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Abstract

Chest X-rays (CXRs) are the most frequently performed imaging examinations
in clinical settings. Recent advancements in Medical Large Multimodal Models
(MLMMs) have enabled automated CXR interpretation, improving diagnostic ac-
curacy and efficiency. However, despite their strong visual understanding, current
MLMMs still face two major challenges: (1) insufficient region-level understanding
and interaction, and (2) limited accuracy and interpretability due to single-step
prediction. In this paper, we address these challenges by empowering MLMMs
with anatomy-centric reasoning capabilities to enhance their interactivity and ex-
plainability. Specifically, we propose an Anatomical Ontology-Guided Reasoning
(AOR) framework that accommodates both textual and optional visual prompts,
centered on region-level information to enable multimodal multi-step reasoning.
We also develop AOR-Instruction, a large instruction dataset for MLMMs training,
under the guidance of expert physicians. Our experiments demonstrate AOR’s supe-
rior performance in both Visual Question Answering (VQA) and report generation
tasks. Code and data are available at: https://github.com/Liqq1/AOR.

1 Introduction

Chest X-rays (CXRs), with over 2 billion examinations annually [2], are essential for diagnosing and
monitoring thoracic diseases [34]. However, their interpretation is time-consuming and expertise-
dependent, leading to diagnostic delays, variability, and errors [5, 6], especially under increasing
clinical workloads and radiologist shortages. These challenges highlight the urgent need for accurate
and efficient automatic CXR interpretation systems to support modern medical practice.

Early task-specific models for CXR interpretation focused on disease classification [32], detec-
tion [28], or report generation [8], but often lacked generalization and interpretability. Recently, the
advancement of Large Multimodal Models (LMMs) [23, 22] has emerged as a promising and scalable
solution for CXR interpretation. Notable examples include LLaVA-Med [18] and CheXagent [9].
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Figure 1: Previous image-level MLMMs (shown in light red) make incorrect predictions or fail to
predict due to (1) insufficient region-level perception and (2) reliance on single-step reasoning. In
contrast, our AOR model (shown in light green) delivers explainable and accurate answers by (1)
emphasizing region-level understanding and (2) employing multi-step reasoning.

While these existing Medical LMMs (MLMMs) have shown remarkable capabilities in both visual
understanding and language modeling, they still face two key challenges that significantly limit their
effectiveness in medical imaging applications:

(1) Insufficient Region-Level Understanding and Interaction Radiologists interpret CXRs by
scanning the full image and then examining specific anatomical regions for abnormalities. To emulate
this process, models must capture fine-grained visual details, spatial relationships, and anatomical
hierarchies. However, current image-level MLMMs [18, 36] struggle to detect subtle but clinically
relevant findings. Additionally, as shown in Fig. 1, region-level interaction is crucial: not only for
radiologists revisiting suspicious areas but also for non-experts who rely on models to interpret visual
cues without medical terminology. Existing MLMMs lack such capabilities, limiting their real-world
applicability. Thus, it is imperative to highlight region-level perception to overcome these obstacles.

(2) Limited Accuracy and Interpretability due to Single-Step Prediction Without Reasoning
Medical imaging often involves overlapping symptoms and diverse disease manifestations, demanding
multi-step reasoning for accurate diagnosis. Models must jointly consider lesion location, appearance,
and clinical context in relation to the question. However, current MLMMs typically make single-step
predictions without explicit reasoning, resulting in misinterpretations [10], hallucinations [29], and
poor symptom-lesion-disease alignment. A key bottleneck is the lack of high-quality, clinically
grounded instruction data to support multi-step reasoning, given the specialized knowledge and low
error tolerance required. To address this, constructing a clinically credible Chain-of-Thought (CoT)
dataset is essential for improving both accuracy and interpretability in MLMMs.

In this paper, we introduce the Anatomical Ontology-Guided Reasoning (AOR) framework with a
three-stage training strategy. AOR centers on the anatomical regions relevant to the given question,
incorporating their positional and representational information to enable multimodal, multi-step
reasoning. Then, to address the shortage of high-quality multimodal reasoning datasets for MLMMs,
we develop the AOR-Instruction dataset under the guidance of three expert physicians. This dataset
consists of two subsets: AOR-VQA and AOR-RG. Specifically, for AOR-VQA, we construct 2,812
CoT templates based on three anatomical ontologies to provide precise CoT answers for 290k Visual
Question Answering (VQA) samples. For AOR-RG, 133k CXR-report pairs are used for full image
report generation, and raw reports are further decomposed into fine-grained descriptions, yielding
399k strictly aligned region–sentence pairs for interpretable region report generation.

By empowering Medical LMMs with anatomy-centric reasoning capabilities, we introduce a new
paradigm toward interactive and explainable medical imaging analysis for CXR interpretation. The
contributions of this work are summarized as follows.

• We propose an Anatomical Ontology-Guided Reasoning (AOR) framework, which supports both
textual and optional visual prompts (i.e., region-of-interest (ROI) crops) as input, centered on
region-level information to enable multimodal, multi-step reasoning.

• We develop a large instruction dataset named AOR-Instruction by leveraging anatomical regions
and their ontologies. It consists of two parts: AOR-VQA for VQA and AOR-RG for full image and
region report generation, containing 290k and 532k data pairs, respectively.
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• Extensive experiments demonstrate the superiority of AOR, which outperforms the second-best
MLMM by an average of 6.81% on the VQA and 5.27% on report generation, underscoring the
crucial role of region perception and reasoning capabilities in supporting clinical decision-making.

2 Related Works

Medical Large Multimodal Models With the success of LLMs [1, 37, 38], researchers are
enhancing these models by incorporating visual understanding capabilities, leading to the emergence
of LMMs [23, 22]. In the medical domain, numerous LMM-based studies have also arisen. Prominent
models such as LLaVA-Med [18] and Med-Flamingo [27] first perform image-text feature alignment
using paired medical data, followed by meticulously designed instruction tuning. Although these
models exhibit strong visual understanding, they are primarily limited to image-level tasks like report
generation and medical visual question answering. They do not explicitly learn region-level features
during the training process, which constrains their region-level perception.

Region-Level Medical LMMs To achieve more fine-grained image understanding, recent research
has integrated region-level data into the training of LMMs. Shikra [7] directly quantizes bounding
boxes into coordinates (numerical representations of positions). Subsequently, GPT4RoI [42] and
RegionGPT [11] extract region features from the original images and include them as part of the
input token sequences, allowing the models to comprehend region representations and enabling
them to process visual prompts. However, in the medical domain, research on region-level LMMs is
still limited. BiRD [12] aims to equip MLMMs with grounding and referring capabilities through
multi-task learning while maintaining their conversational ability. MAIRA-2 [4] focuses on enhancing
LMMs for grounded report generation tasks. Both methods locate specific regions using textual
coordinates and rely on single-step diagnoses, lacking the comprehensive perception and reasoning
to fully leverage these regions.

CoT in Medical LMMs Chain-of-Thought (CoT) prompting guides LLMs through intermediate
reasoning steps to solve complex tasks [39, 16]. Recent efforts have introduced CoT into LMMs
to enhance visual reasoning. For example, SoM [41] integrates supplementary visual cues (e.g.,
segmentation maps), while VoCoT [20] and Visual-CoT [33] build instruction datasets for object-
centric reasoning. However, CoT integration in medical LMMs remains limited. MedCoT [24] uses
Gemini-Pro [35] for CoT generation, but lacks medical domain rigor. MedVLM-R1 [30] applies
reinforcement learning for reasoning without reference answers, though it is restricted to multiple-
choice VQA. X-Reasoner [25] further shows that without early-stage CoT supervision, RL alone
yields suboptimal reasoning, underscoring the need for domain-specific CoT guidance in MLMMs.

3 Method
3.1 Model Overview

As illustrated in Fig. 2, AOR mainly consists of three components: (i) an image encoder I , responsible
for extracting image features; (ii) a region encoder R, deployed to extract multi-scale region features
from image features; and (iii) a large language model LLM is designed to jointly model image,
region, and text for reasoning after projecting image and region features into the linguistic space.

3.2 Model Development

Fig. 2 (b) shows our three-stage training procedure for AOR. We progressively enable AOR to perform
anatomy-centric recognition, detection, reasoning, and report generation. All three training stages
use cross-entropy loss for auto-regressive language modeling.

Stage 1: Anatomical Region Recognition The first stage aims to align region features with
linguistic embeddings, enabling the model to recognize each anatomical region in CXR. During this
stage, only the region encoder R and the region projection f ′

p are kept trainable. For each image I , we
use the anatomical bounding boxes B = {(cj , nj)Nb

j=1} provided by Chest ImaGenome Dataset [40].
Here, cj ∈ R4, nj and Nb represent the coordinate, region name, and the number of anatomical
regions in I . The image I is first encoded into the feature maps z = {zi}Nl

i=1, where Nl is the number
of feature maps. Inspired by GPT4RoI [42], we design the region encoder R which constructs
a hierarchical feature pyramid from four selected layers of the image encoder. According to cj ,
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Figure 2: (a) Overview of AOR framework, which flexibly accommodates both textual and optional
visual prompts (i.e., region-of-interest (ROI) crops) as input, centered on region-level information to
enable multimodal multi-step reasoning; and (b) Three-stage training procedure for AOR.

RoIAlign is applied to generate a 14×14 feature map from the fused hierarchical feature, followed by
a pooling layer to embed multi-scale region features rj . Image projection fp and region projection f ′

p

are used to connect zNl
and rj into the linguistic space. Finally, the LLM integrates the projected

visual features and the text instruction embedding t to recognize the current anatomical region and
output its name nj :

nj = LLM(fp(zNl
), t, f ′

p(r
j)) (1)

Stage 2: Anatomical Region Grounding In the second stage, the model is trained to localize
anatomical regions, laying the foundation for subsequent reasoning tasks. Since the generation of
coordinates requires an overview of the entire image and the generative capability of the LLM, we
keep both the LLM and image projection modules trainable. Two types of tasks are considered:
(1) To prevent catastrophic forgetting and align the format closer to the reasoning tasks, the model
revisits the anatomical region recognition of Stage 1 with some adjustments, i.e., concatenating the
coordinates to the region feature. Here, we use bbox [xmin, ymin, xmax, ymax] as object coordinates,
where x and y are normalized between 0 and 1 relative to the image size. The LLM reads the
projected visual features, text instruction embedding t, and textual coordinates embedding cj to
predict the region name nj :

nj = LLM(fp(zNl
), t, [cj , f ′

p(r
j)]) (2)

(2) Given region’s name nj , the model grounds the corresponding coordinates cj :
cj = LLM(fp(zNl

), t, nj) (3)

Stage 3: Instruction Tuning Based on the pre-trained model, this stage fine-tunes the model using
AOR-Instruction (detailed in Section 4) on three tasks:

(1) Medical Visual Question Answering: AOR is capable of handling questions that require both
global and local clues, and is flexible enough to accept both textual and optional visual prompts as
input. Based on the given prompt, the model centers on anatomical regions to generate logically
reasoned answers. During reasoning, each region is represented in a triplet format: 〈region name〉
〈coordinates〉 〈ROI visual representation〉, e.g., “svc [0.27, 0.08, 0.92, 0.81] rsvc”. Once the end of
the coordinates token “]” is generated, the region encoder R is activated to obtain the 〈ROI visual
representation〉 based on the coordinates between “[” and “]”, which is formulated as follows:

ansj = LLM(fp(zNl
), t, [nj , cj , f ′

p(r
j)]) (4)

(2) Full Image Report Generation: Given a CXR, AOR generates a comprehensive report describing
the entire image:

report = LLM(fp(zNl
), t) (5)

(3) Region Report Generation: For a CXR, users provide textual and optional visual prompts
specifying the anatomical regions of interest. AOR generates a report sentence sj specifically related
to the designated region rj .

sj = LLM(fp(zNl
), t, f ′

p(r
j)) (6)
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construction of AOR-RG: Strict alignment between anatomical region and report sentence.

