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Abstract

Small object detection (SOD) aims to precisely localize and accurately classify objects from
limited spatial extent and discernible features. Despite significant advancements in object
detection driven by CNN-based and Transformer-based methods, SOD remains a signif-
icant challenge. This is primarily due to their minimal spatial dimensions and distinct
features which pose difficulties in both computational efficiency and effective supervision.
Particularly, Transformer-based detectors suffer from the high computational cost caused
by the introduction of a feature pyramid network (FPN) and the sparse supervision for
the encoder output due to insufficient positive queries. Current approaches attempt to
mitigate these issues through sparse attention mechanisms and auxiliary one-to-many label
assignment strategies. However, these approaches often still suffer from inefficiencies in
processing multi-scale information and a deficiency in generating adequate positive queries
for small objects. To address this issue, we propose a novel small object detector MRQM,
which integrates Multi-scale Refinement and Query-aided Mining. The scale-aware en-
coder strategically refines features across multiple scales from a bi-directional feature pyra-
mid network (BiFPN) through iterative updates. This process not only reduces redundant
computations but also significantly enhances the representation of features at various scales.
Furthermore, the IoU-aware head integrates the dynamic anchors mining strategy and one-
to-many label assignments to fully mine potential high-quality auxiliary positive queries
for small instances, and mitigate issues related to sparse supervision for the encoder. Ex-
tensive experiments on the SODA-D and VisDrone datasets consistently demonstrate the
superiority and effectiveness of our MRQM method.

Keywords: small object detection, Transformer-based models, multi-scale information,
auxiliary positive queries

1. Introduction

As a fundamental task in computer vision, object detection requires localizing and clas-
sifying the instances. In recent years, remarkable progress in object detection has been
achieved, primarily driven by two main research directions: CNN-based Ren et al. (2015)
and Transformer-based Zhu et al. (2020) methods. Compared to objects of general scales,
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small objects pose unique difficulties due to their limited spatial extent and lower distin-
guishable features, which can lead to significant drops in detection performance. This is
particularly crucial in applications such as autonomous driving, aerial surveillance, and
medical imaging where small objects often carry critical information. In the task of SOD,
Transformer-based methods encounter more challenges compared to the extensively stud-
ied CNN-based methods. This difficulty is primarily due to two factors: 1) substantial
computational cost limits the effective use of multi-scale features from FPNs
in Transformer-based methods, 2) insufficient number and quality of positive
queries for small instances lead to sparse supervision for the encoder output.

Earlier studies Lin et al. (2017a); Tan et al. (2020) have demonstrated that FPNs ef-
ficiently integrate features across diverse scales and resolutions. This capability enhances
their ability to comprehend both fine-grained details and the global contextual information
of small target objects. However, FPNs often entail prohibitive computational costs, partic-
ularly when used with Transformer-based detectors. Simply applying multi-scale features
from FPNs to Transformer encoder layers is impractical because the computational complex-
ity scales quadratically with the number of feature tokens. Concretely, handling a feature
map with a spatial size of H ×W requires a computational cost of O(HW ) for CNN-based
detectors, while the complexity of the attention mechanism in Transformer-based detectors
is O(H2W 2). To address this problem, Deformable DETR Zhu et al. (2020) and Sparse
DETR Roh et al. (2021) substitute the original global dense attention mechanism with
sparse attention. SMCA-DETR Gao et al. (2021) confines most Transformer encoder layers
to be scale-specific and allows only one layer to integrate multi-scale features. However,
as the number of tokens scales quadratically with the feature map size from FPNs, these
methods still face significant computational and memory demands Zhang et al. (2023a).

