policy is provided by the Bellman equation

$$V(s) = TV^*, \text{ where } TV^* = R(s, a, s') + \max_a \sum_{s'} \mathbb{P}(s'|s, a) \gamma V^*(s').$$

(1)

$\mathbb{P}(s'|s, a)$ is the transition probability. T is the contraction operator defined recursively on the state-value function $V(s)$. We further assume that the MDP is fully observable, so there \exists a mapping $\phi(\omega_s) \mapsto z_s$ from the space of observations O to a latent space Z, for each state s.

When deep neural network is used as a function approximator [26], learning is typically implemented as sample-based regression towards an n-step bootstrapped value target [27]

$$\mathcal{L} = \left\| V(s_0) - \sum_{t=0}^n \gamma^{t-1} R - V^*(s_n) \right\|^2_2.$$

(2)

Generalized Value Function as A Metric Learning to achieve goals is an important subproblem of reinforcement learning [16]. In a goal reaching task, the agent incurs a cost of $-d(s, s')$ at each step. The distance-to-goal $D(s, g)$ refers to the shortest path distance $\min_{\tau} \sum_{x \sim \tau} d(x_i, x_{i+1})$
between s and g. This formulation offers additional structure in that D is a metric that satisfies the triangular inequality
\[
\forall s' \in S, \quad D(s, g) \leq D(s, s') + D(s', g).
\] (3)
For this reason, the generalized value function (GVF, Sutton et al. 43) family of algorithms [23; 35; 19; 39] formulate learning a goal-conditioned Q value function as learning predictive features. For our purpose of doing unsupervised representation learning without actions, this can be simplified as learning a value $V(o, o_g) = -D_\phi(o, o_g)$ where $D_\phi(o, o_g) \equiv \|\phi(o), \phi(o_g)\|_p$ is the distance between the latent features vectors.

Dataset as A Graph For a dataset of images $\{x_i\}$ there \exists a weighted graph $G = \langle V, E \rangle$ where each vertex v_i corresponds to an image x_i. $e_{ij} \in E$ iff according to a local metric d, $d(x_i, x_j) < d_0$. We let the edge e_{ij} weight by $w_{ij} = d(x_i, x_j)$. If we make the additional assumption that the data are sequences of observations, then the graph is directed.

3. Unsupervised Representation Learning by Latent Planning

Plan2vec is built upon the idea that for a collection of images with a local metric d, the graph G weighted by d is embedded by a Riemann manifold, the metric of which is the shortest-path-distance D. By choosing the function class D_ϕ that decomposes into an embedding function $\phi(x)$ and a metric $\|\cdot\|_p$, we project D to a ℓ^p-metric space with a vector embedding.

Problem Formulation Plan2vec models the representation learning problem as learning how to play a goal-reaching-game in which one is tasked to find the shortest path from one observation to another, by hopping between near neighbors (Fig. 2). Under the context of reinforcement learning, plan2vec treats the graph as a model of the state space, and learns from Dyna-styled unroll using graph-search as an expert policy [42; 2]. Plan2vec treats the construction of the graph as a semi-supervised problem (Fig. 1). It first adds transitions from the dataset as edges with weight 1. It then uses these as labeled data to learn a local metric d, to generalize to other pairs of images as a form of loop closure. An edge e_{ij} is created between the node v_i and v_j if the distance between the corresponding images $d(x_i, x_j) \leq d_0$, a hyper parameter.

Learning Local Metric Noise-contrastive estimation cast representation learning as maximizing the contrast between two distributions: the joint distribution between related views $p(x, x^+)$, versus the product of the marginals $p(x)p(x^-)$ [28; 11; 45]
\[
L_{\text{NCE}} = -\log \frac{\exp S(x, x^+)}{\exp S(x, x^+) + \sum_i^k \exp S(x, x_i^-)},
\] (4)
where S is the similarity function to be learned. $\langle x, x^+ \rangle$ is the positive pair sampled in-context. $\langle x, x_i^- \rangle$ is the negative pair sampled independently from the marginals. Under the context of control, Eq.4 has a natural interpretation as maximizing the log-probability that a pair $\langle x, x^+ \rangle$ is reachable against pairs sampled at random, and is related to the distance metric by $d(x, x') \propto -\log p(x, x')$.