4 Instruction Data

Currently, there is a shortage of high-quality multimodal reasoning datasets for training Medical
LMMs, leading to models that lack fine-grained understanding and reasoning capabilities. To bridge
this gap, we construct the AOR-Instruction dataset by leveraging anatomical regions and their
ontologies. This dataset, enriched with explainable region-level visual information, helps LMMs
achieve a clearer understanding of image content. The AOR-Instruction dataset consists of two
components: AOR-VQA for Visual Question Answering (VQA) and AOR-RG for full image and
region report generation, containing 290k and 532k data pairs, respectively.

4.1 AOR-VQA

AOR-VQA is primarily designed to enhance the model’s capabilities in medical VQA. We use
MIMIC-CXR-VQA [3], a comprehensive dataset with (Image, Question, Answer) samples, as our
primary data source. It includes both global-level questions that evaluate the overall findings of a
CXR (e.g., “Do you notice any abnormalities?”), and local-level questions that focus on specific
anatomical regions (e.g., “Can hyperaeration be detected in the left lung?”).

The entire construction process is conducted under the guidance of expert physicians—two board-
certified radiologists and one clinician with 24, 18, and 27 years of experience, respectively. We
meticulously design and refine three types of anatomical ontologies. Based on these ontologies, we
construct a Chain of Thought (CoT) for each sample. Finally, the expanded information is attached to
each sample, resulting in a structure that includes (Image, Question, Region Box, CoT Answer). The
details are as follows:

4.1.1 Anatomical Ontologies Design

We define anatomical regions in the CXR as objects, each associated with several attributes selected
from a pool of 68 attributes across five categories. Fig. 3 (a) illustrates our anatomical ontologies.

Ontology 1: Hierarchical Relationships Between Objects In visual perception, humans organize
content into hierarchical structures to understand the part-whole relationships within images, thereby
obtaining the answers they seek. Fortunately, such part-whole hierarchical relationships clearly exist
between anatomical regions. As illustrated in Fig. 3 (a), Obj_Parent (e.g., mediastinum) includes two
related objects: Obj_child1 (e.g., upper mediastinum) and Obj_child2 (e.g., cardiac silhouette). By
leveraging this hierarchical relationship, the model can engage in reasoning by shifting focus from
the whole to the parts and then comprehensively considering the whole based on the parts. Therefore,
we explore and organize the hierarchical relationships of 38 anatomical regions.
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Ontology 2: Causal Relationships Between Attributes During the progression of specific at-
tributes, multiple conditions can dynamically interrelate and influence one another. Additionally,
attributes categorized as anatomical findings are typically the imaging manifestations of attributes
classified as diseases. Thus, we can construct causal relationships between different attributes. As
shown in Fig. 3 (a), if Attr_Child (e.g., lobar/segmental collapse) exists, then Attr_Parent (e.g.,
atelectasis) within an Obj must also be present. Leveraging these causal relationships enables the
model to better understand the associations between attributes and utilize other attributes to complete
the reasoning process when encountering attributes with unclear or difficult-to-determine visual
manifestations. Consequently, the causal relationships of 68 attributes are constructed.

Ontology 3: Restrictive Relationships Between Objects and Attributes Finally, we consider
the restrictive relationships between objects and attributes. As shown in Fig. 3 (a), only certain
attributes appear within specific objects. For example, fractures can never occur at the cardiac
silhouette, while pleural effusion most commonly affects the costophrenic angle. By utilizing such
restrictive relationships, the model can eliminate certain scenarios, enabling more rational and
effortless reasoning. Therefore, the restrictive relationships between 38 objects and 68 attributes are
organized. Refer to Appendix A.2.1 for more details about the three Ontologies.

4.1.2 CoT construction

Integrating the aforementioned three ontologies, as illustrated in Fig. 3 (a), we organize an ideal
case for each image (represented as a Study id node) in the source dataset, establishing connections
between all objects and attributes for each sample. For global-based questions, we do not expand
the answers, enabling the model to make fine-grained observations while also developing global
summarization skills. For local-based questions, we construct a rigorous and comprehensive CoT for
each question based on the ideal case, following the steps below.

Step 1: Identify Sub-objects (Using Ontology 1) For the queried object, we first identify its
sub-objects (if it is already the smallest anatomical structure unit, this step is skipped). Considering
the question: “Is the cardiac silhouette abnormal?”, we identify the right atrium and the cavoatrial
junction as the sub-objects of the cardiac silhouette for focused analysis.

Step 2: Consider All Possible Attributes (Using Ontology 2) If the question targets a specific
attribute, analysis and reasoning are conducted solely for that attribute. However, if the question
concerns all abnormalities of the queried object, all possible scenarios must be taken into account.
Continuing with the example from Step 1, for abnormalities in the cardiac silhouette contour, this
primarily includes the presence of tubes or devices, changes in the size of the cardiac silhouette, and
the development of other associated complications.

Step 3: Associate the Relevant Objects and Attributes (Using Ontology 3) Once we have
identified the attributes to be discussed, we focus our observation and reasoning on their primary
associated objects or sub-objects. Continuing with the example above: for the presence of tubes
or devices, particularly observe the right atrium and the cavoatrial junction; for measurements, i.e.,
cardiac silhouette size, place cardiac silhouette within the global context and compare it to the size of
the entire thorax; for the development of complications, after detecting an enlarged cardiac silhouette,
consider other features, i.e., pulmonary translucency, to further assess the presence of lung opacity.

Following the three steps outlined above, we can construct a CoT answer for any combination of
objects and attributes (or categories and abnormalities). A total of (68+5+1)×38 = 2,812 types of
CoT answers are constructed, all of which are reviewed and refined by three expert physicians.

Furthermore, source data includes complex combinatorial questions, such as those involving conjunc-
tion and disjunction, which are commonly seen in real-world application scenarios. Therefore, we
decouple such data by extracting the involved sub-questions to perform the aforementioned CoT and
finally conduct an additional logical inference based on the answers to the sub-questions.

4.1.3 Sample Expansion

All samples in the dataset are expanded from (Image, Question, Answer) to (Image, Question, Region
Box, CoT Answer) according to the above rules. For more details, please refer to Appendix A.2.1.
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Table 1: Comparison of methods on MIMIC-CXR-VQA, VQA-RAD, and CheXpert. “–” means
Med-Flamingo and MedVLM-R1 lack training code and thus cannot be fine-tuned on
MIMIC-CXR-VQA. “*” means CheXagent lacks training code, but its instruction data include
MIMIC-CXR-VQA, so we report zero-shot results. Results in gray are excluded from the comparison
since CheXagent data include VQA-RAD. Bold numbers mark the best result in each column.

Method Res. MIMIC-CXR-VQA VQA-RAD CheXpert

verify choose query closed open closed open

General-domain LMM
LLaVA [23] 2242 75.97 56.07 58.87 43.84 21.09 27.72 34.50
LLaVA-1.5 [22] 3362 75.25 58.70 56.10 44.74 13.54 27.72 33.88
GPT4RoI [42] 2242 77.16 56.37 60.54 43.84 17.64 52.19 32.65
VoCoT [20] 4482 76.17 48.79 60.70 35.62 21.38 49.60 40.89

Medical-domain LMM
LLaVA-Med [18] 2242 75.71 58.31 60.37 61.64 22.36 54.95 42.08
Med-Flamingo [27] 2242 - - - 28.77 23.89 40.99 39.80
XrayGPT [36] 2242 60.00 40.97 24.07 43.84 22.51 60.59 30.45
CheXagent [9] 4482 75.02* 33.49* 48.49* 68.49 24.94 62.28 32.14
MedVLM-R1 [30] Dyn - - - 52.05 22.07 60.89 33.55
AOR(Ours)-t 3362 80.48 71.96 65.05 63.01 28.19 71.58 53.85
AOR(Ours)-r/t 3362 80.68 70.16 65.43 57.53 24.99 74.06 45.35

4.2 AOR-RG
Full Image Report Generation We directly utilize the image-report pairs provided in MIMIC-
CXR [15], make use of frontal images, and include findings and impressions in the report.

Region Report Generation To perform fine-grained region report generation, we need to decom-
pose raw report data into fine-grained descriptions for each organ mentioned in medical scans. As
shown in Fig. 3 (b), we utilize the bounding boxes provided by Chest ImaGenome Dataset and parse
the text using RadGraph [14], employing the rules proposed in ASG [19] to achieve strict alignment
between the two. Additionally, we optimize the alignment method to handle cases where two different
anatomical regions appear in the same short sentence, introducing new rules to split such sentences
into two separate ones. This approach constructs region-sentence pairs for each image-report pair.

5 Experiments

5.1 Experiment Settings
Implementation Details We initialize the image encoder with CLIP-ViT-L/14 [31] and the language
model with LLaVA-1.5 [22]. The image resolution is set to 336×336. We use AdamW as our
optimizer, with a learning rate of 2 × 10-5. Experiments are conducted using 4 NVIDIA A100 GPUs.

Dataset 1) For theVQA task, we evaluate on the test sets of MIMIC-CXR-VQA [3], VQA-RAD [17],
and CheXpert [13]. MIMIC-CXR-VQA contains 500 images and 13,793 QA pairs in the test dataset.
CheXpert contains 191,229 frontal chest radiographs, and we use the expert-labeled validation set as
the test data, which contains 202 images and 1,212 QA pairs. VQA-RAD includes 315 images and
3,515 QA pairs across the head, chest, and abdomen. We filter it to include only chest X-ray images
and their corresponding question-answer pairs, resulting in 69 images and 102 QA pairs in the test
dataset. 2) For the full image report generation task, we use MIMIC-CXR, a large publicly available
dataset of chest radiographs with free-text radiology reports, to evaluate the model’s performance. The
test dataset contains 500 images and their corresponding reports. 3) For the region report generation
task, we use the same 500 images and sample 3 anatomical regions per image for evaluation.

Evaluation Metrics For the VQA task, regarding MIMIC-CXR-VQA, its questions can be catego-
rized into three primary semantic types: For the “verify” questions, which include yes/no questions,
we report the accuracy; for the “choose” questions, which involve selection from provided options,
we also report the accuracy; for the “query” questions, where the answers are in the form of a
list, we report the F1 score (micro). For CheXpert and VQA-RAD, following [18], for closed-end
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Table 2: Comparison of report generation meth-
ods on MIMIC-CXR. “†” means Res. is 3362.

