

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 LA-PROTEINA: ATOMISTIC PROTEIN GENERATION VIA PARTIALLY LATENT FLOW MATCHING

Anonymous authors

Paper under double-blind review

ABSTRACT

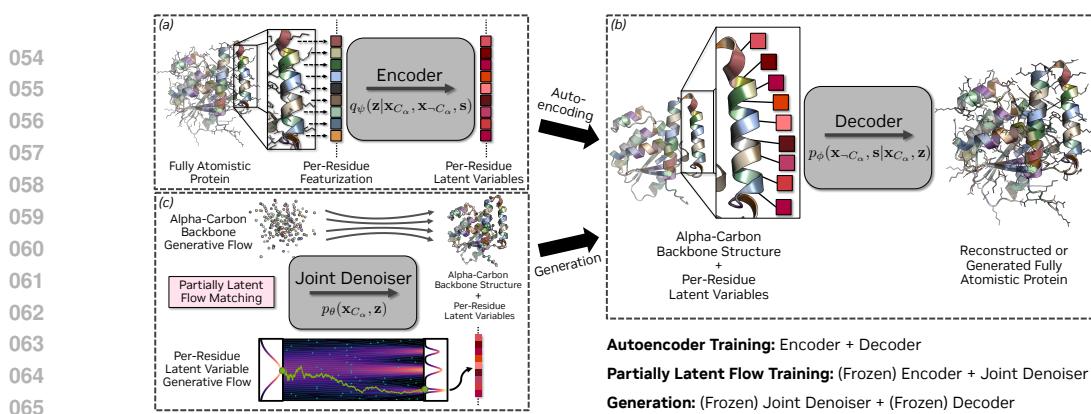
While many generative models for protein design have emerged, few tackle the difficult task of jointly generating full-atom structures and their corresponding sequences, a challenge compounded by sequence-dependent side-chain dimensionality. We introduce *La-Proteina* for atomistic protein design based on a novel partially latent representation: the protein backbone is modeled explicitly, while sequence and all other atomistic details are captured in per-residue latent variables of fixed size. Flow matching in this partially latent space then models the joint distribution over sequences and full-atom structures. *La-Proteina* achieves state-of-the-art performance on key generation benchmarks, including all-atom co-designability, diversity, and structural validity. Notably, it also surpasses previous models in atomistic motif scaffolding, unlocking critical structure-conditioned design tasks. Moreover, *La-Proteina* generates co-designable proteins of up to 800 residues, a regime where most baselines collapse or fail to produce valid samples, demonstrating its unique scalability and robustness.

1 INTRODUCTION

The design of novel proteins with specific structures and functions has immense potential in various fields (Richardson & Richardson, 1989; Huang et al., 2016; Kuhlman & Bradley, 2019). A challenge in de novo protein design is capturing the relationship between protein sequence and structure. Most existing methods decouple these aspects, generating sequences that are later folded (Wang et al., 2024b) or designing backbones that are subsequently sequenced (Watson et al., 2023). However, accurately modeling the *joint* distribution over sequences and fully atomistic structures could unlock fine-grained control over functional sites and enable key protein design tasks, such as atomistic motif scaffolding. This problem is made inherently difficult by the need to handle both discrete sequences and continuous coordinates, along with the sequence-dependent dimensionality of side chains. Recent methods tackling this problem learn generative models directly in data space (Qu et al., 2024; Chu et al., 2024), though these often struggle with modeling accuracy and scalability. Other approaches use latent representations (Lu et al., 2024; Fu et al., 2024; McPartlon et al., 2024; Yim et al., 2025) but often fail to deliver competitive performance despite their conceptual appeal (Sec. 4).

We introduce *La-Proteina* (Latent Proteina), a method for atomistic protein design based on *partially latent flow matching*, combining the strengths of explicit and latent modeling. *La-Proteina* models the α -carbon coordinates explicitly, while capturing sequence and coordinates of all non- α -carbon atoms within a continuous, fixed-size latent representation per residue. We first train a Variational Autoencoder (VAE) (Kingma et al., 2013; Rezende et al., 2014), encoding sequence and side chain details in latent space, followed by a flow matching model (Lipman et al., 2023) that jointly generates α -carbon coordinates and latent variables. New proteins are generated by sampling the flow model and decoding the α -carbons and latent variables into sequences and fully atomistic structures (Fig. 1).

La-Proteina’s partially latent approach shifts the core learning problem from a mixed discrete-continuous space with variable dimensionality to a per-residue, continuous space of fixed dimensionality, making it amenable to powerful used generative modeling techniques such as flow matching. Meanwhile, maintaining the explicit separation of the α -carbon coordinates and the latent variables allows greater flexibility during generation. In particular, it enables the structural scaffold and the remaining atomic details to be generated using different generation schemes, i.e., different discretization schedules to simulate the underlying generative stochastic differential equation. *La-Proteina*’s



066 Figure 1: *La-Proteina* consists of encoder q_ψ (a), decoder p_ϕ (b), and joint denoiser p_θ (c). The encoder fea-
067 turizes the input protein and predicts per-residue latent variables \mathbf{z} of constant dimensionality. Together with the
068 underlying α -carbon backbone \mathbf{x}_{C_α} , the decoder outputs sequence \mathbf{s} and all other atoms \mathbf{x}_{-C_α} and reconstructs
069 the atomistic protein. To facilitate generation of de novo proteins, a partially latent flow model jointly generates
070 novel α -carbon backbone structures \mathbf{x}_{C_α} and latents \mathbf{z} . The model is trained in two stages and all networks are
071 implemented leveraging the same transformer architecture (Geffner et al., 2025); see details in Sec. 3.

072 neural networks are implemented using efficient transformer architectures (Vaswani et al., 2017;
073 Geffner et al., 2025), guaranteeing the model’s scalability to long proteins, many model parameters,
074 and large training data—we train *La-Proteina* on up to 46 million protein structure-sequence pairs.

075 We empirically compare our model against leading publicly available methods for atomistic
076 protein design and achieve state-of-the-art atomistic performance as measured by the all-atom
077 co-designability and diversity metrics. *La-Proteina* can generate co-designable proteins of up to 800
078 residues, a regime where existing models collapse or run out of memory, demonstrating our method’s
079 strong scalability. We further assess the generated structures’ geometric quality through analyses
080 of side-chain conformations and validate overall structural integrity (Davis et al., 2007). *La-Proteina*
081 significantly surpasses existing methods in these evaluations as well. Next, we apply *La-Proteina* to
082 atomistic motif scaffolding, a critical task for protein engineering that most prior work has addressed
083 only at the coarser backbone level (Watson et al., 2023; Yim et al., 2024; Lin et al., 2024; Geffner et al.,
084 2025). We tackle both all-atom and tip-atom scaffolding, where in the latter case only functionally
085 critical side chain tip atoms are given, rather than all atoms of the motif residues. Our model performs
086 these tasks in two setups: the standard indexed task, where motif residue sequence indices are
087 specified; and the more challenging unindexed task (Ahern et al., 2025), where these sequence indices
088 are unknown. Our approach solves most benchmark tasks across all setups and outperforms baselines.
089 We provide further insights through ablation studies and careful analysis of the model’s latent space,
090 which shows that *La-Proteina* encodes atomistic residue structure and amino acid type in a localized
091 and consistent manner. In conclusion, *La-Proteina* represents a versatile, high-quality, fully atomistic
092 protein structure generative model, with the potential to enable new, challenging protein design tasks.

093 **Main contributions.** (i) We propose *La-Proteina*, a partially latent flow matching framework
094 designed for the joint generation of protein sequence and fully atomistic structure. (ii) *La-Proteina*
095 achieves state-of-the-art performance in unconditional protein generation. (iii) We verify *La-
096 Proteina*’s scalability, generating diverse, co-designable and structurally valid fully atomistic proteins
097 of up to 800 residues. (iv) We successfully apply *La-Proteina* to indexed and unindexed atomistic
098 motif scaffolding, two important conditional protein design tasks. (v) We provide further insights
099 through ablations, latent space analyses, and biophysical assessments of *La-Proteina*’s generated
atomistic protein structures, demonstrating our model’s superiority over previous all-atom generators.

100 2 PRELIMINARIES

101 **VAEs** (Kingma et al., 2013; Rezende et al., 2014) learn a probabilistic representation of data \mathbf{x} within
102 a latent space employing two neural networks: an encoder mapping a sample \mathbf{x} to a distribution
103 $q_\psi(\mathbf{z} | \mathbf{x})$ over latent variables \mathbf{z} , and a decoder mapping \mathbf{z} to a distribution in data space $p_\phi(\mathbf{x} | \mathbf{z})$.
104 VAEs are trained by maximizing the Evidence Lower Bound, $\text{ELBO}(\phi, \psi) = \mathbb{E}_{\mathbf{x}, \mathbf{z}}[\log p_\phi(\mathbf{x} | \mathbf{z})] -$
105 $\text{KL}(q_\psi(\mathbf{z} | \mathbf{x}) \| p(\mathbf{z}))$. This objective balances reconstruction quality with a KL divergence-based
106 regularization term that pushes the learned posterior $q_\psi(\mathbf{z} | \mathbf{x})$ towards an uninformative prior $p(\mathbf{z})$.
107

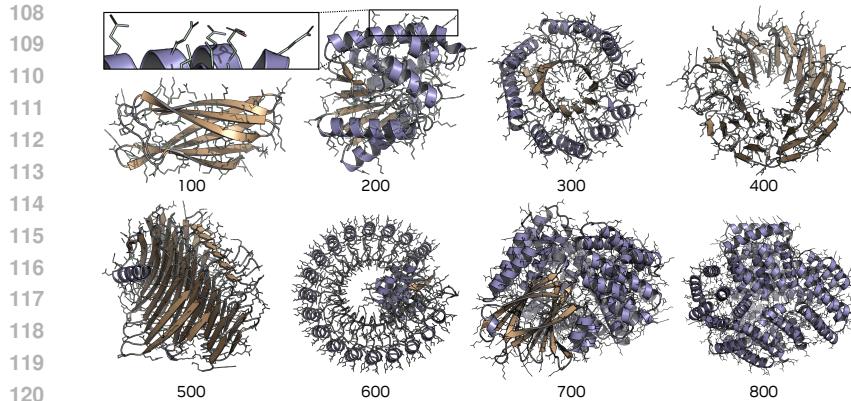


Figure 2: **Fully atomistic samples produced by La-Proteina.** These structures are generated unconditionally, showcasing the model’s ability to produce a diverse range of novel topologies. Numbers denote number of residue. All samples shown are co-designable.

Flow matching (Lipman et al., 2023; Albergo & Vanden-Eijnden, 2023; Liu et al., 2023) trains a neural network $\mathbf{v}_\theta(\mathbf{x}^t, t)$ to model the velocity field $\mathbf{v}_t(\mathbf{x})$ that transports samples from a base distribution p_0 to the data distribution p_1 along a probability path p_t , for $t \in [0, 1]$. This path is often defined by linearly interpolating between samples $\mathbf{x}^0 \sim p_0$ and $\mathbf{x}^1 \sim p_1$ as $\mathbf{x}^t = (1-t)\mathbf{x}^0 + t\mathbf{x}^1$. The denoiser network \mathbf{v}_θ is trained by minimizing the conditional flow matching objective, $\mathbb{E}_{t,p_0,p_1}[\|\mathbf{v}_\theta(\mathbf{x}^t, t) - (\mathbf{x}^1 - \mathbf{x}^0)\|^2]$. Flow matching can be applied directly in data space or in latent spaces learned by models like VAEs (Rombach et al., 2022; Vahdat et al., 2021). Furthermore, when p_0 is Gaussian, flow matching is equivalent to diffusion models (Song et al., 2021; Gao et al., 2025), allowing us to compute the intermediate score functions $\nabla_{\mathbf{x}^t} \log p_t(\mathbf{x}^t)$ as a function of the trained network $\mathbf{v}_\theta(\mathbf{x}^t, t)$.

Protein representation. Protein data includes sequence (20 residue types) and 3D structure. Different residues share a common backbone, including the α -carbon atom, but contain distinct atoms in their side chains. The Atom37 representation defines a standardized superset of 37 potential atoms per residue, which allows storing the structure of an L -residue protein as a tensor of shape $[L, 37, 3]$. The relevant subset of coordinates is selected based on each residue’s type.

Related work. Early diffusion-based protein generators, such as RFDiffusion (Watson et al., 2023) and Chroma (Ingraham et al., 2023), focused on backbone generation. This area has since diversified, with some approaches leveraging diffusions on the $\text{SO}(3)$ manifold (Yim et al., 2023b;a; Bose et al., 2024; Huguet et al., 2024), while others employ Euclidean Flow Matching (Lin & Alquraishi, 2023; Lin et al., 2024; Geffner et al., 2025). ProtComposer uses an auxiliary statistical model and 3D primitives (Stark et al., 2025). Several works (Lin et al., 2024; Qu et al., 2024; Geffner et al., 2025) obtained good performance training on synthetic structures from the AlphaFold database (AFDB) (Jumper et al., 2021; Varadi et al., 2021), which is significantly larger than the protein databank (PDB) (Berman et al., 2000). Recently, the task of sequence-structure co-design has gained prominence. Some methods address this by jointly modeling protein backbones and sequences (Campbell et al., 2024; Ren et al., 2024; Yim et al., 2025). Others tackle fully atomistic structures, including side chains, operating either in data space (Qu et al., 2024; Chu et al., 2024; Lisanza et al., 2023; Chen et al., 2025) or via latent variable models (McPartlon et al., 2024; Fu et al., 2024; Lu et al., 2024; Yim et al., 2025). Language models have also been used for protein design, with some methods focusing on protein sequences (Wang et al., 2024b); others tokenize structural information and model sequence and structure jointly (Hayes et al., 2024; Wang et al., 2024c). In this work we introduce *La-Proteina* for atomistic protein design and provide a thorough evaluation of its capabilities in unconditional monomer generation and motif scaffolding. Concurrent work by Anonymous (2025) extends *La-Proteina* to binder design. Their contributions are orthogonal to ours, focusing on modeling protein-protein interactions and inference-time search for that application.

