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ABSTRACT

While many generative models for protein design have emerged, few tackle the
difficult task of jointly generating full-atom structures and their corresponding
sequences, a challenge compounded by sequence-dependent side-chain dimen-
sionality. We introduce La-Proteina for atomistic protein design based on a
novel partially latent representation: the protein backbone is modeled explicitly,
while sequence and all other atomistic details are captured in per-residue latent
variables of fixed size. Flow matching in this partially latent space then models
the joint distribution over sequences and full-atom structures. La-Proteina
achieves state-of-the-art performance on key generation benchmarks, including
all-atom co-designability, diversity, and structural validity. Notably, it also
surpasses previous models in atomistic motif scaffolding, unlocking critical
structure-conditioned design tasks. Moreover, La-Proteina generates co-designable
proteins of up to 800 residues, a regime where most baselines collapse or fail to
produce valid samples, demonstrating its unique scalability and robustness.

1 INTRODUCTION

The design of novel proteins with specific structures and functions has immense potential in various
fields (Richardson & Richardson, 1989; Huang et al., 2016; Kuhlman & Bradley, 2019). A challenge
in de novo protein design is capturing the relationship between protein sequence and structure. Most
existing methods decouple these aspects, generating sequences that are later folded (Wang et al.,
2024b) or designing backbones that are subsequently sequenced (Watson et al., 2023). However,
accurately modeling the joint distribution over sequences and fully atomistic structures could unlock
fine-grained control over functional sites and enable key protein design tasks, such as atomistic motif
scaffolding. This problem is made inherently difficult by the need to handle both discrete sequences
and continuous coordinates, along with the sequence-dependent dimensionality of side chains.
Recent methods tackling this problem learn generative models directly in data space (Qu et al.,
2024; Chu et al., 2024), though these often struggle with modeling accuracy and scalability. Other
approaches use latent representations (Lu et al., 2024; Fu et al., 2024; McPartlon et al., 2024; Yim
et al., 2025) but often fail to deliver competitive performance despite their conceptual appeal (Sec. 4).

We introduce La-Proteina (Latent Proteina), a method for atomistic protein design based on partially
latent flow matching, combining the strengths of explicit and latent modeling. La-Proteina models
the α-carbon coordinates explicitly, while capturing sequence and coordinates of all non-α-carbon
atoms within a continuous, fixed-size latent representation per residue. We first train a Variational
Autoencoder (VAE) (Kingma et al., 2013; Rezende et al., 2014), encoding sequence and side chain
details in latent space, followed by a flow matching model (Lipman et al., 2023) that jointly generates
α-carbon coordinates and latent variables. New proteins are generated by sampling the flow model
and decoding the α-carbons and latent variables into sequences and fully atomistic structures (Fig. 1).

La-Proteina’s partially latent approach shifts the core learning problem from a mixed dis-
crete–continuous space with variable dimensionality to a per-residue, continuous space of fixed dimen-
sionality, making it amenable to powerful used generative modeling techniques such as flow matching.
Meanwhile, maintaining the explicit separation of the α-carbon coordinates and the latent variables
allows greater flexibility during generation. In particular, it enables the structural scaffold and the
remaining atomic details to be generated using different generation schemes, i.e., different discretiza-
tion schedules to simulate the underlying generative stochastic differential equation. La-Proteina’s
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Figure 1: La-Proteina consists of encoder qψ (a), decoder pϕ (b), and joint denoiser pθ (c). The encoder fea-
turizes the input protein and predicts per-residue latent variables z of constant dimensionality. Together with the
underlying α-carbon backbone xCα , the decoder outputs sequence s and all other atoms x¬Cα and reconstructs
the atomistic protein. To facilitate generation of de novo proteins, a partially latent flow model jointly generates
novel α-carbon backbone structures xCα and latents z. The model is trained in two stages and all networks are
implemented leveraging the same transformer architecture (Geffner et al., 2025); see details in Sec. 3.

neural networks are implemented using efficient transformer architectures (Vaswani et al., 2017;
Geffner et al., 2025), guaranteeing the model’s scalability to long proteins, many model parameters,
and large training data—we train La-Proteina on up to 46 million protein structure-sequence pairs.

We empirically compare our model against leading publicly available methods for atomistic
protein design and achieve state-of-the-art atomistic performance as measured by the all-atom
co-designability and diversity metrics. La-Proteina can generate co-designable proteins of up to 800
residues, a regime where existing models collapse or run out of memory, demonstrating our method’s
strong scalability. We further assess the generated structures’ geometric quality through analyses
of side-chain conformations and validate overall structural integrity (Davis et al., 2007). La-Proteina
significantly surpasses existing methods in these evaluations as well. Next, we apply La-Proteina to
atomistic motif scaffolding, a critical task for protein engineering that most prior work has addressed
only at the coarser backbone level (Watson et al., 2023; Yim et al., 2024; Lin et al., 2024; Geffner et al.,
2025). We tackle both all-atom and tip-atom scaffolding, where in the latter case only functionally
critical side chain tip atoms are given, rather than all atoms of the motif residues. Our model performs
these tasks in two setups: the standard indexed task, where motif residue sequence indices are
specified; and the more challenging unindexed task (Ahern et al., 2025), where these sequence indices
are unknown. Our approach solves most benchmark tasks across all setups and outperforms baselines.
We provide further insights through ablation studies and careful analysis of the model’s latent space,
which shows that La-Proteina encodes atomistic residue structure and amino acid type in a localized
and consistent manner. In conclusion, La-Proteina represents a versatile, high-quality, fully atomistic
protein structure generative model, with the potential to enable new, challenging protein design tasks.

Main contributions. (i) We propose La-Proteina, a partially latent flow matching framework
designed for the joint generation of protein sequence and fully atomistic structure. (ii) La-Proteina
achieves state-of-the-art performance in unconditional protein generation. (iii) We verify La-
Proteina’s scalability, generating diverse, co-designable and structurally valid fully atomistic proteins
of up to 800 residues. (iv) We successfully apply La-Proteina to indexed and unindexed atomistic
motif scaffolding, two important conditional protein design tasks. (v) We provide further insights
through ablations, latent space analyses, and biophysical assessments of La-Proteina’s generated
atomistic protein structures, demonstrating our model’s superiority over previous all-atom generators.

2 PRELIMINARIES

VAEs (Kingma et al., 2013; Rezende et al., 2014) learn a probabilistic representation of data x within
a latent space employing two neural networks: an encoder mapping a sample x to a distribution
qψ(z |x) over latent variables z, and a decoder mapping z to a distribution in data space pϕ(x|z).
VAEs are trained by maximizing the Evidence Lower Bound, ELBO(ϕ, ψ) = Ex,z[log pϕ(x|z)]−
KL(qψ(z|x) ∥ p(z)). This objective balances reconstruction quality with a KL divergence-based
regularization term that pushes the learned posterior qϕ(z|x) towards an uninformative prior p(z).
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Figure 2: Fully atom-
istic samples produced
by La-Proteina. These
structures are generated
unconditionally, show-
casing the model’s abil-
ity to produce a diverse
range of novel topolo-
gies. Numbers denote
number of residue. All
samples shown are co-
designable.

Flow matching (Lipman et al., 2023; Albergo & Vanden-Eijnden, 2023; Liu et al., 2023) trains a neu-
ral network vθ(x

t, t) to model the velocity field vt(x) that transports samples from a base distribution
p0 to the data distribution p1 along a probability path pt, for t ∈ [0, 1]. This path is often defined by
linearly interpolating between samples x0 ∼ p0 and x1 ∼ p1 as xt = (1− t)x0 + tx1. The denoiser
network vθ is trained by minimizing the conditional flow matching objective, Et,p0,p1 [∥vθ(xt, t)−
(x1−x0)∥2]. Flow matching can be applied directly in data space or in latent spaces learned by models
like VAEs (Rombach et al., 2022; Vahdat et al., 2021). Furthermore, when p0 is Gaussian, flow match-
ing is equivalent to diffusion models (Song et al., 2021; Gao et al., 2025), allowing us to compute
the intermediate score functions ∇xt log pt(x

t) as a function of the trained network vθ(x
t, t).

Protein representation. Protein data includes sequence (20 residue types) and 3D structure.
Different residues share a common backbone, including the α-carbon atom, but contain distinct
atoms in their side chains. The Atom37 representation defines a standardized superset of 37 potential
atoms per residue, which allows storing the structure of an L-residue protein as a tensor of shape
[L, 37, 3]. The relevant subset of coordinates is selected based on each residue’s type.

Related work. Early diffusion-based protein generators, such as RFDiffusion (Watson et al., 2023)
and Chroma (Ingraham et al., 2023), focused on backbone generation. This area has since diversified,
with some approaches leveraging diffusions on the SO(3) manifold (Yim et al., 2023b;a; Bose
et al., 2024; Huguet et al., 2024), while others employ Euclidean Flow Matching (Lin & Alquraishi,
2023; Lin et al., 2024; Geffner et al., 2025). ProtComposer uses an auxiliary statistical model and
3D primitives (Stark et al., 2025). Several works (Lin et al., 2024; Qu et al., 2024; Geffner et al.,
2025) obtained good performance training on synthetic structures from the AlphaFold database
(AFDB) (Jumper et al., 2021; Varadi et al., 2021), which is significantly larger than the protein
databank (PDB) (Berman et al., 2000). Recently, the task of sequence-structure co-design has gained
prominence. Some methods address this by jointly modeling protein backbones and sequences
(Campbell et al., 2024; Ren et al., 2024; Yim et al., 2025). Others tackle fully atomistic structures,
including side chains, operating either in data space (Qu et al., 2024; Chu et al., 2024; Lisanza
et al., 2023; Chen et al., 2025) or via latent variable models (McPartlon et al., 2024; Fu et al.,
2024; Lu et al., 2024; Yim et al., 2025). Language models have also been used for protein design,
with some methods focusing on protein sequences (Wang et al., 2024b); others tokenize structural
information and model sequence and structure jointly (Hayes et al., 2024; Wang et al., 2024c). In
this work we introduce La-Proteina for atomistic protein design and provide a thorough evaluation
of its capabilities in unconditional monomer generation and motif scaffolding. Concurrent work by
Anonymous (2025) extends La-Proteina to binder design. Their contributions are orthogonal to ours,
focusing on modeling protein-protein interactions and inference-time search for that application.

3 LA-PROTEINA

3.1 MOTIVATION: PARTIALLY LATENT REPRESENTATION FOR ATOMISTIC PROTEIN DESIGN

While prior works have been able to successfully tackle high-quality protein backbone design, fully
atomistic structure generation comes with additional challenges. The model needs to jointly reason
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over large-scale backbone structure, amino acid types, and side-chains, whose dimensionality depends
on the amino acid—this represents a complex continuous-categorical generative modeling problem.

How can we best build on top of successful backbone generation frameworks (Watson et al., 2023;
Geffner et al., 2025; Lin et al., 2024), while addressing the additional fully atomistic modeling
challenges? We propose to encode per-residue atomistic detail and residue type in a fixed-length, con-
tinuous latent space, while maintaining explicit backbone modeling through the α-carbon coordinates.
This has several key advantages: (i) By encoding atomistic details, including varying-length side
chains, together with their categorical residue type, into a fixed-length, fully-continuous latent space,
we elegantly avoid mixed continuous-categorical modeling challenges in the model’s main generative
component. Together with the continuous backbone coordinates, the per-residue latent variables
can be generated using efficient, fully-continuous flow matching methods, while mixed modality
modeling complexities are handled by encoder and decoder. (ii) It is critical to maintain the explicit α-
carbon-based backbone representation in La-Proteina’s hybrid, partially latent framework. That way,
we can build on top of advances in high-performance backbone modeling. Our ablations show that
also encoding α-carbons in latent space leads to significantly worse results (ablations in App. G.1.3).

5IUS task 6E6R task

Figure 3: Atomistic Motif Scaffolding. La-
Proteina accurately reconstructs the atomistic mo-
tif (red), while generating diverse scaffolds. Vi-
sualization overlays generated protein and motif.

(iii) Maintaining explicit backbone modeling capa-
bilities also allows us to use different generation
schedules for global α-carbon backbone structure and
per-residue atomistic (latent) details (see Sec. 3.4),
a critical detail in our framework to achieve high
performance (ablations in App. G.2). We argue that
our hybrid approach is a key reason why La-Proteina
significantly outperforms existing latent frameworks
for protein structure generation, all of which opt for
fully-latent modeling instead. (iv) Our partially latent
framework increases scalability. Explicit modeling of
all atoms in large proteins may require complex and
memory-consuming neural networks—in fact, for that
reason some approaches that treat all atoms explicitly
can only be trained on small proteins (Qu et al., 2024).
In contast, La-Proteina’s per-residue latent variables
simply become additional channels on top of the
α-carbon coordinates, enabling the application of
established, high-performance backbone-processing
architectures (Geffner et al., 2025) without increasing
the length of internal sequence representations. Hence, we can keep the model’s memory footprint
manageable, and scale the model to large protein generation tasks of up to 800 residues (see Sec. 4.1).

Next, we introduce La-Proteina (Fig. 1). First, we train a VAE, with its encoder mapping input
proteins (sequence and structure) to latent variables, and its decoder reconstructing complete proteins
from the latent variables andα-carbon coordinates. Leveraging the VAE, we then train a flow matching
model to learn the joint distribution over latent variables and coordinates of the α-carbon atoms.

Notation. L denotes protein length, xCα ∈ RL×3 the α-carbon coordinates, x¬Cα ∈ RL×36×3

the coordinates of other heavy atoms (Atom37 representation without α-carbons, see Sec. 2), s ∈
{0, ..., 19}L the protein sequence, and z ∈ RL×8 the (8-dimensional) per-residue latent variables.