In DETRs, limited positive queries result in sparse supervision for the encoder output.
This limitation significantly impairs the encoder’s ability to learn discriminative features
and also adversely affects attention learning in the decoder. To address this issue, Group-
DETR Chen et al. (2023) constructs group-wise one-to-many label assignments to exploit
multiple positive object queries. Co-DETR Zong et al. (2023) presents a novel collaborative
hybrid assignments training scheme. However, these methods face challenges in effectively
handling small objects, as their label assignment relies heavily on overlap or distance met-
rics. Small instances typically occupy a minimal area, resulting in sparse overlaps between
anchors and ground truth that fall below conventional positive IoU thresholds. Conse-
quently, the current one-to-many label assignment methods struggle to generate sufficient
high-quality positive samples for small instances, resulting in an insufficient number and
quality of positive queries for small instances optimization in the decoder.

To address these challenges, we propose a small object detector MRQM based on the
scale-aware encoder and IoU-aware head. Concretely, motivated by the spatial redundancy
of high-resolution features, we introduce a straightforward yet effective encoder block. This
block partitions the multi-scale features from FPNs into high-level features (e.g., F3,F4,F5)
and low-level features (e.g., F2). These high-level and low-level features are updated in an
interleaved manner, ensuring efficient utilization of the multi-scale information. In addition,
enlightened by the auxiliary head in Co-DETR Zong et al. (2023), we introduce an IoU-
aware mechanism to dynamically optimize the anchors IoU threshold for small objects in
the auxiliary head, which can mine more high-quality small object positive queries for the
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decoder, thereby improving the small object detection performance. In summary, we make
three main contributions:

• We introduce an efficient scale-aware encoder that iteratively refines multi-scale fea-
tures from FPNs. This method enhances the representation of both high-level and
low-level features in an interleaved manner, reducing redundant computations and
thereby optimizing the utilization of multi-scale feature information.

• We introduce an auxiliary IoU-aware head that integrates the dynamic anchors mining
strategy and one-to-many label assignments to generate sufficient high-quality positive
queries for small instances. This approach mitigates the sparse supervision for the
encoder and inadequate optimization in the decoder.

• The experiment results on the SODA-D and VisDrone datasets exhibit the superiority
of our MRQM to detect these instances with extremely limited sizes. Specifically,
MRQM significantly enhances the Co-DINO baseline, achieving an improvement of
2.3% AP on the SODA-D dataset and an increase of 3.4% AP on the VisDrone dataset.

2. Related Works

2.1. Object Detection

In general, existing object detection studies mainly encompass two streams: CNN-based ob-
ject detectors and Transformer-based object detectors. Intuitively, CNN-based detectors,
such as Faster R-CNN Ren et al. (2015), RetinaNet Lin et al. (2017b), and FCOS Tian et al.
(2019), explicitly define surrogate regression and classification tasks, which require manual
design of many components, such as anchor points, ROI thresholds, and non-maximum
suppression (NMS). The intricate detection pipeline, hyper-parameter intensive, coupled
with not fully end-to-end, results in difficulties in training and the sub-optimal perfor-
mance of the CNN-based methods. Inspired by the Transformer paradigm, the recently
proposed Transformer-based object detectors, such as DETR Carion et al. (2020), De-
formable DETR Zhu et al. (2020), and DINO Zhang et al. (2022), aim to simplify the
detection pipeline by leveraging self-attention mechanism. These models eliminate the need
for hand-crafted components like anchors and NMS, enabling a more end-to-end approach.
Transformer-based detectors offer improved global context modeling and achieve better de-
tection performance. However, due to the computational complexity of the self-attention
mechanism, challenges in computational efficiency and training convergence still remain.

2.2. Small Object Detection

Small object detection aims at the challenging task of accurately detecting small objects
under the constraint of low-quality and low-resolution representation. Existing studies on
small object detection primarily focus on enhancing feature representation, scale invari-
ance, and robustness to occlusion and background clutter. CNN-based methods like Faster
R-CNN Ren et al. (2015) and YOLO Redmon and Farhadi (2017) often struggle with
small objects due to the limited resolution of feature maps and the inherent challenges in
distinguishing fine details. To address these issues, techniques such as Feature Pyramid
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Networks Lin et al. (2017a) have been introduced, enhancing feature hierarchies to capture
the representation of small targets. Super-resolution-based methods Rabbi et al. (2020);
Zhang et al. (2023b) aims at restoring the distorted structures of small objects instead of
simply amplifying their ambiguous appearance, which empowers the model to mine the
intrinsic correlations between small-scale objects and large-scale ones, thereby enhancing
the semantic representation of small objects. Despite these advancements, SOD remains a
challenging problem, necessitating further research to develop more deliberate designs for
powerful paradigms working better in small object detection.