3 LA-PROTEINA

3.1 MOTIVATION: PARTIALLY LATENT REPRESENTATION FOR ATOMISTIC PROTEIN DESIGN

While prior works have been able to successfully tackle high-quality protein backbone design, fully atomistic structure generation comes with additional challenges. The model needs to jointly reason

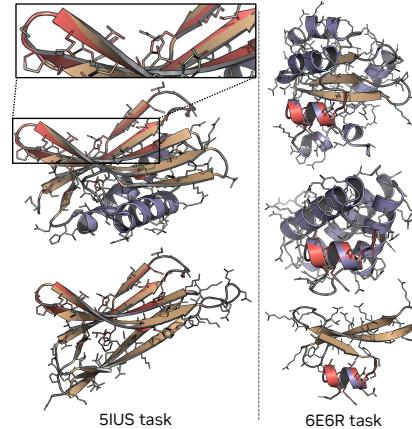
162 over large-scale backbone structure, amino acid types, and side-chains, whose dimensionality depends
 163 on the amino acid—this represents a complex continuous-categorical generative modeling problem.
 164
 165 How can we best build on top of successful backbone generation frameworks (Watson et al., 2023;
 166 Geffner et al., 2025; Lin et al., 2024), while addressing the additional fully atomistic modeling
 167 challenges? We propose to encode per-residue atomistic detail and residue type in a fixed-length, con-
 168 tinuous latent space, while maintaining explicit backbone modeling through the α -carbon coordinates.
 169 This has several key advantages: (i) By encoding atomistic details, including *varying-length* side
 170 chains, together with their *categorical* residue type, into a *fixed-length, fully-continuous* latent space,
 171 we elegantly avoid mixed continuous-categorical modeling challenges in the model’s main generative
 172 component. Together with the continuous backbone coordinates, the per-residue latent variables
 173 can be generated using efficient, fully-continuous flow matching methods, while mixed modality
 174 modeling complexities are handled by encoder and decoder. (ii) It is critical to maintain the explicit α -
 175 carbon-based backbone representation in *La-Proteina*’s hybrid, *partially latent* framework. That way,
 176 we can build on top of advances in high-performance backbone modeling. Our ablations show that
 177 also encoding α -carbons in latent space leads to significantly worse results (ablations in App. G.1.3).
 178 (iii) Maintaining explicit backbone modeling capabilities also allows us to use different generation
 179 schedules for global α -carbon backbone structure and per-residue atomistic (latent) details (see Sec. 3.4),
 180 a critical detail in our framework to achieve high
 181 performance (ablations in App. G.2). We argue that
 182 our hybrid approach is a key reason why *La-Proteina*
 183 significantly outperforms existing latent frameworks
 184 for protein structure generation, all of which opt for
 185 fully-latent modeling instead. (iv) Our partially latent
 186 framework increases scalability. Explicit modeling of
 187 all atoms in large proteins may require complex and
 188 memory-consuming neural networks—in fact, for that
 189 reason some approaches that treat all atoms explicitly
 190 can only be trained on small proteins (Qu et al., 2024).
 191 In contrast, *La-Proteina*’s per-residue latent variables
 192 simply become additional channels on top of the
 193 α -carbon coordinates, enabling the application of
 194 established, high-performance backbone-processing
 195 architectures (Geffner et al., 2025) without increasing
 196 the length of internal sequence representations. Hence, we can keep the model’s memory footprint
 197 manageable, and scale the model to large protein generation tasks of up to 800 residues (see Sec. 4.1).
 198
 199 Next, we introduce *La-Proteina* (Fig. 1). First, we train a VAE, with its encoder mapping input
 200 proteins (sequence and structure) to latent variables, and its decoder reconstructing complete proteins
 201 from the latent variables and α -carbon coordinates. Leveraging the VAE, we then train a flow matching
 202 model to learn the joint distribution over latent variables and coordinates of the α -carbon atoms.
 203
 204 **Notation.** L denotes protein length, $\mathbf{x}_{C_\alpha} \in \mathbb{R}^{L \times 3}$ the α -carbon coordinates, $\mathbf{x}_{\neg C_\alpha} \in \mathbb{R}^{L \times 36 \times 3}$ the
 205 coordinates of other heavy atoms (Atom37 representation without α -carbons, see Sec. 2), $\mathbf{s} \in \{0, \dots, 19\}^L$ the protein sequence, and $\mathbf{z} \in \mathbb{R}^{L \times 8}$ the (8-dimensional) per-residue latent variables.

205 3.2 PROBABILISTIC FORMULATION

207 We learn a latent variable model $p(\mathbf{x}_{C_\alpha}, \mathbf{x}_{\neg C_\alpha}, \mathbf{s}, \mathbf{z})$, trained so that its marginal $\int p \, d\mathbf{z}$ approximates
 208 the target distribution over proteins $p_{\text{data}}(\mathbf{x}_{C_\alpha}, \mathbf{x}_{\neg C_\alpha}, \mathbf{s})$. Central to our approach is the factorization

$$210 \quad p_{\theta, \phi}(\mathbf{x}_{C_\alpha}, \mathbf{x}_{\neg C_\alpha}, \mathbf{s}, \mathbf{z}) = p_\theta(\mathbf{x}_{C_\alpha}, \mathbf{z}) p_\phi(\mathbf{x}_{\neg C_\alpha}, \mathbf{s} \mid \mathbf{x}_{C_\alpha}, \mathbf{z}), \quad (1)$$

211 which enables the model to capture complex dependencies between backbone, sequence, and side
 212 chains through the latent variable \mathbf{z} . The first component of this factorization, $p_\theta(\mathbf{x}_{C_\alpha}, \mathbf{z})$, defined over
 213 a continuous, per-residue, fixed-dimensional space, is captured by our partially latent flow matching
 214 model (Sec. 3.2.2). The second component, $p_\phi(\mathbf{x}_{\neg C_\alpha}, \mathbf{s} \mid \mathbf{x}_{C_\alpha}, \mathbf{z})$, denotes the VAE’s decoder, which,
 215 together the encoder, maps between latent variables \mathbf{z} and proteins and handles complexities arising
 from mixed discrete/continuous data types (sequence and structure), and the variable dimensionality of



216 **Figure 3: Atomistic Motif Scaffolding.** *La-Proteina* accurately reconstructs the atomistic motif (red), while generating diverse scaffolds. Visualization overlays generated protein and motif.

216 side chains. Critically, by conditioning on both α -carbon coordinates \mathbf{x}_{C_α} and expressive latent vari-
 217 ables \mathbf{z} , this conditional distribution can be effectively represented by simple factorized distributions.
 218

219 **3.2.1 VARIATIONAL AUTOENCODER**
 220

221 The VAE’s decoder models sequence and full-atom structure. Formally, it parameterizes the con-
 222 ditional likelihood term $p_\phi(\mathbf{x}_{\neg C_\alpha}, \mathbf{s} | \mathbf{x}_{C_\alpha}, \mathbf{z})$ from Eq. (1). We model this distribution assuming
 223 conditional independence between the sequence \mathbf{s} and the coordinates of non- α -carbon atoms $\mathbf{x}_{\neg C_\alpha}$

$$224 \quad p_\phi(\mathbf{x}_{\neg C_\alpha}, \mathbf{s} | \mathbf{x}_{C_\alpha}, \mathbf{z}) = p_\phi(\mathbf{s} | \mathbf{x}_{C_\alpha}, \mathbf{z}) p_\phi(\mathbf{x}_{\neg C_\alpha} | \mathbf{x}_{C_\alpha}, \mathbf{z}), \quad (2)$$

226 where we define $p_\phi(\mathbf{s} | \mathbf{x}_{C_\alpha}, \mathbf{z})$ as a factorized categorical distribution and $p_\phi(\mathbf{x}_{\neg C_\alpha} | \mathbf{x}_{C_\alpha}, \mathbf{z})$ as a
 227 factorized Gaussian with unit variance. These choices are standard in the VAE literature (Kingma et al.,
 228 2013), justified by expressive conditioning on the latent variables and α -carbon coordinates, which
 229 capture underlying dependencies and enable accurate approximations using simple factorized forms.

230 The decoder network takes the latent variables \mathbf{z} and α -carbon coordinates \mathbf{x}_{C_α} as input, producing
 231 parameters for the distributions over sequence \mathbf{s} and non- α -carbon atom coordinates $\mathbf{x}_{\neg C_\alpha}$. To handle
 232 the varying non- α -carbon atom count across residue types while maintaining a fixed output dimension-
 233 ality, the decoder generates Atom37 coordinates for each residue structure, yielding a $[L, 37, 3]$ tensor.
 234 The appropriate subset of all Atom37 entries is selected on the basis of the sequence, using the ground
 235 truth sequence during training (supervising only the selected entries) and the decoded sequence
 236 during inference. Further, the coordinates of the α -carbons are set to the ones passed as input.

237 The VAE encoder, on the other hand, is used to map proteins to their corresponding latent represen-
 238 tation. Formally, the encoder parameterizes $q_\psi(\mathbf{z} | \mathbf{x}_{C_\alpha}, \mathbf{x}_{\neg C_\alpha}, \mathbf{s})$, a factorized Gaussian designed
 239 to approximate the posterior distribution $p_{\phi, \theta}(\mathbf{z} | \mathbf{x}_{C_\alpha}, \mathbf{x}_{\neg C_\alpha}, \mathbf{s})$. This network takes the complete
 240 protein structure $(\mathbf{x}_{C_\alpha}, \mathbf{x}_{\neg C_\alpha}, \mathbf{s})$ as input, and outputs the mean and log-scale parameters for $q_\psi(\mathbf{z} | \cdot)$.

241 The encoder and decoder are optimized maximizing the β -weighted ELBO (Higgins et al., 2017),
 242 a common objective for VAE training in the context of generative modeling in latent spaces, given by
 243

$$244 \quad \max_{\phi, \psi} \mathbb{E}_{p_{\text{data}}(\mathbf{x}_{C_\alpha}, \mathbf{x}_{\neg C_\alpha}, \mathbf{s}), q_\psi(\mathbf{z} | \cdot)} [\log p_\phi(\mathbf{x}_{\neg C_\alpha}, \mathbf{s} | \mathbf{x}_{C_\alpha}, \mathbf{z})] - \beta \text{KL}(q_\psi(\mathbf{z} | \mathbf{x}_{C_\alpha}, \mathbf{x}_{\neg C_\alpha}, \mathbf{s}) \| p(\mathbf{z})) . \quad (3)$$

246 For the modeling choices described above, the reconstruction term in Eq. (3) reduces to the cross
 247 entropy loss for the sequence and the squared L_2 loss for the structure. For training, we set $\beta = 10^{-4}$
 248 and use a standard isotropic Gaussian prior over latent variables $p(\mathbf{z}) = \mathcal{N}(\mathbf{z} | \mathbf{0}, \mathbf{I})$.

249 **3.2.2 PARTIALLY LATENT FLOW MATCHING**
 250

251 The second stage of training *La-Proteina* involves optimizing a flow matching model to approximate
 252 the target distribution $p_{\text{data}, \psi}(\mathbf{x}_{C_\alpha}, \mathbf{z})$.¹ This model trains a denoiser network $\mathbf{v}_\theta(\mathbf{x}_{C_\alpha}^{t_x}, \mathbf{z}^{t_z}, t_x, t_z)$
 253 to predict the velocity field transporting samples from a standard Gaussian reference distribution,
 254 $p_0(\mathbf{x}_{C_\alpha}^0, \mathbf{z}^0)$, to the target data distribution, $p_1(\mathbf{x}_{C_\alpha}^1, \mathbf{z}^1)$, for $t_x, t_z \in [0, 1]$. These are defined as
 255

$$256 \quad p_0(\mathbf{x}_{C_\alpha}^0, \mathbf{z}^0) = \mathcal{N}(\mathbf{x}_{C_\alpha}^0 | \mathbf{0}, \mathbf{I}) \mathcal{N}(\mathbf{z}^0 | \mathbf{0}, \mathbf{I}) \quad \text{and} \quad p_1(\mathbf{x}_{C_\alpha}^1, \mathbf{z}^1) \approx p_{\text{data}}(\mathbf{x}_{C_\alpha}, \mathbf{z}) . \quad (4)$$

257 The denoiser network \mathbf{v}_θ is trained by minimizing the conditional flow matching (CFM) objective
 258

$$259 \quad \min_{\theta} \mathbb{E}_{\theta} \left[\left\| \mathbf{v}_\theta^x(\mathbf{x}_{C_\alpha}^{t_x}, \mathbf{z}^{t_z}, t_x, t_z) - (\mathbf{x}_{C_\alpha} - \mathbf{x}_{C_\alpha}^0) \right\|^2 + \left\| \mathbf{v}_\theta^z(\mathbf{x}_{C_\alpha}^{t_x}, \mathbf{z}^{t_z}, t_x, t_z) - (\mathbf{z} - \mathbf{z}^0) \right\|^2 \right] , \quad (5)$$

261 where the expectation is over $p_{\text{data}, \psi}(\mathbf{x}_{C_\alpha}, \mathbf{z})$ (i.e., p_1), noise distributions $\mathcal{N}(\mathbf{x}_{C_\alpha}^0 | \mathbf{0}, \mathbf{I})$ and
 262 $\mathcal{N}(\mathbf{z}^0 | \mathbf{0}, \mathbf{I})$ (i.e., p_0), and interpolation time distributions $p_{t_x}(t_x)$ and $p_{t_z}(t_z)$. The use of two
 263 separate interpolation times t_x and t_z is a critical design decision that enables the use of different
 264 integration schedules for the coordinates of the α -carbons \mathbf{x}_{C_α} and latent variables \mathbf{z} during inference.
 265 This flexibility is vital for achieving strong performance; employing a single, coupled time t would
 266 enforce an identical schedule for both modalities, which leads to worse results (see App. G.2).
 267

268 ¹For this stage the VAE parameters are frozen. The target distribution over α -carbon coordinates and latent
 269 variables is defined by the data distribution $p_{\text{data}}(\mathbf{x}_{C_\alpha}, \mathbf{x}_{\neg C_\alpha}, \mathbf{s})$ and the VAE encoder $q_\psi(\mathbf{z} | \mathbf{x}_{C_\alpha}, \mathbf{x}_{\neg C_\alpha}, \mathbf{s})$,
 and can be sampled by $(\mathbf{x}_{C_\alpha}, \mathbf{x}_{\neg C_\alpha}, \mathbf{s}) \sim p_{\text{data}}(\mathbf{x}_{C_\alpha}, \mathbf{x}_{\neg C_\alpha}, \mathbf{s})$ and $\mathbf{z} \sim q_\psi(\mathbf{z} | \mathbf{x}_{C_\alpha}, \mathbf{x}_{\neg C_\alpha}, \mathbf{s})$.