3.2 PROBABILISTIC FORMULATION

We learn a latent variable model p(xCα ,x¬Cα , s, z), trained so that its marginal
∫
p dz approximates

the target distribution over proteins pdata(xCα ,x¬Cα , s). Central to our approach is the factorization

pθ,ϕ(xCα ,x¬Cα , s, z) = pθ(xCα , z) pϕ(x¬Cα , s |xCα , z), (1)

which enables the model to capture complex dependencies between backbone, sequence, and side
chains through the latent variable z. The first component of this factorization, pθ(xCα , z), defined over
a continuous, per-residue, fixed-dimensional space, is captured by our partially latent flow matching
model (Sec. 3.2.2). The second component, pϕ(x¬Cα , s |xCα , z), denotes the VAE’s decoder, which,
together the encoder, maps between latent variables z and proteins and handles complexities arising
from mixed discrete/continuous data types (sequence and structure), and the variable dimensionality of
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side chains. Critically, by conditioning on both α-carbon coordinates xCα and expressive latent vari-
ables z, this conditional distribution can be effectively represented by simple factorized distributions.

3.2.1 VARIATIONAL AUTOENCODER

The VAE’s decoder models sequence and full-atom structure. Formally, it parameterizes the con-
ditional likelihood term pϕ(x¬Cα , s |xCα , z) from Eq. (1). We model this distribution assuming
conditional independence between the sequence s and the coordinates of non-α-carbon atoms x¬Cα

pϕ(x¬Cα , s |xCα , z) = pϕ(s |xCα , z) pϕ(x¬Cα |xCα , z), (2)

where we define pϕ(s |xCα , z) as a factorized categorical distribution and pϕ(x¬Cα |xCα , z) as a
factorized Gaussian with unit variance. These choices are standard in the VAE literature (Kingma et al.,
2013), justified by expressive conditioning on the latent variables and α-carbon coordinates, which
capture underlying dependencies and enable accurate approximations using simple factorized forms.

The decoder network takes the latent variables z and α-carbon coordinates xCα as input, producing
parameters for the distributions over sequence s and non-α-carbon atom coordinates x¬Cα . To handle
the varying non-α-carbon atom count across residue types while maintaining a fixed output dimension-
ality, the decoder generates Atom37 coordinates for each residue structure, yielding a [L, 37, 3] tensor.
The appropriate subset of all Atom37 entries is selected on the basis of the sequence, using the ground
truth sequence during training (supervising only the selected entries) and the decoded sequence
during inference. Further, the coordinates of the α-carbons are set to the ones passed as input.

The VAE encoder, on the other hand, is used to map proteins to their corresponding latent represen-
tation. Formally, the encoder parameterizes qψ(z |xCα ,x¬Cα , s), a factorized Gaussian designed
to approximate the posterior distribution pϕ,θ(z |xCα ,x¬Cα , s). This network takes the complete
protein structure (xCα ,x¬Cα , s) as input, and outputs the mean and log-scale parameters for qψ(z | ·).
The encoder and decoder are optimized maximizing the β-weighted ELBO (Higgins et al., 2017),
a common objective for VAE training in the context of generative modeling in latent spaces, given by

max
ϕ,ψ

Epdata(xCα ,x¬Cα ,s),qψ(z|...) [log pϕ(x¬Cα , s|xCα , z)]−βKL (qψ(z|xCα ,x¬Cα , s)∥p(z)) . (3)

For the modeling choices described above, the reconstruction term in Eq. (3) reduces to the cross
entropy loss for the sequence and the squared L2 loss for the structure. For training, we set β = 10−4

and use a standard isotropic Gaussian prior over latent variables p(z) = N (z | 0, I).

3.2.2 PARTIALLY LATENT FLOW MATCHING

The second stage of training La-Proteina involves optimizing a flow matching model to approximate
the target distribution pdata,ψ(xCα , z).

1 This model trains a denoiser network vθ(x
tx
Cα
, ztz , tx, tz)

to predict the velocity field transporting samples from a standard Gaussian reference distribution,
p0(x

0
Cα
, z0), to the target data distribution, p1(x1

Cα
, z1), for tx, tz ∈ [0, 1]. These are defined as

p0
(
x0
Cα , z

0
)
= N

(
x0
Cα |0, I

)
N

(
z0 |0, I

)
and p1(x

1
Cα , z

1) ≈ pdata(xCα , z). (4)

The denoiser network vθ is trained by minimizing the conditional flow matching (CFM) objective

min
θ

E
[∥∥vxθ (xtxCα , ztz , tx, tz)− (

xCα − x0
Cα

)∥∥2 + ∥∥vzθ (xtxCα , ztz , tx, tz)− (
z− z0

)∥∥2] , (5)

where the expectation is over pdata,ψ(xCα , z) (i.e., p1), noise distributions N (x0
Cα

|0, I) and
N (z0 |0, I) (i.e., p0), and interpolation time distributions ptx(tx) and ptz (tz). The use of two
separate interpolation times tx and tz is a critical design decision that enables the use of different
integration schedules for the coordinates of the α-carbons xCα and latent variables z during inference.
This flexibility is vital for achieving strong performance; employing a single, coupled time t would
enforce an identical schedule for both modalities, which leads to worse results (see App. G.2).

1For this stage the VAE parameters are frozen. The target distribution over α-carbon coordinates and latent
variables is defined by the data distribution pdata(xCα ,x¬Cα , s) and the VAE encoder qψ(z |xCα ,x¬Cα , s),
and can be sampled by (xCα ,x¬Cα , s) ∼ pdata(xCα ,x¬Cα , s) and z ∼ qψ(z |xCα ,x¬Cα , s).
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The specific form for the time sampling distributions represent an important design decision (Esser
et al., 2024). Inspired by Geffner et al. (2025), who, in the context of backbone design, employ a
mixture of Uniform and Beta distributions, we adopt independent sampling for tx and tz given by

ptx = 0.02Unif(0, 1) + 0.98Beta(1.9, 1) and ptz = 0.02Unif(0, 1) + 0.98Beta(1, 1.5), (6)

visualized in Fig. 13. The distribution parameters were chosen based on our observation that
generating backbones using a faster schedule than that used for the latent variables yields superior
results during inference (see Sec. 3.4). Hence, the distributions from Eq. (6) were chosen so that time
pairs that satisfy tx > tz , relevant for the used inference schedules, are sampled more frequently.

3.3 NEURAL NETWORK ARCHITECTURES

The neural networks used by La-Proteina, the encoder, decoder, and denoiser, rely on a shared core
architecture based on transformers with pair-biased attention mechanisms (Jumper et al., 2021), with
our implementation closely following Geffner et al. (2025). While built on this common foundation,
the three networks are distinguished by their specific inputs, outputs, and conditioning mechanisms.
For instance, the encoder takes as input full proteins and outputs per-residue latent variables, while
the decoder produces full proteins given latent variables and α-carbon coordinates. Additionally, the
denoiser is conditioned on interpolation times (tx, tz) using adaptive layer normalization and output
scaling techniques (Peebles & Xie, 2023). The encoder and decoder each consist of approximately
130M parameters, while the denoiser totals 160M. A key architectural choice for scalability is that
our main models omit computationally expensive triangular update layers (Jumper et al., 2021),
which, while effective in structural biology tasks (Lin et al., 2024; Abramson et al., 2024), incur
significant memory and compute costs. Following Geffner et al. (2025), La-Proteina achieves
high performance using only efficient transformer networks, maintaining strong scalability. These
triangular multiplicative layers can optionally be added to improve pair representations and enhance
protein co-designability (see Sec. 4.1). We include architectural details in App. H.

3.4 MODEL SAMPLING

New proteins can be generated by La-Proteina by sampling latent variables and α-carbon coordinates
using the partially latent flow matching model, and then feeding these through the decoder (Fig. 1).

Sampling the partially latent flow matching model. As we use Gaussian flows (Sec. 2) we can esti-
mate the score of intermediate densities ζ(xtxCα , z

tz , tx, tz) ≈ ∇ log ptx,tzθ (xtxCα , z
tz ) directly from vθ

(Albergo et al., 2023) (see App. E). Access to scores enables the use of stochastic samplers to generate
pairs of α-carbon coordinates and latent variables (xCα , z). We generate such samples by simulating
the following stochastic differential equations (SDEs) from (tx, tz) = (0, 0) to (tx, tz) = (1, 1):

dxtxCα = vxθ (x
tx
Cα
, ztz , tx, tz)dtx + βx(tx)ζ

x(xtxCα , z
tz , tx, tz)dtx +

√
2βx(tx)ηx dWtx

dztz = vzθ(x
tx
Cα
, ztz , tx, tz)dtz + βz(tz)ζ

z(xtxCα , z
tz , tx, tz)dtz +

√
2βz(tz)ηz dWtz .

(7)

Here, βx and βz are scaling functions that modulate the contribution of the Langevin-like term in the
SDEs (Karras et al., 2022) (details in App. E). We also use noise scaling parameters ηx and ηz , set to
values less than or equal to one, to control the magnitude of the injected noise. This follows common
practices in protein design; virtually all successful flow matching and diffusion-based methods adopt
some form of reduced noise or temperature sampling, as it has been consistently observed to improve
(co-)designability, albeit at the cost of reduced diversity (Yim et al., 2023a; Watson et al., 2023; Lin
et al., 2024; Bose et al., 2024; Wang et al., 2024a; Campbell et al., 2024; Geffner et al., 2025).

We use the Euler-Maruyama method (Higham, 2001) to simulate Eq. (7). As discussed, independently
scheduling the generation of α-carbon coordinates xCα and latent variables z is critical for good
performance. Our empirical findings indicate that discretization strategies that generate xCα at
a faster rate than z yield improved results over alternative choices. Full details of our sampling
algorithms, including ablations for these discretization schemes, are provided in Apps. E and G.

Sampling the VAE decoder. The α-carbon coordinates xCα and latent variables z produced by the
flow matching model are passed to the VAE decoder. The non-α-carbon coordinates x¬Cα are then
obtained by taking the mean of the Gaussian distribution pϕ(x¬Cα |xCα , z), while the amino acid
sequence s is determined by taking the argmax of the logits of the categorical pϕ(s |xCα , z).
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Table 1: La-Proteina achieves state-of-the-art results on unconditional all-atom design, for lengths between
100 and 500 residues. Diversity, novelty, and secondary structure computed on all-atom co-designable samples.
The tri suffix indicates La-Proteina with multiplicative triangular update layers to update the pair representation.
ηx and ηz denote the noise scaling factors during generation (Eq. (7)). Best scores bold, second best underlined.

Method Co-designability (%) ↑ pLDDT ↑ Diversity (# clusters) ↑ Novelty ↓ Designability (%) ↑ Sec. Str. (%)

All-atom α-carbon (% ≥ 80) Str Seq Seq+Str PDB AFDB MPNN-8 MPNN-1 α β

P(all-atom) 36.7 37.9 92 134 148 165 0.72 0.81 57.9 44.4 56 17
Protpardelle-1c 35.8 44.8 62 41 138 61 0.78 0.83 62.0 52.6 63 14
APM 19.0 32.2 85 32 64 59 0.84 0.89 61.8 42.8 73 8
PLAID 11.0 19.2 44 25 38 27 0.89 0.92 37.6 23.8 44 14
ProteinGenerator 9.8 17.8 52 12 28 24 0.83 0.89 54.2 42.8 78 5
Protpardelle 8.8 35.2 37 10 37 21 0.79 0.82 56.2 43.8 65 14

La-Proteina (ηx, ηz) = (0.1, 0.1) 68.4 72.2 97 206 216 301 0.75 0.82 93.8 82.6 72 5
La-Proteina (ηx, ηz) = (0.2, 0.1) 60.6 64.2 97 198 197 261 0.76 0.83 95.4 80.2 66 8
La-Proteina (ηx, ηz) = (0.3, 0.1) 53.8 59.6 95 180 189 249 0.77 0.86 94.6 76.0 63 10

La-Proteina tri (ηx, ηz) = (0.1, 0.1) 75.0 78.2 100 129 199 247 0.82 0.86 94.6 84.6 73 6
La-Proteina tri (ηx, ηz) = (0.3, 0.1) 71.6 75.8 99 166 211 294 0.79 0.85 95.2 83.4 66 9

4 EXPERIMENTS

We evaluate La-Proteina on unconditional atomistic protein generation up to 800 residues as well
as on atomistic motif scaffolding, a critical protein design task. We train all models on a filtered
version of the Foldseek cluster representatives of the AFDB (van Kempen et al., 2024), except for
long protein generation where we train on a custom subset of the AFDB consisting of ∼46M samples.
Unless otherwise specified, our trained La-Proteina models omit triangular update layers; any use
of such layers is explicitly noted (used for a single model in Sec. 4.1). Full experimental details,
including datasets, metrics, and training procedures, as well as ablations, in Apps. C, D and G.

4.1 ALL-ATOMISTIC UNCONDITIONAL PROTEIN STRUCTURE GENERATION BENCHMARK

Tab. 1 compares two variants of La-Proteina, one with triangular multiplicative layers and one without,
against publicly available all-atom generation baselines, including P(all-atom) (Qu et al., 2024), APM
(Chen et al., 2025), PLAID (Lu et al., 2024), ProteinGenerator (Lisanza et al., 2023), Protpardelle (Chu
et al., 2024) and Protpardelle-1c (Lu et al., 2025).2 Each method was used to generate 100 proteins
for each length in {100, 200, 300, 400, 500}. We assess performance using several metrics (described
in App. D), including all-atom co-designability, pLDDT, diversity, novelty (against PDB and AFDB),
and standard designability, the last being a metric typically used to evaluate backbone design methods.
Co-designability evaluates how well co-generated sequences fold into generated structures, while
designability uses ProteinMPNN (Dauparas et al., 2022) to produce sequences for generated structures.
We note that our co-designability filter does not use a predicted local distance difference (pLDDT)
cutoff; we instead report pLDDT values of successfully refolded samples separately.