Figure 2: Plan2vec uses planning to generate value targets for the metric D_ϕ.
Algorithm 1 Plan2vec via Amortized Search

```
Require: weighted directed graph $G = (V, E)$
Require: Shortest Path First search algorithm SPF

1: Initialize $D_{\Phi}(x, x')$, let $V = -D$.
2: while not converged do
3: sample $x_s, x_g$ and $v_s, v_g \in G$ as start and goal
4: find shortest plan $\tau^* = SPF(G, v_s, v_g, D_{\Phi})$
5: minimize $\delta = |D_{\Phi}(x_s, x_g) - \sum_{v_i \sim \tau^*} d(x_{v_i}, x_{v_{i+1}})|$
```

In the maze domain we directly regress the distance metric d towards one of \{identical, close, or far-apart\} with a nominal distance of \{0, 1, 2\}

$$
\mathcal{L}_d = |d(x, x) - 0| + |d(x_t, x_{t+1}) - 1| + |d(x, x^-) - 2|.
$$

When d_{Φ} is a Siamese network with an ℓ^2 metric, the first term can be dropped. We use smoothed L_1 loss for all terms.

Learning Representation by Latent Plans Plan2vec samples pairs of images x_s and x_g and their corresponding vertices v_s and v_g from the graph G, then uses heuristic search to find the shortest path τ^* in-between (Algorithm 1). Non-learning search algorithms typically discard the search tree after backtrack (step 4). Plan2vec collect these to generate regression targets for learning the value estimate with or without value bootstrapping. With the latter, one can use a fixed search depth h.

$$
V(x_s, x_g) = -\sum_i d(x_{v_i}, x_{v_{i+1}}) \quad V(x_s, x_g) = -\sum_{i=0}^{h-1} d(x_{v_i}, x_{v_{i+1}}) + V(x_{v_h}, x_{v_g}).
$$

We experimented with both fitted value-iteration (FVI) and amortized heuristic search for learning on a graph. The main shortcoming with FVI is that relaxation for finding the shortest path occurs via gradient-based, iterative updates. Such scheme is unstable when applied to a graph as cycles within each rollout stall learning; whereas heuristic search explicitly avoid vertex-revisit at planning time.

4. Related Works

Plan2vec builds upon two rich bodies of literature: unsupervised methods that learn an embedding from a local context, and value-based reinforcement learning methods that learn a policy. In the first category, time-contrastive network (TCN), skip-gram (word2vec), contrastive predictive coding (CPC) and locally linear embeddings [36; 24; 28; 32] are a family of methods that embed images, word tokens and image patches by making each sample similar to its neighbors in a small neighboring context. Similarly, graph embedding algorithms such as DeepWalk, Node2vec and diffusion maps [29; 9; 40] randomly sample short trajectories in the neighborhood of a node to provide context. The locality of such context is restrictive, because one can not expect clear supervision from samples further apart. Plan2vec solves this problem by replacing those random processes with graph-search to directly generate long-horizon distance targets between nodes that are arbitrarily far apart.
Embed to control (E2C), robust controllable embedding (RCE), L-SBMP and causal InfoGAN [48; 3; 15; 20] are a line of generative models that incorporate forward modeling in the latent space. They show that the learned representation is plannable, but the models are limited to modeling local relationships. Plan2vec differs by explicitly learning a shortest-path-distance metric to embed the weighted graph on a Riemann manifold that encodes all optimal plans as geodesics. In addition, plan2vec is purely discriminative, and focuses only on those features that are relevant towards predicting long-horizon distance relationships.

In the second category are differentiable planning algorithms on a grid world [10; 44; 21] and gradient-based planning methods that require supervision through expert demonstration [41; 50]. Plan2vec works in continuous state space, with random and off-policy exploratory data as a pre-training step. Additionally, the metric that plan2vec learns can be used as an intrinsic reward in self-supervised or task-agnostic RL [47; 7; 17; 30], to reduce the need of human designed reward.

Finally, plan2vec builds upon prior methods that plan over a graph with various assumptions [33; 34; 51; 6]. We compare against semi-parametric topological memory [33], and show that with a learned value function, plan2vec is able to make more intelligent choices at test time, under limited planning budget.

5. Experimental Evaluation

In this section, we experimentally answer the following questions: 1) What kind of representation can we learn via planning? 2) How does Dyna-style unroll on the graph affect the sample complexity? 3) Why is graph search needed? and finally, 4) Would plan2vec work in domains other than navigation, or learn features that are not visually apparent?