270 The specific form for the time sampling distributions represent an important design decision (Esser
 271 et al., 2024). Inspired by Geffner et al. (2025), who, in the context of backbone design, employ a
 272 mixture of Uniform and Beta distributions, we adopt independent sampling for t_x and t_z given by
 273

$$274 p_{t_x} = 0.02 \text{ Unif}(0, 1) + 0.98 \text{ Beta}(1.9, 1) \quad \text{and} \quad p_{t_z} = 0.02 \text{ Unif}(0, 1) + 0.98 \text{ Beta}(1, 1.5), \quad (6)$$

275 visualized in Fig. 13. The distribution parameters were chosen based on our observation that
 276 generating backbones using a faster schedule than that used for the latent variables yields superior
 277 results during inference (see Sec. 3.4). Hence, the distributions from Eq. (6) were chosen so that time
 278 pairs that satisfy $t_x > t_z$, relevant for the used inference schedules, are sampled more frequently.
 279

280 3.3 NEURAL NETWORK ARCHITECTURES

281 The neural networks used by *La-Proteina*, the encoder, decoder, and denoiser, rely on a shared core
 282 architecture based on transformers with pair-biased attention mechanisms (Jumper et al., 2021), with
 283 our implementation closely following Geffner et al. (2025). While built on this common foundation,
 284 the three networks are distinguished by their specific inputs, outputs, and conditioning mechanisms.
 285 For instance, the encoder takes as input full proteins and outputs per-residue latent variables, while
 286 the decoder produces full proteins given latent variables and α -carbon coordinates. Additionally, the
 287 denoiser is conditioned on interpolation times (t_x, t_z) using adaptive layer normalization and output
 288 scaling techniques (Peebles & Xie, 2023). The encoder and decoder each consist of approximately
 289 130M parameters, while the denoiser totals 160M. A key architectural choice for scalability is that
 290 our main models omit computationally expensive triangular update layers (Jumper et al., 2021),
 291 which, while effective in structural biology tasks (Lin et al., 2024; Abramson et al., 2024), incur
 292 significant memory and compute costs. Following Geffner et al. (2025), *La-Proteina* achieves
 293 high performance using only efficient transformer networks, maintaining strong scalability. These
 294 triangular multiplicative layers can optionally be added to improve pair representations and enhance
 295 protein co-designability (see Sec. 4.1). We include architectural details in App. H.

296 3.4 MODEL SAMPLING

297 New proteins can be generated by *La-Proteina* by sampling latent variables and α -carbon coordinates
 298 using the partially latent flow matching model, and then feeding these through the decoder (Fig. 1).

301 **Sampling the partially latent flow matching model.** As we use Gaussian flows (Sec. 2) we can estimate
 302 the score of intermediate densities $\zeta(\mathbf{x}_{C_\alpha}^{t_x}, \mathbf{z}^{t_z}, t_x, t_z) \approx \nabla \log p_g^{t_x, t_z}(\mathbf{x}_{C_\alpha}^{t_x}, \mathbf{z}^{t_z})$ directly from \mathbf{v}_θ
 303 (Albergo et al., 2023) (see App. E). Access to scores enables the use of stochastic samplers to generate
 304 pairs of α -carbon coordinates and latent variables $(\mathbf{x}_{C_\alpha}, \mathbf{z})$. We generate such samples by simulating
 305 the following stochastic differential equations (SDEs) from $(t_x, t_z) = (0, 0)$ to $(t_x, t_z) = (1, 1)$:

$$306 d\mathbf{x}_{C_\alpha}^{t_x} = \mathbf{v}_\theta^x(\mathbf{x}_{C_\alpha}^{t_x}, \mathbf{z}^{t_z}, t_x, t_z) dt_x + \beta_x(t_x) \zeta^x(\mathbf{x}_{C_\alpha}^{t_x}, \mathbf{z}^{t_z}, t_x, t_z) dt_x + \sqrt{2\beta_x(t_x)\eta_x} d\mathcal{W}_{t_x} \quad (7)$$

$$308 d\mathbf{z}^{t_z} = \mathbf{v}_\theta^z(\mathbf{x}_{C_\alpha}^{t_x}, \mathbf{z}^{t_z}, t_x, t_z) dt_z + \beta_z(t_z) \zeta^z(\mathbf{x}_{C_\alpha}^{t_x}, \mathbf{z}^{t_z}, t_x, t_z) dt_z + \sqrt{2\beta_z(t_z)\eta_z} d\mathcal{W}_{t_z}.$$

310 Here, β_x and β_z are scaling functions that modulate the contribution of the Langevin-like term in the
 311 SDEs (Karras et al., 2022) (details in App. E). We also use noise scaling parameters η_x and η_z , set to
 312 values less than or equal to one, to control the magnitude of the injected noise. This follows common
 313 practices in protein design; virtually all successful flow matching and diffusion-based methods adopt
 314 some form of reduced noise or temperature sampling, as it has been consistently observed to improve
 315 (co-)designability, albeit at the cost of reduced diversity (Yim et al., 2023a; Watson et al., 2023; Lin
 316 et al., 2024; Bose et al., 2024; Wang et al., 2024a; Campbell et al., 2024; Geffner et al., 2025).

317 We use the Euler-Maruyama method (Higham, 2001) to simulate Eq. (7). As discussed, independently
 318 scheduling the generation of α -carbon coordinates \mathbf{x}_{C_α} and latent variables \mathbf{z} is critical for good
 319 performance. Our empirical findings indicate that discretization strategies that generate \mathbf{x}_{C_α} at
 320 a faster rate than \mathbf{z} yield improved results over alternative choices. Full details of our sampling
 321 algorithms, including ablations for these discretization schemes, are provided in Apps. E and G.

322 **Sampling the VAE decoder.** The α -carbon coordinates \mathbf{x}_{C_α} and latent variables \mathbf{z} produced by the
 323 flow matching model are passed to the VAE decoder. The non- α -carbon coordinates $\mathbf{x}_{\neg C_\alpha}$ are then
 obtained by taking the mean of the Gaussian distribution $p_\phi(\mathbf{x}_{\neg C_\alpha} | \mathbf{x}_{C_\alpha}, \mathbf{z})$, while the amino acid
 sequence \mathbf{s} is determined by taking the arg max of the logits of the categorical $p_\phi(\mathbf{s} | \mathbf{x}_{C_\alpha}, \mathbf{z})$.

324 **Table 1: *La-Proteina* achieves state-of-the-art results on unconditional all-atom design, for lengths between**
 325 **100 and 500 residues.** Diversity, novelty, and secondary structure computed on all-atom co-designable samples.
 326 The tri suffix indicates *La-Proteina* with multiplicative triangular update layers to update the pair representation.
 327 η_x and η_z denote the noise scaling factors during generation (Eq. (7)). Best scores **bold**, second best underlined.

Method	Co-designability (%) \uparrow		pLDDT \uparrow (% \geq 80)	Diversity (# clusters) \uparrow			Novelty \downarrow		Designability (%) \uparrow		Sec. Str. (%)	
	All-atom	α -carbon		Str	Seq	Seq+Str	PDB	AFDB	MPNN-8	MPNN-1	α	β
P(all-atom)	36.7	37.9	92	134	148	165	0.72	0.81	57.9	44.4	56	17
Protpardelle-1c	35.8	44.8	62	41	138	61	0.78	0.83	62.0	52.6	63	14
APM	19.0	32.2	85	32	64	59	0.84	0.89	61.8	42.8	73	8
PLAID	11.0	19.2	44	25	38	27	0.89	0.92	37.6	23.8	44	14
ProteinGenerator	9.8	17.8	52	12	28	24	0.83	0.89	54.2	42.8	78	5
Protpardelle	8.8	35.2	37	10	37	21	0.79	<u>0.82</u>	56.2	43.8	65	14
<i>La-Proteina</i> (η_x, η_z) = (0.1, 0.1)	68.4	72.2	97	206	216	301	0.75	0.82	93.8	82.6	72	5
<i>La-Proteina</i> (η_x, η_z) = (0.2, 0.1)	60.6	64.2	97	198	197	261	0.76	0.83	95.4	80.2	66	8
<i>La-Proteina</i> (η_x, η_z) = (0.3, 0.1)	53.8	59.6	95	180	189	249	0.77	0.86	94.6	76.0	63	10
<i>La-Proteina</i> tri (η_x, η_z) = (0.1, 0.1)	75.0	78.2	100	129	199	247	0.82	0.86	94.6	84.6	73	6
<i>La-Proteina</i> tri (η_x, η_z) = (0.3, 0.1)	71.6	75.8	99	166	<u>211</u>	<u>294</u>	0.79	0.85	<u>95.2</u>	<u>83.4</u>	66	9

4 EXPERIMENTS

341 We evaluate *La-Proteina* on unconditional atomistic protein generation up to 800 residues as well
 342 as on atomistic motif scaffolding, a critical protein design task. We train all models on a filtered
 343 version of the Foldseek cluster representatives of the AFDB (van Kempen et al., 2024), except for
 344 long protein generation where we train on a custom subset of the AFDB consisting of \sim 46M samples.
 345 Unless otherwise specified, our trained *La-Proteina* models omit triangular update layers; any use
 346 of such layers is explicitly noted (used for a single model in Sec. 4.1). Full experimental details,
 347 including datasets, metrics, and training procedures, as well as ablations, in Apps. C, D and G.

4.1 ALL-ATOMISTIC UNCONDITIONAL PROTEIN STRUCTURE GENERATION BENCHMARK

349 Tab. 1 compares two variants of *La-Proteina*, one with triangular multiplicative layers and one without,
 350 against publicly available all-atom generation baselines, including P(all-atom) (Qu et al., 2024), APM
 351 (Chen et al., 2025), PLAID (Lu et al., 2024), ProteinGenerator (Lisanza et al., 2023), Protpardelle (Chu
 352 et al., 2024) and Protpardelle-1c (Lu et al., 2025).² Each method was used to generate 100 proteins
 353 for each length in $\{100, 200, 300, 400, 500\}$. We assess performance using several metrics (described
 354 in App. D), including all-atom co-designability, pLDDT, diversity, novelty (against PDB and AFDB),
 355 and standard designability, the last being a metric typically used to evaluate backbone design methods.
 356 Co-designability evaluates how well co-generated sequences fold into generated structures, while
 357 designability uses ProteinMPNN (Dauparas et al., 2022) to produce sequences for generated structures.
 358 **We note that our co-designability filter does not use a predicted local distance difference (pLDDT)**
 359 **cutoff; we instead report pLDDT values of successfully refolded samples separately.**

360 Results in Tab. 1 show that both variants of *La-Proteina* outperform all baselines in all-atom
 361 co-designability, designability, and diversity, while remaining highly competitive in novelty. Ad-
 362 ditionally, we observe that *La-Proteina* with triangular layers tends to achieve higher co-designability
 363 values, albeit at the cost of diversity, **and that all *La-Proteina* models yield higher pLDDT values**
 364 **for successfully refolded samples than baselines (a more detailed pLDDT analysis is provided in**
 365 **Fig. 34).** Crucially, *La-Proteina* without triangular multiplicative layers establishes state-of-the-art
 366 performance while being highly scalable. This contrasts sharply with the second-best performing
 367 method, P(all-atom), which relies on computationally expensive triangular update layers (Jumper
 368 et al., 2021), thereby limiting it to short proteins. Due to its favorable scalability and performance, all
 369 remaining experiments in the upcoming sections rely on *La-Proteina* without triangular update layers.

370 **Generation of Large All-Atomistic Structures.** To demonstrate scalability, we trained another
 371 version of *La-Proteina* on an AFDB dataset with \sim 46M samples with length up to 896 residues
 372 (details in App. C.1). We see in Fig. 4 that *La-Proteina* performs best in terms of (co-)designability
 373 and diversity for the task of backbone design (left two panels) as well as all-atom design (right two
 374 panels). Notably, *La-Proteina* outperforms the previous state-of-the-art Protein method (Geffner
 375 et al., 2025) in backbone design tasks at all lengths, and is far ahead in co-designability compared to
 376 other all-atom generation methods, which fail to produce realistic samples of length 500 and above.

377 ²Protpardelle-1c was trained conditionally for atomistic scaffolding. However, Lu et al. (2025) did not train
 an all-atom unconditional model. We sampled the conditional model unconditionally for this evaluation.

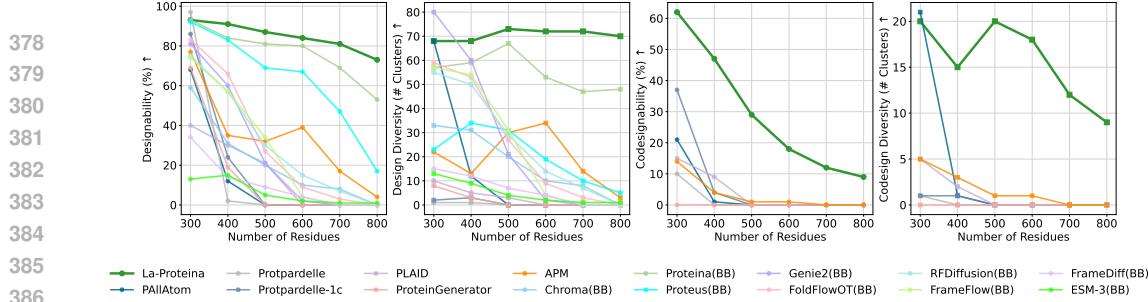


Figure 4: **La-Proteina’s strong performance for unconditional long length generation.** *La-Proteina* produces co-designable and diverse proteins of over 500 residues, where all all-atom baselines collapse, yielding no co-designable samples. Left plots show backbone metrics (designability, diversity) against backbone and all-atom baselines; right plots show all-atom metrics (all-atom codesignability, diversity). Metrics detailed in App. D.

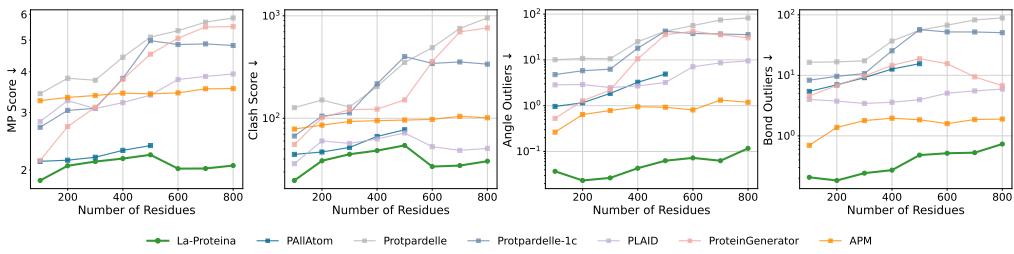


Figure 5: **La-Proteina produces structures with higher structural validity than existing all-atom generation baselines.** MolProbity metrics assessing structural quality: overall *MP score*, *clash score*, Ramachandran *angle outliers*, and covalent *bond outliers* (details in App. D). P(all-atom) limited to 500 residues; generating longer proteins is computationally prohibitive, requiring over 140GB of GPU memory to produce a single sample.

Biophysical Analysis of All-Atom Structure Validity. To examine the biophysical quality of generated structures, we evaluate our model and all-atom baselines using two approaches (details in App. D): First, we use the MolProbity tool (Davis et al., 2007) to assess the structural validity in terms of bond angles, clashes and other physical quantities. Fig. 5 shows that *La-Proteina* produces more high quality structures, scoring significantly better than all baselines. The structures generated by *La-Proteina* are the most physically realistic ones, similar to real proteins.