Results in Tab. 1 show that both variants of La-Proteina outperform all baselines in all-atom
co-designability, designability, and diversity, while remaining highly competitive in novelty. Ad-
ditionally, we observe that La-Proteina with triangular layers tends to achieve higher co-designability
values, albeit at the cost of diversity, and that all La-Proteina models yield higher pLDDT values
for successfully refolded samples than baselines (a more detailed pLDDT analysis is provided in
Fig. 34). Crucially, La-Proteina without triangular multiplicative layers establishes state-of-the-art
performance while being highly scalable. This contrasts sharply with the second-best performing
method, P(all-atom), which relies on computationally expensive triangular update layers (Jumper
et al., 2021), thereby limiting it to short proteins. Due to its favorable scalability and performance, all
remaining experiments in the upcoming sections rely on La-Proteina without triangular update layers.

Generation of Large All-Atomistic Structures. To demonstrate scalability, we trained another
version of La-Proteina on an AFDB dataset with ∼46M samples with length up to 896 residues
(details in App. C.1). We see in Fig. 4 that La-Proteina performs best in terms of (co-)designability
and diversity for the task of backbone design (left two panels) as well as all-atom design (right two
panels). Notably, La-Proteina outperforms the previous state-of-the-art Proteina method (Geffner
et al., 2025) in backbone design tasks at all lengths, and is far ahead in co-designability compared to
other all-atom generation methods, which fail to produce realistic samples of length 500 and above.

2Protpardelle-1c was trained conditionally for atomistic scaffolding. However, Lu et al. (2025) did not train
an all-atom unconditional model. We sampled the conditional model unconditionally for this evaluation.
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Figure 4: La-Proteina’s strong performance for unconditional long length generation. La-Proteina pro-
duces co-designable and diverse proteins of over 500 residues, where all all-atom baselines collapse, yielding no
co-designable samples. Left plots show backbone metrics (designability, diversity) against backbone and all-atom
baselines; right plots show all-atom metrics (all-atom codesignability, diversity). Metrics detailed in App. D.
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Figure 5: La-Proteina produces structures with higher structural validity than existing all-atom generation
baselines. MolProbity metrics assessing structural quality: overall MP score, clash score, Ramachandran angle
outliers, and covalent bond outliers (details in App. D). P(all-atom) limited to 500 residues; generating longer
proteins is computationally prohibitive, requiring over 140GB of GPU memory to produce a single sample.
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Figure 6: Distribution of TRP χ1 angle.

Biophysical Analysis of All-Atom Structure Validity.
To examine the biophysical quality of generated structures,
we evaluate our model and all-atom baselines using
two approaches (details in App. D): First, we use the
MolProbity tool (Davis et al., 2007) to assess the structural
validity in terms of bond angles, clashes and other physical
quantities. Fig. 5 shows that La-Proteina produces more
high quality structures, scoring significantly better than
all baselines. The structures generated by La-Proteina are
the most physically realistic ones, similar to real proteins.

Most side chain torsion angles do not vary freely, but cluster due to steric repulsions into so-called
rotamers (Haddad et al., 2019). As a second validation to judge the coverage of conformational space,
we visualize side-chain dihedral angle distributions and compare their rotamer populations to PDB
and AFDB references, similar to how rotamer libraries operate (Dunbrack Jr, 2002). La-Proteina
models these distribution accurately, as shown in Fig. 6 for the tryptophan χ1 angle. La-Proteina’s
samples accurately recover all major rotameric states as well as their respective frequencies with re-
spect to the reference PDB/AFDB. In contrast, baselines often deviate from these references, missing
modes or populating unrealistic angular regions. Plots for all residues and angles in App. D.3.2.

4.2 ATOMISTIC MOTIF SCAFFOLDING

Two advantages of all-atom generative models are their ability to incorporate atomistic conditioning in-
formation as well as designing new protein structures independent of backbone or rotamer constraints.
To this end, we trained La-Proteina on the challenging task of atomistic motif scaffolding, where
given the atomic structure of a predefined motif the model should generate a protein structure that scaf-
folds this motif accurately. We assessed performance under two distinct levels of input motif detail:
all-atom, where the model is conditioned on the complete atomic structure of the motif residues (back-
bone and side-chain), and tip-atom scaffolding, where we only prespecify important functional groups
after the final rotatable bond and let the model decide the relative backbone and rotamer placement.
For each of these two tasks we test both an indexed version, where the sequence indices of the motif
residues are provided, and an unindexed version, where the model must also infer these positions, re-
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Protpardelle (indexed) Protpardelle-1c (indexed, all-atom only) La-Proteina (indexed) La-Proteina (unindexed)

Figure 7: Atomistic motif scaffolding. 26 atomistic motif-scaffilding tasks (x-axis), comparing Protpardelle
(limited to indexed), Protpardelle-1c (limited to all-atom indexed), La-Proteina (indexed) and La-Proteina
(unindexed). La-Proteina solves between 21 and 25 of the 26 tasks, depending on the task type (all-atom or
tip-atom, indexed or unindexed), vastly outperforms Protpardelle (which solves 4 out of 26 tasks), and also
outperforms Protpardelle-1c, achieving a larger number of unique successes in 21 out of the 26 tasks. “#
segments” refers to the number of residue segments in the motif. Detailed evaluation criteria in App. F.

sulting in four evaluation setups. Across all setups a design is successful if it is all-atom co-designable,
has an α-carbon motifRMSD <1Å, and an all-atom motifRMSD <2Å. Complete details in App. F.

Fig. 7 presents the results for 26 atomistic scaffolding tasks, grouped by the number of continuous
residue segments forming the motif. Our model consistently outperforms both Protpardelle-1c, which
is limited to indexed all-atom scaffolding, and its predecessor Protpardelle, which is restricted to
indexed scaffolding. La-Proteina successfully solves most benchmark tasks across all four regimes:
all-atom and tip-atom, for both the indexed and unindexed setups. Interestingly, for motifs comprised
of three or more distinct residue segments, the unindexed version of La-Proteina consistently outper-
forms its indexed counterpart. We hypothesize this is because fixing the positions of multiple segments
limits the model’s flexibility to explore diverse structural solutions; the freedom to determine the place-
ment of the motif’s residues in the unindexed setup is crucial for discovering a wider range of scaffolds.
A similar effect was observed by concurrent work (Faltings et al., 2025; Ahern et al., 2025). Example
scaffolds illustrating La-Proteina’s diverse and successful designs are shown in Fig. 3, with additional
examples for tip-atom motif scaffolding of relevant enzyme active sites in Figs. 10 to 12. The results
presented here evaluate La-Proteina structures directly; an alternative, more stringent evaluation using
refolded structures (obtained by folding the model-produced sequences) is provided in Fig. 33, where
it can be observed that La-Proteina achieves state-of-the-art performance under this evaluation as well.

4.3 AUTOENCODER EVALUATION AND LATENT SPACE ANALYSIS
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Figure 8: Analyzing La-Proteina’s latent space. t-SNE
plot (left) and perturbation-based locality analysis (right).

We assessed the VAE’s reconstruction perfor-
mance on a held-out test set, where it achieved a
mean all-atom RMSD ≈0.12Å and a perfect se-
quence recovery rate of 1. Beyond reconstruc-
tion, we analyzed the properties of the latent
space. t-SNE visualization of the latent vari-
ables (Fig. 8, left) reveals distinct clusters corre-
sponding to different amino acid residue types,
indicating that latent variables effectively cap-
ture residue-specific features. In addition, we
see that structurally (GLN/GLU, ASN/ASP) as well as chemically similar amino acids (aromatics like
PHE/TYR/TRP) cluster together, indicating the latent space captures biophysically relevant features.

To further probe the learned representation, we conducted a simple perturbation experiment: after en-
coding a protein, the latent variables associated with a single residue were perturbed with varying mag-
nitudes. We observe that such localized perturbations to a single residue’s latent vector predominantly
impact the reconstruction of that specific residue, leaving other residues almost unaffected (Fig. 8,
right; red: sequence reconstruction loss, blue: structure reconstruction loss). This “local behavior” of
the latent representation is noteworthy: Although both the encoder and decoder use transformer archi-
tectures capable of modeling long-range dependencies and jointly process the entire protein and all
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latent variables, our analysis suggests that each per-residue latent variable primarily encapsulates in-
formation pertinent to its own corresponding residue, rather than distributing information non-locally.

5 CONCLUSIONS

We presented La-Proteina, a scalable and efficient all-atom protein structure generative model that
achieves state-of-the-art performance in unconditional and conditional atomistic protein design tasks
and can generate realistic atomistic structures of up to 800 residues. Our key design choice involves
a partially latent flow matching model that inherits the performance benefits of backbone generative
models while benefiting from a per-residue fixed-size latent representation for sequence and
side-chains, side-stepping scalability and accuracy issues that other methods suffer from. We believe
that La-Proteina and its strong performance on atomistic design tasks, like unindexed atomistic motif
scaffolding, could enable new important protein design applications, like binder and enzyme design.

6 ETHICS STATEMENT

The advancement of generative models for de novo protein design, including approaches like La-
Proteina, offers the potential for significant positive impact across many scientific and societal
domains. These technologies can significantly accelerate the discovery and development of protein-
based therapeutics. In biotechnology and industry, computationally designed enzymes could pave the
way, for instance, to greener chemical processes and sustainable materials. Alongside these benefits,
new and improved tools for de novo protein design carry certain risks. While models in this area are
developed for beneficial applications, any technology capable of designing novel functional proteins
could, in principle, be misused if ethical oversight is not in place. This includes, for instance, the
hypothetical design of proteins that could pose biosecurity threats.

7 REPRODUCIBILITY STATEMENT

To ensure reproducibility and facilitate the review process, we include the La-Proteina code with
our submission, and provide comprehensive experimental details in the Supplementary Material.
The latter includes the precise filters used for dataset construction (App. C.1), model architectures
(App. H), and training parameters like GPU count and training steps (App. C.2 for unconditional
generation, App. F.1 for atomistic motif scaffolding). We also include precise descriptions and
the exact commands used to compute all reported metrics (App. D for metrics used to evaluate
unconditional models, App. F.3 for atomistic motif scaffolding).
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A LIMITATIONS AND FUTURE WORK

This work focuses on the de novo design of monomeric proteins using La-Proteina. While this scope
allows for a thorough investigation and demonstration of our partially latent approach for single-chain
structures, we did not apply La-Proteina to the area of protein complex design. In biological systems,
proteins typically function as components of larger assemblies. Handling protein complexes is critical
for important tasks such as de novo binder design and enzyme design, which inherently require the
modeling of full protein complexes and their interfaces. The instantiation of La-Proteina presented in
this work was not trained to handle protein complexes. Our focus on monomers should be viewed as
a limitation of the current application scope rather than a constraint of the underlying La-Proteina
framework. We anticipate that the principles of combining explicit structural modeling with latent
representations could be fruitfully extended in future work to address the challenges of designing
functional protein complexes.

B ADDITIONAL VISUALIZATIONS

B.1 UNCONDITIONAL La-Proteina SAMPLES

In Fig. 9, we show additional unconditional La-Proteina samples. Our model can generate diverse
and co-designable fully atomistic proteins across a broad range of sizes (residue count).

B.2 ATOMISTIC MOTIF SCAFFOLDING La-Proteina SAMPLES

In Figs. 10 to 12, we show additional atomistic motif scaffolding visualizations. All three figures
show partial side chain scaffolding setups, where only the tips of the conditioning side chains are
given. The examples correspond to the scaffolding of enzyme active sites. We observe that the
red conditioning motifs are exactly reproduced in almost all cases, and overall valid proteins are
generated. Moreover, Fig. 12 demonstrates how La-Proteina can scaffold the same atomistic motif in
diverse ways.
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Figure 9: Fully atomistic unconditional La-Proteina samples. Numbers denote residue count. All samples
co-designable.
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(a)

(b) (c)

Figure 10: Atomistic Motif Scaffolding. Task 1QJG (Delta(5)-3-Ketosteroid isomerase). The active site
consists of an ASP that acts as a general base, a TYR that stabilises the oxyanion in the transition state and
another ASP that also stabilises the transition state by forming a hydrogen bond with the oxyanion. La-Proteina
successfully generates a valid atomistic scaffold and accurately reproduces the red conditioning atoms that form
the tip of partially given side chains (see zoom-ins (a)-(c)). Side chains that involve conditioning atoms are
visualized as thick sticks, all other side chains are shown as thin sticks. Visualization overlays generated protein
and atomistic motif.
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(a)

(b)

(c)

(d)

Figure 11: Atomistic Motif Scaffolding. Task 5YUI (carbonic anhydrase). The active site here combines
a metal coordination site (HIS residues) with a hydrophobic substrate channel (VAL and TRP residues). La-
Proteina successfully generates a valid atomistic scaffold and accurately reproduces the red conditioning atoms
that form the tip of partially given side chains (see zoom-ins (b)-(d)). A small inconsistency can be observed in
(a), where the model generates an incorrectly rotated ring (we found such inconsistencies to be extremely rare).
Side chains that involve conditioning atoms are visualized as thick sticks, all other side chains are shown as thin
sticks. Visualization overlays generated protein and atomistic motif.
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Atomistic 
Motif

(a) (b)

(c) (d)

(e)

Figure 12: Atomistic Motif Scaffolding. Task 5AOU (retro-aldolase). La-Proteina successfully generates
diverse valid atomistic scaffolds and accurately reproduces the red conditioning atoms that form the tip of
partially given side chains (see zoom-ins (a)-(d)). The atomistic motif is shown in (e) consisting of a catalytic
tetrad that emerged during directed evolution in the laboratory Obexer et al. (2017), with the LYS acting as
catalytic nucleophile, the two TYR stabilizing the transtion state and participating in proton transfer and the
ASN maintaining the hydrogen-bond network that connects and spatially arranges all tetrad residues. We see
that La-Proteina can produce diverse solutions to the scaffolding task (shown in the four quadrants of the figure;
note that each protein is visualized from different angles for best views of the active site). For clarity, we are
only showing side chains of residues that involve conditioning atoms; all other side chains are generated, too,
but not shown. Visualization overlays generated protein and atomistic motif.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

C UNCONDITIONAL GENERATION

C.1 DATASETS

We use two datasets to train our unconditional models, one based on the cluster representatives of
the Foldseek (van Kempen et al., 2024) clustered version of the AFBD, and another one based on a
custom subset of the AFDB (for our long chain evaluation).