Method MIMIC-CXR
R-L BERTScore F1CheXbert

Full image report generation
LLaVA-Med 13.49 75.93 0.40
Med-Flamingo 5.21 71.26 13.61
XrayGPT 24.02 83.18 26.71
CheXagent 24.09 83.52 37.54
LLaVA-Rad† 24.22 83.67 46.20
AOR(Ours)-t 25.37 83.92 46.53
AOR(Ours)-r/t 25.38 83.95 48.28

Region report generation
LLaVA-Med 9.47 71.51 16.70
Med-Flamingo 12.98 75.24 14.66
XrayGPT 15.80 80.19 19.96
CheXagent 20.79 81.57 33.02
LLaVA-Rad† 18.71 81.80 31.40
AOR(Ours)-t 35.11 84.54 36.65
AOR(Ours)-r/t 35.62 84.76 36.89

Table 3: Comparison of the different CoT repre-
sentations.

ID coor region CoT verify choose query
1 ✗ ✗ ✗ 76.83 61.07 58.77
2 ✗ ✗ ✓ 80.69 67.62 63.37
3 ✓ ✗ ✓ 79.14 69.54 63.89
4 ✓ ✓ ✓ 80.68 70.16 65.43
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Figure 4: Impact of anatomical region shifts on
model predictions. Solid lines represent the orig-
inal visual prompt bboxes, dashed lines represent
bboxes enlarged by 10% of the original size.

questions with a single correct answer, we report accuracy; for open-end questions, we use recall to
evaluate the model’s responses. For the report generation task, we selected ROUGE-L (R-L) [21],
BERTScore [43], and F1CheXbert [26] as evaluation metrics to compare model performance at the
word level, semantic level, and clinical efficacy level.

5.2 Quantitative Comparison

Performance on MIMIC-CXR-VQA We fine-tune all models on MIMIC-CXR-VQA. For a fair
comparison, we introduce AOR-t, which uses the same training data as baseline methods, where
all questions are in textual form. AOR-r/t represents a setting where questions are presented in
both textual and visual formats during training and inference, enabling multimodal interaction. This
reflects a more general and practical usage scenario, requiring the model to dynamically parse and
reason over heterogeneous input modalities. Notably, regardless of how the questions are presented,
both AOR-t and AOR-r/t leverage region-level visual information to enhance reasoning throughout
the answering process. As revealed in Table 1, AOR-t outperforms the second-best method by an
average of 6.98%, especially on the more complex “choose” and “query” types, highlighting the
advantage of reasoning centered on anatomical regions.

Zero-shot Transfer to VQA-RAD and CheXpert We evaluate AOR’s generalization ability on
unseen data distributions, i.e., VQA-RAD and CheXpert. As shown in Table 1, AOR-t obtains
superior performance on both datasets. Moreover, AOR is capable of reasoning and providing logical
answers rather than simply responding with “yes” or “no”.

Performance on MIMIC-CXR Table 2 shows that AOR outperforms all previous methods in both
full-image and region-based report generation. Notably, it addresses the gap in generating report
sentences for specific regions, which remains a limitation in previous MLMMs.

5.3 Ablation Studies and Discussions

Comparison of CoT Representations As shown in Table 3, we demonstrate the effectiveness
of the AOR representation by comparing it with three alternative CoT representations for the VQA
task. ID-1 uses the original answer without any CoT reasoning, resulting in the lowest accuracy,
especially on complex question types. ID-2 introduces a text-based CoT that outlines object-level
reasoning steps, which significantly improves performance and highlights the value of explicit multi-
step reasoning. ID-3 adds textual coordinates, enabling the model to gain spatial awareness by first
identifying key anatomical regions. Building on this, ID-4, our proposed AOR representation, further
integrates cropped, multi-scale visual features from each ROI. This enhancement allows the model to
leverage direct visual cues during reasoning and achieves the best overall performance.
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Table 4: Comparison of AOR’s referring and grounding capabilities under different training strategies.

Strategy VQA Referring Grounding
Stage 1 Stage 2 verify choose query Acc R@0.3 R@0.5 R@0.7

✗ ✗ 79.53 67.96 62.33 98.03 98.48 96.16 88.79
✓ ✗ 80.53 70.05 63.96 98.30 98.31 96.54 89.40
✓ ✓ 80.68 70.16 65.43 98.58 98.56 96.62 90.40

AOR: Find the mediastinum [0.32, 0.12, 0.63, 0.60]. For the enteric tube, observe the upper mediastinum [0.36, 0.18,
0.57,0.36], the cardiac silhouette [0.32, 0.37, 0.63, 0.60], and the mediastinum [0.32, 0.12, 0.63, 0.60]. Considering
all observations, there is enteric tube in the mediastinum [0.32, 0.12, 0.63, 0.60]. For the IJ line, observe the svc [0.36,
0.25, 0.48, 0.36], the cavoatrial junction [0.32, 0.37, 0.44, 0.43], the right atrium [0.32, 0.43, 0.44, 0.56], and the
mediastinum [0.32,0.12,0.63,0.60]. Considering all observations, there is IJ line in the mediastinum [0.32, 0.12, 0.63,
0.60]. So the answer is yes.

Question: Can both enteric tube and IJ line be identified within the mediastinum?              Answer: Yes

Medical Visual Question Answering 

Full Image Report Generation & Region Report Generation    

AOR: Endotracheal tube tip terminates approximately 5 cm from the carina. An enteric tube tip is within the stomach. 
Heart size is normal. Mediastinal and hilar contours are unremarkable. Pulmonary vasculature is not engorged. Patchy 
opacities are noted in the lung bases, potentially atelectasis. No pleural effusion or pneumothorax is present. No acute 
osseous abnormality is detected. Standard positioning of the endotracheal and enteric tubes.

Question: Please generate a corresponding radiology report based on this region of the Chest X-ray.
GroundTruth: cardiomediastinal silhouette is stable . 

AOR: the cardiomediastinal 
silhouette is within normal limits.

GroundTruth: AP portable upright view of the chest. ET tube appears in stable position with its tip 4 cm above the 
carina. NG tube courses into the left upper abdomen. Mild basal atelectasis noted. Otherwise lungs are clear. Cardiomed-
iastinal silhouette is stable. No acute bony abnormalities. Tubes positioned appropriately. Mild bibasilar atelectasis.

Figure 5: Qualitative analysis of AOR on VQA task and report generation task.

Referring and Grounding Capabilities We analyze the model’s referring and grounding capabili-
ties to verify the rationality of the CoT process. In Table 4, when all three training stages are involved,
the model achieves a 98.58% referring accuracy and 90.40% R@0.7, ensuring both the accuracy and
explainability of the answers. When Stage 2 is removed, the recall drops accordingly, indicating that
the grounding task in Stage 2 lays a solid foundation for reasoning. Similarly, without Stage 1, the
performance of referring is affected, demonstrating the effectiveness of our three-stage training.

The Impact of Anatomical Region Shifts on Model Predictions In practical applications, con-
sidering that radiologists may not provide perfectly accurate region prompts and patients might
offer bboxes that deviate from standard anatomical regions, we explore the impact of bbox shifts on
prediction accuracy. As shown in Fig. 4, we apply shifts to the bbox in the horizontal and vertical
directions during model inference (d1 = r · w, d2 = r · h), where r is a random number between
0 and percentage p ∈ 0.1 · {0, . . . , 5}, and w and h are the width and height of the image. When
p ∈ [0.1, 0.2], the model’s performance is barely affected. However, a downward trend emerges
when p exceeds 0.3. This indicates that for shifts that do not impact the bbox class prediction, AOR
is robust enough to produce correct predictions. Conversely, when the shift becomes larger, the
model might misclassify the category during the first step of reasoning (e.g., a shifted left lung might
be misclassified as the mediastinum), thereby affecting subsequent accuracy. This also indirectly
demonstrates that our model performs step-by-step logical analysis of anatomical regions during
reasoning. As shown by the dashed lines in the Fig. 4, we explore the impact of moderately enlarging
the bboxes in the visual prompt (by 10% of the original size). This brought a certain degree of
performance gain, but there remains a performance gap compared to using perfectly accurate bboxes.

Table 5: Performance gain from
CoT answers on VQA-RAD.

1 Epoch 3 Epochs
Closed Open Closed Open

w/o CoT 66.38 32.56 83.62 59.33
w/ CoT 68.97 37.16 89.66 65.23

Scalability of CoT Construction We generate CoT answers
for each sample in VQA-RAD to verify the generalizability
of our construction method to other CXR datasets. The con-
struction is accomplished using a two-stage approach, Keyword
Mapping and Sample Expansion. Please refer to Appendix B.5
for more details. As shown in Table 5, the model fine-tuned
with CoT answers achieves a performance gain of 4.78%.
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5.4 Qualitative Analysis
Fig. 5 illustrates AOR’s capabilities in medical grounded chat and referential dialogue. For the VQA
task, AOR is capable of generating correct and logically reasoned answers. For the report generation
task, due to the incorporation of fine-grained anatomical regions, AOR demonstrates a stronger grasp
of details, such as ET tube, NG tube, and basal atelectasis. Moreover, it can generate corresponding
report sentences for specified regions. Please refer to Appendix C for more cases.

6 Conclusion
In this paper, we empower MLMMs with anatomy-centric reasoning capabilities, by (1) proposing
the AOR framework, which centers on the anatomical regions relevant to the given question, and
integrating the regions’ positional and representational information to conduct multimodal multi-
step reasoning; (2) developing the medical CoT dataset AOR-Instruction, which provides tailored
CoT answers for each VQA sample and strictly aligned region-sentence pairs for report generation.
Experiments demonstrate the superiority of AOR over prior MLMMs in visual question answering,
report generation, referring, and grounding, revealing its potential in clinical practice.
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contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.
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Answer: [Yes]
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the information on the computer resources in Section 5.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This study conforms with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: In Appendix E.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We indicate the licenses of public datasets in the Appendix A.1 and acknowl-
edge the referenced code in the anonymous link.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provide the documentation along with the code.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: In Section 3.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Data Details

A.1 Data Source

Table A1: Summary of datasets and tasks across different stages.

Stages Tasks Source Size
Stage 1 Anatomical Region Recognition Chest ImaGenome 133k × 3

Stage 2 Anatomical Region Recognition Chest ImaGenome 133k × 3
Anatomical Region Grounding Chest ImaGenome 133k × 3

Stage 3
Visual Question Answer MIMIC-CXR-VQA 290k

Full Image Report Generation MIMIC-CXR 133k
Region Report Generation MIMIC-CXR 133k × 3

We present our data details in Table A1. We utilize the dataset under the PhysioNet license, and the
following is a detailed introduction to it:

• MIMIC-CXR1 A large publicly available dataset of chest radiographs with free-text radiology
reports. The dataset contains 377,110 images corresponding to 227,835 radiographic studies
performed at the Beth Israel Deaconess Medical Center in Boston, MA.

• Chest ImaGenome Dataset2 Chest ImaGenome dataset constructs fine-grained annotations on
top of MIMIC-CXR. The annotations for each CXR are structured as an anatomy-centered scene
graph. Based on this scene graph, pairs of anatomical regions and report sentences can be derived.
The dataset size is consistent with that of MIMIC-CXR.