Most side chain torsion angles do not vary freely, but cluster due to steric repulsions into so-called rotamers (Haddad et al., 2019). As a second validation to judge the coverage of conformational space, we visualize side-chain dihedral angle distributions and compare their rotamer populations to PDB and AFDB references, similar to how rotamer libraries operate (Dunbrack Jr, 2002). *La-Proteina* models these distribution accurately, as shown in Fig. 6 for the tryptophan χ_1 angle. *La-Proteina*’s samples accurately recover all major rotameric states as well as their respective frequencies with respect to the reference PDB/AFDB. In contrast, baselines often deviate from these references, missing modes or populating unrealistic angular regions. Plots for all residues and angles in App. D.3.2.

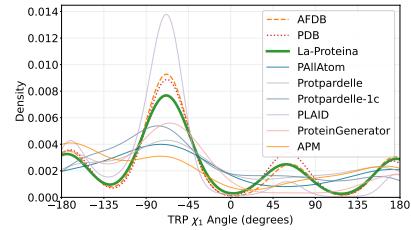


Figure 6: Distribution of TRP χ_1 angle.

4.2 ATOMISTIC MOTIF SCAFFOLDING

Two advantages of all-atom generative models are their ability to incorporate atomistic conditioning information as well as designing new protein structures independent of backbone or rotamer constraints. To this end, we trained *La-Proteina* on the challenging task of atomistic motif scaffolding, where given the atomic structure of a predefined motif the model should generate a protein structure that scaffolds this motif accurately. We assessed performance under two distinct levels of input motif detail: *all-atom*, where the model is conditioned on the complete atomic structure of the motif residues (backbone and side-chain), and *tip-atom* scaffolding, where we only prespecify important functional groups after the final rotatable bond and let the model decide the relative backbone and rotamer placement. For each of these two tasks we test both an *indexed* version, where the sequence indices of the motif residues are provided, and an *unindexed* version, where the model must also infer these positions, re-

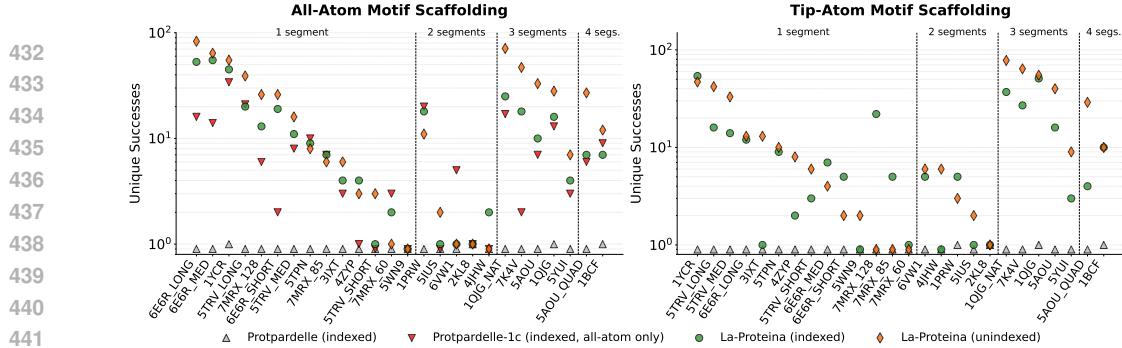


Figure 7: **Atomistic motif scaffolding.** 26 atomistic motif-scaffolding tasks (x-axis), comparing ProtPardelle (limited to indexed), ProtPardelle-1c (limited to all-atom indexed), *La-Proteina* (indexed) and *La-Proteina* (unindexed). *La-Proteina* solves between 21 and 25 of the 26 tasks, depending on the task type (all-atom or tip-atom, indexed or unindexed), vastly outperforms ProtPardelle (which solves 4 out of 26 tasks), and also outperforms ProtPardelle-1c, achieving a larger number of unique successes in 21 out of the 26 tasks. “# segments” refers to the number of residue segments in the motif. Detailed evaluation criteria in App. F.

sulting in four evaluation setups. Across all setups a design is successful if it is all-atom co-designable, has an α -carbon motifRMSD $< 1\text{\AA}$, and an all-atom motifRMSD $< 2\text{\AA}$. Complete details in App. F.

Fig. 7 presents the results for 26 atomistic scaffolding tasks, grouped by the number of continuous residue segments forming the motif. Our model consistently outperforms both ProtPardelle-1c, which is limited to indexed all-atom scaffolding, and its predecessor ProtPardelle, which is restricted to indexed scaffolding. *La-Proteina* successfully solves most benchmark tasks across all four regimes: *all-atom* and *tip-atom*, for both the *indexed* and *unindexed* setups. Interestingly, for motifs comprised of three or more distinct residue segments, the unindexed version of *La-Proteina* consistently outperforms its indexed counterpart. We hypothesize this is because fixing the positions of multiple segments limits the model’s flexibility to explore diverse structural solutions; the freedom to determine the placement of the motif’s residues in the unindexed setup is crucial for discovering a wider range of scaffolds. A similar effect was observed by concurrent work (Faltungs et al., 2025; Ahern et al., 2025). Example scaffolds illustrating *La-Proteina*’s diverse and successful designs are shown in Fig. 3, with additional examples for tip-atom motif scaffolding of relevant enzyme active sites in Figs. 10 to 12. The results presented here evaluate *La-Proteina* structures directly; an alternative, more stringent evaluation using refolded structures (obtained by folding the model-produced sequences) is provided in Fig. 33, where it can be observed that *La-Proteina* achieves state-of-the-art performance under this evaluation as well.

4.3 AUTOENCODER EVALUATION AND LATENT SPACE ANALYSIS

We assessed the VAE’s reconstruction performance on a held-out test set, where it achieved a mean all-atom RMSD $\approx 0.12\text{\AA}$ and a perfect sequence recovery rate of 1. Beyond reconstruction, we analyzed the properties of the latent space. t-SNE visualization of the latent variables (Fig. 8, left) reveals distinct clusters corresponding to different amino acid residue types, indicating that latent variables effectively capture residue-specific features. In addition, we see that structurally (GLN/GLU, ASN/ASP) as well as chemically similar amino acids (aromatics like PHE/TYR/TRP) cluster together, indicating the latent space captures biophysically relevant features.

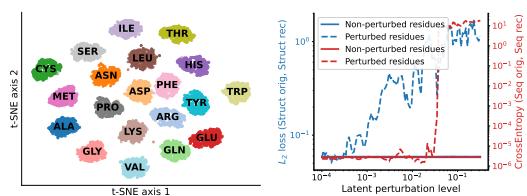


Figure 8: **Analyzing *La-Proteina*’s latent space.** t-SNE plot (left) and perturbation-based locality analysis (right).

To further probe the learned representation, we conducted a simple perturbation experiment: after encoding a protein, the latent variables associated with a single residue were perturbed with varying magnitudes. We observe that such localized perturbations to a single residue’s latent vector predominantly impact the reconstruction of that specific residue, leaving other residues almost unaffected (Fig. 8, right; **red**: sequence reconstruction loss, **blue**: structure reconstruction loss). This “local behavior” of the latent representation is noteworthy: Although both the encoder and decoder use transformer architectures capable of modeling long-range dependencies and jointly process the entire protein and all

486 latent variables, our analysis suggests that each per-residue latent variable primarily encapsulates in-
 487 formation pertinent to its own corresponding residue, rather than distributing information non-locally.
 488

489 5 CONCLUSIONS

490 We presented *La-Proteina*, a scalable and efficient all-atom protein structure generative model that
 491 achieves state-of-the-art performance in unconditional and conditional atomistic protein design tasks
 492 and can generate realistic atomistic structures of up to 800 residues. Our key design choice involves
 493 a partially latent flow matching model that inherits the performance benefits of backbone generative
 494 models while benefiting from a per-residue fixed-size latent representation for sequence and
 495 side-chains, side-stepping scalability and accuracy issues that other methods suffer from. We believe
 496 that *La-Proteina* and its strong performance on atomistic design tasks, like unindexed atomistic motif
 497 scaffolding, could enable new important protein design applications, like binder and enzyme design.
 498

499 6 ETHICS STATEMENT

500 The advancement of generative models for de novo protein design, including approaches like *La-
 501 Proteina*, offers the potential for significant positive impact across many scientific and societal
 502 domains. These technologies can significantly accelerate the discovery and development of protein-
 503 based therapeutics. In biotechnology and industry, computationally designed enzymes could pave the
 504 way, for instance, to greener chemical processes and sustainable materials. Alongside these benefits,
 505 new and improved tools for de novo protein design carry certain risks. While models in this area are
 506 developed for beneficial applications, any technology capable of designing novel functional proteins
 507 could, in principle, be misused if ethical oversight is not in place. This includes, for instance, the
 508 hypothetical design of proteins that could pose biosecurity threats.
 509

511 7 REPRODUCIBILITY STATEMENT

512 To ensure reproducibility and facilitate the review process, we include the *La-Proteina* code with
 513 our submission, and provide comprehensive experimental details in the Supplementary Material.
 514 The latter includes the precise filters used for dataset construction (App. C.1), model architectures
 515 (App. H), and training parameters like GPU count and training steps (App. C.2 for unconditional
 516 generation, App. F.1 for atomistic motif scaffolding). We also include precise descriptions and
 517 the exact commands used to compute all reported metrics (App. D for metrics used to evaluate
 518 unconditional models, App. F.3 for atomistic motif scaffolding).
 519

521 REFERENCES

522 Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel, Olaf
 523 Ronneberger, Lindsay Willmore, Andrew J. Ballard, Joshua Bambrick, Sebastian W. Bodenstein,
 524 David A. Evans, Chia-Chun Hung, Michael O'Neill, David Reiman, Kathryn Tunyasuvunakool,
 525 Zachary Wu, Akyilé Zemgulyte, Eirini Arvaniti, Charles Beattie, Ottavia Bertolli, Alex Bridgland,
 526 Alexey Cherepanov, Miles Congreve, Alexander I. Cowen-Rivers, Andrew Cowie, Michael Fig-
 527 urnov, Fabian B. Fuchs, Hannah Gladman, Rishabh Jain, Yousuf A. Khan, Caroline M. R. Low,
 528 Kuba Perlin, Anna Potapenko, Pascal Savy, Sukhdeep Singh, Adrian Stecula, Ashok Thillaisun-
 529 daram, Catherine Tong, Sergei Yakneen, Ellen D. Zhong, Michal Zielinski, Augustin Zidek, Victor
 530 Bapst, Pushmeet Kohli, Max Jaderberg, Demis Hassabis, and John M. Jumper. Accurate structure
 531 prediction of biomolecular interactions with alphafold 3. *Nature*, 630:493–500, 2024.

532 Woody Ahern, Jason Yim, Doug Tischer, Saman Salike, Seth Woodbury, Donghyo Kim, Indrek
 533 Kalvet, Yakov Kipnis, Brian Coventry, Han Altae-Tran, et al. Atom level enzyme active site
 534 scaffolding using rfdiffusion2. *bioRxiv*. 2025.

535 Michael S. Albergo, Nicholas M. Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A unifying
 536 framework for flows and diffusions. *arXiv preprint arXiv:2303.08797*, 2023.

537 Michael Samuel Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic
 538 interpolants. In *The Eleventh International Conference on Learning Representations (ICLR)*, 2023.

- 540 Anonymous. Scaling atomistic protein binder design with generative pretraining and test-time
 541 compute. *Under review*, 2025.
- 542
- 543 Jason Ansel, Edward Yang, Horace He, Natalia Gimelshein, Animesh Jain, Michael Voznesensky,
 544 Bin Bao, Peter Bell, David Berard, Evgeni Burovski, et al. Pytorch 2: Faster machine learning
 545 through dynamic python bytecode transformation and graph compilation. In *Proceedings of the*
 546 *29th ACM International Conference on Architectural Support for Programming Languages and*
 547 *Operating Systems, Volume 2*, pp. 929–947, 2024.
- 548 Inigo Barrio-Hernandez, Jingi Yeo, Jürgen Jänes, Milot Mirdita, Cameron L. M. Gilchrist, Tanita
 549 Wein, Mihaly Varadi, Sameer Velankar, Pedro Beltrao, and Martin Steinegger. Clustering predicted
 550 structures at the scale of the known protein universe. *Nature*, 622:637–645, 2023.
- 551
- 552 Helen M. Berman, John D. Westbrook, Zukang Feng, Gary L Gilliland, Talapady N. Bhat, Helge
 553 Weissig, Ilya N. Shindyalov, and Philip E. Bourne. The protein data bank. *Nucleic Acids Research*,
 554 28(1):235–42, 2000.
- 555 Joey Bose, Tara Akhound-Sadegh, Guillaume Huguet, Kilian Fatras, Jarrid Rector-Brooks, Cheng-
 556 Hao Liu, Andrei Cristian Nica, Maksym Korablyov, Michael M. Bronstein, and Alexander Tong.
 557 SE(3)-stochastic flow matching for protein backbone generation. In *The Twelfth International*
 558 *Conference on Learning Representations (ICLR)*, 2024.
- 559 Andrew Campbell, Jason Yim, Regina Barzilay, Tom Rainforth, and Tommi Jaakkola. Generative
 560 flows on discrete state-spaces: Enabling multimodal flows with applications to protein co-design.
 561 In *Proceedings of the 41st International Conference on Machine Learning (ICML)*, 2024.
- 562
- 563 Oliviero Carugo and Kristina Djinović-Carugo. Half a century of ramachandran plots. *Biological*
 564 *Crystallography*, 69(8):1333–1341, 2013.
- 565 Pinak Chakrabarti and Debnath Pal. The interrelationships of side-chain and main-chain conforma-
 566 tions in proteins. *Progress in biophysics and molecular biology*, 76(1-2):1–102, 2001.
- 567
- 568 Ruizhe Chen, Dongyu Xue, Xiangxin Zhou, Zaixiang Zheng, Xiangxiang Zeng, and Quanquan
 569 Gu. An all-atom generative model for designing protein complexes. In *Proceedings of the 42nd*
 570 *International Conference on Machine Learning (ICML)*, 2025.
- 571 Alexander E. Chu, Jinho Kim, Lucy Cheng, Gina El Nesr, Minkai Xu, Richard W. Shuai, and Po-Ssu
 572 Huang. An all-atom protein generative model. *Proceedings of the National Academy of Sciences*,
 573 121(27):e2311500121, 2024.
- 574
- 575 Jonathan Clayden, Nick Greeves, and Stuart Warren. *Organic chemistry*. Oxford university press,
 576 2012.
- 577 Justas Dauparas, Ivan Anishchenko, Nathaniel Bennett, Hua Bai, Robert J Ragotte, Lukas F Milles,
 578 Basile IM Wicky, Alexis Courbet, Rob J de Haas, Neville Bethel, et al. Robust deep learning-based
 579 protein sequence design using proteinmpnn. *Science*, 378(6615):49–56, 2022.
- 580
- 581 Ian W Davis, Andrew Leaver-Fay, Vincent B Chen, Jeremy N Block, Gary J Kapral, Xueyi Wang,
 582 Laura W Murray, W Bryan Arendall III, Jack Snoeyink, Jane S Richardson, et al. Molprobity:
 583 all-atom contacts and structure validation for proteins and nucleic acids. *Nucleic acids research*,
 584 35(suppl_2):W375–W383, 2007.
- 585
- 586 Roland L Dunbrack Jr. Rotamer libraries in the 21st century. *Current opinion in structural biology*,
 12(4):431–440, 2002.
- 587
- 588 Roland L Dunbrack Jr and Martin Karplus. Conformational analysis of the backbone-dependent
 589 rotamer preferences of protein sidechains. *Nature structural biology*, 1(5):334–340, 1994.
- 590
- 591 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
 592 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, Dustin Podell, Tim Dockhorn, Zion English,
 593 Kyle Lacey, Alex Goodwin, Yannik Marek, and Robin Rombach. Scaling rectified flow transform-
 594 ers for high-resolution image synthesis. In *International Conference on Machine Learning (ICML)*,
 595 2024.