Foldseek Clustered AFDB. This dataset, previously used by Lin et al. (2024); Geffner et al. (2025),
is a filtered and clustered rendition of the AlphaFold Database (AFDB) (Barrio-Hernandez et al.,
2023). The clustering employs both sequence (via MMseqs2 (Steinegger & Söding, 2017)) and
structure (via Foldseek (van Kempen et al., 2024)) information. The resulting dataset is composed
of cluster representatives, meaning one structure is selected from each cluster. This initially yields
approximately three million unique samples. We further refine this set based on several criteria: a
minimum average pLDDT score of 80, protein lengths constrained to the 32-512 residue range, and
specific secondary structure characteristics. For the latter, samples are retained only if their coil
proportion is below 50% and they contain no more than 20 consecutive coil residues (these coil filters
are variants of those proposed by Qu et al. (2024)). Critically, we also enforce the presence of beta
sheets in the selected samples. This beta sheet filter was introduced because models trained without
it, despite achieving state-of-the-art metrics, generated proteins with a low beta-sheet content (around
3-4%). Incorporating this filter corrects this imbalance, leading to models that produce samples with
an average beta-sheet content of approximately 10%. These cumulative filtering steps result in a final
curated dataset of approximately 350k protein samples.

Custom AFDB subset for long length training. To create a dataset that is focused on longer samples,
we created a custom dataset starting from the AlphaFold database. We filtered for a minimum average
pLDDT of 70 and a length between 384 and 896, resulting in 46,942,694 structures. For training
we then cluster with MMSeqs2 at a sequence similarity of 50% and sample then randomly from the
resulting 4,035,594 clusters at training time.

C.2 TRAINING DETAILS

C.2.1 VAE TRAINING

The details of the VAE encoder and decoder architecture are given in App. H. Briefly, both networks
consist of 12 transformer layers, totaling approximately 130M parameters. These architectures are
trained jointly maximizing the Evidence Lower Bound from Eq. (3). We optimize using AdamW
(Loshchilov & Hutter, 2017) with a learning rate of 0.0001 and a weight decay factor of 0.01. We also
use exponential moving average with a decay of 0.999. VAEs are trained on the Foldseek clustered
AFDB (without including the filter for the beta sheet content). We train in multiple stages: (i) Filtering
for proteins between 32 and 256 residues, for 500k steps, on 16 NVIDIA A100-80GB GPUs; (ii)
Filtering for proteins between 32 and 512 residues, for 140k steps, on 32 NVIDIA A100-80GB GPUs;
(iii) Filtering for proteins between 32 and 896 residues, for 180k steps, on 32 NVIDIA A100-80GB
GPUs. We use the VAE parameters obtained after stage (ii) to train flow matching models limited up
to 512 residues, and use the VAE obtained after step (iii) to train our flow matching model for longer
proteins, up to 800 residues. For all models we use exponential moving average with a decay factor
of 0.999.

C.2.2 FLOW MATCHING TRAINING

The details of the denoiser network architecture are given in App. H. Briefly, it consists of 14
transformer layers, totaling approximately 160M parameters. We train three models for unconditional
generation, minimizing the conditional flow matching loss from Eq. (5). First, one without triangular
multiplicative update layers, on the Foldseek Clustered AFDB dataset limited to 512 residues. We
train this model for 390k steps, using Adam (Kingma, 2014) with a learning of 0.0001, on 48 NVIDIA
A100-80GB GPUs. Second, a model with triangular multiplicative update layers, on the Foldseek
Clustered AFDB dataset limited to 512 residues. We train this model for 120k steps, using Adam
with a learning rate of 0.0001, on 96 NVIDIA A100-80GB GPUs. Third, a model without triangular
multiplicative update layers for proteins of longer lengths, trained on our custom AFDB subset for
long length proteins up to 896 residues (App. C.1). We train this model for 140k steps, using Adam
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with a learning rate of 0.0001, on 128 NVIDIA A100-80GB GPUs. For all models we use exponential
moving average with a decay factor of 0.999.

As discussed in Sec. 3.2.2, the interpolation times for α-carbon coordinates, tx, and for latent
variables, tz , are sampled independently using the distributions from Eq. (6). This distributions are
visualized in Fig. 13.
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Figure 13: La-Proteina sampling distributions for interpolation times tx and tz .

C.3 BASELINE SAMPLING

Our main evaluation compares La-Proteina against publicly available models for all-atom generation,
including P(all-atom) (Qu et al., 2024), PLAID (Lu et al., 2024), Protpardelle (Chu et al., 2024),
ProteinGenertor (Lisanza et al., 2023), and APM Chen et al. (2025). For each baseline we produce
100 samples for each protein length in {100, 200, 300, 400, 500, 600, 700, 800} (for a total of 800
samples per model) using the official implementation from the corresponding Github repository.

P(all-atom). We use the code and weights as described in the original implementation.3 This
model relies on triangular attention layers (Jumper et al., 2021), which have a cubic memory and
computational complexity. This limits the length of the proteins that P(all-atom) can generate. Using
a GPU with 140GB of RAM, we were unable generate samples beyond 500 residues, due to running
out of memory. (This is for generating a single sample.)

Protpardelle. We follow the instructions in the original repository using the
allatom_state_dict.pth checkpoint.4

Protpardelle-1c. This model is Protpardelle’s successor, with a focus on conditional generation
(atomistic motif scaffolding and protein complexes). We follow the instructions in the original
repository using the cc91_epoch383 model.5 We note that this model was trained conditionally
for atomistic motif scaffolding, which takes an atomistic motif as input (conditioning information).
However, Lu et al. (2025) did not train an all-atom unconditional model. We therefore sample the
conditional model unconditionally, simply done by not providing an atomistic motif as conditioning
input.

PLAID. We use the 100M parameter model, as described in the original implementation.6 The
lengths of proteins sampled with PLAID are {96, 200, 296, 400, 496, 600, 696, 800}, since the model
only supports sampling proteins whose length is divisible by eight.

ProteinGenerator. We follow the instructions in the original implementation using the base
checkpoint,7 using 100 steps to generate each sample since this is the recommended setting for
higher quality, especially at longer lengths.

3https://github.com/levinthal/Pallatom
4https://github.com/ProteinDesignLab/protpardelle
5https://github.com/ProteinDesignLab/protpardelle
6https://github.com/amyxlu/plaid
7https://github.com/RosettaCommons/protein_generator
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APM. We follow the instructions for unconditoinal generation in the original implementation, using
the default values for all parameters.8

Fig. 4 in the main paper reports metrics for the backbone design task, in which the sequence and
all-atoms except the α-carbons are ignored. For this specific set of results, we also compare against
several backbone design methods, including Chroma (Ingraham et al., 2023), Proteina (Geffner
et al., 2025), Proteus (Wang et al., 2024a), Genie2 (Lin et al., 2024), FoldFlow (Bose et al., 2024),
RFDiffusion (Watson et al., 2023), FrameFlow (Yim et al., 2023a), FrameDiff (Yim et al., 2023b),
and ESM3 (Hayes et al., 2024). For these models, we got the results from Geffner et al. (2025),
making sure we use exactly the same metrics reported in that work, to enable direct comparisons.

D EVALUATION METRICS

D.1 CO-DESIGNABILITY, DESIGNABILITY, DIVERSITY, NOVELTY

Co-designability. The co-designability metric captures the degree to which between the sequence-
structure pairs produced by a model are aligned, by analyzing whether the produced sequence folds
into the corresponding structure. This is done by measuring the all-atom RMSD between the structure
produced by the model and the structure obtained using ESMFold (Lin et al., 2023) to fold the
corresponding sequence. If this all-atom RMSD is less than 2Å, the sample is deemed all-atom
co-designable. The metric reported is the percentage of co-designable samples produced by a model.

Designability. Designability, on the other hand, aims to capture whether there is a sequence that
folds into the produces structure (it ignores the produced sequence). This metric is typically used to
evaluate backbone design models, which do not produce sequences. Given the produced structure,
ProteinMPNN (Dauparas et al., 2022) is used to generate a set of M sequences (using a sampling
temperature of 0.1), ESMFold (Lin et al., 2023) is used to fold all M sequences, and finally the
α-carbon RMSD between the original structure and each of the ESMFold produced structures is
measured. A sample is deemed designable if the minimum of these M RMSD values is less than 2Å.
We report two variants of this metric, using M=1 and M=8, denoted as MPNN-1 and MPNN-8 in
Tab. 1.

pLDDT. The Predicted Local Distance Difference Test (pLDDT) is a per-residue confidence score,
scaled from 0 to 100, that estimates the local structural accuracy of a predicted protein model (in our
case ESMFold). Generally, the threshold of pLDDT ≥ 80 is used to indicate high confidence and
reliable predictions. The metric for the full protein is obtained by averaging these per-residue scores
across the entire structure, averaged over succesfully refolded samples (i.e., all-atom co-designable
samples).

Diversity. All three diversity metrics ("Str", "Seq", "Str+Seq") reported in Tab. 1 are obtained by
clustering the subset of all-atom co-designable samples produced by a model and reporting the
number of clusters obtained. The difference between these metrics is the clustering criteria used.
Briefly, "Str" measures the diversity in the produced structures (ignoring sequence), "Seq" measures
the diversity in the produced sequences (ignoring structures), and "Str+Seq" measures the diversity
taking into account both the sequence and structure of the samples produced.

• Structure diversity ("Str"). We cluster using the Foldseek command
foldseek easy-cluster <path_samples> <path_results> <path_tmp>
--cov-mode 0
--alignment-type 1
--min-seq-id 0
--tmscore-threshold 0.5

where <path_samples> is the path to a directory containing all-atom co-designable
samples, <path_results> is the directory where results will be stored, and path_tmp
is the directory used to store temporary files used by the clustering algorithm. This command
clusters all produced structures without taking the corresponding sequences into account.

• Joint structure and sequence ("Str+Seq"). We cluster using the Foldseek command

8https://github.com/bytedance/apm
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foldseek easy-cluster <path_samples> <path_results> <path_tmp>
--cov-mode 0
--alignment-type 2
--min-seq-id 0.1
--tmscore-threshold 0.5

• Sequence diversity ("Seq"). We cluster using the MMSeqs2 command
mmseqs easy-linclust <fasta_input_filepath> pdb_cluster <path_tmp>
--min-seq-id 0.1
--c 0.7
--cov-mode 1

where <fasta_input_filepath> is the path for the fasta file containing the sequences
for all-atom co-designable samples.

Novelty. This metric assesses the structural similarity between samples generated by a model
and a defined reference set, where lower scores signify greater novelty (i.e., less resemblance to
known structures). To calculate this, we compute the TM-Score Zhang & Skolnick (2004) between
each all-atom co-designable sample generated by the model and every protein within the specified
reference set. For each generated sample, its maximum TM-Score, reflecting its similarity to the
closest structure in the reference set, is identified. The average of these maximum scores across every
all-atom co-designable samples is then reported as the novelty value. Given that TM-Scores range
from 0 to 1, with higher scores indicating higher similarities, lower novelty scores are preferable.
Tab. 1 presents novelty values against two reference sets: the PDB, as provided by Foldseek van
Kempen et al. (2024) (labeled "PDB" in the table), and a filtered version of the Foldseek Clustered
AFDB, detailed in App. C.1 (minimum average pLDDT of 80, lengths 32-512 residues; labeled
"AFDB" in the table). We use Foldseek (van Kempen et al., 2024) to compute TM-Scores of the
produced samples against the corresponding reference set. The Fodlseek command used to compute
this metric is given by

foldseek easy-search <path_sample> <reference_database_path>
<path_results> <tmp_path>
--alignment-type 1
--exhaustive-search
--tmscore-threshold 0.0
--max-seqs 10000000000
--format-output query,target,alntmscore

where <path_sample> is the path for the PDB file containing the generated structure, and
<reference_database_path> is the path of the dabaset used as reference.

D.2 MOLPROBITY FOR STRUCTURAL QUALITY ASSESMENT

MolProbity (Davis et al., 2007) is a widely used software designed for comprehensive validation
of 3D macromolecular structures, primarily proteins and nucleic acids. It assesses the quality of a
structure by analyzing its geometry, stereochemistry, and interatomic contacts against well-established
chemical and physical principles derived from high-resolution experimental data. Its goal is to identify
problematic regions in a structure that may indicate errors or physically unrealistic conformations.

For our comparative analysis of generated protein structures, we focused on the following key metrics
reported by MolProbity:

MolProbity Score (MP score): This is a composite score that combines multiple individual geometric
assessments (including clash score, Ramachandran favorability, and side-chain rotamer quality) into
a single, log-weighted metric. It provides an overall indication of structural quality. Lower MP scores
are better; scores around 1.0-2.0 are generally indicative of well-resolved and accurate experimental
structures, while scores significantly above 2.5-3.0 often suggest increasing numbers of geometric
and stereochemical issues.

Clash Score: This metric quantifies the severity of steric clashes by reporting the number of
unfavorable all-atom overlaps (where van der Waals shells interpenetrate by ≥ 0.4Å) per 1000 atoms.
A lower clash score signifies a more sterically reasonable structure. While there’s no absolute cutoff,
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Figure 14: Additional MolProbity metrics. Rotamer outliers and Ramachandran outliers. While most
baselines degrade especially at longer lengths, La-Proteina and P(all-atom) have realistic scores for all lengths.
P(all-atom) evaluation only goes up to 500 residues due to memory limitations, for longer samples more than
140GB of GPU memory are needed to produce a single sample. P(all-atom) and La-Proteina lines mostly overlap
until length 500 when the P(all-atom) line stops.

high-resolution X-ray crystal structures typically have clash scores below 20, often much lower (e.g.,
<10). NMR structures or lower-resolution crystal structures may exhibit higher values (e.g., up to
50-60 or more could still be acceptable depending on context), but excessively high scores indicate
significant packing problems.