• MIMIC-CXR-VQA3 MIMIC-CXR-VQA is created based on the fine-grained annotations of
the Chest ImaGenome dataset, establishing a medical visual question answering (VQA) benchmark.
It includes a variety of questions, such as those about the entire image and those focused on one or
multiple anatomical regions. The questions are diverse and challenging.

Since the three data sources are interrelated (MIMIC-CXR → Chest ImaGenome Dataset→ MIMIC-
CXR-VQA), MIMIC-CXR-VQA’s data selection and split strategy are adopted across all three to
prevent data leakage, with 133k images for training, 500 images for testing. In Stage 1 and Stage
2, we use the anatomical bounding boxes provided by the Chest ImaGenome dataset, randomly
selecting three anatomical regions per image for training. Similarly, in Stage 3, during region report
generation, three anatomical regions are randomly selected per image for generating corresponding
report sentences. Additionally, as shown in Fig. A1, we analyze the distribution of different types of
questions in MIMIC-CXR-VQA.
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Figure A1: Distribution of question types in MIMIC-CXR-VQA.

1MIMIC-CXR: Available at https://physionet.org/content/mimic-cxr-jpg/2.0.0/
2Chest ImaGenome Dataset: Available at https://physionet.org/content/chest-imagenome/1.0.0/
3MIMIC-CXR-VQA: Available at https://physionet.org/content/mimic-ext-mimic-cxr-vqa/1.0.0/
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A.2 Instruction Data Construction

The AOR-Instruction consists of two parts: AOR-VQA and AOR-RG.

A.2.1 AOR-VQA

Table A2 displays the objects, attributes, and categories used in AOR-VQA, including 36 objects and
68 attributes (across 5 categories). We adopt the same values as in MIMIC-CXR-VQA and adjust the
capitalization of the specialized terms IJ line and PICC.

Table A2: The objects, attributes, and categories used in AOR-VQA.

Values
object abdomen, aortic arch, cardiac silhouette, carina, cavoatrial junction, left apical zone,

left breast, left chest wall, left clavicle, left costophrenic angle, left hemidiaphragm,
left hilar structures, left lower lung zone, left lung, left mid lung zone, left shoulder,
left upper lung zone, mediastinum, neck, right apical zone, right atrium, right breast,
right chest wall, right clavicle, right costophrenic angle, right hemidiaphragm, right
hilar structures, right lower lung zone, right lung, right mid lung zone, right shoulder,
right upper lung zone, spine, svc, trachea, upper mediastinum

attribute (anatomical finding) lung opacity, airspace opacity, consolidation, infiltration, at-
electasis, linear/patchy atelectasis, lobar/segmental collapse, pulmonary edema/-
hazy opacity, vascular congestion, vascular redistribution, increased reticular mark-
ings/ild pattern, pleural effusion, costophrenic angle blunting, pleural/parenchymal
scarring, enlarged cardiac silhouette, mediastinal displacement, mediastinal widen-
ing, enlarged hilum, tortuous aorta, vascular calcification, pneumomediastinum,
pneumothorax, hydropneumothorax, lung lesion, mass/nodule (not otherwise spec-
ified), multiple masses/nodules, calcified nodule, superior mediastinal mass/en-
largement, rib fracture, clavicle fracture, spinal fracture, hyperaeration, cyst/bullae,
elevated hemidiaphragm, sub-diaphragmatic air, subcutaneous air, hernia, scol-
iosis, spinal degenerative changes, shoulder osteoarthritis, bone lesion, (disease)
pneumonia, fluid overload/heart failure, copd/emphysema, granulomatous disease,
interstitial lung disease, goiter, lung cancer, aspiration, alveolar hemorrhage, peri-
cardial effusion, (device) cabg grafts, prosthetic valve, cardiac pacer and wires,
(technical assessment) low lung volumes, rotated, breast/nipple shadows, (tubes and
lines) chest tube, mediastinal drain, endotracheal tube, tracheostomy tube, PICC,
IJ line, chest port, subclavian line, swan-ganz catheter, intra-aortic balloon pump,
enteric tube

category anatomical finding, device, disease, technical assessment, tubes and lines

Fig. A2 illustrates the step-by-step construction process of AOR-VQA, which consists of ontologies
design, chain-of-thought (CoT) construction, and sample expansion to enrich dataset annotations.

Ontologies Design

Ontology 1:
Hierarchical relationships 
Ontology 2:
Causal relationships 
Ontology 3:
Restrictive relationships 

CoT Construction

Step 1:
Identify sub-objects
Step 2: 
Consider all possible attributes 
Step 3:
Associate objects and attributes

Sample Expansion

(Image, Question, Answer)

(Image, Question,
Region Box, CoT Answer)

x x
Step 1 Step 2 Step 3

Figure A2: Overview of the AOR-VQA construction process.
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Step 1: Ontologies Design Fig. A3 illustrates the hierarchical relationships between objects
(Ontology 1) that we utilize, where the green boxes represent objects existing in the silver/gold
datasets of the Chest Imagenome Dataset, and the gray boxes represent the objects we used during
the construction process.
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Figure A3: Ontology 1: Hierarchical relationships between objects.

Table A3 and Table A4 display the causal relationships between attributes (Ontology 2) and the
restrictive relationships between objects and attributes (Ontology 3).

Table A3: Ontology 2: Causal relationships between attributes (Child → Parent(s))

Attribute (Child) Attribute(s) (Parent)
airspace opacity lung opacity
alveolar hemorrhage lung opacity
aspiration lung opacity
atelectasis lung opacity
bronchiectasis lung opacity
calcified nodule lung opacity, lung lesion
consolidation lung opacity
costophrenic angle blunting lung opacity, pleural effusion
fluid overload/heart failure lung opacity
granulomatous disease lung opacity
hydropneumothorax lung opacity, pneumothorax, pleural effusion
increased reticular markings/ild pattern lung opacity
infiltration lung opacity
interstitial lung disease lung opacity
linear/patchy atelectasis atelectasis, lung opacity
lobar/segmental collapse atelectasis, lung opacity
lung cancer lung opacity
lung lesion lung opacity
mass/nodule (not otherwise specified) lung opacity, lung lesion
multiple masses/nodules lung opacity, lung lesion
pleural effusion lung opacity
pleural/parenchymal scarring lung opacity

Continued on next page

24



Table A3 – Continued from previous page
Child Attribute Parent Attribute(s)
pneumonia lung opacity
pulmonary edema/hazy opacity lung opacity
vascular congestion lung opacity

Table A4: Ontology 3: Restrictive relationships between objects (Parents) and attributes (Children).

Object (Parent) Attributes (Children)
cardiac silhouette cabg grafts, aortic graft/repair, prosthetic valve, cardiac pacer and wires,

fluid overload/heart failure, pericardial effusion, lung opacity, medi-
astinal displacement, pneumomediastinum, enlarged cardiac silhouette,
vascular calcification, hernia, low lung volumes, rotated, enteric tube,
mediastinal drain, pigtail catheter, chest port, IJ line, picc, subclavian
line, swan-ganz catheter

mediastinum cabg grafts, aortic graft/repair, prosthetic valve, cardiac pacer and wires,
lung cancer, fluid overload/heart failure, pericardial effusion, goiter,
calcified nodule, lung opacity, lung lesion, mediastinal displacement, me-
diastinal widening, pneumomediastinum, superior mediastinal mass/en-
largement, enlarged cardiac silhouette, tortuous aorta, vascular calcifica-
tion, hernia, low lung volumes, rotated, endotracheal tube, tracheostomy
tube, enteric tube, mediastinal drain, pigtail catheter, chest port, IJ line,
intra-aortic balloon pump, picc, subclavian line, swan-ganz catheter

aortic arch aortic graft/repair, mediastinal widening, tortuous aorta, vascular calcifi-
cation, intra-aortic balloon pump

upper mediastinum aortic graft/repair, cardiac pacer and wires, lung cancer, goiter, calcified
nodule, lung opacity, lung lesion, mediastinal displacement, mediasti-
nal widening, pneumomediastinum, superior mediastinal mass/enlarge-
ment, tortuous aorta, vascular calcification, rotated, endotracheal tube,
tracheostomy tube, enteric tube, mediastinal drain, chest port, IJ line,
intra-aortic balloon pump, picc, subclavian line, swan-ganz catheter

cavoatrial junction cardiac pacer and wires, chest port, IJ line, picc, subclavian line, swan-
ganz catheter

arms (left/right) cardiac pacer and wires, bone lesion, subcutaneous air, skin fold, picc
chest wall (left/right) cardiac pacer and wires, bone lesion, rib fracture, subcutaneous air,

breast/nipple shadows, skin fold, chest tube, pigtail catheter, chest port
clavicle (left/right) cardiac pacer and wires, bone lesion, clavicle fracture, shoulder os-

teoarthritis, rotated, endotracheal tube, tracheostomy tube, chest port,
picc, subclavian line

right atrium cardiac pacer and wires, chest port, IJ line, picc, subclavian line, swan-
ganz catheter

svc cardiac pacer and wires, chest port, IJ line, picc, subclavian line, swan-
ganz catheter

lower lung zone (left-
/right)

alveolar hemorrhage, aspiration, copd/emphysema, granulomatous dis-
ease, interstitial lung disease, pneumonia, lung cancer, fluid overload/-
heart failure, airspace opacity, calcified nodule, consolidation, cyst/bul-
lae, hyperaeration, increased reticular markings/ild pattern, infiltration,
atelectasis, linear/patchy atelectasis, lobar/segmental collapse, lung opac-
ity, lung lesion, mass/nodule (not otherwise specified), multiple mass-
es/nodules, pulmonary edema/hazy opacity, hydropneumothorax, pleu-
ral/parenchymal scarring, pneumothorax, vascular congestion, vascular
redistribution, bronchiectasis, pleural effusion, breast/nipple shadows,
low lung volumes, chest tube, pigtail catheter