- 594 Felix Faltings, Hannes Stark, Regina Barzilay, and Tommi Jaakkola. Proxelgen: Generating proteins
 595 as 3d densities. *arXiv preprint arXiv:2506.19820*, 2025.
- 596
- 597 Cong Fu, Keqiang Yan, Limei Wang, Wing Yee Au, Michael Curtis McThrow, Tao Komikado, Koji
 598 Maruhashi, Kanji Uchino, Xiaoning Qian, and Shuiwang Ji. A latent diffusion model for protein
 599 structure generation. In *Learning on Graphs Conference*, pp. 29–1. PMLR, 2024.
- 600
- 601 Ruiqi Gao, Emiel Hoogeboom, Jonathan Heek, Valentin De Bortoli, Kevin Patrick Murphy, and Tim
 602 Salimans. Diffusion models and gaussian flow matching: Two sides of the same coin. In *The*
 603 *Fourth Blogpost Track at ICLR 2025*, 2025. URL <https://openreview.net/forum?id=C8Yyg9wy0s>.
- 604
- 605 Tomas Geffner, Kieran Didi, Zuobai Zhang, Danny Reidenbach, Zhonglin Cao, Jason Yim, Mario
 606 Geiger, Christian Dallago, Emine Kucukbenli, Arash Vahdat, and Karsten Kreis. Proteina: Scal-
 607 ing flow-based protein structure generative models. In *International Conference on Learning*
 608 *Representations (ICLR)*, 2025.
- 609
- 610 Yazan Haddad, Vojtech Adam, and Zbynek Heger. Rotamer dynamics: analysis of rotamers in
 611 molecular dynamics simulations of proteins. *Biophysical journal*, 116(11):2062–2072, 2019.
- 612
- 613 Thomas Hayes, Roshan Rao, Halil Akin, Nicholas J. Sofroniew, Deniz Oktay, Zeming Lin, Robert
 614 Verkuil, Vincent Q. Tran, Jonathan Deaton, Marius Wiggert, Rohil Badkundri, Irhum Shafkat, Jun
 615 Gong, Alexander Derry, Raul S. Molina, Neil Thomas, Yousuf Khan, Chetan Mishra, Carolyn Kim,
 616 Liam J. Bartie, Matthew Nemeth, Patrick D. Hsu, Tom Sercu, Salvatore Candido, and Alexander
 617 Rives. Simulating 500 million years of evolution with a language model. *bioRxiv*, 2024.
- 618
- 619 Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
 620 Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a
 621 constrained variational framework. In *International conference on learning representations*, 2017.
- 622
- 623 Desmond J Higham. An algorithmic introduction to numerical simulation of stochastic differential
 624 equations. *SIAM review*, 43(3):525–546, 2001.
- 625
- 626 Po-Ssu Huang, Scott E. Boyken, and David Baker. The coming of age of de novo protein design.
 627 *Nature*, 537:320–327, 2016.
- 628
- 629 Guillaume Huguet, James Vuckovic, Kilian Fatras, Eric Thibodeau-Laufer, Pablo Lemos, Riashat
 630 Islam, Cheng-Hao Liu, Jarrid Rector-Brooks, Tara Akhound-Sadegh, Michael Bronstein, Alexander
 631 Tong, and Avishek Joey Bose. Sequence-augmented se(3)-flow matching for conditional protein
 632 backbone generation. *arXiv preprint arXiv:2405.20313*, 2024.
- 633
- 634 John Ingraham, Max Baranov, Zak Costello, Vincent Frappier, Ahmed Ismail, Shan Tie, Wujie Wang,
 635 Vincent Xue, Fritz Obermeyer, Andrew Beam, and Gevorg Grigoryan. Illuminating protein space
 636 with a programmable generative model. *Nature*, 623:1070–1078, 2023.
- 637
- 638 John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
 639 Kathryn Tunyasuvunakool, Russ Bates, Augustin Zidek, Anna Potapenko, Alex Bridgland,
 640 Clemens Meyer, Simon A. A. Kohl, Andrew J. Ballard, Andrew Cowie, Bernardino Romera-
 641 Paredes, Stanislav Nikolov, Rishabh Jain, Jonas Adler, Trevor Back, Stig Petersen, David Reiman,
 642 Ellen Clancy, Michal Zielinski, Martin Steinegger, Michalina Pacholska, Tamas Berghammer,
 643 Sebastian Bodenstein, David Silver, Oriol Vinyals, Andrew W. Senior, Koray Kavukcuoglu, Push-
 644 meet Kohli, and Demis Hassabis. Highly accurate protein structure prediction with alphafold.
 645 *Nature*, 596:583–589, 2021.
- 646
- 647 Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
 648 based generative models. In *Advances in Neural Information Processing Systems (NeurIPS)*,
 649 2022.
- 650
- 651 Diederik P Kingma. Adam: A method for stochastic optimization. *arXiv preprint arXiv:1412.6980*,
 652 2014.
- 653
- 654 Diederik P Kingma, Max Welling, et al. Auto-encoding variational bayes, 2013.

- 648 Brian Kuhlman and Philip Bradley. Advances in protein structure prediction and design. *Nat. Rev. Mol. Cell Biol.*, 20:681–697, 2019.
- 649
- 650
- 651 Yeqing Lin and Mohammed Alquraishi. Generating novel, designable, and diverse protein structures by equivariantly diffusing oriented residue clouds. In *Proceedings of the 40th International Conference on Machine Learning (ICML)*, 2023.
- 652
- 653
- 654 Yeqing Lin, Minji Lee, Zhao Zhang, and Mohammed AlQuraishi. Out of many, one: Designing and scaffolding proteins at the scale of the structural universe with genie 2. *arXiv preprint arXiv:2405.15489*, 2024.
- 655
- 656
- 657
- 658 Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Nikita Smetanin, Robert Verkuil, Ori Kabeli, Yaniv Shmueli, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Salvatore Candido, and Alexander Rives. Evolutionary-scale prediction of atomic-level protein structure with a language model. *Science*, 379(6637):1123–1130, 2023.
- 659
- 660
- 661
- 662 Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow matching for generative modeling. In *The Eleventh International Conference on Learning Representations (ICLR)*, 2023.
- 663
- 664
- 665
- 666 Sidney Lyayuga Lisanza, Jake Merle Gershon, Sam Tipps, Lucas Arnoldt, Samuel Hendel, Jeremiah Nelson Sims, Xinting Li, and David Baker. Joint generation of protein sequence and structure with rosettafold sequence space diffusion. *bioRxiv*, pp. 2023–05, 2023.
- 667
- 668
- 669 Xingchao Liu, Chengyue Gong, and qiang liu. Flow straight and fast: Learning to generate and transfer data with rectified flow. In *The Eleventh International Conference on Learning Representations (ICLR)*, 2023.
- 670
- 671
- 672
- 673 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint arXiv:1711.05101*, 2017.
- 674
- 675
- 676 Simon C Lovell, J Michael Word, Jane S Richardson, and David C Richardson. The penultimate rotamer library. *Proteins: Structure, Function, and Bioinformatics*, 40(3):389–408, 2000.
- 677
- 678 Amy X Lu, Wilson Yan, Sarah A Robinson, Kevin K Yang, Vladimir Gligorijevic, Kyunghyun Cho, Richard Bonneau, Pieter Abbeel, and Nathan Frey. Generating all-atom protein structure from sequence-only training data. *bioRxiv*, pp. 2024–12, 2024.
- 679
- 680
- 681 Tianyu Lu, Richard Shuai, Petr Kouba, Zhaoyang Li, Yilin Chen, Akio Shirali, Jinho Kim, and Po-Ssu Huang. Conditional protein structure generation with protpardelle-1c. *bioRxiv*, pp. 2025–08, 2025.
- 682
- 683
- 684 Nanye Ma, Mark Goldstein, Michael S. Albergo, Nicholas M. Boffi, Eric Vanden-Eijnden, and Saining Xie. Sit: Exploring flow and diffusion-based generative models with scalable interpolant transformers. *arXiv preprint arXiv:2401.08740*, 2024.
- 685
- 686
- 687 Matt McPartlon and Jinbo Xu. Deep learning for flexible and site-specific protein docking and design. *BioRxiv*, pp. 2023–04, 2023.
- 688
- 689
- 690 Matt McPartlon, Céline Marquet, Tomas Geffner, Daniel Kovtun, Alexander Goncearenco, Zachary Carpenter, Luca Naef, Michael M. Bronstein, and Jinbo Xu. Bridging sequence and structure: Latent diffusion for conditional protein generation, 2024. URL <https://openreview.net/forum?id=DP4NkPZOpD>.
- 691
- 692
- 693
- 694 Richard Obexer, Alexei Godina, Xavier Garrabou, Peer RE Mittl, David Baker, Andrew D Griffiths, and Donald Hilvert. Emergence of a catalytic tetrad during evolution of a highly active artificial aldolase. *Nature chemistry*, 9(1):50–56, 2017.
- 695
- 696
- 697
- 698 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)*, 2023.
- 699
- 700
- 701 Wei Qu, Jiawei Guan, Rui Ma, Ke Zhai, Weikun Wu, and Haobo Wang. P(all-atom) is unlocking new path for protein design. *bioRxiv*, 2024.

- 702 Milong Ren, Tian Zhu, and Haicang Zhang. Carbonovo: Joint design of protein structure and
 703 sequence using a unified energy-based model. In *Forty-first International Conference on Machine*
 704 *Learning*, 2024.
- 705 Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and
 706 approximate inference in deep generative models. In *International conference on machine learning*,
 707 pp. 1278–1286. PMLR, 2014.
- 708 Janes S. Richardson and David C. Richardson. The de novo design of protein structures. *Trends in*
 709 *Biochemical Sciences*, 14(7):304–309, 1989.
- 710 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 711 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-*
 712 *ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.
- 713 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and
 714 Ben Poole. Score-Based Generative Modeling through Stochastic Differential Equations. In
 715 *International Conference on Learning Representations (ICLR)*, 2021.
- 716 Hannes Stark, Bowen Jing, Tomas Geffner, Jason Yim, Tommi Jaakkola, Arash Vahdat, and
 717 Karsten Kreis. Protcomposer: Compositional protein structure generation with 3d ellipsoids.
 718 In *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=0ctvBgKFc>.
- 719 Martin Steinegger and Johannes Söding. Mmseqs2 enables sensitive protein sequence searching for
 720 the analysis of massive data sets. *Nat Biotechnol.*, 35:1026–1028, 2017.
- 721 Arash Vahdat, Karsten Kreis, and Jan Kautz. Score-based generative modeling in latent space.
 722 *Advances in neural information processing systems*, 34:11287–11302, 2021.
- 723 Michel van Kempen, Stephanie S. Kim, Charlotte Tumescheit, Milot Mirdita, Jeongjae Lee, Cameron
 724 L. M. Gilchrist, Johannes Söding, and Martin Steinegger. Fast and accurate protein structure search
 725 with foldseek. *Nat Biotechnol.*, 42:243–246, 2024.
- 726 Mihaly Varadi, Stephen Anyango, Mandar Deshpande, Sreenath Nair, Cindy Natassia, Galabina
 727 Yordanova, David Yuan, Oana Stroe, Gemma Wood, Agata Laydon, Augustin Žídek, Tim Green,
 728 Kathryn Tunyasuvunakool, Stig Petersen, John Jumper, Ellen Clancy, Richard Green, Ankur Vora,
 729 Mira Lutfi, and Sameer Velankar. Alphafold protein structure database: Massively expanding the
 730 structural coverage of protein-sequence space with high-accuracy models. *Nucleic Acids Research*,
 731 50:D439–D444, 2021.
- 732 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
 733 Kaiser, and Illia Polosukhin. Attention is all you need. In *Advances in Neural Information*
 734 *Processing Systems (NeurIPS)*, 2017.
- 735 Chentong Wang, Yannan Qu, Zhangzhi Peng, Yukai Wang, Hongli Zhu, Dachuan Chen, and Longxing
 736 Cao. Proteus: Exploring protein structure generation for enhanced designability and efficiency.
 737 *bioRxiv*, 2024a.
- 738 Xinyou Wang, Zaixiang Zheng, Fei Ye, Dongyu Xue, Shujian Huang, and Quanquan Gu. Diffusion
 739 language models are versatile protein learners. *arXiv preprint arXiv:2402.18567*, 2024b.
- 740 Xinyou Wang, Zaixiang Zheng, Fei Ye, Dongyu Xue, Shujian Huang, and Quanquan Gu. Dplm-2: A
 741 multimodal diffusion protein language model. *arXiv preprint arXiv:2410.13782*, 2024c.
- 742 Joseph L. Watson, David Juergens, Nathaniel R. Bennett, Brian L. Trippe, Jason Yim, Helen E.
 743 Eisenach, Woody Ahern, Andrew J. Borst, Robert J. Ragotte, Lukas F. Milles, Basile I. M.
 744 Wicky, Nikita Hanikel, Samuel J. Pellock, Alexis Courbet, William Sheffler, Jue Wang, Preetham
 745 Venkatesh, Isaac Sappington, Susana Vázquez Torres, Anna Lauko, Valentin De Bortoli, Emile
 746 Mathieu, Regina Barzilay, Tommi S. Jaakkola, Frank DiMaio, Minkyung Baek, and David Baker.
 747 De novo design of protein structure and function with rfdiffusion. *Nature*, 620:1089–1100, 2023.