2.3. Spatial Redundancy

Inspired by the utilization of the spatial redundancy of CNNs, several works Sun et al.
(2021); Zhang et al. (2023a) Zhang et al. (2023c) perform sparse operations over feature
maps to avoid computation at less informative locations and focus on the most informa-
tive parts of the feature maps. Technically, PerforatedCNN Figurnov et al. (2016) and
Dynamic Convolution Verelst and Tuytelaars (2020) generate pixel masks through different
deterministic sampling and small gating networks, respectively. Xie et al.Xie et al. (2020)
employ stochastic sampling and interpolation networks with Gumbel-Softmax distribution
and sparsity loss to enhance the training of sparse masks. Specifically, PnP-DETR Wang
et al. (2021a) dynamically allocates encoding operations to more informative feature tokens.
QueryDet Yang et al. (2022), operating on feature pyramids, leverages sparse high-resolution
feature computations guided by coarse predictions to enhance small object detection effi-
ciency. IMFA Zhang et al. (2023a) exploits sparse multi-scale features from just a few
crucial locations to improve refined detection. Sparse Semi-DETR Shehzadi et al. (2024)
advances semi-supervised object detection by introducing a query refinement module and
pseudo-label filtering, enhancing the detection of small objects in complex scenes.

2.4. Auxiliary Techniques

Auxiliary techniques have emerged as pivotal strategies to enhance the performance of
Transformer-based models in SOD. Methods implemented in ViDT Song et al. (2021) and
MDef-DETR Maaz et al. (2022) such as auxiliary decoding/encoding loss, improve train-
ing by introducing scale-specific objectives. Iterative box refinement Song et al. (2021)
progressively enhances detection accuracy, while top-down supervision leverages semantic
guidance for better object identification. Pre-training on extensive datasets followed by
task-specific fine-tuning, as demonstrated by models like FP-DETR Wang et al. (2021b)
and CBNet Cai et al. (2022), improves feature representation. Data augmentation Oksuz
et al. (2020) addresses various imbalance problems. Techniques for improving the decoder
such as one-to-many label assignments Zong et al. (2023) and denoising training Zhang
et al. (2022) further refine model performance. Collectively, the existing auxiliary tech-
niques provide a multifaceted approach to bolster the capabilities of Transformer models in
SOD, addressing challenges such as class imbalance, localization accuracy, and convergence
stability through a variety of innovative strategies.



MRQM-DETR

Backbone

IoU-Aware

One-Many 
Label Assignments

Decoder

Scale-Aware Encoder

Q K,V…

…

Q K,V…

…

…

�������(
���

��
)�

…

F’

F’

F’’

BiFPN

… F

�������(
���

��
)�

object queries

Decoder

aux queries

F2

�3

�4

�5

Figure 1: Architecture of the proposed Multi-Scale Refinement and Query-Aided Mining
framework for SOD. Left: We utilize BiFPN to efficiently integrate features across diverse
scales and resolutions, and use F2 ˜F5 to indicate the features from different BiFPN lev-
els. Middle: The Scale-aware Encoder updates features from different levels at varying
frequencies, thereby efficiently leveraging multi-scale features. Right: The IoU-aware head
generates auxiliary queries via one-to-many label assignments and dynamic anchors mining.
Queries from both the original and auxiliary branches jointly supervise the SAE output.

3. Methodology

In this section, we describe our MRQM for accurate small object detection. The main
core of the proposed MRQM framework is the strategical refinement of multi-scale features
from BiFPN through iterative updates while alleviating the sparse supervision for the en-
coder output by mining potential high-quality auxiliary positive queries for small instances.
Fig. 1 illustrates the detection pipeline of the proposed MRQM, encompassing two essential
modules: 1) Scale-aware encoder (SAE), and 2) IoU-aware head (IAH).