Continued on next page
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Table A4 – Continued from previous page
Object (Parent) Attributes (Children)
lung (left/right) alveolar hemorrhage, aspiration, copd/emphysema, granulomatous dis-

ease, interstitial lung disease, pneumonia, lung cancer, fluid overload/-
heart failure, airspace opacity, calcified nodule, consolidation, cyst/bul-
lae, hyperaeration, increased reticular markings/ild pattern, infiltration,
atelectasis, linear/patchy atelectasis, lobar/segmental collapse, lung opac-
ity, lung lesion, mass/nodule (not otherwise specified), multiple masses/n-
odules, pulmonary edema/hazy opacity, enlarged hilum, hydropneumoth-
orax, pleural/parenchymal scarring, pneumothorax, vascular congestion,
vascular redistribution, bronchiectasis, pneumomediastinum, vascular
calcification, costophrenic angle blunting, pleural effusion, breast/nipple
shadows, low lung volumes, rotated, endotracheal tube, chest tube, pig-
tail catheter, chest port, subclavian line, swan-ganz catheter

mid lung zone (left-
/right)

alveolar hemorrhage, aspiration, copd/emphysema, granulomatous dis-
ease, interstitial lung disease, pneumonia, lung cancer, fluid overload/-
heart failure, airspace opacity, calcified nodule, consolidation, cyst/bul-
lae, hyperaeration, increased reticular markings/ild pattern, infiltration,
atelectasis, linear/patchy atelectasis, lobar/segmental collapse, lung opac-
ity, lung lesion, mass/nodule (not otherwise specified), multiple mass-
es/nodules, pulmonary edema/hazy opacity, hydropneumothorax, pleu-
ral/parenchymal scarring, pneumothorax, vascular congestion, vascular
redistribution, bronchiectasis, pleural effusion, low lung volumes, chest
tube, pigtail catheter

upper lung zone (left-
/right)

alveolar hemorrhage, aspiration, copd/emphysema, granulomatous dis-
ease, interstitial lung disease, pneumonia, lung cancer, fluid overload/-
heart failure, airspace opacity, calcified nodule, consolidation, cyst/bul-
lae, hyperaeration, increased reticular markings/ild pattern, infiltration,
atelectasis, linear/patchy atelectasis, lobar/segmental collapse, lung opac-
ity, lung lesion, mass/nodule (not otherwise specified), multiple mass-
es/nodules, pulmonary edema/hazy opacity, hydropneumothorax, pleu-
ral/parenchymal scarring, pneumothorax, vascular congestion, vascular
redistribution, bronchiectasis, pleural effusion, low lung volumes, chest
tube, pigtail catheter, chest port, subclavian line

apical zone (left-
/right)

aspiration, granulomatous disease, pneumonia, lung cancer, calcified
nodule, cyst/bullae, lung opacity, lung lesion, mass/nodule (not other-
wise specified), multiple masses/nodules, hydropneumothorax, pleural/-
parenchymal scarring, pneumothorax, pleural effusion, chest tube, pigtail
catheter

hilar structures (left-
/right)

aspiration, copd/emphysema, granulomatous disease, pneumonia, lung
cancer, fluid overload/heart failure, airspace opacity, calcified nodule,
consolidation, cyst/bullae, infiltration, atelectasis, linear/patchy atelecta-
sis, lung opacity, lung lesion, mass/nodule (not otherwise specified), mul-
tiple masses/nodules, pulmonary edema/hazy opacity, enlarged hilum,
pleural/parenchymal scarring, vascular congestion, vascular redistribu-
tion, bronchiectasis, pneumomediastinum, vascular calcification, endo-
tracheal tube, swan-ganz catheter

hemidiaphragm (left-
/right)

copd/emphysema, hyperaeration, elevated hemidiaphragm, diaphrag-
matic eventration (benign), hernia, sub-diaphragmatic air, enteric tube

costophrenic angle
(left/right)

lung cancer, fluid overload/heart failure, airspace opacity, calcified nod-
ule, consolidation, infiltration, atelectasis, linear/patchy atelectasis, lung
opacity, lung lesion, mass/nodule (not otherwise specified), multiple
masses/nodules, pulmonary edema/hazy opacity, hydropneumothorax,
pleural/parenchymal scarring, pneumothorax, costophrenic angle blunt-
ing, pleural effusion, pigtail catheter

neck goiter, subcutaneous air, endotracheal tube, tracheostomy tube, enteric
tube, IJ line, swan-ganz catheter

trachea goiter, mediastinal displacement, endotracheal tube, tracheostomy tube
Continued on next page
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Table A4 – Continued from previous page
Object (Parent) Attributes (Children)
shoulder (left/right) bone lesion, shoulder osteoarthritis, skin fold, picc
spine bone lesion, scoliosis, spinal degenerative changes, spinal fracture, ro-

tated
abdomen sub-diaphragmatic air, enteric tube, intra-aortic balloon pump, swan-

ganz catheter
breast (left/right) breast/nipple shadows
carina endotracheal tube, tracheostomy tube

Step 2: CoT Construction As shown in Fig. A4, provide a tree diagram to illustrate the CoT
construction process. 1⃝ First, determine whether the current problem contains conjunctions and
disjunctions. If it does, split it into two non-combinatorial samples, analyze each separately, and
then combine the results. 2⃝ For non-combinatorial samples, assess whether they are global-based
or local-based. If they are global-based, directly assign the CoT answer. Otherwise, proceed to
step 3. 3⃝ For local-based questions, determine whether the involved object is the smallest unit
(indicated by [L] in Fig. A3). If it is, directly assign the CoT answer; otherwise, use Ontology 1 to
identify the sub-object. 4⃝ For the current problem, if it focuses on a specific attribute, construct the
corresponding CoT answer in conjunction with Ontology 3 under the guidance of expert doctors. If it
focuses on category and abnormality, it is necessary to subdivide into sub-attributes to complete the
construction of the CoT answer.

Non-combinatorialCombinatorial

globallocal

object1

attribute

cot ans

cot ans cot ans

cot ans

Non-combinatorial Non-combinatorial

cot ans

sample

attribute1,attribute2

category

category1,category2

abnormality

object1,object2

object

Figure A4: The CoT construction process, illustrating the hierarchical decision-making steps from
sample classification to CoT answer generation.
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Step 3: Sample Expansion from (Image, Question, Answer) to (Image, Question, Region Box,
CoT answer)

The above is the complete construction process of AOR-VQA. Below, we provide examples for
different objects. Here, <cot_bbox_num>in the examples will be replaced with the corresponding
bounding box coordinates in the instruction data.

▶ cardiac silhouette As shown in Table A5, we explain “enlarged cardiac silhouette” and “lung
opacity” together: For enlarged cardiac silhouette, reasoning is performed by measuring and calculat-
ing the cardiothoracic ratio. For lung opacity, it also involves findings related to the enlarged cardiac
silhouette. However, beyond this, further assessment of the cardiac shape and lung lucency is required.
For example, the cardiac silhouette maintains its regular shape, suggesting fluid overload/heart failure.
Additionally, decreased lung lucency further indicates the presence of lung opacity.

We group “low lung volumes” and “rotated” together as well, as they share a common finding: the
cardiac silhouette is not located exactly in the center of the entire thorax. Therefore, further observa-
tion of clavicle symmetry is needed to make the final judgment. If the clavicles are symmetrical, it
suggests low lung volumes. Conversely, if asymmetry is observed, it indicates rotated, as the entire
body appears asymmetrical in this case.

Table A5: Examples of CoT for cardiac silhouette.
attributes CoT
enlarged cardiac silhouette Find the cardiac silhouette <cot_bbox_1>. Measure the maximal

horizontal diameter of the cardiac silhouette <cot_bbox_1>and the
maximal horizontal diameter of the thorax <cot_merge_bbox_1>.
The cardiothoracic ratio is more than 50%, indicating there is en-
larged cardiac silhouette in the cardiac silhouette <cot_bbox_1>.

lung opacity Find the cardiac silhouette <cot_bbox_1>. Measure the maximal
horizontal diameter of the cardiac silhouette <cot_bbox_1>and the
maximal horizontal diameter of the thorax <cot_merge_bbox_1>.
Observe the cardiac silhouette’s <cot_bbox_1>shape. Observe the
lung lucency <cot_merge_bbox_1>. Considering all observations,
there is lung opacity in the cardiac silhouette <cot_bbox_1>. So the
answer is yes.

low lung volumes Find the cardiac silhouette <cot_bbox_1>. Observe the position
of the cardiac silhouette <cot_bbox_1>within the entire thorax
<cot_merge_bbox_1>. The cardiac silhouette <cot_bbox_1>is
displaced, and the left clavicle <cot_bbox_16>and right clavicle
<cot_bbox_17>are symmetrical. Therefore, there are low lung vol-
umes in the cardiac silhouette <cot_bbox_1>.

rotated Find the cardiac silhouette <cot_bbox_1>. Observe the position
of the cardiac silhouette <cot_bbox_1>within the entire thorax
<cot_merge_bbox_1>. The cardiac silhouette <cot_bbox_1>is
displaced, and the left clavicle <cot_bbox_16>and right clavicle
<cot_bbox_17>are asymmetric. Therefore, there is rotated in the
cardiac silhouette <cot_bbox_1>.

▶ mediastinum For the mediastinum, Table A6 presents three examples related to tubes and lines
to demonstrate the reasonable and clinically relevant reasoning process of AOR-VQA.

For the IJ line, it typically passes through the SVC and the cavoatrial junction (the recommended tip
position for the IJ line). Here, we also emphasize observing the right atrium to ensure the catheter’s
position is correct and does not extend beyond the cavoatrial junction. Unlike the IJ line, the enteric
tube is a medical device inserted through the nose or mouth into the digestive tract. Since the enteric
tube traverses almost the entire chest X-ray, we cannot focus solely on the svc and cavoatrial junction.
Instead, we observe from the upper mediastinum to the cardiac silhouette. Finally, the endotracheal
tube is a flexible plastic tube inserted into the trachea through the mouth or nose to maintain an open
airway. Thus, we primarily focus on the upper mediastinum for evaluation.
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These reasoning methods for different tubes and lines enable the model to understand each tube/line’s
position and function effectively. This capability is reflected in our report generation performance
(please refer to Fig. 5 in the main manuscript).

Table A6: Examples of CoT for mediastinum.
attributes CoT
IJ line Find the mediastinum <cot_bbox_4>. Observe the svc <cot_bbox_7>, the

cavoatrial junction <cot_bbox_2>, the right atrium <cot_bbox_3>, and
the mediastinum <cot_bbox_4>. Considering all observations, there is IJ
line in the mediastinum <cot_bbox_4>. So the answer is yes.

enteric tube Find the mediastinum <cot_bbox_4>. Observe the upper mediastinum
<cot_bbox_5>, the cardiac silhouette <cot_bbox_1>, and the mediastinum
<cot_bbox_4>. Considering all observations, there is enteric tube in the
mediastinum <cot_bbox_4>.

endotracheal tube Find the mediastinum <cot_bbox_4>. Observe the upper mediastinum
<cot_bbox_5>, and there is endotracheal tube in the upper mediastinum
<cot_bbox_5>. So the answer is yes.

▶ left lung The left lung is a relatively large region, making direct judgment challenging. Thanks
to Ontology 3, for specific attributes, we can focus on certain sub-objects. As shown in Table A7,
for breast/nipple shadows, we only need to locate the left upper lung zone; for pleural effusion, we
specifically observe the left costophrenic angle.

Table A7: Examples of CoT for left lung.
attributes CoT
breast/nipple shadows Find the left lung <cot_bbox_8>. Observe the left upper lung zone

<cot_bbox_9>, and there are breast/nipple shadows in the left upper lung
zone <cot_bbox_9>. So the answer is yes.

pleural effusion Find the left lung <cot_bbox_8>. Observe the left upper lung zone
<cot_bbox_9>, the left mid lung zone <cot_bbox_10>, the left lower
lung zone <cot_bbox_11>, and the left lung <cot_bbox_8>. Pay special
attention to the left costophrenic angle <cot_bbox_20>. Considering all
observations, there is pleural effusion in the left lung <cot_bbox_8>

Table A8 presents examples of compositional questions. Compositional questions are broken down
into sub-questions, reasoned step by step, and finally concluded with a judgment.