- 756 Jianyi Yang, Ivan Anishchenko, Hahnbeom Park, Zhenling Peng, Sergey Ovchinnikov, and David
757 Baker. Improved protein structure prediction using predicted interresidue orientations. *Proceedings*
758 *of the National Academy of Sciences*, 117(3):1496–1503, 2020.
- 759
- 760 Jason Yim, Andrew Campbell, Andrew Y. K. Foong, Michael Gastegger, José Jiménez-Luna, Sarah
761 Lewis, Victor Garcia Satorras, Bastiaan S. Veeling, Regina Barzilay, Tommi Jaakkola, and Frank
762 Noé. Fast protein backbone generation with $se(3)$ flow matching. *arXiv preprint arXiv:2310.05297*,
763 2023a.
- 764 Jason Yim, Brian L. Trippe, Valentin De Bortoli, Emile Mathieu, Arnaud Doucet, Regina Barzilay,
765 and Tommi Jaakkola. $SE(3)$ diffusion model with application to protein backbone generation. In
766 *Proceedings of the 40th International Conference on Machine Learning (ICML)*, 2023b.
- 767 Jason Yim, Andrew Campbell, Emile Mathieu, Andrew Y. K. Foong, Michael Gastegger, Jose
768 Jimenez-Luna, Sarah Lewis, Victor Garcia Satorras, Bastiaan S. Veeling, Frank Noe, Regina
769 Barzilay, and Tommi Jaakkola. Improved motif-scaffolding with $SE(3)$ flow matching. *Transactions*
770 *on Machine Learning Research*, 2024.
- 771
- 772 Jason Yim, Marouane Jaakik, Ge Liu, Jacob Gershon, Karsten Kreis, David Baker, Regina Barzilay,
773 and Tommi Jaakkola. Hierarchical protein backbone generation with latent and structure diffusion.
774 *arXiv preprint arXiv:2504.09374*, 2025.
- 775 Yang Zhang and Jeffrey Skolnick. Scoring function for automated assessment of protein structure
776 template quality. *Proteins: Structure, Function, and Bioinformatics*, 57(4):702–710, 2004.
- 777
- 778 Qingqing Zheng, Matt Le, Neta Shaul, Yaron Lipman, Aditya Grover, and Ricky TQ Chen. Guided
779 flows for generative modeling and decision making. *arXiv preprint arXiv:2311.13443*, 2023.
- 780
- 781
- 782
- 783
- 784
- 785
- 786
- 787
- 788
- 789
- 790
- 791
- 792
- 793
- 794
- 795
- 796
- 797
- 798
- 799
- 800
- 801
- 802
- 803
- 804
- 805
- 806
- 807
- 808
- 809

810 811 812 813 814 815 Appendix

816	A Limitations and Future Work	17
817		
818	B Additional Visualizations	17
819	B.1 Unconditional <i>La-Proteina</i> Samples	17
820	B.2 Atomistic Motif Scaffolding <i>La-Proteina</i> Samples	17
821		
822	C Unconditional Generation	22
823	C.1 Datasets	22
824	C.2 Training Details	22
825	C.2.1 VAE training	22
826	C.2.2 Flow Matching Training	22
827	C.3 Baseline Sampling	23
828		
829	D Evaluation Metrics	24
830	D.1 Co-Designability, Designability, Diversity, Novelty	24
831	D.2 MolProbit for Structural Quality Assesment	25
832	D.3 Side-Chain Dihedral Angle Distributions	26
833	D.3.1 Background on amino acid rotamers	26
834	D.3.2 Analysis of generated amino acid rotamers	27
835		
836	E Sampling	31
837	E.1 Numerical Discretization Scheme	31
838	F Atomistic Motif Scaffolding	31
839	F.1 Training	32
840	F.2 Sampling	33
841	F.3 Evaluation	33
842	F.4 Evaluation via Refolded Structures	34
843	F.5 Baseline Sampling	35
844		
845	G Ablations	36
846	G.1 VAE Ablations	36
847	G.1.1 KL Penalty Weight	36
848	G.1.2 Decoder Architecture	36
849	G.1.3 Encoding α -carbons	36
850	G.1.4 Results	37
851	G.2 Flow Matching Sampling Hyperparameters	38
852	G.3 Main Conclusions from Ablation Studies	39
853		
854	H Architectures	39
855		
856	I Model Parameters, Sampling Speed and Memory Consumption	40
857		
858	J Additional Results	43
859	J.1 Unconditional Evaluation on Shorter Proteins	43
860	J.2 pLDDT Values	43
861	J.3 Residue Type Distribution	44
862		
863	K Declaration of Large Language Models Usage in this Work	44

864

A LIMITATIONS AND FUTURE WORK

865
866 This work focuses on the de novo design of monomeric proteins using *La-Proteina*. While this scope
867 allows for a thorough investigation and demonstration of our partially latent approach for single-chain
868 structures, we did not apply *La-Proteina* to the area of protein complex design. In biological systems,
869 proteins typically function as components of larger assemblies. Handling protein complexes is critical
870 for important tasks such as de novo binder design and enzyme design, which inherently require the
871 modeling of full protein complexes and their interfaces. The instantiation of *La-Proteina* presented in
872 this work was not trained to handle protein complexes. Our focus on monomers should be viewed as
873 a limitation of the current application scope rather than a constraint of the underlying *La-Proteina*
874 framework. We anticipate that the principles of combining explicit structural modeling with latent
875 representations could be fruitfully extended in future work to address the challenges of designing
876 functional protein complexes.
877878

B ADDITIONAL VISUALIZATIONS

879

B.1 UNCONDITIONAL *La-Proteina* SAMPLES

880 In Fig. 9, we show additional unconditional *La-Proteina* samples. Our model can generate diverse
881 and co-designable fully atomistic proteins across a broad range of sizes (residue count).
883884

B.2 ATOMISTIC MOTIF SCAFFOLDING *La-Proteina* SAMPLES

885 In Figs. 10 to 12, we show additional atomistic motif scaffolding visualizations. All three figures
886 show partial side chain scaffolding setups, where only the tips of the conditioning side chains are
887 given. The examples correspond to the scaffolding of enzyme active sites. We observe that the
888 **red** conditioning motifs are exactly reproduced in almost all cases, and overall valid proteins are
889 generated. Moreover, Fig. 12 demonstrates how *La-Proteina* can scaffold the same atomistic motif in
890 diverse ways.
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

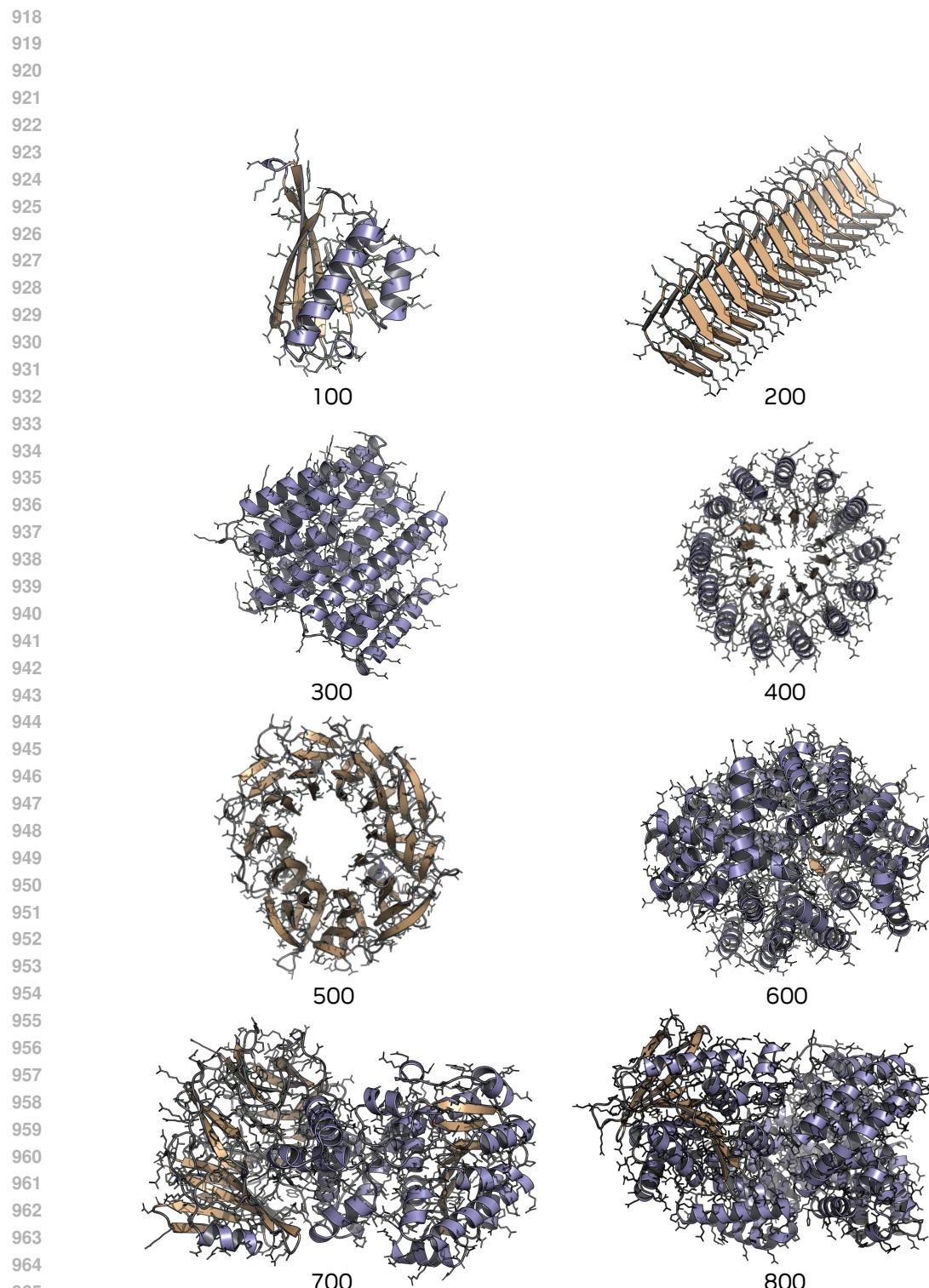


Figure 9: **Fully atomistic unconditional *La-Proteina* samples.** Numbers denote residue count. All samples co-designable.

972
973
974
975
976
977

978
979
980
981
982
983
984

985
986
987
988
989
990
991
992

993
994
995
996
997
998
999

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013

1014
1015
1016
1017
1018
1019
1020

1021
1022
1023
1024
1025

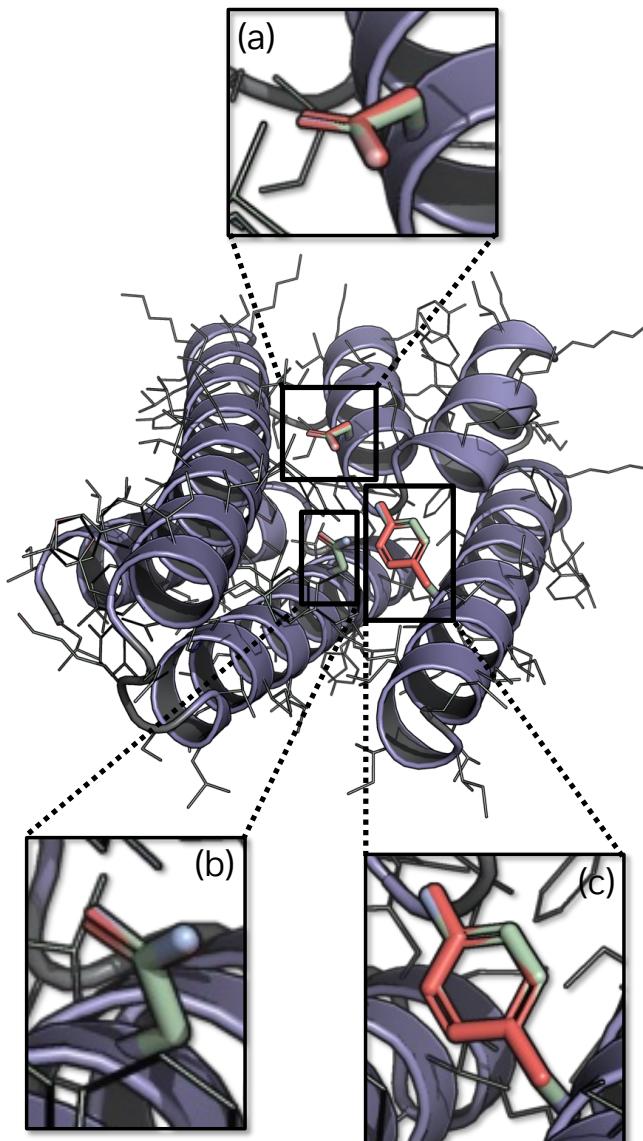


Figure 10: **Atomistic Motif Scaffolding.** Task 1QJG (Delta(5)-3-Ketosteroid isomerase). The active site consists of an ASP that acts as a general base, a TYR that stabilises the oxyanion in the transition state and another ASP that also stabilises the transition state by forming a hydrogen bond with the oxyanion. *La-Proteina* successfully generates a valid atomistic scaffold and accurately reproduces the red conditioning atoms that form the tip of partially given side chains (see zoom-ins (a)-(c)). Side chains that involve conditioning atoms are visualized as thick sticks, all other side chains are shown as thin sticks. Visualization overlays generated protein and atomistic motif.