3.1. FPNs with Scale-Aware Encoder

The multi-scale features generated by FPNs possess an inherent structure: high-level fea-
tures capture rich semantic information, and low-level features mainly capture local details
related to small objects. However, the substantial redundancy in low-level features leads to
significant computational costs when these multi-scale features are applied to Transformer
encoder layers. Therefore, the iterative update of encoded image features is fundamental
for MRQM to efficiently exploit multi-scale features. Specifically, we divide the multi-
scale features F from BiFPN into low-level features FL and high-level features FH . The
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high-level features, considered the primary features, are updated more frequently, while
the low-level features are updated less often. The limited number of frequently updated
high-level features and the abundance of infrequently updated low-level features signifi-
cantly reduce computational cost. As illustrated in Fig. 1, we effectively integrated features
of different scales and resolutions using BiFPN, resulting in multi-scale features F . The
high-level features undergo multiple updates and are merged with the un-updated low-level
features to form the multi-scale features F ′

in SAE. Subsequently, the low-level features
are updated once at the end of the encoder block and merged with the previously updated
high-level features to produce the final refined multi-scale features F ′′

, which serve as the
encoder’s output. This approach allows for the maintenance of a full-scale feature pyramid
while substantially lowering computational costs.

Naively incorporating multi-scale features into the encoder leads to prohibitive compu-
tational complexity, as the sheer number of feature tokens across all scales is too large to be
efficiently processed by the attention mechanism. This challenge motivates us to perform
self-attention interaction updates at varying frequencies for hierarchical features with differ-
ent token counts. In SAE, the high-level features FH serve as queries Q to extract features
from all scales, encompassing both low-level and high-level feature tokens. Formally, the
update process can be described as

FH = Concat(Fi), i ∈ [3, 5]; FL = F2, (1)

Q = FH ; K = V = F , (2)

F ′
H = DeformAttn(Q,K, V ) = Softmax(

QKT

√
dk

)V, (3)

F ′
= Concat(F ′

H ,FL), (4)

where Concat refers to the concatenation of high-level features FH into multi-scale features.
Here, the query Q represents the initial high-level features FH , while the key K and value
V correspond to the initial features F from all levels. After Q, K, and V are processed
through the deformable attention layer, Q is updated. The updated high-level features F ′

H

are then combined with the original low-level features FL to obtain F ′
.

Low-level features FL contain an excessive number of tokens, which is a critical factor
in inefficient computation. To address this, SAE updates these low-level features at a
lower frequency following a sequence of high-level feature fusion. Specifically, we use the
initial low-level features, denoted as FL, as queries to interact with F ′

to update their
representation. Therefore, the update process can be formulated as

Q = FL; K = V = F ′
, (5)

F ′
L = DeformAttn(Q,K, V ) = Softmax(

QKT

√
dk

)V, (6)

F ′′
= Concat(F ′

H ,F ′
L). (7)

Here, the query Q represents the initial low-level features FL, while the key K and value
V correspond to F ′

. After Q, K, and V are processed through the deformable attention
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layer, Q is updated. The updated low-level features F ′
L are then combined with the updated

high-level features F ′
H to produce the output F ′′

of the SAE. SAE iteratively updates the
multi-scale features from BiFPN, significantly reducing computational costs. This allows
Transformer-based models to effectively integrate with FPNs.

3.2. IoU-Aware Head

In the one-to-one set matching paradigm of DETRs Carion et al. (2020), each ground truth
will only be assigned to one specific query as the supervised target. Too few positive queries
lead to inefficient cross-attention learning in the Transformer decoder. To alleviate this, Co-
DETR Zong et al. (2023) employs an auxiliary one-to-many label assignment strategy to
enrich the supervision of the encoder output, compelling it to be sufficiently discriminative
to support the training convergence of these heads. However, this approach is insufficient
for small objects. While the universal auxiliary head performs well on objects of general
scales, it struggles with extremely small objects due to its inherent limitations. Specifically,
the universal auxiliary head employs either overlap-based Lin et al. (2017b) or distance-
based Tian et al. (2022) strategies to select positive anchors for training. These methods
cannot ensure sufficient potential anchors for small objects, which have significantly smaller
center regions. In other words, the positive sample criteria of the universal auxiliary head
are overly stringent when applied to small or tiny objects, resulting in a limited number
of samples available for optimization. Consequently, the universal auxiliary head fails to
generate enough positive queries for small instances in the decoder.