To answer these questions, we first examine plan2vec quantitatively on a simulated 2D navigation domain. Then we extend plan2vec to the challenging deformable object manipulation task, were the task is to tie a piece of rope. Finally, we show that plan2vec can learn non-visual features such as the agent’s geolocation purely from first-person views without requiring ground-truth GPS data.

5.1. Simulated Navigation

The maze domain is a square, 2-dimensional arena with continuous \((x, y)\) coordinates. A top-down camera view is fed to the robot (block in blue). We use ground-truth coordinates for evaluation only. Our experiment covers three room layouts with increasing levels of difficulty: an open room, a room with a table in the middle, and a room with a wall that separates it into two corridors that resembles a C-shaped maze (see Fig. 4).

We first qualitatively verify the representation that plan2vec learns by making the latent space 2-dimensional. This allows us to directly visualize the latent vectors by plan2vec against those by a VAE ([18], see Fig. 5). The embedding VAE learns folds onto itself, whereas plan2vec learns an

<table>
<thead>
<tr>
<th>Image Input</th>
<th>Open Room</th>
<th>Table</th>
<th>C-Maze</th>
</tr>
</thead>
<tbody>
<tr>
<td>plan2vec (L2)</td>
<td>90.0 ± 2.0</td>
<td>76.4 ± 9.2</td>
<td>80.2 ± 6.3</td>
</tr>
<tr>
<td>SPTM (1-step)</td>
<td>39.7 ± 6.1</td>
<td>23.7 ± 6.1</td>
<td>31.4 ± 6.5</td>
</tr>
<tr>
<td>VAE</td>
<td>73.9 ± 4.3</td>
<td>30.2 ± 6.5</td>
<td>52.7 ± 5.8</td>
</tr>
<tr>
<td>Random</td>
<td>3.2 ± 2.5</td>
<td>3.5 ± 2.5</td>
<td>4.7 ± 2.8</td>
</tr>
</tbody>
</table>

Figure 4: Visual navigation environments: Open, Table, and C-Maze. Agent in blue. Red sphere indicates the desired goal.
embedding that respects the overall topological structure of the domain. Furthermore, observations from two opposite ends of the C-Maze are pulled apart, which reflects the longer shortest-path-distance in-between. In other words, Plan2vec embeds optimal plans as roughly straight lines in its learned latent space.

We further study how much data it takes for plan2vec to learn compared to standard off-line reinforcement methods such as fitted Q-iteration [31]. We generate a fixed dataset, then vary the amount given to both plan2vec and a standard deep Q-learning algorithm during training. We plot the planning performance of the learned value function in Fig. 6a. Both methods achieve 100\% when given sufficient data, but plan2vec requires at least 1 magnitudes less. This encouraging result shows the benefit of learning from a graphical model as opposed to replays from a linear buffer, and plan2vec’s ability to efficiently construct optimal plans from off-policy, exploratory experience.

Combination of search and value learning is required in harder domains that requires a strong behavior policy [38; 13; 2]. In Fig. 6b, both plan2vec and SPTM improves in performance with more lookahead search budge, but plan2vec, which distils from a search expert during training, acquires a more informative long-range value estimate and better performance. When we compare how the cost of finding the shortest path scales with the amount of planning lookahead (see Fig. 6c). We found that plan2vec is linear in plan depth, as it amortizes the planning cost from training; whereas Dijkstra’s is quadratic.

5.2. Manipulation of Deformable Objects

We now apply plan2vec to learn representations of a deformable object that lacks a structured configuration space. Past methods in this space either rely on learning a generator function [20], or

Figure 5: 2-dimensional latent embedding. Plan2vec’s embedding demonstrates clear global structure beyond close neighbors.

Figure 6: Left: Success rate vs the number of rollouts used for learning, Plan2vec vs DQN. Center: Success rate with k-step planahead, Plan2vec vs SPTM and a random baseline. Right: Planning Cost, Dijkstra’s grows quadratically whereas plan2vec is linear. Lower is better.

Figure 7: Example of visual plan generated by plan2vec on the Rope Domain showing steps coming from two different trajectories (8 and 3). Each transition only perturbs the configuration of the rope locally. The numbers above denote the trajectory and time step the image is from, the number below represents the score by the local metric f_ϕ. Note that the transition from sequence 8 \rightarrow sequence 3 occurred in-between the 3rd and 4th step. All the other transitions are real physical transitions.
model-free reinforcement learning that can only accomplish a single task [49]. In contrast, plan2vec is purely discriminative, and can generalize to a dynamic set of goals.