Table A8: Examples of compositional questions.
Question: Are there indications of both vascular calcification and mediastinal displacement in the
upper mediastinum?
CoT answer: Find the upper mediastinum <cot_bbox_5>. For the vascular calcification, observe
the aortic arch <cot_bbox_6>, and there is vascular calcification in the aortic arch <cot_bbox_6>.
Therefore, there is vascular calcification in the upper mediastinum <cot_bbox_5>. For the mediasti-
nal displacement, observe the position of the upper mediastinum <cot_bbox_5>within the entire
thorax <cot_merge_bbox_1>. The upper mediastinum <cot_bbox_5>is displaced, indicating there
is mediastinal displacement in the upper mediastinum <cot_bbox_5>. So the answer is yes.
Question: Concerning the left lung, which anatomical finding is involved, enlarged hilum or
cyst/bullae?
CoT answer: Find the left lung <cot_bbox_8>. For the enlarged hilum, observe the left hilar
structures <cot_bbox_18>, and there is no enlarged hilum in the left hilar structures <cot_bbox_18>.
Therefore, there is no enlarged hilum in the left lung <cot_bbox_8>. For the cyst/bullae, observe
the left upper lung zone <cot_bbox_9>, the left mid lung zone <cot_bbox_10>, the left lower
lung zone <cot_bbox_11>, and the left lung <cot_bbox_8>. Considering all observations, there is
cyst/bullae in the left lung <cot_bbox_8>. So the answer is cyst/bullae.
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As shown in Fig. A5, we provide 8 examples from the AOR-VQA to facilitate a better understanding
of our multimodal CoT data.

Q: Is there 
pneumomediastinum 
in the upper 
mediastinum?

Find the upper
mediastinum
[0.4, 0.2, 0.6, 0.5].

Measure the maximal 
horizontal diameter of 
the upper mediastinum 
[0.4, 0.2, 0.6, 0.5], and 
the maximal horizontal 
diameter of the thorax 
[0.1, 0.1, 1.0, 0.9]. 

M

T

The mediastinal-thoracic 
ratio is more than 33.3%, 
indicating there is 
mediastinal widening in 
the upper mediastinum 
[0.2, 0.4, 0.1, 0.3]. So the 
answer is yes.

Determine the presence of mediastinal widening by measuring the mediastinal-thoracic ratio.

M

T

Find the upper
mediastinum
[0.4, 0.2, 0.6, 0.5].

Observe the left edge 
regions [0.6, 0.3, 0.7, 0.4]
and the right edge regions 
[0.4, 0.3, 0.5, 0.4] of the 
upper mediastinum 
[0.4, 0.2, 0.6, 0.5]. 

There is lucent shadows
which indicate 
pneumomediastinum. 
So the answer is yes.

Q: Does the upper 
mediastinum present 
with mediastinal 
widening?

Focus on the prominent signs of pneumomediastinum: lucent shadows.

Q: Is there IJ line 
in the <region>?

The region is the
mediastinum
[0.4, 0.1, 0.9, 0.6].

Observed the svc
[0.4, 0.1, 0.5, 0.3],
cavoatrial junction
[0.4, 0.3, 0.5, 0.4 ]，
and right atrium
[0.4, 0.5, 0.6, 0.6].

Considering all obeservation, 
there is a IJ line in right atrium 
[0.4, 0.5, 0.6, 0.6].
Therefore, there is a IJ line in 
mediastinum [0.4, 0.1, 0.9, 0.6].
So the answer is yes. 

cavoatrial 
junction

svc

right
atrium

cavoatrial 
junction

svc

right
atrium

IJ line

The IJ line passes through the SVC and the cavoatrial junction, ultimately reaching the upper portion of the right atrium. 
Examine each of these anatomical regions in sequence. PICC, IJ line, and Subclavian line follow similar paths.

Q: Is there 
mediastinal drain in 
the <region>?

The region is the
mediastinum
[0.4, 0.1, 0.9, 0.6].

Observe the upper 
mediastinum [0.4, 0.1, 0.9, 
0.6], the cardiac silhouette 
[0.4, 0.4, 0.9, 0.7], and the 
mediastinum [0.4, 0.1, 0.9, 
0.6]. 

Considering all 
observations, there is 
mediastinal drain in the 
mediastinum  [0.4, 0.1, 
0.9, 0.6]. So the answer 
is yes.

Note! Although the IJ line and mediastinal drain are both tubes, their purposes and the anatomical regions they traverse are 
completely different, so distinct CoT answers must be provided.

Q: Is there mass/ 
nodule in the left 
lung?

Find the left lung
[0.5, 0.1, 0.9, 0.8].

Observe the left upper lung zone
[0.5, 0.1, 0.9, 0.3], the left mid
lung zone [0.5, 0.3, 0.9, 0.5], the
left lower lung zone [0.5, 0.5, 0.9,
0.7], and the left lung [0.5, 0.1,
0.9, 0.8]. Pay special attention to
the left hilar structures [0.6, 0.2,
0.8, 0.4].

Considering all 
observations, there 
is mass/nodule in 
the left lung [0.5, 
0.1, 0.9, 0.8]. So
the answer is yes.

Pay special attention to areas where mass/ nodule commonly appear: the left hilar structures.

Q: Does the left lung 
present with pleural 
effusion?

Find the left
lung [0.5, 0.1,
0.7, 0.6].

Observe the left upper lung zone
[0.5, 0.1, 0.7, 0.3], the left mid
lung zone [0.5, 0.3, 0.7, 0.4], the
left lower lung zone [0.5, 0.4, 0.7,
0.7], and the left lung [0.5, 0.1,
0.7, 0.6]. Pay special attention to
the left costophrenic angle [0.6,
0.6, 0.7, 0.7].

Considering all 
observations, 
there is mass/ 
nodule in the left 
lung [0.5, 0.1, 0.7, 
0.6]. So the answer 
is yes.

Pay special attention to areas wherepleural effusion commonly appear: the left costophrenic angle.

Q: Does the left lung 
display low lung 
volumes?

Find the left lung
[0.6, 0.2, 0.8, 0.8].

Observe the left lung [0.6, 0.2, 
0.8, 0.8] and the right lung [0.1, 
0.2, 0.4, 0.8], and they are 
asymmetric. Observe the left 
clavicle [0.5, 0.1, 0.9, 0.3] and 
the right clavicle [0.1, 0.1, 0.4, 
0.3], and they are symmetrical.

Therefore, there are 
low lung volumes in 
the left lung [0.6, 0.2, 
0.8, 0.8]. So the 
answer is yes.

Low lung volumes vs rotated：Both conditions can lead to asymmetry between the left and right lungs, so it's important to 
further examine the symmetry of the left and right clavicles. If the clavicles are symmetrical, the cause is likely low lung volumes.  

Q: Are there indications 
of any rotated within 
the left lung?

Find the left lung
[0.5, 0.3, 0.7, 0.8].

Observe the left lung [0.5, 0.3, 
0.7, 0.8] and the right lung [0.1, 
0.3, 0.4, 1.0], and they are 
asymmetric. Observe the left 
clavicle [0.5, 0.0, 0.8, 0.4] and 
the right clavicle [0.0, 0.2, 0.4, 
0.4], and they are asymmetric.

Therefore, there is 
rotate in the left 
lung [0.5, 0.3, 0.7, 
0.8]. So the answer 
is yes.

Low lung volumes vs rotated：Both conditions can lead to asymmetry between the left and right lungs, so it's important to 
further examine the symmetry of the left and right clavicles. If the clavicles are symmetrical, the cause is likely low lung volumes.  

Figure A5: Samples from AOR-VQA.
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A.2.2 AOR-RG

For region report generation in AOR-RG, we adopt ASG’s strict alignment approach and further
optimize it. The details are as follows: First, for a given chest X-ray, we extract anatomical regions
using the bounding box (bbox) coordinates from Chest ImaGenome Dataset, i.e., the objects listed
in Table A2. Next, we utilize RadGraph to parse the corresponding paired reports. As shown in
Table A9, the anatomical regions defined in RadGraph differ from those in Chest ImaGenome Dataset.
To address this, we apply the alignment rules provided by ASG to ensure consistency. As illustrated
in Fig. 3 (b) of the main manuscript, this alignment strategy guarantees a one-to-one correspondence
between anatomical regions and sentences. This prevents scenarios where, for instance, merely
detecting one side of the lung would lead to an incomplete statement like “The lung is...” without
specifying the side.

Table A9: Objects in RadGraph.
Objects in RadGraph trachea, left hilar, right hilar, hilar unspec, left pleural, right pleural,

pleural unspec, heart size, heart border, left diaphragm, right diaphragm,
diaphragm unspec, retrocardiac, lower left lobe, upper left lobe, lower
right lobe middle right lobe, upper right lobe, left lower lung, left mid
lung, left upper lung left apical lung, left lung unspec, right lower lung,
right mid lung, right upper lung right apical lung, right lung unspec, lung
apices, lung bases, left costophrenic right costophrenic, costophrenic un-
spec, cardiophrenic sulcus, mediastinal, spine clavicle, rib, stomach, right
atrium, right ventricle, aorta, svc, interstitium, parenchymal, cavoatrial
junction, cardiopulmonary, pulmonary, lung volumes.

Additionally, we further optimize the alignment method to handle cases where two different anatomi-
cal regions appear in the same short sentence, e.g., “Mediastinal and hilar contours are unremarkable.”
Using the previously mentioned method alone, this sentence would not be split to correspond sepa-
rately to the mediastinal region and hilar region. To address this, we introduce a new splitting rule: if
a short sentence describes two different anatomical regions simultaneously, it is split into two separate
sentences. Thus, the original sentence is transformed into “Mediastinal is unremarkable.” and “Hilar
contours are unremarkable.” Based on this, we further refine the alignment by distinguishing left/right
and specific anatomical regions.
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B Experiment Details

B.1 Prompt Details

We provide the detailed prompts for the three-stage training, along with their inputs and outputs.
Here, [anatomical regions list] includes the objects listed in Table A2, and the responses highlighted
in red indicate those for which loss needs to be calculated during training.

Stage 1: Anatomical Region Recognition

<image>In the conversation below, you are required to answer the category name based on
what you see in the imagery inside a particular region. I will give you only one region each
time. Categories containing {anatomical regions list}.

<region> left lung
<region> mediastinum

Stage 2: Anatomical Region Grounding

▶ Task 1: <image>In the conversation below, you are required to answer the category
name based on the given region. The region is provided in coordinate form and imagery
form. The coordinate form is [x1, y1, x2, y2], with floating point number from 0 to 1. These
values correspond to the top left x, top left y, bottom right x, and bottom right y. Categories
containing {anatomical regions list}.

[0.50, 0.14, 0.89, 0.82] <region>left lung
[0.33, 0.28, 0.75, 0.80] <region>mediastinum

▶ Task 2: <image>In the conversation below, you are required to locate the corresponding
region of the given category name in the image, and output its coordinates in the form of
[x1, y1, x2, y2], with floating point number from 0 to 1. These values correspond to the top
left x, top left y, bottom right x, and bottom right y. I will give you only one category name
each time.

left lung [0.50, 0.14, 0.89, 0.82]
mediastinum [0.33, 0.28, 0.75, 0.80]

Stage 3: Instruction Tuning

▶ Task 1: <image>provides an overview of the picture.