Ramachandran Angle Outliers: This evaluates the conformational plausibility of the protein
backbone by analyzing the Ramachandran plot, which describes allowed regions for the phi (ϕ) and
psi (ψ) dihedral angles of amino acid residues. The metric reports the percentage of residues whose
(ϕ, ψ) angles fall into disallowed (outlier) regions. For high-quality structures, this value is expected
to be very low, ideally less than 0.2%, with modern well-refined structures often achieving <0.1%
outliers.

Covalent Bond Geometry Outliers (Bond Lengths and Angles): This metric assesses the cor-
rectness of covalent geometry by comparing observed bond lengths and bond angles to standard
dictionary values. It typically reports the percentage of bonds or angles that deviate significantly
(e.g., by more than 4 standard deviations, or other thresholds defined by MolProbity) from these
ideal values. A low percentage of outliers (ideally <1% for both lengths and angles combined, or
individually) indicates good covalent geometry.

Rotamer Outliers: This metric evaluates the plausibility of side-chain conformations by comparing
the observed χ (chi) torsion angles of amino acid residues to distributions derived from high-quality
experimental structures. MolProbity uses a comprehensive, data-driven rotamer library (the "ultimate"
rotamer library) constructed from a large set of rigorously filtered protein chains to define statistically
favored, allowed, and outlier regions for side-chain dihedral angles. A residue is classified as a
rotamer outlier if its side-chain conformation falls into a region sampled by less than 0.3% of
reference structures, indicating a highly unusual or energetically unfavorable state. High-quality
protein structures typically exhibit less than 1% rotamer outliers, with modern structure determination
and refinement methods often achieving even lower values. Elevated levels of rotamer outliers may
suggest errors in side-chain modeling, poor electron density, or physically unrealistic conformations,
and thus serve as a sensitive indicator of local model quality.

Together, these MolProbity metrics offer a robust and multi-faceted evaluation of the atomistic
accuracy and realism of the generated protein structures. MP score, clash score, bond length outliers
and bond angle outliers are visulized in Fig. 5, while ramachandran angle outliers and rotamer outliers
are depicted in Fig. 14. In all of these we see that La-Proteina generates highly realistic structures at
all lengths, whereas all other baselines generate less plausible structures and especially degrade at
longer lengths (the exception is P(all-atom) that also has bad scores for clashes, angle outliers and
bond outliers but scores well for rotamer outliers and Ramachandran outliers).

D.3 SIDE-CHAIN DIHEDRAL ANGLE DISTRIBUTIONS

D.3.1 BACKGROUND ON AMINO ACID ROTAMERS

When investigating side-chain conformations in protein structures, one quickly recognizes that these
side-chain torsion angles (denoted by χ1, χ2, etc., down the side chain) do not appear randomly and
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do not usually occur in broader regions such as backbone torsion angles which are usually visualized
in Ramachandran plots Carugo & Djinović-Carugo (2013), but cluster into distinct conformations
that are called rotamers, i.e., chemical species that differ from one another mostly due to rotations
about one or more single bonds Dunbrack Jr (2002).

This discreteness of the side-chain degrees-of-freedom is caused by steric repulsion between atoms
three bonds away from each other, at the end of the atoms making up the plane of the torsion
angle under question. To not cause too much steric repulsion, these groups usually prefer to adopt
staggered conformations in which they are 60 degrees off-set to the next group instead of eclipsed
conformations where they overlap with this next group Clayden et al. (2012). The three possible
staggered conformations (gauche plus at 60 degrees, gauche minus at -60 degrees and trans at 180
degrees between the two groups under question) are the major rotamers that are visible in most χ1

and several χ2 plots Lovell et al. (2000). For example, in the case of χ1, the plane of this torsion
angle is formed by the CA and CB atom and the atoms under question for staggering are the N and
for example the CG1 in the case of VAL and ILE or the OG in the case of SER. Due to this, the angle
χ1 is always rotameric at +60, 180 and -60/300 degrees (i.e. it falls into discrete angles), except for
alanine which only has a hydrogen instead of CG and therefore no χ1 rotamer and glycine which has
neither CB nor CG.

However, the populations of these rotamers are different based on amino acid identity. Usually the
preference declines in the order of g- (-60), trans (180), and g + (60), but there are exceptions. PRO for
example has a tight ring structure that only allows for two χ1 rotamers at around -30 and +30 degrees
(Fig. 27). SER and THR on the other hand prefer the g+ (60) rotamer since in that conformation it
can form a hydrogen bond to the backbone with their oxygen atom. ILE, LEU, and THR have two
gamma heavy atoms, which cause one rotamer to always be in an unfavorable conformation; these
amino acids only show two χ1 rotamers with significant populations.

There are also non-rotameric degrees of freedom. While in ARG for example both χ1 and χ2 are
rotamer (Fig. 15), leading to 9 configurations, ASP for example has a non-rotameric χ2 angle that
spreads over a rather continuous spectrum (Fig. 17). These non-rotameric degres of freedom are
always the last one in the side chain, i.e. the furthest away from the backbone. In the case of
ASN and ASP this is χ2 (Fig. 16 and Fig. 17), whereas in the case of GLN and GLU this is χ3

(Fig. 19 and Fig. 20 first row). Beyond this, there are further factors determining rotamer populations,
either backbone-independent effects like syn-pentane interactions Dunbrack Jr & Karplus (1994) or
backbone-dependent ones Chakrabarti & Pal (2001).

D.3.2 ANALYSIS OF GENERATED AMINO ACID ROTAMERS

To not only look at outright rotamer outliers, but also rotamer frequencies and mode coverage, we
visualize Kernel Density Estimation (KDE) plots for all side chain angles of all amino acids in
Figs. 15 to 31. We conduct this analysis for the samples generated for La-Proteina, all baselines,
and two reference datasets from the PDB and AFDB (100 structures for each length of 100 to 800
in steps of 100). The PDB data set was curated by selecting 100 X-ray structures with a resolution
below 2Å of the respective length ±5 residues (for length 800, which leads to 60 structures). The
AFDB reference data set was curated similarly, just with the filtering threshold being a pLDDT score
above 80 and a radius of gyration of less than 3 to avoid overrepresentation of side-chain angles
corresponding to extended alpha-helices.

As in the main text, we see that La-Proteina often captures not only the correct modes, but often
also at approximately the correct rotamer frequencies with respect to the reference datasets from
the PDB and AFDB. This can be seen, for instance, for ARG χ3 (Fig. 15), HIS χ2 (Fig. 21) or
PRO χ1 (Fig. 27). P(all-atom) and Protpardelle often miss modes completely, while PLAID and
ProteinGenerator often get the modes correctly but represent them in different frequencies compared
to the base dataset. We also see that for some side-chain angles, the distribution between PDB and
AFDB differ significantly, as for ARG χ4 (Fig. 15), LYS χ3 (Fig. 24) and LYS χ4 (Fig. 24 sixth row
left). In these cases, La-Proteina adheres more closely to the AFDB reference since it was trained on
AFDB structures; however, interestingly none of the other methods capture the PDB modes here as
well despite being trained on datasets including the PDB.
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Figure 15: Side-chain angles for amino acid ARG.
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Figure 16: Side-chain angles for amino acid ASN.
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Figure 17: Side-chain angles for amino acid ASP.
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Figure 18: Side-chain angles for amino acid CYS.
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Figure 19: Side-chain angles for amino acid GLN.
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Figure 20: Side-chain angles for amino acid GLU.
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Figure 21: Side-chain angles for amino acid HIS.
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Figure 22: Side-chain angles for amino acid ILE.
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Figure 23: Side-chain angles for amino acid LEU.
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Figure 24: Side-chain angles for amino acid LYS.
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Figure 25: Side-chain angles for amino acid MET.
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Figure 26: Side-chain angles for amino acid PHE.
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Figure 27: Side-chain angles for amino acid PRO.

180 135 90 45 0 45 90 135 180
SER 1 Angle (degrees)

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

De
ns

ity

AFDB
PDB
La-Proteina
PAllAtom
Protpardelle
Protpardelle-1c
PLAID
ProteinGenerator
APM

Figure 28: Side-chain angles for amino acid SER.
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Figure 29: Side-chain angles for amino acid THR.
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Figure 30: Side-chain angles for amino acid TYR.
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Figure 31: Side-chain angles for amino acid VAL.
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E SAMPLING

We sample La-Proteina by numerically simulating the SDE from Eq. (7). This SDE relies on the
score function (gradient of log probability) of intermediate densities. Since we use a Gaussian flow
and linear interpolants, we can compute these directly from the learned vector field vθ as (Ma et al.,
2024; Zheng et al., 2023)

ζx(xtxCα , z
tz , tx, tz) =

tvxϕ(x
tx
Cα
, ztz , tx, tz)− xtxCα
1− tx

≈ ∇xtxCα
log pϕ(x

tx
Cα
, ztz , tx, tz) (8)

ζz(xtxCα , z
tz , tx, tz) =

tvzϕ(x
tx
Cα
, ztz , tx, tz)− ztz

1− tz
≈ ∇ztz log pϕ(x

tx
Cα
, ztz , tx, tz). (9)

Simulating the SDE from Eq. (7) requires selecting the noise scaling parameters ηx and ηz and the
scaling functions βx(tx) and βz(tz), which modulate the Langevin-like term in the SDE. For the
former, we experiment with values in [0, 1], noting that ηx = ηz = 1 yields "unbiased sampling" (for
any choice of βx and βz (Karras et al., 2022)), and smaller values sample distributions which differ
from the original one defined by the flow matching model (often referred to as "low temperature
sampling" (Geffner et al., 2025; Ingraham et al., 2023)).9 For the scaling functions we use

βx(tx) =
1

tx
and βz(tz) =

π

2
tan

(π
2
(1− tz)

)
. (10)

We show ablations for these choices in App. G.

E.1 NUMERICAL DISCRETIZATION SCHEME

We simulate the system of stochastic differential equations from Eq. (7) using the Euler-Maruyama
method (Higham, 2001). Since tx and tz are sampled independently (as discussed in Sec. 3.2.2), the
model allows the exploration of different paths going from (tx, tz) = (0, 0) to (tx, tz) = (1, 1) (that
is, different paths in the [0, 1]× [0, 1], space). We parameterize these paths by defining tx = fx(t) and
tz = fz(t) using a shared time variable t ∈ [0, 1], where fx, fz : [0, 1] → [0, 1] are monotonically
increasing functions. As highlighted in Secs. 1 and 3.4, using distinct schedules fx(t) and fz(t)
for the α-carbon coordinates xCα and latent variables z is critical for good performance. More
specifically, our empirical analyses show that schedules evolving xCα faster than z yield the best
results (see App. G). We therefore adopt an "exponential" schedule (Geffner et al., 2025) for fx(t)
and a "quadratic" schedule for fz(t)

fx(t) =
1− 10−2t

1− 10−2
and fz(t) = t2, (11)

visualized in Fig. 32. The corresponding numerical integration scheme is obtained by uniformly
partitioning the interval t ∈ [0, 1] (i.e., tn = n/N for n = 0, 1, . . . , N ), yielding the discrete steps

tx[n] = fx(tn) =
1− 10−2n/N

1− 10−2
and tz[n] = fz(tn) =

( n
N

)2

. (12)

Ablations for different choices of fx(t) and fz(t) are presented in App. G. For all our experiments
we use N = 400 integration steps.

F ATOMISTIC MOTIF SCAFFOLDING

For atomistic motif scaffolding we included two different tasks: all-atom motif scaffolding and
tip-atom motif scaffolding. For all-atom motif scaffolding, for a certain selection of residues (the
motif) information about backbone position, side chain positions as well as amino acid identity is
provided and the task of the model is to generate a new protein that includes this motif as part of it.
For tip-atom motif scaffolding, the provided information includes only the amino acid identity as well

9Most existing generative models for protein design rely on some variant of low temperature sampling
(Ingraham et al., 2023; Yim et al., 2023b;a; Watson et al., 2023; Lin et al., 2024; Bose et al., 2024; Wang et al.,
2024a; Huguet et al., 2024; Campbell et al., 2024; Geffner et al., 2025).
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Figure 32: Discretization schemes, including uniform as reference.

as the coordiantes of the side chain atoms after the final rotatable bond. This means the following
atoms are made available for the respective amino acids, following the task definition of Protpardelle
(Chu et al., 2024):

ALA: {CA, CB}
ARG: {CD, CZ, NE, NH1, NH2}
ASP: {CB, CG, OD1, OD2}
ASN: {CB, CG, ND2, OD1}
CYS: {CA, CB, SG}
GLU: {CG, CD, OE1, OE2}
GLN: {CG, CD, NE2, OE1}
GLY: {}
HIS: {CB, CG, CD2, CE1, ND1, NE2}
ILE: {CB, CG1, CG2, CD1}

LEU: {CB, CG, CD1, CD2}
LYS: {CE, NZ}

MET: {CG, CE, SD}
PHE: {CB, CG, CD1, CD2, CE1, CE2, CZ}
PRO: {CA, CB, CG, CD, N}
SER: {CA, CB, OG}
THR: {CA, CB, CG2, OG1}
TRP: {CB, CG, CD1, CD2, CE2, CE3, CZ2, CZ3, CH2, NE1}
TYR: {CB, CG, CD1, CD2, CE1, CE2, CZ, OH}
VAL: {CB, CG1, CG2}

We also evaluate two distinct scaffolding setups that differ in their conditioning information. In the
standard indexed task, the model is provided with the sequence positions for each motif residue. In
the more challenging unindexed task, these indices are withheld, requiring the model to discover a
viable placement for the motif while simultaneously generating the scaffold.