To remedy the aforementioned issues of the universal auxiliary head in handling small
instances, we introduce an IoU-aware mechanism. This mechanism incorporates a dynamic
anchors mining strategy that adapts to the size variations of instances, thereby facilitating
enhanced anchors mining for small objects. The IoU-aware mechanism dynamically assigns
variable anchors IoU thresholds based on the object’s area, ensuring that instances of varying
sizes have access to a sufficient number of potential anchors. Concretely, for an object
box with width w and height h, any anchors with an IoU exceeding threshold TI will be
considered positive samples. The threshold TI is defined as follows:

TI = max(Tb, Tb + k · (
√
w · h
As

)p), (8)

where Tb represents the base IoU threshold. The constant k and the exponent p are used
to control the growth rate of the threshold TI and we often set k to 0.15 in experiments.
Furthermore, As denotes the area of the minimal instance in the dataset, which ensures an
adequate sampling of extreme-size objects and can be adjusted to suit different datasets.
In essence, the IoU-aware mechanism is designed to assign lower thresholds to smaller tar-
gets but ensure these thresholds do not fall below Tb. This approach prevents an excessive
number of low-quality samples from adversely affecting the optimization process. Mean-
while, the model employs a smoothly varying continuous threshold for determining positive
samples, which is a more nuanced method.

In recent advancements in object detection, the introduction of a one-to-many label
assignment strategy significantly enhances the labeling mechanism. Unlike the traditional
one-to-one matching approach, where each ground-truth box is associated with a single
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positive sample, the one-to-many strategy enables multiple candidates to correspond with
the same ground-truth box. This paradigm shift is particularly advantageous for small
object detection, as it expands the pool of positive samples, effectively addressing the sparse
supervision challenge often faced with these instances.

Utilizing the dynamic anchors mining strategy and one-to-many label assignments of
the IoU-aware auxiliary head, we meticulously generate an ample number of customized
positive queries for the decoder. The mined customized queries Qa can be generated using
the following formula:

Qa = Linear(PE(Cpos)) + Linear(E(F
′′
pos)), (9)

where PE(·) stands for positional encodings and Cpos denotes the set of positive coordi-
nates identified by the IoU-aware auxiliary head. The set of features, F

′′
pos, is extracted from

the output of the Scale-Aware Encoder, specifically tailored according to the positive sam-
ple coordinate set Cpos. To facilitate the selection, we extract the corresponding features
from E(·) based on the established index pair. The notation Linear(·) refers to a linear
transformation applied to the feature set.

Consequently, the auxiliary one-to-many label assignment branches share the same pa-
rameters with L decoder layers in the original main branch during training. Consequently,
all queries in the auxiliary branch are treated as positive queries, eliminating the need for
a matching process. Specifically, the loss for the l-th decoder layer in the auxiliary branch
can be expressed as follows:

Ldec
l = L̂(P̂l, Ppos). (10)

P̂l refers to the output predictions of the l-th decoder layer in the auxiliary branch, and Ppos

refers to the positive proposals generated by the auxiliary branch. In IAH, we employ a one-
to-many label assignments strategy and a dynamic anchors mining strategy to effectively
mine a sufficient number of potential auxiliary positive queries for small instances.

4. Experiments

In this session, we compare our proposed MRQM on the SODA-D and VisDrone datasets
for small object detection with several state-of-the-art methods. After that, we conduct
ablation studies, parameter analysis, and visualization to evaluate the effectiveness of each
component in our MRQM framework.