Question cot answer

▶ Task 2: <image>provides an overview of the picture. Please generate a radiology report
based on this Chest X-ray.

Full image report

▶ Task 3: <image>provides an overview of the picture. Please generate a corresponding
radiology report based on this region of the Chest X-ray.

<region>region report sentence
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B.2 Training Details

We supplement the hyperparameters for each stage in Fig. B10.

Table B10: Detailed training hyperparameters for AOR.
Configuration Stage 1 Stage 2 Stage 3
Visual Encoder CLIP ViT-L/14 CLIP ViT-L/14 CLIP ViT-L/14
Model Init LLaVA-1.5 Stage 1 Stage 2
Global batch size 128 128 128
Learning rate 2 × 10-5 2 × 10-5 2 × 10-5

Weight decay 0 0 0
Resolution 336 336 336
Training time 6h 9h t-28h; r/t-43h
Epochs 2 2 2
Optimizer AdamW AdamW AdamW

More Details About Region Encoder R Following GPT4RoI [42], we introduce a region encoder
R to provide fine-grained, multi-scale visual representations. The process includes:

(1) Feature Extraction: Four feature maps zj(j = 14, 17, 20, 23) are extracted from the image
encoder and rescaled via bilinear interpolation to progressively larger scales ( 1

14 ,
2
14 ,

4
14 ,

8
14 ),

forming a multi-level feature pyramid {pk}4k=1.
(2) Pyramid Shuffle Fusion: At each pyramid level k, features from adjacent levels are resized to

match the resolution of level k, concatenated with the current feature map, and passed through
convolutional layers to generate the fused representation p̂k.

p̂k = Conv
(
Concat

(
Resize(pk−1), pk, Resize(pk+1)

))
, k = 1, 2, 3, 4.

(3) Region Feature Aggregation: Region features are extracted from {p̂k}4k=1 via RoIAlign, fused
by convolutions, and pooled into a unified region representation for downstream reasoning tasks.

B.3 Evaluation Details

ROUGE-L ROUGE-L measures the length of the longest common subsequence (LCS) shared by
the candidate and reference texts. It computes precision, recall, and F1 based on the LCS length.
We use the F1 score of ROUGE-L to compare the generated radiology report with the ground truth
report. For implementation, we use the evaluate library: https://github.com/huggingface/
evaluate/tree/main/metrics/rouge.

BERTScore BERTScore is a neural metric that leverages a pre-trained BERT model to evaluate the
semantic similarity between text pairs. It computes pairwise cosine similarities between the contextu-
alized token embeddings of the candidate and reference texts, then aggregates these similarities into
precision, recall, and F1 scores. In this work, we report the BERTScore F1 measure to assess how
closely the generated radiology reports match the ground truth reports. For implementation, we use
the evaluate library: https://github.com/huggingface/evaluate/tree/main/metrics/
bertscore.

F1CheXbert F1CheXbert is computed using CheXbert, a Transformer-based model trained to
identify 14 chest X-ray abnormalities from a radiology report. To evaluate the quality of generated
reports, F1CheXbert measures the F1 score between CheXbert’s predicted labels on the generated
report and those on the ground truth report. Following previous work, the calculation focuses on
five specific observations: atelectasis, cardiomegaly, consolidation, edema, and pleural effusion. For
implementation, we use the f1chexbert library: https://github.com/jbdel/vilmedic.
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B.4 Result Details

B.4.1 Intermediate Results of Stage 1

As shown in Table B11, after completing Stage 1 training, we conducted an initial evaluation of
the model’s anatomical region recognition capability. The average accuracy of anatomical region
recognition is 98.37%, laying a foundation for subsequent training.

Table B11: Intermediate results of Stage 1.
Anatomical Region Acc Anatomical Region Acc
left costophrenic angle 100.00 right hemidiaphragm 97.39
right clavicle 98.59 upper mediastinum 99.20
trachea 96.60 left hilar structures 98.80
abdomen 99.80 svc 98.80
right hilar structures 97.79 left mid lung zone 99.40
carina 99.60 cardiac silhouette 100.00
right atrium 99.00 left upper lung zone 97.58
left lung 99.60 left apical zone 96.98
left hemidiaphragm 93.60 right lower lung zone 97.20
left lower lung zone 95.20 right lung 100.00
mediastinum 99.60 spine 99.80
left clavicle 97.99 right costophrenic angle 100.00
right apical zone 95.79 right upper lung zone 99.00
right mid lung zone 98.80 aortic arch 98.80
cavoatrial junction 97.80

B.4.2 Intermediate Results of Stage 2

Table B12 presents the intermediate results of Stage 2, validating the model’s grounding capability.
Additionally, using “[ ]” to represent coordinates achieved better results compared to the special
token “<coor> </coor>”.

Table B12: Intermediate results of Stage 2.
format R@0.3 R@0.5 R@0.7

[ ] 97.08 92.05 79.20
<coor> 97.05 91.88 78.37

B.4.3 Results Details of Stage 3

Table B13, B14, B15 display the subclass results of AOR and other comparative methods on MIMIC-
CXR-VQA, helping us analyze which tasks AOR excels in. As discussed in the main manuscript,
AOR demonstrates a significant advantage in handling complex questions, such as choose and
query types. By systematically analyzing multiple attributes involved in a question, the model
is better equipped to perform logical reasoning and provide the correct answer. Additionally, for
size-related questions, AOR improves answer accuracy by comparing the proportion of the heart or
upper mediastinum relative to the entire thoracic cavity, leading to more precise evaluations.
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Table B13: Detailed results of comparative experiments (verify).
verifyMethod Res presence abnormality size plane gender total

General-domain LMM
LLaVA 2242 75.91 77.02 75.32 95.45 50.76 75.97
LLaVA-1.5 3362 74.66 74.96 73.62 96.97 85.61 75.25
GPT4RoI 2242 76.02 77.59 77.31 95.45 93.18 77.16
VoCoT 4482 76.48 76.95 73.62 70.45 76.52 76.17
Medical-domain LMM
LLaVA-Med 2242 75.32 75.53 74.47 94.70 78.79 75.71
Med-Flamingo 2242 - - - - - -
XrayGPT 2242 61.21 57.94 58.87 53.03 53.03 60.00
CheXagent 4482 76.65 76.31 70.07 50.00 56.06 75.02
MedVLM-R1 Dyn - - - - - -
AOR(Ours)-t 3362 79.48 78.51 84.97 99.24 93.18 80.48
AOR(Ours)-r/t 3362 79.02 79.01 93.76 98.49 93.94 81.17

Table B14: Detailed results of comparative experiments (choose).
chooseMethod Res attribute abnormality anatomy plane gender total

General-domain LMM
LLaVA 2242 52.72 51.63 49.66 93.18 60.61 56.07
LLaVA-1.5 3362 50.64 53.12 51.34 95.45 90.91 58.70
GPT4RoI 2242 53.69 40.06 46.31 96.21 94.70 56.47
VoCoT 4482 43.91 37.39 36.91 93.18 83.33 48.79
Medical-domain LMM
LLaVA-Med 2242 50.32 51.04 52.01 95.45 91.67 58.31
Med-Flamingo 2242 - - - - - -
XrayGPT 2242 29.97 40.95 43.62 78.79 49.24 40.97
CheXagent 4482 27.72 24.33 21.81 91.67 52.27 33.49
MedVLM-R1 Dyn - - - - - -
AOR(Ours)-t 3362 66.51 69.44 64.43 98.49 94.70 71.96
AOR(Ours)-r/t 3362 63.62 69.73 60.40 98.48 96.21 70.19

Table B15: Detailed results of comparative experiments (query).
queryMethod Res attribute abnormality anatomy plane gender total

General-domain LMM
LLaVA 2242 60.70 56.20 64.79 86.07 55.30 58.87
LLaVA-1.5 3362 60.79 53.77 62.43 96.72 87.12 56.10
GPT4RoI 2242 60.40 57.14 67.32 98.36 90.15 60.54
VoCoT 4482 61.22 55.38 62.80 97.54 81.82 60.70
Medical-domain LMM
LLaVA-Med 2242 61.48 57.19 65.98 97.54 90.15 60.37
Med-Flamingo 2242 - - - - - -
XrayGPT 2242 44.06 34.18 37.77 23.50 50.00 24.07
CheXagent 4482 37.42 34.09 46.55 68.85 28.03 48.49
MedVLM-R1 Dyn - - - - - -
AOR(Ours)-t 3362 66.71 62.69 69.43 98.36 91.67 65.05
AOR(Ours)-r/t 3362 66.95 62.75 71.18 100 93.18 65.49
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B.5 Scalability of CoT Construction

Using VQA-RAD as an example, we generate CoT answers for each sample as follows: Keyword
Mapping We use LLMs (GPT-4o) to extract relevant terms from each question and map them to
our predefined 68 attributes, 5 categories, and 38 objects. Unmapped terms are reviewed manually
(though rare, as explained later). Sample Expansion Once mapped, we generate CoT answers based
on our 2,812 predefined CoT types. Key findings:

• Performance Gain Defining 2,812 CoT types enables LLMs to generate CoT answers for any
CXR dataset. The LLMs can easily map attributes/categories and objects (e.g., the base of the
right→lower right lung) and proceed to construct CoT answer. As shown in Table 5, incorporating
CoT answers improves performance by 3.60% after 1 epoch and 5.97% after 3 epochs of fine-tuning,
demonstrating the generalizability of our approach to new datasets.

• Data Quality Enhancement We examine failure cases in mapping and identify two main points:
(a) Non-specific anatomical regions, e.g., “the lungs” cover both sides. We resolve this by splitting
the region into left and right sides for individual analysis and then aggregating the results. (b)
Unmapped attributes, i.e., cardiomyopathy and aortopulmonary window, could not be mapped.
Radiologist consultation confirmed these are challenging to assess via a single X-ray, as heart size
and shape alone are insufficient. Similarly, the aortopulmonary window overlaps with adjacent
structures on chest X-rays. These findings validate the accuracy and clinical reliability of our 68
predefined attributes and help refine low-quality or non-specific samples in existing datasets.
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C Case Study

C.1 Case Study: Visual Question Answering (VQA) on MIMIC-CXR-VQA

AOR: Find the cardiac silhouette [0.33, 0.50, 0.80, 0.82]. For the technical assessment, observe the position of the
cardiac silhouette [0.33, 0.50, 0.80, 0.82] within the entire thorax [0.15,0.07,0.91,0.92]. The cardiac silhouette
[0.33,0.50,0.80,0.82] is not displaced, indicating there is no technical assessment in the cardiac silhouette
[0.33,0.50,0.80,0.82]. For the device, observe the cavoatrial junction [0.33,0.50,0.50,0.61], the right atrium
[0.33,0.61,0.50,0.82], and the cardiac silhouette [0.33,0.50,0.80,0.82]. Considering all observations, there is device in
the cardiac silhouette [0.33,0.50,0.80,0.82]. So the answer is yes.