We apply our method to a recent rope dataset [46]. This dataset comprises of 18 sequences that include in-total 14k gray scale photos of a piece of rope. Two pegs fixated on the table impose constraints that need to be respected during each transition. After training, plan2vec is able to find a visual plan given any pair of start and goal configurations regardless of whether they come from the same trajectory. Fig. 7 shows an example of such plans found by plan2vec. Each step only slightly perturbs the configuration of the rope, making the entire plan feasible.

It is difficult to design quantitative evaluation metrics for this domain. For evaluation, we select a start and goal image from the same trajectory, and compare the visual plans made by plan2vec against the ground-truth sequence in-between. We include these additional results in the appendix.

5.3. Beyond Visual Similarity

In previous domains, visual similarity goes a long way in revealing the distance in the configuration space. Generative models rely on such prior in order to learn, which make them potentially less suitable for learning distance information that are visually inconspicuous. Navigation in a real-world scenario offers a great example – it is impossible to tell the direction based off two photos alone. Yet a city resident knows exactly how to navigate from one to another.

We now apply plan2vec to the challenging large scale navigation dataset Street Learn [25]. We found that plan2vec’s supervised learning objective can learn a high-quality value estimate on a large, 1.4k subset of Street Learn just under two hours, using only sequences of camera image and step-wise distance without access to the GPS locations. We inspect the learned embedding by restricting the latent space to 2-dimension, and discover a high-quality metric map (Fig. 8a).

Internalizing such a map can speed up planning and improve generalization. In Fig. 8 we compare the cost of heuristic search with and without using the distance function plan2vec learns. Dijkstra’s SPF algorithm expands all nodes in the graph exhaustively, whereas A^* using the Manhattan distance

![Figure 8: Planning Cost. Gray dots show the vertices that are expanded during search. We color the expanded nodes with plan2vec in red to make the few expanded nodes more visible. The plans span 200 steps, ~ 1.2 kilometers each. Number on top of bars show the average cost per planning step. With a strong heuristic (ℓ^1 distance), A^* is more economical than Dijkstra’s. But with a learned heuristic plan2vec approaches optimality: a single expansion per step.](image-url)
Figure 9: Plan2vec’s internal metric map generalize to new tasks. (a) Pink and black color codes the four quadrants (b, c) shows the train and test tasks (d) Red shows the distance prediction on test set, black on training set. (e, f) Embedding learned using this restricted training set is similar to a control using the entire dataset. Orientation of learned embedding depends on seed. Alignment to the axis is due to use of $p = 1.2$. Randomly picked amongst 3 seeds.

as search heuristic fails to understand the diagonal streets near Broadway. Plan2vec almost optimally captures the shortest-path-distance on this domain, and out performs all other methods.

In Table 2, we artificially limit the computation and memory budget for the planner by setting both the lookahead depth k and the memory size $|H|$ for the priority queue to 1. In this interesting regime, a good planning heuristic is necessary for good performance. We train an embedding $\phi(x)$ with each method, then use an ℓ^2 metric defined on this embedding as the search heuristic. The VAE baseline barely performs above random. This is expected for unsupervised methods that rely on visual inductive priors for embedding. In comparison to SPTM’s 1-step local metric d, plan2vec performs $2-3\times$ better consistently across all three datasets.

5.4. Generalization With A Metric Map

An important reason to distill plans into a neural network is generalization. In previous experiments, planning generalizes to previously unseen tasks by interpolation. Now we want to ask: how about we remove training tasks that go between large areas of the map – would plan2vec still able to generalize to bundles of task configurations it has never seen during training? In this experiment, we divide the map into four quadrants (Fig. 9a) and remove tasks that route between diagonally opposing quadrants during training. To our surprise, the learned embedding is as good as the control that trains with the entire task set. This result depends on the connectivity of the road network, but it shows that plan2vec can sometimes generalize despite of categorical removal of training tasks.

6. Conclusion

We have presented a discriminative and unsupervised approach to learn long-horizon distance relationships via planning. Our method does not generate images, is model-agnostic, and requires no access to expert action data. In comparison to model-free reinforcement learning methods that sample directly from the environment, our model-based approach makes more efficient use of otherwise disjoint trajectories. The embedding plan2vec learns encodes the shortest-path between observations as geodesics in the latent space, which reduce iterative planning to fast, parameterized lookup. We demonstrate these desirable properties on one simulated and two challenging real-world datasets, and propose plan2vec as a valuable pre-training step for reinforcement learning agents from off-line exploratory data.
References