4.1. Dataset

SODA-D. Based on the traffic scenarios, SODA-D Cheng et al. (2023) consists of 24,828
high-quality images and 278,433 instances from nine categories, including people, rider,
bicycles, motor, vehicle, traffic-sign, traffic light, traffic camera, and warning-cone. SODA-
D exhibits significant diversity in time periods, geographical locations, weather conditions,
shooting perspectives, and scenarios, benefitting the generalization of small object detection.

VisDrone.VisDrone Du et al. (2019) contains 10,209 high-resolution drone-captured im-
ages with a resolution of 2000 × 1500 and 542,000 instances covering 10 common object
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Table 1: Comparison with detection approaches on the SODA-D: the subscripts eS, rS, gS,
and N represent extremely small, relatively small, generally small and normal respectively.

Methods Ref. AP AP50 AP75 APeS APrS APgS APN Params

CNN-based

Faster RCNN Ren et al. (2015) NIPS’15 28.9 59.4 24.1 13.8 25.7 34.5 43.0 41M

FCOS Tian et al. (2019) ICCV’19 23.9 49.5 19.9 6.9 19.4 30.9 40.9 32M

ATSS Zhang et al. (2020) CVPR’20 26.8 55.6 22.1 11.7 23.9 32.2 41.3 32M

YOLOX Ge et al. (2021) CVPR’21 26.7 53.4 23.0 13.6 25.1 30.9 30.4 99M

Sparse RCNN Sun et al. (2021) CVPR’21 24.2 50.3 20.3 8.8 20.4 30.2 39.4 106M

RFLA Xu et al. (2022) ECCV’22 29.7 60.2 25.2 13.2 26.9 35.4 44.6 45M

CFINet Yuan et al. (2023) ICCV’23 30.7 60.8 26.7 14.7 27.8 36.4 44.6 49M

Transformer-based

Deformable-DETR Zhu et al. (2020) ICLR’20 19.2 44.8 13.7 6.3 15.4 24.9 34.2 40M

Conditional-DETR Meng et al. (2021) ICCV’21 25.7 52.8 15.0 7.9 20.3 28.0 36.5 46M

DAB-DETR Liu et al. (2021) ICLR’22 27.2 55.1 20.6 10.3 22.5 31.9 37.2 55M

DINO Zhang et al. (2022) ICLR’23 28.9 59.4 22.4 12.5 22.7 34.7 42.8 56M

Co-DINO Zong et al. (2023) ICCV’23 32.2 61.1 28.9 15.3 28.4 38.9 48.4 66M

MRQM(Ours) - 34.5 65.1 31.4 16.5 30.6 41.4 52.3 60M

categories in traffic scenarios. Its various environmental settings (urban and rural), scenes
with different population densities, viewpoint variations, and heavy occlusions all pose se-
vere challenges to small target detection.

4.2. Implementation Details

We implement our approach based on Pytorch and we mainly conduct experiments with
Co-DINO–a state-of-the-art Transformer-based object detector with open-sourced imple-
mentation. All experiments in this study were conducted on a single RTX 3090 GPU.
During the training phase, we employed AdamW as the parameter optimizer with a batch
size of 2. Data augmentation was limited to random flipping. The model was trained using
a 1× schedule (12 epochs), with an initial learning rate of 2e-4 and a weight decay of 0.0001.

4.3. Metrics

In our experiments, we assess performance using Average Precision(AP), calculated across
multiple Intersections over Union (IoU) thresholds from 0.5 to 0.95 in increments of 0.05.
Additionally, we report AP50 and AP75, corresponding to IoU thresholds of 0.5 and 0.75,
respectively. The definition of AP varies across scales in the Visdrone and SODA-D datasets.
In Visdrone, objects are classified into small (S), medium (M), and large (L) categories,
representing sizes within (0, 322], (322, 962], and (962, ∞]. Hence, APS , APM , and APL

denote precision metrics for objects of different scales. Conversely, in the SODA-D dataset,
objects are categorized as Small or Normal according to their areas. The category further
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Table 2: Comparison with detection approaches on the Visdrone2019: the subscripts S, M,
and L respectively indicate the size of the object as small, medium, and large.