F.1 TRAINING

We train the motif scaffolding models following the same training procedure as for the main models,
with additional input features extracted from the motif. In the case of all-atom motif scaffolding,
these features include (for the motif’s residues) absolute atomic coordinates, coordinates relative
to the corresponding α-carbon atom, residue type, side chain angles, and backbone torsion angles.
For tip-atom motif scaffolding, these features only include absolute atomic coordinates of the atoms
present in the motif (i.e. atoms after the last rotatable bond) and residue type. For the indexed version,
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Table 2: Motif data with minimum and maximum lengths, and contig strings (all atom and tip atom).

Motif Name Min Length Max Length Contig String All Atom Contig String Tip Atom
1PRW_AA 60 105 5-20/A1-20/10-25/B1-20/5-20 5-20/A16-22/1/A24/1/A26-32/1/A34-

35/10-25/A52-58/1/A60/1/A62-71/5-
20

1BCF_AA 96 152 8-15/A92-99/16-30/A123-130/16-
30/A47-54/16-30/A18-25/8-15

8-15/A92-96/1/A98-99/16-30/A123-
128/1/A130/16-30/A47-54/16-30/A18-
25/8-15

5TPN_AA 50 75 10-40/A163-181/10-40 10-40/A163-181/10-40
5IUS_AA 57 142 0-30/B119-140/15-40/A63-82/0-30 1-31/A120-123/1/A125-130/1/A132-

140/15-40/A63-73/1/A75-82/0-30
3IXT_AA 50 75 10-40/P254-277/10-40 10-40/P254-277/10-40
5YUI_AA 50 100 5-30/A93-97/5-20/B118-120/10-

35/C198-200/10-30
5-30/A93-97/5-20/A118-120/10-
35/A198-200/10-30

5AOU_AA 230 270 40-60/A1051/20-40/A2083/20-
35/A2110/100-140

40-60/A1051/20-40/A2083/20-
35/A2110/100-140

5AOU_QUAD_AA 230 270 40-60/A1051/20-40/A2083/20-
35/A2110/60-80/A2180/40-60

40-60/A1051/20-40/A2083/20-
35/A2110/60-80/A2180/40-60

7K4V_AA 280 320 40-50/A44/3-8/A50/70-85/A127/150-
200

40-50/A44/3-8/A50/70-85/A127/150-
200

1YCR_AA 40 100 10-40/B19-27/10-40 10-40/B19-27/10-40
4JHW_AA 60 90 10-25/F196-212/15-30/F63-69/10-25 10-25/F196-212/15-30/F63-69/10-25
5WN9_AA 35 50 10-40/A170-189/10-40 10-40/A170-186/1/A188-189/10-40
4ZYP_AA 30 50 10-40/A422-436/10-40 10-40/A422-429/1/A431-436/10-40
6VW1_AA 62 83 20-30/A24-42/4-10/A64-82/0-5 20-30/A24-42/4-10/A64-65/1/A67-

82/0-5
1QJG_AA 53 103 10-20/A38/15-30/A14/15-30/A99/10-

20
10-20/A14/15-30/A38/50-70/A99/25-
30

1QJG_AA_NATIVE 115 135 10-20/A14/15-30/A38/50-70/A99/25-
30

10-20/A14/15-30/A38/50-70/A99/25-
30

2KL8_AA 79 79 A1-7/20/A28-79 A1-7/20/A28-79
7MRX_AA_60 60 60 0-38/B25-46/0-38 0-38/B25-30/1/B32-42/1/B44-46/0-38
7MRX_AA_85 85 85 0-63/B25-46/0-63 0-63/B25-30/1/B32-42/1/B44-46/0-63
7MRX_AA_128 128 128 0-122/B25-46/0-122 0-122/B25-30/1/B32-42/1/B44-46/0-

122
5TRV_AA_SHORT 56 56 0-35/A45-65/0-35 1-36/A46-48/1/A50-55/1/A57-

59/1/A61-65/0-35
5TRV_AA_MED 86 86 0-65/A45-65/0-65 1-66/A46-48/1/A50-55/1/A57-

59/1/A61-65/0-65
5TRV_AA_LONG 116 116 0-95/A45-65/0-95 1-96/A46-48/1/A50-55/1/A57-

59/1/A61-65/0-95
6E6R_AA_SHORT 48 48 0-35/A23-35/0-35 0-35/A23-32/1/A34/1-36
6E6R_AA_MED 78 78 0-65/A23-35/0-65 0-65/A23-32/1/A34/1-66
6E6R_AA_LONG 108 108 0-95/A23-35/0-95 0-95/A23-32/1/A34/1-96

these features are added to the corresponding residue indices of the motif; while for the unindexed
task they are concatenated to the initial sequence representation without providing any information
related to the motif residue indices to the model. The dataset used was the standard dataset used for
training the main models, i.e. the Foldseek-clusters of the AFDB with a maximum length of 356 and
a minimum average pLDDT of 80. The indexed all-atom motif model was trained for 150k steps on
64 NVIDIA A100-80GB GPUs, and the indexed tip-atom motif model was trained for 120k steps on
128 NVIDIA A100-80GB GPUs. The unindexed models (all-atom and tip-atom) were trained on 32
NVIDIA A100-80GB GPUs for 650k steps.

F.2 SAMPLING

For sampling, the standard sampling schedule of the main models was used (App. E). The motifs
were sampled according to the specifications in the Protpardelle benchmark/RFDiffusion benchmark,
with the only difference being that for tip-atom motif scaffolding the residues that did not include
any atoms to be scaffolded (Glycine, or Lysine if the tip atoms specified in the description were
not present in the motif structure) were excluded from the motif. This resulted in the definition of
benchmark tasks in Table 2.

F.3 EVALUATION

We evaluate each generated sample via four criteria:

1. The sequence of the motif has to be 100% recovered,

2. The motif α-carbon coordinates should have an all-atom RMSD <1Å,

3. The motif coordinates should have an all-atom RMSD <2Å,
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Figure 33: Atomistic motif scaffolding using generated vs. refolded structures. 26 atomistic motif-
scaffilding tasks (x-axis), comparing Protpardelle-1c (limited to all-atom indexed), La-Proteina (indexed) and
La-Proteina (unindexed). Solid markers indicate performance when evaluating the model produced structures
directly (App. F.3), while light markers indicate performance when performing the evaluation using refolded
structures instead of the model generated ones (App. F.4). “# segments” refers to the number of residue segments
in the motif.

4. The generated protein should be all-atom co-designable, i.e., it should have have an all-atom
scRMSD <2Å.

For all methods we generate 200 samples per task. We then evaluate these samples via the criteria
above, which results in the number of successes per task. Finally, the number of unique successes
is obtained by clustering the successes with Foldseek (van Kempen et al., 2024) and reporting the
number of clusters. We use the following command to cluster:

foldseek easy-cluster <path_samples> <path_tmp>/res <path_tmp>
--alignment-type 1 --cov-mode 0 --min-seq-id 0
--tmscore-threshold 0.5 --single-step-clustering

The full results for all methods can be found in Table 3 for all-atom motif scaffolding and in Table 4
for tip-atom motif scaffolding. Results show that La-Proteina outperforms both Protpardelle and
Protpardelle-1c. Additionally, we observe that Protpardelle is able to solve 4/26 tasks in both the
all-atom and tip-atom setups. This is consistent with the findings reported in the original Protpardelle
paper (Chu et al., 2024); our evaluation criteria, as outlined above, align closely with their “strict”
definition of success, under which they also report limited task success. While they additionally
report results under a more lenient “weak” success criterion, we emphasize that this criterion is easier
to satisfy than both their strict definition and our own. Notably, our model already achieves strong
performance under the stricter standard, underscoring its robustness even under more challenging
evaluation settings.

Note on indexed vs. unindexed evaluation. Evaluating motif accuracy via RMSD differs signif-
icantly between the indexed and unindexed scaffolding tasks. In the indexed setting, the motif’s
sequence indices are known, making the RMSD calculation a straightforward comparison between
the known motif residues of the ground truth and generated structures. For the unindexed task,
however, these residue indices must first be inferred from the generated output. We address this by
employing a greedy matching procedure (Chen et al., 2025): for each residue in the ground truth
motif, we identify its structurally closest counterpart in the generated protein. The motif RMSD is
then calculated using this newly identified set of residues. Because the model may place the motif at
different sequence positions in each sample, this matching process must be performed independently
for every generated protein.

F.4 EVALUATION VIA REFOLDED STRUCTURES

In addition to evaluating the directly generated structures, we conduct an alternative validation by
analyzing refolded structures. To this end, we take the sequences produced by each model (La-
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Table 3: All-atom motif scaffolding. “All” indicates total number of successes produced by the model (we
produce 200 samples per task), while “Unique” indicates number of unique successes, obtained by clustering all
successes as explained in App. F.3. “Indexed” indicates the motif residue indices are provided as input to the
model, “Unindexed” indicates that the motif residue indices are not provided as input. “# segments” refers to the
number of residue segments in the motif.

Motif Task # segments Protpardelle (indexed) Protpardelle-1c (indexed) La-Proteina (indexed) La-Proteina (unindexed)
All Unique All Unique All Unique All Unique

6E6R_AA_long 1 0 0 16 14 91 53 110 83
6E6R_AA_med 1 0 0 19 18 92 55 96 64
1YCR_AA 1 1 1 62 34 123 45 97 55
5TRV_AA_long 1 0 0 22 20 78 20 84 39
7MRX_AA_128 1 0 0 10 5 55 13 83 26
6E6R_AA_short 1 0 0 2 2 48 19 51 26
5TRV_AA_med 1 0 0 9 8 68 11 53 16
5TPN_AA 1 0 0 16 7 49 9 28 8
7MRX_AA_85 1 0 0 18 6 53 7 100 6
3IXT_AA 1 0 0 4 3 25 4 52 6
4ZYP_AA 1 0 0 2 2 7 4 65 3
5TRV_AA_short 1 0 0 0 0 19 1 7 3
7MRX_AA_60 1 0 0 9 4 64 2 47 1
5WN9_AA 1 0 0 0 0 0 0 0 0

1PRW_AA 2 0 0 162 20 174 18 120 11
5IUS_AA 2 0 0 0 0 5 1 12 2
6VW1_AA 2 0 0 14 1 23 1 70 1
2KL8_AA 2 80 1 177 1 119 1 193 1
4JHW_AA 2 0 0 0 0 2 2 0 0

1QJG_AA_NAT 3 0 0 23 17 62 25 109 71
7K4V_AA 3 0 0 11 3 91 18 47 47
5AOU_AA 3 0 0 89 5 166 10 35 33
1QJG_AA 3 1 1 13 9 50 16 62 28
5YUI_AA 3 0 0 1 1 6 4 16 7

5AOU_QUAD_AA 4 0 0 55 4 144 7 74 27
1BCF_AA 4 70 1 196 6 147 7 147 12

Proteina and Protpardelle-1c), predict their structures using ESMFold, and then re-evaluate their
success. In short, in this case the success criteria is given by

1. The sequence of the motif has to be 100% recovered,

2. The motif α-carbon coordinates should have an all-atom RMSD <1Å when comparing to the
refolded structure, obtained by running ESMFold on the La-Proteina produced sequence,

3. The motif coordinates should have an all-atom RMSD <2Å when comparing to the refolded
structure,

4. The generated protein should be all-atom co-designable, i.e., it should have have an all-atom
scRMSD <2Å.

The results of this refolding analysis for all-atom and tip-atom motif scaffolding are presented in
Fig. 33, Tab. 5 and Tab. 6. We do not include Protpardelle in this more stringent evaluation as its
performance is not competitive with La-Proteina and Protpardelle-1c. From the results, it can be
observed that La-Proteina yields state-of-the-art performance under this evaluation as well.

F.5 BASELINE SAMPLING

We sampled Protpardelle (Chu et al., 2024) (limited to indexed scaffolding) we used the option
--type allatom and generate template pdb files with the motif coordinates as well as template
residues for representing the scaffold in order to represent the correct length sampling ranges. For
Protpardelle-1c (Lu et al., 2025) (limited to all-atom indexed scaffolding) we used the samples
generated by the authors, as they evaluated their model on the same motif scaffolding benchmark,
and we processed the samples using our own evaluation pipeline.
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Table 4: Tip-atom motif scaffolding. “All” indicates total number of successes produced by the model (we
produce 200 samples per task), while “Unique” indicates number of unique successes, obtained by clustering all
successes as explained in App. F.3. “Indexed” indicates the motif residue indices are provided as input to the
model, “Unindexed” indicates that the motif residue indices are not provided as input. “# segments” refers to the
number of residue segments in the motif.

Motif Task # segments Protpardelle (indexed) La-Proteina (indexed) La-Proteina (unindexed)
All Unique All Unique All Unique

1YCR_AA 1 0 0 112 54 109 47
5TRV_AA_long 1 0 0 75 16 66 42
5TRV_AA_med 1 0 0 41 14 67 33
6E6R_AA_long 1 0 0 30 12 17 13
3IXT_AA 1 0 0 1 1 96 13
5TPN_AA 1 0 0 20 9 22 10
4ZYP_AA 1 0 0 6 2 38 8
5TRV_AA_short 1 0 0 14 3 24 6
6E6R_AA_med 1 0 0 35 7 14 4
6E6R_AA_short 1 0 0 16 5 3 2
5WN9_AA 1 0 0 0 0 5 2
7MRX_AA_128 1 0 0 44 22 0 0
7MRX_AA_85 1 0 0 72 5 0 0
7MRX_AA_60 1 0 0 1 1 0 0

4JHW_AA 2 0 0 0 0 8 6
6VW1_AA 2 0 0 28 5 63 6
1PRW_AA 2 2 1 45 5 25 3
5IUS_AA 2 0 0 1 1 2 2
2KL8_AA 2 6 1 189 1 154 1

1QJG_AA_NAT 3 0 0 109 37 85 78
7K4V_AA 3 0 0 28 27 68 64
1QJG_AA 3 2 1 125 51 61 55
5AOU_AA 3 0 0 64 16 43 40
5YUI_AA 3 0 0 3 3 10 9

5AOU_QUAD_AA 4 0 0 95 4 35 29
1BCF_AA 4 42 1 152 10 146 10

G ABLATIONS

G.1 VAE ABLATIONS

We first ablate multiple choices in the VAE’s design: The weight use for the KL term in the ELBO
loss from Eq. (3), the architecture type used for the decoder, and building a fully-latent model that
encodes α-carbon coordinates as well (in contrast to La-Proteina, which models α-carbon coordinates
explicitly).