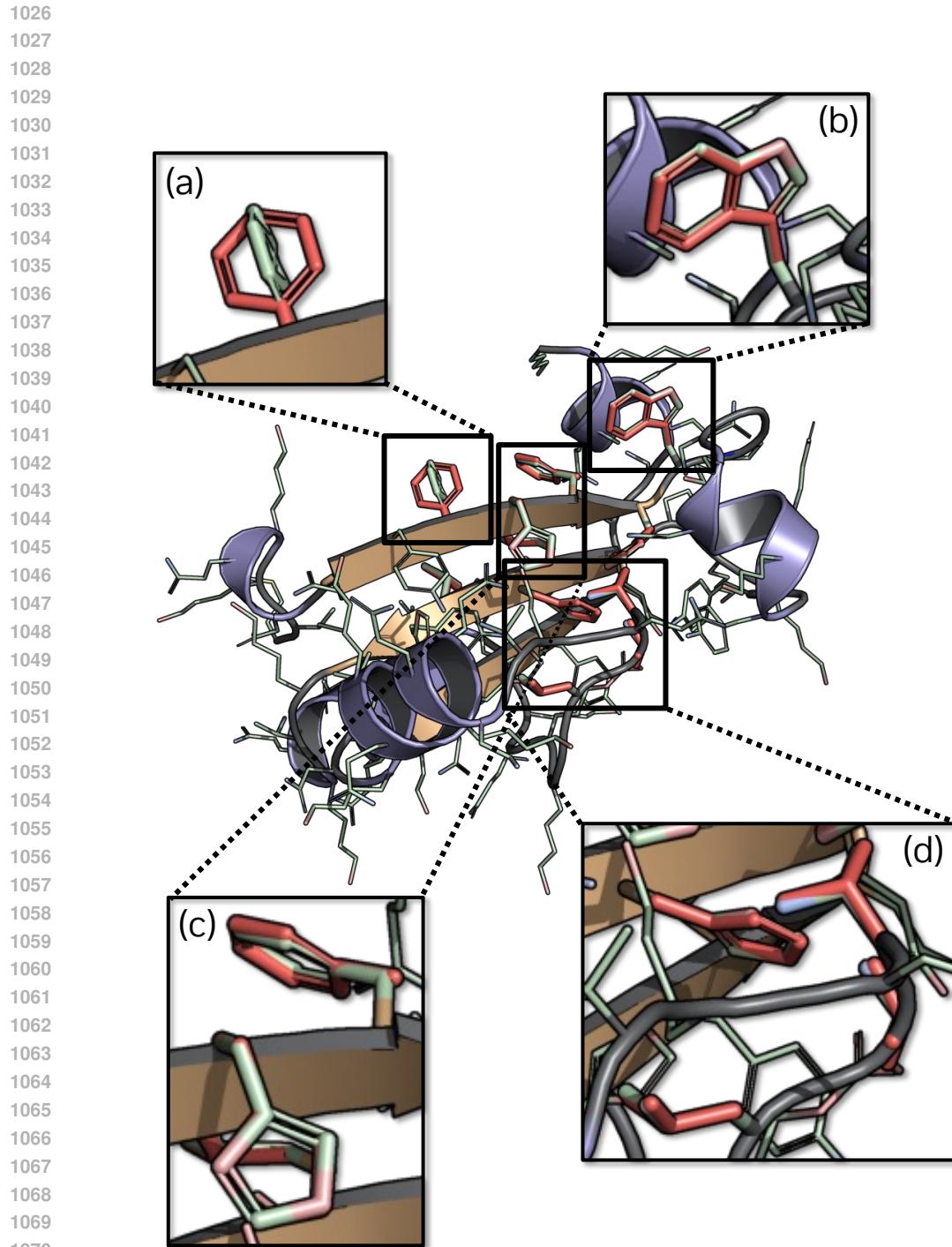


Figure 11: **Atomistic Motif Scaffolding.** Task 5YUI (carbonic anhydrase). The active site here combines a metal coordination site (HIS residues) with a hydrophobic substrate channel (VAL and TRP residues). *La-Proteina* successfully generates a valid atomistic scaffold and accurately reproduces the red conditioning atoms that form the tip of partially given side chains (see zoom-ins (b)-(d)). A small inconsistency can be observed in (a), where the model generates an incorrectly rotated ring (we found such inconsistencies to be extremely rare). Side chains that involve conditioning atoms are visualized as thick sticks, all other side chains are shown as thin sticks. Visualization overlays generated protein and atomistic motif.

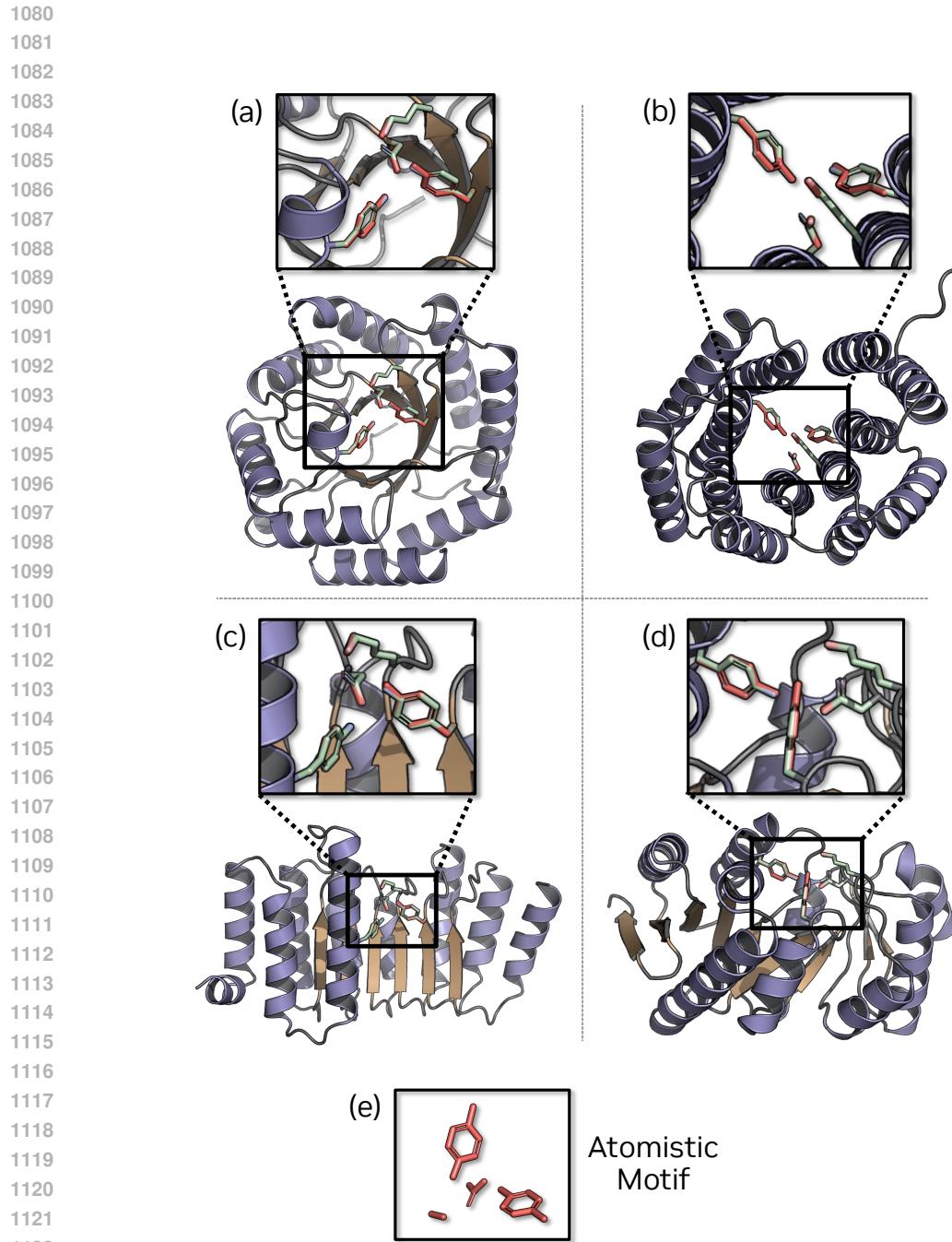
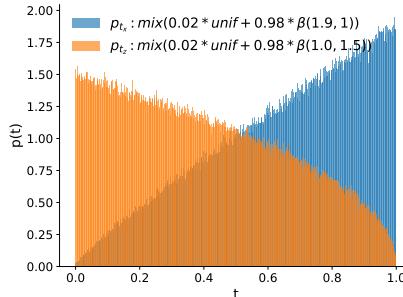


Figure 12: **Atomistic Motif Scaffolding.** Task 5AOU (retro-aldolase). *La-Proteina* successfully generates diverse valid atomistic scaffolds and accurately reproduces the red conditioning atoms that form the tip of partially given side chains (see zoom-ins (a)-(d)). The atomistic motif is shown in (e) consisting of a catalytic tetrad that emerged during directed evolution in the laboratory Obexer et al. (2017), with the LYS acting as catalytic nucleophile, the two TYR stabilizing the transition state and participating in proton transfer and the ASN maintaining the hydrogen-bond network that connects and spatially arranges all tetrad residues. We see that *La-Proteina* can produce diverse solutions to the scaffolding task (shown in the four quadrants of the figure; note that each protein is visualized from different angles for best views of the active site). For clarity, we are only showing side chains of residues that involve conditioning atoms; all other side chains are generated, too, but not shown. Visualization overlays generated protein and atomistic motif.

1134 C UNCONDITIONAL GENERATION
11351136 C.1 DATASETS
11371138 We use two datasets to train our unconditional models, one based on the cluster representatives of
1139 the Foldseek (van Kempen et al., 2024) clustered version of the AFBD, and another one based on a
1140 custom subset of the AFDB (for our long chain evaluation).1141 **Foldseek Clustered AFDB.** This dataset, previously used by Lin et al. (2024); Geffner et al. (2025),
1142 is a filtered and clustered rendition of the AlphaFold Database (AFDB) (Barrio-Hernandez et al.,
1143 2023). The clustering employs both sequence (via MMseqs2 (Steinegger & Söding, 2017)) and
1144 structure (via Foldseek (van Kempen et al., 2024)) information. The resulting dataset is composed
1145 of cluster representatives, meaning one structure is selected from each cluster. This initially yields
1146 approximately three million unique samples. We further refine this set based on several criteria: a
1147 minimum average pLDDT score of 80, protein lengths constrained to the 32-512 residue range, and
1148 specific secondary structure characteristics. For the latter, samples are retained only if their coil
1149 proportion is below 50% and they contain no more than 20 consecutive coil residues (these coil filters
1150 are variants of those proposed by Qu et al. (2024)). Critically, we also enforce the presence of beta
1151 sheets in the selected samples. This beta sheet filter was introduced because models trained without
1152 it, despite achieving state-of-the-art metrics, generated proteins with a low beta-sheet content (around
1153 3-4%). Incorporating this filter corrects this imbalance, leading to models that produce samples with
1154 an average beta-sheet content of approximately 10%. These cumulative filtering steps result in a final
1155 curated dataset of approximately 350k protein samples.1156 **Custom AFDB subset for long length training.** To create a dataset that is focused on longer samples,
1157 we created a custom dataset starting from the AlphaFold database. We filtered for a minimum average
1158 pLDDT of 70 and a length between 384 and 896, resulting in 46,942,694 structures. For training
1159 we then cluster with MMseqs2 at a sequence similarity of 50% and sample then randomly from the
1160 resulting 4,035,594 clusters at training time.1161 C.2 TRAINING DETAILS
11621163 C.2.1 VAE TRAINING
11641165 The details of the VAE encoder and decoder architecture are given in App. H. Briefly, both networks
1166 consist of 12 transformer layers, totaling approximately 130M parameters. These architectures are
1167 trained jointly maximizing the Evidence Lower Bound from Eq. (3). We optimize using AdamW
1168 (Loshchilov & Hutter, 2017) with a learning rate of 0.0001 and a weight decay factor of 0.01. We also
1169 use exponential moving average with a decay of 0.999. VAEs are trained on the Foldseek clustered
1170 AFDB (without including the filter for the beta sheet content). We train in multiple stages: (i) Filtering
1171 for proteins between 32 and 256 residues, for 500k steps, on 16 NVIDIA A100-80GB GPUs; (ii)
1172 Filtering for proteins between 32 and 512 residues, for 140k steps, on 32 NVIDIA A100-80GB GPUs;
1173 (iii) Filtering for proteins between 32 and 896 residues, for 180k steps, on 32 NVIDIA A100-80GB
1174 GPUs. We use the VAE parameters obtained after stage (ii) to train flow matching models limited up
1175 to 512 residues, and use the VAE obtained after step (iii) to train our flow matching model for longer
1176 proteins, up to 800 residues. For all models we use exponential moving average with a decay factor
1177 of 0.999.1178 C.2.2 FLOW MATCHING TRAINING
11791180 The details of the denoiser network architecture are given in App. H. Briefly, it consists of 14
1181 transformer layers, totaling approximately 160M parameters. We train three models for unconditional
1182 generation, minimizing the conditional flow matching loss from Eq. (5). First, one without triangular
1183 multiplicative update layers, on the Foldseek Clustered AFDB dataset limited to 512 residues. We
1184 train this model for 390k steps, using Adam (Kingma, 2014) with a learning of 0.0001, on 48 NVIDIA
1185 A100-80GB GPUs. Second, a model with triangular multiplicative update layers, on the Foldseek
1186 Clustered AFDB dataset limited to 512 residues. We train this model for 120k steps, using Adam
1187 with a learning rate of 0.0001, on 96 NVIDIA A100-80GB GPUs. Third, a model without triangular
1188 multiplicative update layers for proteins of longer lengths, trained on our custom AFDB subset for
1189 long length proteins up to 896 residues (App. C.1). We train this model for 140k steps, using Adam

1188 with a learning rate of 0.0001, on 128 NVIDIA A100-80GB GPUs. For all models we use exponential
 1189 moving average with a decay factor of 0.999.
 1190

1191 As discussed in Sec. 3.2.2, the interpolation times for α -carbon coordinates, t_x , and for latent
 1192 variables, t_z , are sampled independently using the distributions from Eq. (6). This distributions are
 1193 visualized in Fig. 13.



1205 Figure 13: *La-Proteina* sampling distributions for interpolation times t_x and t_z .
 1206

1209 C.3 BASELINE SAMPLING

1211 Our main evaluation compares *La-Proteina* against publicly available models for all-atom generation,
 1212 including P(all-atom) (Qu et al., 2024), PLAID (Lu et al., 2024), Protpardelle (Chu et al., 2024),
 1213 ProteinGenertor (Lisanza et al., 2023), and APM Chen et al. (2025). For each baseline we produce
 1214 100 samples for each protein length in $\{100, 200, 300, 400, 500, 600, 700, 800\}$ (for a total of 800
 1215 samples per model) using the official implementation from the corresponding Github repository.

1216 **P(all-atom).** We use the code and weights as described in the original implementation.³ This
 1217 model relies on triangular attention layers (Jumper et al., 2021), which have a cubic memory and
 1218 computational complexity. This limits the length of the proteins that P(all-atom) can generate. Using
 1219 a GPU with 140GB of RAM, we were unable generate samples beyond 500 residues, due to running
 1220 out of memory. (This is for generating a single sample.)

1221 **Protpardelle.** We follow the instructions in the original repository using the
 1222 `allatom_state_dict.pth` checkpoint.⁴
 1223

1224 **Protpardelle-1c.** This model is Protpardelle’s successor, with a focus on conditional generation
 1225 (atomistic motif scaffolding and protein complexes). We follow the instructions in the original
 1226 repository using the `cc91_epoch383` model.⁵ We note that this model was trained conditionally
 1227 for atomistic motif scaffolding, which takes an atomistic motif as input (conditioning information).
 1228 However, Lu et al. (2025) did not train an all-atom unconditional model. We therefore sample the
 1229 conditional model unconditionally, simply done by not providing an atomistic motif as conditioning
 1230 input.

1231 **PLAID.** We use the 100M parameter model, as described in the original implementation.⁶ The
 1232 lengths of proteins sampled with PLAID are $\{96, 200, 296, 400, 496, 600, 696, 800\}$, since the model
 1233 only supports sampling proteins whose length is divisible by eight.

1234 **ProteinGenerator.** We follow the instructions in the original implementation using the `base`
 1235 `checkpoint`,⁷ using 100 steps to generate each sample since this is the recommended setting for
 1236 higher quality, especially at longer lengths.