Methods Ref. AP AP50 AP75 APS APM APL Params

CNN-based

Faster RCNN Ren et al. (2015) NIPS’15 20.1 33.4 21.1 12.1 30.4 40.0 41M

FCOS Tian et al. (2019) ICCV’19 15.2 25.5 15.7 7.8 23.7 29.7 32M

ATSS Zhang et al. (2020) CVPR’20 18.7 30.7 19.3 10.9 29.0 32.5 32M

YOLOX Ge et al. (2021) CVPR’21 23.5 39.5 23.8 14.8 34.2 39.0 99M

Sparse RCNN Sun et al. (2021) CVPR’21 8.5 15.5 8.1 4.9 12.5 18.6 106M

RFLA Xu et al. (2022) ECCV’22 25.4 42.2 26.0 17.9 34.4 45.7 45M

CFINet Yuan et al. (2023) ICCV’23 26.0 45.3 26.1 18.3 35.3 49.9 49M

Transformer-based

Deformable-DETR Zhu et al. (2020) ICLR’20 14.2 25.7 13.8 8.0 21.7 30.1 40M

Conditional-DETR Meng et al. (2021) ICCV’21 26.4 37.7 27.4 16.2 36.2 35.6 46M

DAB-DETR Liu et al. (2021) ICLR’22 27.8 40.8 26.9 16.4 35.5 39.8 55M

DINO Zhang et al. (2022) ICLR’23 26.8 44.2 28.9 17.5 37.3 41.3 56M

Co-DINO Zong et al. (2023) ICCV’23 28.5 46.7 29.9 20.5 38.2 46.3 66M

MRQM(Ours) - 31.9 51.4 33.6 24.1 41.7 53.4 60M

Table 3: Ablation studies on two modules including BiFPN with scale-aware encoder
(BiFPN with SAE) and IoU-aware head (IAH) on the VisDrone dataset.

Settings BiFPN with SAE IAH AP AP50 AP75 APS APM APL

I ✗ ✗ 28.5 46.7 29.9 20.5 38.2 46.3

II ✓ ✗ 30.7 49.1 30.7 23.7 39.5 50.8

III ✗ ✓ 30.1 48.5 31.6 23.1 38.9 51.0

IV ✓ ✓ 31.9 51.4 33.6 24.1 41.7 53.4

divides into extremely small (eS), relatively small (rS), generally small (gS), and normal(N),
spanning size ranges of (0, 144], (144, 400], (400, 1024], and (1024, 2000], respectively.

4.4. Comparisons with State-of-The-Arts

To demonstrate the superiority of our MRQM approach, we conduct a comprehensive com-
parison with a wide range of state-of-the-art methods on the VisDrone and SODA-D. To
ensure a fair comparison, we employ ResNet-50 as the underlying backbone architecture for
all baseline models on two benchmark datasets.

Evaluation on SODA-D. As shown in Table 1, it can be observed that the proposed
MRQM method greatly benefits from the SAE and the IAH outperforms all comparative
baselines on benchmark datasets. Compared to the current best-performing method for
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Table 4: Different definitions about the base IoU threshold Tb for IoU-aware head.

Tb AP AP50 AP75 APS APM APL

0.5 31.2 50.8 32.9 23.6 40.2 52.2

0.55 31.9 51.4 33.6 24.1 41.7 53.4

0.6 31.5 51.1 33.2 23.7 40.8 52.6

0.65 30.8 50.1 32.5 23.4 39.9 51.5

Table 5: Different definitions about the exponent p for IoU-aware head.

p AP AP50 AP75 APS APM APL

0.1 31.7 51.2 33.0 24.1 41.8 53.0

0.2 31.9 51.4 33.6 24.1 41.7 53.4

0.3 31.3 50.8 32.3 23.8 40.9 52.7

SOD, i.e., Co-DINO, our methods exhibit performance improvements in overall average
precision(AP) score on the SODA-D dataset, achieving improvements of 2.3%(34.5% vs.
32.2%). In particular, for the three performance metrics of detecting small objects APeS ,
APrS and APgS , our method also yields a substantial improvement of 1.2%, 2.2%, and
2.5%, respectively. These comparative results underscore the effectiveness of our approach.