G.1.1 KL PENALTY WEIGHT

KL-weight. The weight use for the KL term in the ELBO loss from Eq. (3), for which we tested
values in {10−3, 10−4, 10−5}.

G.1.2 DECODER ARCHITECTURE

Decoder arch. The type of architecture used for the decoder, for which we compare the transformer
used by all our models evaluated in the main text, against using a feed forward network with 7M
parameters. For this we use a weight of 10−5 for the KL term in the ELBO loss from Eq. (3).

G.1.3 ENCODING α-CARBONS

CA-enc. We test encoding the α-carbons as well (with a transformer decoder). In this case, the
α-carbon coordinates are not modeled explicitly, as in La-Proteina, but also encoded into the eight-
dimensional latent space. This ablation shows the importance of explicitly modeling the α-carbon
coordinates. For this we use a weight of 10−5 for the KL term in the ELBO loss from Eq. (3).
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Table 5: All-atom motif scaffolding, evaluation with refolded structures. “Evaluation using refolded
structures” indicates that a success is given by the criteria specified in App. F.4, which compares refolded
structures—where the sequence is produced by La-Proteina and then folded with ESMFold—against the motif
(instead of comparing the generated structure directly, as explained in App. F.3). “All” indicates total number
of successes produced by the model (we produce 200 samples per task), while “Unique” indicates number of
unique successes, obtained by clustering all successes as explained in App. F.3. “Indexed” indicates the motif
residue indices are provided as input to the model, “Unindexed” indicates that the motif residue indices are not
provided as input. “# segments” refers to the number of residue segments in the motif.

Evaluation using refolded structures
Motif Task # segments Protpardelle-1c (indexed) La-Proteina (indexed) La-Proteina (unindexed)

All Unique All Unique All Unique

6E6R_AA_long 1 13 12 84 52 97 72
6E6R_AA_med 1 18 17 78 47 87 59
1YCR_AA 1 56 29 117 37 91 51
5TRV_AA_long 1 5 5 36 12 57 29
7MRX_AA_128 1 2 2 9 4 42 19
6E6R_AA_short 1 1 1 26 18 44 22
5TRV_AA_med 1 1 1 25 8 27 12
5TPN_AA 1 8 4 25 4 18 7
7MRX_AA_85 1 13 5 25 7 67 4
3IXT_AA 1 3 3 21 3 49 6
4ZYP_AA 1 1 1 4 2 27 3
5TRV_AA_short 1 0 0 1 1 0 0
7MRX_AA_60 1 7 2 49 2 34 1
5WN9_AA 1 0 0 0 0 0 0

1PRW_AA 2 162 20 174 18 120 10
5IUS_AA 2 0 0 1 1 6 1
6VW1_AA 2 11 1 22 1 42 1
2KL8_AA 2 74 1 51 1 38 1
4JHW_AA 2 0 0 0 0 0 0

1QJG_AA_NAT 3 3 2 23 13 71 50
7K4V_AA 3 2 1 33 4 29 29
5AOU_AA 3 39 5 157 9 11 11
1QJG_AA 3 6 4 29 9 37 23
5YUI_AA 3 0 0 2 2 7 3

5AOU_QUAD_AA 4 12 2 80 7 42 17
1BCF_AA 4 195 6 144 7 89 5

G.1.4 RESULTS

For each VAE variant, we train a dedicated flow matching model using the Foldseek clustered AFDB
dataset (filtered to a maximum protein length of 256 residues). We then evaluate the generative
performance by measuring all-atom co-designability and diversity on proteins sampled at lengths of
{50, 100, 150, 200, 250}. We use the sampling hyperparameters detailed in App. E for the KL-weight
and Dec-arch VAE variants. However, this setting is not directly applicable to the CA-enc model, as
it encodes the entire protein, including α-carbon coordinates, into its latent variables and does not
explicitly model α-carbons separately. To ensure a fair comparison and optimize its performance, we
conducted a hyperparameter search for the CA-enc model. This involved exploring both Langevin
scaling functions ("1/t" and "tan" from Eq. (10)) and all three numerical discretization schemes
("exponential", "uniform", "quadratic" from App. E.1), and selected the combination that yielded
best results.

The results from this VAE ablation study are shown in Tab. 7, which reports all-atom co-designability
and diversity values for each model. The three main conclusions are: First, Lower weights for the
KL divergence term in the ELBO objective (10−4 and 10−5) yield better generative performance
than a higher weight (10−3). Second, replacing the transformer architecture in the decoder by a feed
forward network (7M parameters) leads to worse performance. Third, and most critically, explicitly
modeling α-carbon coordinates, a cornerstone of La-Proteina’s design, leads to substantially better
results than an approach that encodes the entire protein structure, including α-carbon coordinates,
into a unified latent space (as in the CA-enc model). This last finding is particularly relevant, as
it strongly validates La-Proteina’s fundamental design choice of treating the α-carbon backbone
explicitly, rather than relying on a fully latent representation for the whole protein structure.
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Table 6: Tip-atom motif scaffolding, evaluation with refolded structures. “Evaluation using refolded
structures” indicates that a success is given by the criteria specified in App. F.4, which compares refolded
structures—where the sequence is produced by La-Proteina and then folded with ESMFold—against the motif
(instead of comparing the generated structure directly, as explained in App. F.3). “All” indicates total number
of successes produced by the model (we produce 200 samples per task), while “Unique” indicates number of
unique successes, obtained by clustering all successes as explained in App. F.3. “Indexed” indicates the motif
residue indices are provided as input to the model, “Unindexed” indicates that the motif residue indices are not
provided as input. “# segments” refers to the number of residue segments in the motif.

Evaluation using refolded structures
Motif Task # segments La-Proteina (indexed) La-Proteina (unindexed)

All Unique All Unique

1YCR_AA 1 111 54 92 45
5TRV_AA_long 1 46 13 29 23
5TRV_AA_med 1 19 10 20 12
6E6R_AA_long 1 28 12 8 7
3IXT_AA 1 1 1 94 11
5TPN_AA 1 6 5 16 7
4ZYP_AA 1 6 2 32 7
5TRV_AA_short 1 2 1 0 0
6E6R_AA_med 1 30 5 2 2
6E6R_AA_short 1 16 5 3 2
5WN9_AA 1 0 0 5 2
7MRX_AA_128 1 18 13 0 0
7MRX_AA_85 1 39 3 0 0
7MRX_AA_60 1 0 0 0 0

4JHW_AA 2 0 0 0 0
6VW1_AA 2 19 2 61 4
1PRW_AA 2 45 5 25 3
5IUS_AA 2 1 1 0 0
2KL8_AA 2 77 1 6 1

1QJG_AA_NAT 3 38 18 18 18
7K4V_AA 3 12 12 15 15
1QJG_AA 3 67 18 17 15
5AOU_AA 3 52 8 18 18
5YUI_AA 3 1 1 3 3

5AOU_QUAD_AA 4 29 2 7 7
1BCF_AA 4 145 10 132 10

Table 7: Ablation study for the VAE design, including different weights for the KL penalty term, a variant of
the VAE which uses a feed forward network instead of the transformer in the decoder, and a variant that also
encodes the α-carbon coordinates (that is, in this specific case, the flow matching model operates entirely in the
latent space, without explicitly modeling α-carbon coordinates, which are also captured by the latent variables).
For all VAEs we train a flow matching model on proteins of length up to 256 residues and report co-designability
and diversity metrics. All models were evaluated for multiple noise scaling parameters, and we selected the one
that led to the best performance (not reported for simplicity).

VAE Type KL weight Co-designability (%) ↑ Diversity (# clusters) ↑
All-atom Str Seq Seq+Str

Transformer (enc), Transformer (dec) 10−3 65.2 154 163 248
Transformer (enc), Transformer (dec) 10−4 83.8 246 317 374
Transformer (enc), Transformer (dec) 10−5 82.4 214 295 339

Transformer (enc), Feed Forward (dec) 10−5 58.0 151 242 233
Transformer (enc), Transformer (dec), encode α-carbons 10−5 21.2 51 105 91

G.2 FLOW MATCHING SAMPLING HYPERPARAMETERS

As explained in Sec. 3.4 and App. E, sampling La-Proteina requires selecting the discretization
scheme used for the α-carbon coordinates xCα and latent variables z, and the functions to scale the
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Table 8: Ablation study over discretization scheme and Langevin term scaling functions for La-Proteina
sampling. The table includes combinations that yield an all-atom co-designability of at least 0.5. Details for
the different discretization schemes and Langevin scaling functions are given in App. E. The diversity metric is
computed over the subset of all-atom co-designable samples.

Method Discretization Langevin scaling Noise scaling Co-designability (%) ↑ Diversity (# clusters) ↑
α-carbon Latent z βx(tx) βz(tz) ηx ηz All-atom Str Seq Seq+Str

La-Proteina exp. quad. 1/t tan 0.1 0.1 68.4 206 216 310
La-Proteina exp. quad. 1/t tan 0.2 0.1 60.6 198 197 261
La-Proteina exp. quad. 1/t tan 0.3 0.1 53.8 180 189 249

La-Proteina exp. quad. 1/t 1/t 0.1 0.1 59.2 164 198 247
La-Proteina exp. quad. 1/t 1/t 0.1 0.2 57.0 163 189 253
La-Proteina exp. quad. 1/t 1/t 0.1 0.3 53.4 190 191 245
La-Proteina exp. unif. 1/t 1/t 0.1 0.1 50.6 194 189 226
La-Proteina exp. unif. 1/t tan 0.1 0.1 54.0 210 197 247
La-Proteina exp. unif. 1/t tan 0.2 0.1 52.4 208 185 246
La-Proteina exp. quad. tan 1/t 0.1 0.1 57.0 161 212 243
La-Proteina exp. quad. tan 1/t 0.1 0.2 53.6 171 203 244
La-Proteina exp. quad. tan tan 0.1 0.1 57.4 168 217 251
La-Proteina exp. quad. tan tan 0.1 0.2 55.4 183 216 252

Langevin term in the SDE from Eq. (7). As a brief reminder, App. E introduced three discretization
schemes, "exponential", "quadratic" and "uniform"; and also two scaling functions for the Langevin
term in the SDE, the "1/t" and "tan", shown in Eq. (10). While our primary La-Proteina configuration
(evaluated in Tab. 1) uses a specific pairing (namely, "exponential" discretization with "1/t" scaling for
the α-carbon coordinates, and "quadratic" discretization with "tan" scaling for the latent variables),
alternative combinations are viable. To systematically assess how these choices affect performance,
we conducted an ablation study by sampling a specific variant of La-Proteina (the model from
Sec. 4 without triangular multiplicative layers) with all possible combinations of these schemes and
functions for generating both the α-carbon coordinates xCα and the latent variables z.

The outcomes of this ablation are presented in Tab. 8, which includes hyperparameter combinations
that yield an all-atom co-designability of at least 0.5. A clear pattern emerges from these results:
only sampling configurations that generate α-carbon coordinates at an effectively faster rate than
the latent variables surpass the 0.5 all-atom co-designability threshold. More specifically, every
successful combination listed employs the "exponential" discretization scheme for xCα , using either
the "quadratic" or "uniform" scheme for z. This implies that other pairings, such as applying
"quadratic" or "uniform" schedules for xCα , or the "exponential" schedule for z, did not yield
competitive co-designability values. While the choice of Langevin scaling function also influences
performance, its impact was observed to be less pronounced than that of the discretization scheme.

G.3 MAIN CONCLUSIONS FROM ABLATION STUDIES

The primary conclusion from our ablation studies is that achieving strong performance critically
depends on two key factors: first, the explicit modeling of α-carbon coordinates, and second,
generating these coordinates at an effectively faster rate than the latent variables (which encapsulate
all remaining atomic and sequence details).

H ARCHITECTURES

The three neural networks used in La-Proteina, the encoder, decoder, and denoiser, rely on the
same core architecture based on transformers with pair-biased attention mechanisms (Jumper et al.,
2021; Abramson et al., 2024). Our implementation closely follows Geffner et al. (2025), to which
we refer for comprehensive details. This architecture processes inputs into two primary tensors:
a sequence representation of shape [L,Cseq], which encodes per-residue features (e.g., atomic
coordinates, residue type, etc.), and a pair representation of shape [L,L,Cpair], which encodes
features between residue pairs (e.g., relative sequence separation, inter-residue distances, etc.).
The sequence representation is iteratively updated through the transformer blocks, while the pair
representation provides biases to the attention logits via a learned linear projection within each
block, effectively incorporating relational information (Jumper et al., 2021). As aforementioned, we
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explore two variants for the denoiser network. One that keeps the pair representation fixed throughout
the architecture, and one where we use triangular multiplicative update layers to update the pair
representation, including one such layer every two transformer blocks (Jumper et al., 2021). While
these updates have shown performance gains in complex structural biology tasks (Lin et al., 2024;
Jumper et al., 2021; Abramson et al., 2024), they also add considerable computational expense.
Most La-Proteina models we evaluate do not use triangular update layers and yield state-of-the-art
performance. In practice, we use Cseq = 768 and Cpair = 256, 14 transformer layers for the
encoder and decoder, and 16 layers for the denoiser, yielding a total of 130M and 160M parameters,
respectively.