Question: Does the cardiac silhouette display any technical assessments or devices?              Answer: Yes

Medical Visual Question Answer  

LLaVA-Med: Yes XrayGPT: No CheXagent: Yes 

Question: Which anatomical findings, enlarged hilum or mass/nodule (not otherwise specified), is associated with the left lung?     
Answer: enlarged hilum

LLaVA-Med: none XrayGPT: none CheXagent: Mass/nodule (not otherwise specified) 

AOR: Find the left lung [0.47,0.10,0.88,0.70]. For the enlarged hilum, observe the left hilar structures
[0.47,0.30,0.65,0.49], and there is no enlarged hilum in the left hilar structures [0.47,0.30,0.65,0.49]. Therefore, there
is no enlarged hilum in the left lung [0.47,0.10,0.88,0.70]. For the mass/nodule (not otherwise specified), observe the
left upper lung zone [0.47,0.12,0.79,0.33], the left mid lung zone [0.48,0.33,0.82,0.46], the left lower lung zone
[0.50,0.46,0.88,0.70], and the left lung [0.47,0.10,0.88,0.70]. Pay special attention to the left hilar structures
[0.47,0.30,0.65,0.49]. Considering all observations, there is mass/nodule (not otherwise specified) in the left lung
[0.47,0.10,0.88,0.70]. So the answer is enlarged hilum.

AOR: The first region is left lung [0.51,0.15,0.84,0.72]. Observe the left upper lung zone [0.51,0.16,0.82,0.38], the 
left mid lung zone [0.52,0.38,0.84,0.50], the left lower lung zone [0.52,0.50,0.84,0.72], and the left lung 
[0.51,0.15,0.84,0.72]. Considering all observations, disease in the left lung [0.51,0.15,0.84,0.72] includes fluid 
overload/heart failure and pneumonia. The second region is right lung [0.11,0.16,0.44,0.74]. Observe the right upper 
lung zone [0.14,0.17,0.44,0.38], the right mid lung zone [0.13,0.38,0.42,0.51], the right lower lung zone 
[0.11,0.51,0.41,0.74], and the right lung [0.11,0.16,0.44,0.74]. Considering all observations, disease in the right lung 
[0.11,0.16,0.44,0.74] includes fluid overload/heart failure. So the answer is fluid overload/heart failure.

Question: Please list all common diseases found in both the <region 1> and <region 2>.              Answer: fluid overload/heart failure

LLaVA-Med:  XrayGPT: CheXagent:

Verify

Choose

Query

Figure C6: Cases of VQA on MIMIC-CXR-VQA: Leveraging region-level understanding and multi-
step reasoning, AOR achieves superior performance.
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C.2 Case Study: Visual Question Answering (VQA) on VQA-RAD and CheXpert

Medical Visual Question Answer      

AOR: Find the heart [0.43, 0.40, 0.75, 0.65]. Measure the maximal horizontal diameter of the cardiac silhouette 
[0.43, 0.40, 0.75, 0.65] and the maximal horizontal diameter of the thorax [0.13, 0.08, 0.85, 0.78]. The cardiothoracic 
ratio is no more than 50%, there is no enlarged cardiac silhouette in the cardiac silhouette [0.43, 0.40, 0.75, 0.65]. So
the answer is no.

Question: Is the heart wider than more than half the width of the thorax?    Answer: No.

AOR: No.

Question: Does the X-ray reveal any lung cancer?  Answer: No.

Question: Which side of the lungs are hyperinflated?   Answer: Bilateral lungs.

AOR: Left lung and right lung. 

VQA-RAD (Closed)

VQA-RAD (Open)

AOR: Enlarged cardiac silhouette and edema.

Question: What abnormalities can you enumerate?     Answer: Enlarged cardiac silhouette and edema.

CheXpert (Closed)

CheXpert (Open)

Figure C7: Cases of VQA on VQA-RAD and CheXpert: For local-level questions, even on unseen
VQA-RAD data, AOR can perform reasoning and provide correct answers. For global-level questions,
AOR is also capable of synthesizing information to make a final judgment.
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C.3 Case Study: Full-Image Report Generation on MIMIC-CXR

Full Image Report Generation     

AOR: Right-sided Port-A-Cath tip terminates in the mid SVC. Heart size is normal. Mediastinal and hilar contours are 
unremarkable. Pulmonary vasculature is normal. Lung volumes are low. No focal consolidation, pleural effusion or 
pneumothorax is present. No acute osseous abnormality is visualized. No acute cardiopulmonary abnormality.

GroundTruth: AP upright and lateral views of the chest were provided. A Port-A-Cath resides over the right chest wall 
with catheter tip in the expected region of the mid SVC. Lung volumes are low. No effusion or pneumothorax. No 
convincing evidence for pneumonia or CHF. The cardiomediastinal silhouette is normal. Bony structures are intact. No 
free air below the right hemidiaphragm. No acute findings.

LLaVA-Med: The chest X-ray appears to be normal, which means that there are no visible signs of abnormalities or issues in the lungs,
heart, or surrounding structures. This is a positive finding, as it suggests that the patient's

Med-flamingo: This is a frontal chest radiograph of a 55-year-old male patient with a history of a cough and fever. The patient is in a
supine position. The cardiac silhouette is normal. The lungs are clear. The trachea is central. The hila are normal. The lung fields are clear.
The mediastinum is normal. The ribs are normal. The bony thorax is normal.

XrayGPT: The chest x-ray shows a normal heart size, unremarkable mediastinal and hilar contours, and clear lungs without any focal
consolidation. There is no pleural effusion or pneumothorax. The impression is that there is no acute cardiopulmonary process.

CheXagent: In comparison with the study of ___, there is little change and no evidence of acute cardiopulmonary disease. No pneumonia,
vascular congestion, or pleural effusion. Central catheter remains in place.

GroundTruth: Heart size is normal. The mediastinal and hilar contours are normal. The pulmonary vasculature is 
normal. Lungs are clear. No pleural effusion or pneumothorax is seen. There are no acute osseous abnormalities. 
Moderate degenerative changes are demonstrated within the imaged thoracic spine. No acute cardiopulmonary 
abnormality.

AOR: The lungs are clear. The cardiomediastinal silhouette is within normal limits. No acute osseous abnormalities. 
No acute cardiopulmonary process.

LLaVA-Med: The chest X-ray appears to be normal, which means that there are no visible signs of abnormalities or issues in the lungs, 
heart, or surrounding structures. 

Med-flamingo: This is a frontal chest radiograph of a 55-year-old male patient with a history of a cough and fever. The patient is in a
supine position. The cardiac silhouette is normal. The lungs are clear. The trachea is central. The hila are normal. The lung fields are clear.
The mediastinum is normal. The bones are normal.

XrayGPT: The chest x-ray shows clear lungs with no signs of consolidation, effusion, or edema. The cardiomediastinal silhouette is
normal, and there are no acute osseous abnormalities. The impression is that there is no acute cardiopulmonary process.

CheXagent: Heart size is normal. The mediastinal and hilar contours are normal. The pulmonary vasculature is normal. Lungs are clear.
No pleural effusion or pneumothorax is seen.

Figure C8: Cases of full-image report generation on MIMIC-CXR: AOR demonstrates strong detail-
capturing capabilities.
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C.4 Case Study: Region-Level Report Generation on MIMIC-CXR
Region Report Generation     

AOR: There is mild left basilar atelectasis.

Please generate a corresponding radiology report based on left lower lung zone of the Chest X-ray
GroundTruth: There is mild left base atelectasis.

LLaVA-Med: The image is a chest X-ray of a 32-year-old male, taken one month after a motorcycle accident.
The left lower lung zone shows a homogeneous opacity, which is an area of increased density in the lung.

Med-flamingo: The left lower zone is a normal zone. The left upper zone is a normal zone. The left middle zone is a normal zone.

XrayGPT: The chest x-ray shows a normal heart size, with normal mediastinal and hilar contours. The pulmonary vasculature is also
normal, and the lungs are clear. There are no signs of pleural effusion or pneumothorax. The impression is that there is no acute
cardiopulmonary abnormality.

CheXagent: In comparison with the study of ___, there is little change and no evidence of acute cardiopulmonary disease. No pneumonia,
vascular congestion, or pleural effusion.

AOR: Right picc line tip is at the level of mid svc.

Please generate a corresponding radiology report based on svc of the Chest X-ray
GroundTruth: The picc is now in the mid svc. The picc has been pulled back and is now within the mid svc.

LLaVA-Med:The chest X-ray appears to be normal, which means that there are no visible signs of abnormalities or
issues in the lungs, heart, or surrounding structures.

Med-flamingo: The patient is a 60-year-old male with a history of hypertension and diabetes. He is currently being treated for a right lower
lobe pneumonia. The patient is currently on a beta-blocker for his hypertension.

XrayGPT: The chest x-ray shows a normal heart size, normal mediastinal and hilar contours, and clear lungs. There is no evidence of
pleural effusion or pneumothorax. The impression is that there is no acute cardiopulmonary process.

CheXagent: In comparison with the study of ___, the patient has taken a much better inspiration. There is no evidence of acute pneumonia,
vascular congestion, or pleural effusion.

Figure C9: Cases of region report generation on MIMIC-CXR: AOR can generate accurate, grounded
captions.
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D Limitations and Future Work

Frontal and Lateral Images AOR only utilizes frontal images for experiments, while lateral
images also play a significant role in clinical practice. However, it is worth noting that the use of
lateral images is far more complex than simply encoding and concatenating them with frontal images.
Lateral images inherently provide rich CoT reasoning. For example, as shown in Fig. C8, when only
the frontal image is provided as input, all medical LMMs fail to detect spine degenerative change,
which further validates the importance of lateral images in certain cases. Similarly, when pulmonary
abnormalities obscure the hilum in frontal images, lateral images are essential for further observation
and confirmation. Leveraging lateral images will be an important direction for our future work.

Temporal Images Currently, AOR only analyzes static CXRs. However, in real-world scenarios,
diseases progress over time, and CXRs are often presented as a sequence captured at different time
points. Therefore, the ability to understand temporal images is also crucial, which we hope to explore
further in future work.

Extension to More Modalities AOR focuses on CXR interpretation, providing anatomical
ontology-guided reasoning capabilities. Based on this, we discuss the potential of extending AOR
to additional modalities: (1) Extension to modalities with clearly defined anatomical regions. For
modalities such as chest CT, abdominal CT, and brain MRI, which have clearly defined anatomical
regions, we can use these existing divisions as anchors to construct corresponding CoT answers,
thereby mimicking radiologists’ reasoning processes in clinical decision-making. (2) Extension to
modalities without explicitly defined anatomical regions. We also explore structures such as bones
or teeth, which do not have conventional anatomical zoning. We consulted certified radiologists to
design reasoning flows based on their unique structural features. For example, in bone structures,
reasoning can be organized around specific vertebrae or ribs; in tooth structures, it can be decomposed
into crown, root, jaw, condyle, airway, etc.

E Impact Statement

For our research, we utilize the source dataset under the PhysioNet license, ensuring compliance
with the required credentials and permissions, and eliminating the risk of privacy infringement. By
empowering Medical LMMs with anatomy-centric reasoning capabilities, we offer a new paradigm
for interactive and explainable LMMs in medical imaging analysis. Experiments demonstrate AOR’s
superior performance in both VQA and report generation tasks, revealing its potential in supporting
clinical decision-making.
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