Evaluation on VisDrone. According to Table 2, it can be observed that our MRQM
framework also demonstrates impressive enhancements on the drone-captured dataset, even
in challenging more complex environmental conditions, varying population densities, and
severe occlusion scenarios. Intuitively, our model exhibits superior performance, surpassing
all baseline models and achieving an overall AP score of 31.9%. Moreover, our method
demonstrates notable superiority in small object detection, outperforming the second-best
by 3.6% in APS . Additionally, APM and APL accuracies improve by 3.5% and 7.1%, re-
spectively, highlighting the generalization and robustness of our approach. Notably, while
enhancing the performance of detecting small objects, our method maintains a lower pa-
rameter count(60M), thereby improving detection efficiency. In contrast to the current
state-of-the-art method Co-DINO, our framework not only achieves superior performance
but also reduces parameter complexity. These compelling results underscore the effective-
ness and dominance of our MRQM approach in advancing small object detection.

4.5. Ablation Studies

In our ablation studies, we conduct a comprehensive analysis of the proposed MRQM
method on the VisDrone to validate the effectiveness of the different components. The
comparative results are presented in Table 3.

Effect of BiFPN with Scale-Aware Encoder. The results of “MRQM w/o BiFPN
with SAE” clearly indicate that the BiFPN efficiently integrates features across diverse
scales and resolutions to enhance the generalization ability of Transformer-based detectors
for detecting instances of various sizes. While the scale-aware encoder refines multi-scale
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Figure 2: Visualization of the detection results and the query heatmap for small objects of
our MRQM on the VisDrone dataset.

features from BiFPN, reducing redundant computations and thereby optimizing the utiliza-
tion of multi-scale feature information.

Effect of IoU-Aware Head. Without the IoU-aware head, “MRQM w/o IAH” shows
a notable drop in performance, highlighting the contribution of the IoU-aware head in fully
mining sufficient potential auxiliary positive queries of small instances for the decoder to
alleviate the sparse supervision for the encoder output.

4.6. Parameter Analysis

For parameter analysis, we examine the optimal performance of the auxiliary query mining
strategy within the IAH. We conducted a comprehensive analysis under different config-
urations. As shown in Tables 4 and 5, the best results occur when Tb is 0.55 and p is
0.2. Introducing smoothly varying dynamic thresholds improved detection performance.
However, performance declines when Tb drops to 0.5, likely due to low-quality samples
dominating. The exponent p controls the growth rate of the dynamic IoU threshold TI . At
p = 0.2, TI increases steadily, ensuring balanced detection performance.
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4.7. Visualization Results

To further evaluate the performance of our MRQM approach, we visualize the detection
results and the query heatmaps for small objects on VisDrone. As illustrated in Figure 2,
by introducing SAE to leverage more discriminative features, our multi-scale refinement
methods can more accurately detect small objects. Meanwhile, it can be clearly seen that
our model can successfully recognize most small objects with high confidence scores and
our IAH can locate the coarse positions of small objects by mining small target positive
queries, enabling our model to detect them more effectively. In particular, We also show
some limitations. In the second image of the query heatmap shown in Figure 2, some regions
of large objects are falsely activated. Although these areas are not misdetected, this causes
the detection head to process irrelevant locations, thereby impairing detection efficiency.

5. Conclusions

In this paper, we proposed a small object detector MRQM based on the scale-aware en-
coder and IoU-aware head, in which the former can iteratively refine multi-scale features
within the encoder module, reducing redundant computations and thereby optimizing the
utilization of multi-scale feature information. Then the IoU-aware head mines sufficient
auxiliary queries for small objects for the decoder to alleviate the sparse supervision of the
encoder output. Extensive experiments on the small object detection datasets SODA-D and
VisDrone consistently demonstrate our approach outperforming state-of-the-art methods.
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