The primary distinction between our three networks lies in the specific inputs they receive, how
these inputs are featurized to construct the initial sequence and pair representations, and the target
outputs they predict. The feature construction follows closely McPartlon & Xu (2023). The sequence
representation captures features for each independent residue (e.g. atomic coordinates), while the pair
representation captures features for residue pairs (e.g. relative distance and sequence separation).

Encoder. The encoder parameterizes the Gaussian distribution qψ(z |x¬Cα , s,xCα), mapping the
inputs (xCα ,x¬Cα , s) to the distribution’s mean µ ∈ RL×8 and log-scale log σ ∈ RL×8. The input
features used by the encoder to construct the initial sequence representation are: (i) Raw absolute
Atom37 coordinates; (ii) Raw Atom37 coordinates, relative to the α-carbons; (iii) Residue type,
as a one-hot vector; (iv) Side chain angles, consisting of at most four angles (depends on residue
type), which are binned into 20 bins between −π and π; (v) Backbone torsion angles, which are
binned into 20 bins between −π and π. The input features to construct the initial pair representation
are: (i) Relative sequence separation, as one-hot vectors, capped at ±64; (ii) Relative orientations
between pairs of residues Yang et al. (2020), which are binned into 20 bins between −π and π; (iii)
Pairwise distances between α-carbons and all other backbone atoms, binned into 20 bins between
1Å and 20Å. The initial representations are then processed through 12 transformer blocks. The final
sequence representation is fed through a linear layer to produce µ and log σ, and the latent variables
are obtained as z ∼ N (µ, σ2) ∈ RL×8.

Decoder. The decoder parameterizes the Categorical distribution pϕ(s | z,xCα) and the Gaussian
distribution pϕ(x¬Cα | z,xCα), mapping the inputs (z, xCα) to the logits of the Categorical, ℓ ∈
RL×20, and the mean of the Gaussian, µdec ∈ RL×36×3 (variance fixed to one). The input features
used by the decoder to construct the initial sequence representation are: (i) Raw α-carbon coordinates
xCα ; (ii) Raw latent variables z. The input features to construct the initial pair representation are:
(i) Relative sequence separation, as one-hot vectors, capped at ±64; (ii) Pairwise distances between
α-carbons, binned into 30 bins between 1Å and 30Å. The initial representations are then processed
through 12 transformer blocks. The final sequence representation is fed through a linear layer to
produce ℓ and µdec.

Denoiser network. The denoiser network maps time-dependent inputs, the interpolation times
tx, tz and corrupted coordinates xtxCα and latents ztz , to velocity fields vxϕ ∈ RL×3 and vzϕ ∈ RL×8,
used to sample pϕ(xCα , z). The corrupted inputs are featurized into the initial sequence and pair
representations. More specifically, the initial sequence representation uses: (i) Raw corrupted α-
carbon coordinates xtxCα ; (ii) Raw corrupted latent variables ztz . The input features to construct the
initial pair representation are: (i) Relative sequence separation, as one-hot vectors, capped at ±64; (ii)
Pairwise distances between corrupted α-carbon coordinates, binned into binned into 30 bins between
1Å and 30Å. The initial representations are then processed through 14 transformer blocks. The final
sequence representation is fed through a linear layer to produce vzϕ and vxϕ. In contrast to the encoder
and decoder architecture, the denoiser network also conditions on the interpolation times tx and tz .
This is done directly within its transformer blocks using adaptive layer normalization and output
scaling techniques (Peebles & Xie, 2023).

I MODEL PARAMETERS, SAMPLING SPEED AND MEMORY CONSUMPTION
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Table 9: Sampling time [seconds] for different methods at batch size 1 (top) and maximum batch size (bottom)
across varying protein lengths on an A100-80GB GPU. For PLAID and La-Proteina, the first parameter count is
the diffusion model and the second one is the decoder.

Method # Params Steps 100 200 300 400 500 600 700 800
Batch size: 1
P(all-atom) 17.7M 200 32.9 62.1 106.1 OOM OOM OOM OOM OOM
ProteinGenerator 59.8M 100 197.8 239.6 428.6 642.8 981.0 1365.4 1915.0 2690.4
Protpardelle 25.1M 200 2.3 3.2 4.3 5.2 6.1 7.3 8.4 9.5
PLAID 100M + 3.5B 500 6.2 8.0 11.6 18.1 25.4 38.1 54.4 77.6
La-Proteina 158M + 128M 400 2.94 3.00 3.67 4.75 6.33 8.45 10.63 13.52
La-Proteina tri 167M + 128M 400 4.22 9.72 20.78 34.85 59.95 100.00 153.14 196.46

Maximum batch size (runtimes normalised to be per 1 sample; batch size values in Table 10)
PLAID 100M + 3.5B 500 0.78 3.16 7.29 15.00 22.55 36.75 54.33 78.17
La-Proteina 158M + 128M 400 0.34 0.99 2.04 3.34 5.01 7.01 9.46 12.31
La-Proteina tri 167M + 128M 400 1.72 6.31 16.29 25.74 42.45 59.28 77.38 106.69

Table 10: Maximum batch size for samples of varying length (the numbers in the top row indicate protein
backbone chain length) on an A100-80GB GPU.

Method # Model parameters Inference steps 100 200 300 400 500 600 700 800
PLAID 100M + 3.5B 500 792 154 73 35 20 12 9 6
La-Proteina 158M + 128M 400 422 118 49 29 17 13 8 7
La-Proteina tri 167M + 128M 400 530 150 60 35 22 17 11 10

To evaluate both model complexity (through parameter counts) and its operational consequences
for memory usage and generation speed, we perform three complementary experiments following
Geffner et al. (2025):

1. Single-sequence inference latency: Measurement of per-sample generation time using
batch size 1 on an NVIDIA A100-80GB. Results appear in Table 9 upper part.

2. Batch-optimized throughput analysis: Measurement of generation times at maximum
batch capacities, with computational efficiency quantified through time-per-sequence nor-
malization. Executed on A100-80GB GPUs as documented in Table 9 lower part.

3. Memory efficiency assessment: Determination of maximum viable batch sizes without
exceeding memory limits, conducted on an NVIDIA A100-80GB GPU to establish practical
scalability thresholds. See Table 10 for detailed comparisons.

All referenced tables include parameter counts for cross-model comparison.

Our implementation capitalizes on the transformer architecture’s hardware compatibility through
PyTorch’s compilation framework (Ansel et al., 2024), which accelerates both training and inference
phases. Reported inference metrics for La-Proteina as well as other models leveraging compilation
such as P(all-atom) reflect performance optimizations achieved via model compilation and report
timings excluding compilation overhead at the beginning since it becomes negligible for large-scale
inference which is mostly of interested in the protein design setting.

We can see that La-Proteina is fast despite the high parameter count; the model without triangle
multiplication layers is the fastest togther with Protpardelle. The model with triangle multiplication
layers is slower, but still faster than P(all-atom) and Protein Generator, as well as faster than PLAID
at short lengths.

Since only La-Proteina and PLAID support batched inference, the difference becomes stark there:
at maximum batch size La-Proteina can generate hundreds of proteins in one batch, resulting in
inference times of below a second for short proteins. Interestingly, after compilation of these models
the models with triangle multiplication layers is able to fit higher batch sizes than the one without
triangle multiplication layers, probably as an artifact of the compilation process.

One also sees the La-Proteina benefits a lot more from batched inference speed-ups than PLAID.
This is mostly due to the La-Proteina decoder being fairly lightweigth and fast, with the majority
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of time spent during the diffusion process, while in PLAID the ESMFold-3B decoder is the major
bottleneck.
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Table 11: Results for unconditional generation for proteins of different lengths. Table (A) shows results for 100
proteins of length 100; table (B) for proteins of lengths in {100, 200}, with 100 samples per length; table (C) for
proteins of lengths in {100, 200, 300}, with 100 samples per length. ηx and ηz denote the noise scaling factors
during generation (Eq. (7)). Best scores for each table bold, second best underlined.

Method All-atom co-designability (%) ↑ Diversity (# clusters) ↑
Structure Sequence Sequence+Structure

(A) 100 proteins for each length in {100}

P(all-atom) 88.0 41 78 70
Protpardelle-1c 76.0 13 67 33
APM 56.0 15 48 33
PLAID 22.0 14 18 15
ProteinGenerator 45.0 13 27 22
Protpardelle 29.0 8 26 17

La-Proteina (ηx, ηz) = (0.1, 0.1) 96.0 43 89 82
La-Proteina (ηx, ηz) = (0.2, 0.1) 90.0 54 78 78
La-Proteina (ηx, ηz) = (0.3, 0.1) 88.0 55 80 80

(B) 100 proteins for each length in {100, 200}

P(all-atom) 80.5 111 132 143
Protpardelle-1c 70.0 14 115 35
APM 38.0 24 48 56
PLAID 15.5 18 24 20
ProteinGenerator 26.0 14 26 26
Protpardelle 17.0 9 31 19

La-Proteina (ηx, ηz) = (0.1, 0.1) 89.5 93 147 151
La-Proteina (ηx, ηz) = (0.2, 0.1) 84.0 104 145 143
La-Proteina (ηx, ηz) = (0.3, 0.1) 80.5 111 146 149

(C) 100 proteins for each length in {100, 200,300}

P(all-atom) 60.7 131 147 164
Protpardelle-1c 58.3 14 133 35
APM 30.0 30 54 62
PLAID 15.3 23 32 25
ProteinGenerator 17.7 14 26 26
Protpardelle 14.7 10 36 20

La-Proteina (ηx, ηz) = (0.1, 0.1) 85.3 150 192 217
La-Proteina (ηx, ηz) = (0.2, 0.1) 77.7 144 181 198
La-Proteina (ηx, ηz) = (0.3, 0.1) 69.7 139 173 191

J ADDITIONAL RESULTS

J.1 UNCONDITIONAL EVALUATION ON SHORTER PROTEINS

To complement our main evaluation from Tab. 1, we performed an additional comparative analysis
using subsets of shorter proteins. This accounts for the diverse training distribution of various baseline
models, some of which were trained on proteins shorter than those used to train La-Proteina. We
assessed all models across three scenarios: (A) 100 proteins of length 100; (B) 200 proteins, with 100
samples each for lengths 100 and 200; and (C) 300 proteins, comprising 100 samples each for lengths
100, 200, and 300. The resulting all-atom co-designability and diversity metrics for this analysis are
summarized in Tab. 11, where it can be observed that La-Proteina yields state-of-the-art performance
across all three scenarios.

J.2 PLDDT VALUES

Violin plots showing the distribution of confidence scores (pLDDT) for protein structures generated
by La-Proteina and baselines are shown in Fig. 34. The samples used for those plots are the same as
the ones used for the results in Tab. 1, filtered by all-atom co-designable, that is, we only include
samples with all-atom RMSD between the model produced structure and the one obtained by folding
the model produced sequence with ESMFold < 2Å. The results show that all variants of La-Proteina,
different temperatures and with/without triangular update layers, consistently achieve the highest
median and interquartile range (IQR) pLDDT values.
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Figure 34: La-Proteina samples with higher pLDDT than existing all-atom generation baselines. Samples
included in the analysis are the same as those use to compute the metrics in Tab. 1. As for most metrics (App. D)
we filter samples to keep only all-atom co-designable ones.

J.3 RESIDUE TYPE DISTRIBUTION

Fig. 35 shows the distribution of amino acids generated by each of the comparative methods against
the UniProt reference distribution. The samples used for this figure are identical to those used for
Tab. 1, filtered by all-atom co-designability. As it can be observed from the figure, all methods
over- and under-represent certain residues when compared against the UniProt reference distribution.
Notably, as demonstrated in Fig. 36, La-Proteina produces a distribution over amino acid types very
similar to the ones produced by ProteinMPNN. We view this as a positive outcome, as sequences
generated by ProteinMPNN are generally acknowledged to possess highly desirable properties.

The sequence results discussed above were obtained by our model using low temperature sampling,
specifically with parameters (ηx, ηz) = (0.1, 0.1). To quantitatively assess the effect of temperature
parameters on the resulting sequence distribution, we generated 1000 samples of length 100 using
various temperatures. Results from this analysis are shown Fig. 37, where it can be observed that
increasing the temperature to 0.5 and 0.9 (for both backbone and latent variables jointly) leads
to distributions that get increasingly closer to the UniProt reference. However, this increase in
temperature comes at the cost of performance in other metrics, manifesting as reduced all-atom co-
designability. For instance, across the samples produced for this specific temperature analysis, the all-
atom co-designability decreases from 90% for (ηx, ηz) = (0.1, 0.1), to 54% for (ηx, ηz) = (0.5, 0.5),
and finally to 11% for (ηx, ηz) = (0.9, 0.9).

K DECLARATION OF LARGE LANGUAGE MODELS USAGE IN THIS WORK

Large Language Models (LLMs) were used as a writing aid to enhance clarity and readability
during the preparation of this manuscript. The use of these tools was strictly limited to grammatical
correction and stylistic refinements. All intellectual content, analyses, and arguments in the paper did
not rely on the use of LLMs in any way.
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Figure 35: Distribution of amino-acid frequencies of co-designable samples by different methods.

ALA ARG ASN ASP CYS GLN GLU GLY HIS ILE LEU LYS MET PHE PRO SER THR TRP TYR VAL
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Fr
eq

ue
nc

y

La-Proteina ( x, z) = (0.1, 0.1) MPNNLa-Proteina-Backbone(0.1,0.1) UniProt Reference

Figure 36: Distribution of amino-acid frequencies of La-Proteina for different temperatures. Plots
were obtained by filtering for co-designable samples.
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Figure 37: Distribution of amino-acid frequencies of La-Proteina for different temperatures. Plots
were obtained by filtering for co-designable samples.
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