1238 ³<https://github.com/levinthal/Pallatom>

1239 ⁴<https://github.com/ProteinDesignLab/protpardelle>

1240 ⁵<https://github.com/ProteinDesignLab/protpardelle>

1241 ⁶<https://github.com/amyxlu/plaid>

1242 ⁷https://github.com/RosettaCommons/protein_generator

1242 **APM.** We follow the instructions for unconditional generation in the original implementation, using
 1243 the default values for all parameters.⁸
 1244

1245 Fig. 4 in the main paper reports metrics for the backbone design task, in which the sequence and
 1246 all-atoms except the α -carbons are ignored. For this specific set of results, we also compare against
 1247 several backbone design methods, including Chroma (Ingraham et al., 2023), Proteina (Geffner
 1248 et al., 2025), Proteus (Wang et al., 2024a), Genie2 (Lin et al., 2024), FoldFlow (Bose et al., 2024),
 1249 RFDiffusion (Watson et al., 2023), FrameFlow (Yim et al., 2023a), FrameDiff (Yim et al., 2023b),
 1250 and ESM3 (Hayes et al., 2024). For these models, we got the results from Geffner et al. (2025),
 1251 making sure we use exactly the same metrics reported in that work, to enable direct comparisons.
 1252

1253 D EVALUATION METRICS

1254 D.1 CO-DESIGNABILITY, DESIGNABILITY, DIVERSITY, NOVELTY

1255 **Co-designability.** The co-designability metric captures the degree to which between the sequence-
 1256 structure pairs produced by a model are aligned, by analyzing whether the produced sequence folds
 1257 into the corresponding structure. This is done by measuring the all-atom RMSD between the structure
 1258 produced by the model and the structure obtained using ESMFold (Lin et al., 2023) to fold the
 1259 corresponding sequence. If this all-atom RMSD is less than 2 \AA , the sample is deemed all-atom
 1260 co-designable. The metric reported is the percentage of co-designable samples produced by a model.
 1261

1262 **Designability.** Designability, on the other hand, aims to capture whether there is a sequence that
 1263 folds into the produced structure (it ignores the produced sequence). This metric is typically used to
 1264 evaluate backbone design models, which do not produce sequences. Given the produced structure,
 1265 ProteinMPNN (Dauparas et al., 2022) is used to generate a set of M sequences (using a sampling
 1266 temperature of 0.1), ESMFold (Lin et al., 2023) is used to fold all M sequences, and finally the
 1267 α -carbon RMSD between the original structure and each of the ESMFold produced structures is
 1268 measured. A sample is deemed designable if the minimum of these M RMSD values is less than 2 \AA .
 1269 We report two variants of this metric, using M=1 and M=8, denoted as MPNN-1 and MPNN-8 in
 1270 Tab. 1.

1271 **pLDDT.** The Predicted Local Distance Difference Test (pLDDT) is a per-residue confidence score,
 1272 scaled from 0 to 100, that estimates the local structural accuracy of a predicted protein model (in our
 1273 case ESMFold). Generally, the threshold of $\text{pLDDT} \geq 80$ is used to indicate high confidence and
 1274 reliable predictions. The metric for the full protein is obtained by averaging these per-residue scores
 1275 across the entire structure, averaged over successfully refolded samples (i.e., all-atom co-designable
 1276 samples).

1277 **Diversity.** All three diversity metrics ("Str", "Seq", "Str+Seq") reported in Tab. 1 are obtained by
 1278 clustering the subset of all-atom co-designable samples produced by a model and reporting the
 1279 number of clusters obtained. The difference between these metrics is the clustering criteria used.
 1280 Briefly, "Str" measures the diversity in the produced structures (ignoring sequence), "Seq" measures
 1281 the diversity in the produced sequences (ignoring structures), and "Str+Seq" measures the diversity
 1282 taking into account both the sequence and structure of the samples produced.

- 1284 • Structure diversity ("Str"). We cluster using the Foldseek command
 1285 `foldseek easy-cluster <path_samples> <path_results> <path_tmp>`
 1286 `--cov-mode 0`
 1287 `--alignment-type 1`
 1288 `--min-seq-id 0`
 1289 `--tmscore-threshold 0.5`
 1290 where `<path_samples>` is the path to a directory containing all-atom co-designable
 1291 samples, `<path_results>` is the directory where results will be stored, and `<path_tmp>`
 1292 is the directory used to store temporary files used by the clustering algorithm. This command
 1293 clusters all produced structures without taking the corresponding sequences into account.
- 1294 • Joint structure and sequence ("Str+Seq"). We cluster using the Foldseek command

1295 ⁸<https://github.com/bytedance/apm>

```

1296     foldseek easy-cluster <path_samples> <path_results> <path_tmp>
1297     --cov-mode 0
1298     --alignment-type 2
1299     --min-seq-id 0.1
1300     --tmscore-threshold 0.5
1301
1302     • Sequence diversity ("Seq"). We cluster using the MMSeqs2 command
1303     mmseqs easy-linclus <fasta_input_filepath> pdb_cluster <path_tmp>
1304     --min-seq-id 0.1
1305     --c 0.7
1306     --cov-mode 1
1307     where <fasta_input_filepath> is the path for the fasta file containing the sequences
1308     for all-atom co-designable samples.
1309
1310 Novelty. This metric assesses the structural similarity between samples generated by a model
1311 and a defined reference set, where lower scores signify greater novelty (i.e., less resemblance to
1312 known structures). To calculate this, we compute the TM-Score Zhang & Skolnick (2004) between
1313 each all-atom co-designable sample generated by the model and every protein within the specified
1314 reference set. For each generated sample, its maximum TM-Score, reflecting its similarity to the
1315 closest structure in the reference set, is identified. The average of these maximum scores across every
1316 all-atom co-designable samples is then reported as the novelty value. Given that TM-Scores range
1317 from 0 to 1, with higher scores indicating higher similarities, lower novelty scores are preferable.
1318 Tab. 1 presents novelty values against two reference sets: the PDB, as provided by Foldseek van
1319 Kempen et al. (2024) (labeled "PDB" in the table), and a filtered version of the Foldseek Clustered
1320 AFDB, detailed in App. C.1 (minimum average pLDDT of 80, lengths 32-512 residues; labeled
1321 "AFDB" in the table). We use Foldseek (van Kempen et al., 2024) to compute TM-Scores of the
1322 produced samples against the corresponding reference set. The Foldseek command used to compute
1323 this metric is given by
1324
1325     foldseek easy-search <path_sample> <reference_database_path>
1326     <path_results> <tmp_path>
1327     --alignment-type 1
1328     --exhaustive-search
1329     --tmscore-threshold 0.0
1330     --max-seqs 10000000000
1331     --format-output query,target,alntmscore
1332
1333     where <path_sample> is the path for the PDB file containing the generated structure, and
1334     <reference_database_path> is the path of the dataset used as reference.
1335
1336 D.2 MOLPROBITY FOR STRUCTURAL QUALITY ASSESSMENT
1337
1338 MolProbity (Davis et al., 2007) is a widely used software designed for comprehensive validation
1339 of 3D macromolecular structures, primarily proteins and nucleic acids. It assesses the quality of a
1340 structure by analyzing its geometry, stereochemistry, and interatomic contacts against well-established
1341 chemical and physical principles derived from high-resolution experimental data. Its goal is to identify
1342 problematic regions in a structure that may indicate errors or physically unrealistic conformations.
1343
1344 For our comparative analysis of generated protein structures, we focused on the following key metrics
1345 reported by MolProbity:
1346
1347 MolProbity Score (MP score): This is a composite score that combines multiple individual geometric
1348 assessments (including clash score, Ramachandran favorability, and side-chain rotamer quality) into
1349 a single, log-weighted metric. It provides an overall indication of structural quality. Lower MP scores
1350 are better; scores around 1.0-2.0 are generally indicative of well-resolved and accurate experimental
1351 structures, while scores significantly above 2.5-3.0 often suggest increasing numbers of geometric
1352 and stereochemical issues.
1353
1354 Clash Score: This metric quantifies the severity of steric clashes by reporting the number of
1355 unfavorable all-atom overlaps (where van der Waals shells interpenetrate by  $\geq 0.4\text{\AA}$ ) per 1000 atoms.
1356 A lower clash score signifies a more sterically reasonable structure. While there's no absolute cutoff,
```

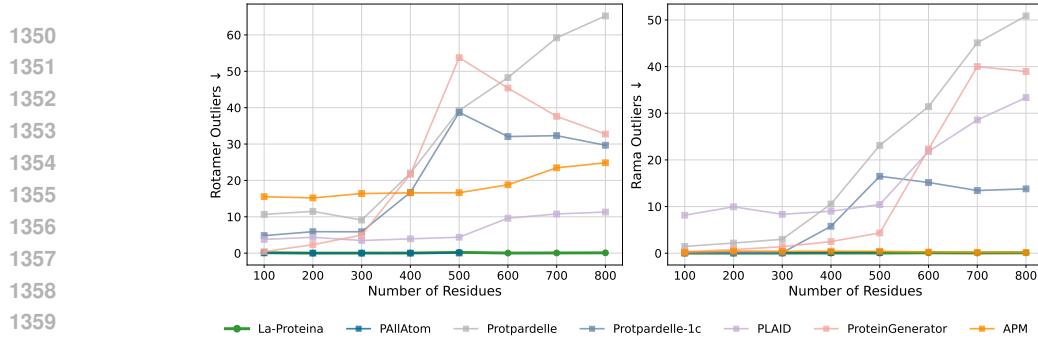


Figure 14: **Additional MolProbity metrics.** Rotamer outliers and Ramachandran outliers. While most baselines degrade especially at longer lengths, *La-Proteina* and P(all-atom) have realistic scores for all lengths. P(all-atom) evaluation only goes up to 500 residues due to memory limitations, for longer samples more than 140GB of GPU memory are needed to produce a single sample. P(all-atom) and *La-Proteina* lines mostly overlap until length 500 when the P(all-atom) line stops.

high-resolution X-ray crystal structures typically have clash scores below 20, often much lower (e.g., <10). NMR structures or lower-resolution crystal structures may exhibit higher values (e.g., up to 50-60 or more could still be acceptable depending on context), but excessively high scores indicate significant packing problems.

Ramachandran Angle Outliers: This evaluates the conformational plausibility of the protein backbone by analyzing the Ramachandran plot, which describes allowed regions for the phi (ϕ) and psi (ψ) dihedral angles of amino acid residues. The metric reports the percentage of residues whose (ϕ, ψ) angles fall into disallowed (outlier) regions. For high-quality structures, this value is expected to be very low, ideally less than 0.2%, with modern well-refined structures often achieving <0.1% outliers.

Covalent Bond Geometry Outliers (Bond Lengths and Angles): This metric assesses the correctness of covalent geometry by comparing observed bond lengths and bond angles to standard dictionary values. It typically reports the percentage of bonds or angles that deviate significantly (e.g., by more than 4 standard deviations, or other thresholds defined by MolProbity) from these ideal values. A low percentage of outliers (ideally <1% for both lengths and angles combined, or individually) indicates good covalent geometry.

Rotamer Outliers: This metric evaluates the plausibility of side-chain conformations by comparing the observed χ (chi) torsion angles of amino acid residues to distributions derived from high-quality experimental structures. MolProbity uses a comprehensive, data-driven rotamer library (the "ultimate" rotamer library) constructed from a large set of rigorously filtered protein chains to define statistically favored, allowed, and outlier regions for side-chain dihedral angles. A residue is classified as a rotamer outlier if its side-chain conformation falls into a region sampled by less than 0.3% of reference structures, indicating a highly unusual or energetically unfavorable state. High-quality protein structures typically exhibit less than 1% rotamer outliers, with modern structure determination and refinement methods often achieving even lower values. Elevated levels of rotamer outliers may suggest errors in side-chain modeling, poor electron density, or physically unrealistic conformations, and thus serve as a sensitive indicator of local model quality.

Together, these MolProbity metrics offer a robust and multi-faceted evaluation of the atomistic accuracy and realism of the generated protein structures. MP score, clash score, bond length outliers and bond angle outliers are visualized in Fig. 5, while ramachandran angle outliers and rotamer outliers are depicted in Fig. 14. In all of these we see that *La-Proteina* generates highly realistic structures at all lengths, whereas all other baselines generate less plausible structures and especially degrade at longer lengths (the exception is P(all-atom) that also has bad scores for clashes, angle outliers and bond outliers but scores well for rotamer outliers and Ramachandran outliers).

D.3 SIDE-CHAIN DIHEDRAL ANGLE DISTRIBUTIONS

D.3.1 BACKGROUND ON AMINO ACID ROTAMERS

When investigating side-chain conformations in protein structures, one quickly recognizes that these side-chain torsion angles (denoted by χ_1, χ_2 , etc., down the side chain) do not appear randomly and

1404 do not usually occur in broader regions such as backbone torsion angles which are usually visualized
 1405 in Ramachandran plots Carugo & Djinović-Carugo (2013), but cluster into distinct conformations
 1406 that are called rotamers, i.e., chemical species that differ from one another mostly due to rotations
 1407 about one or more single bonds Dunbrack Jr (2002).

1408 This discreteness of the side-chain degrees-of-freedom is caused by steric repulsion between atoms
 1409 three bonds away from each other, at the end of the atoms making up the plane of the torsion
 1410 angle under question. To not cause too much steric repulsion, these groups usually prefer to adopt
 1411 staggered conformations in which they are 60 degrees off-set to the next group instead of eclipsed
 1412 conformations where they overlap with this next group Clayden et al. (2012). The three possible
 1413 staggered conformations (gauche plus at 60 degrees, gauche minus at -60 degrees and trans at 180
 1414 degrees between the two groups under question) are the major rotamers that are visible in most χ_1
 1415 and several χ_2 plots Lovell et al. (2000). For example, in the case of χ_1 , the plane of this torsion
 1416 angle is formed by the CA and CB atom and the atoms under question for staggering are the N and
 1417 for example the CG1 in the case of VAL and ILE or the OG in the case of SER. Due to this, the angle
 1418 χ_1 is always rotameric at +60, 180 and -60/300 degrees (i.e. it falls into discrete angles), except for
 1419 alanine which only has a hydrogen instead of CG and therefore no χ_1 rotamer and glycine which has
 1420 neither CB nor CG.

1421 However, the populations of these rotamers are different based on amino acid identity. Usually the
 1422 preference declines in the order of g- (-60), trans (180), and g+ (60), but there are exceptions. PRO for
 1423 example has a tight ring structure that only allows for two χ_1 rotamers at around -30 and +30 degrees
 1424 (Fig. 27). SER and THR on the other hand prefer the g+ (60) rotamer since in that conformation it
 1425 can form a hydrogen bond to the backbone with their oxygen atom. ILE, LEU, and THR have two
 1426 gamma heavy atoms, which cause one rotamer to always be in an unfavorable conformation; these
 1427 amino acids only show two χ_1 rotamers with significant populations.

1428 There are also non-rotameric degrees of freedom. While in ARG for example both χ_1 and χ_2 are
 1429 rotamer (Fig. 15), leading to 9 configurations, ASP for example has a non-rotameric χ_2 angle that
 1430 spreads over a rather continuous spectrum (Fig. 17). These non-rotameric degrees of freedom are
 1431 always the last one in the side chain, i.e. the furthest away from the backbone. In the case of
 1432 ASN and ASP this is χ_2 (Fig. 16 and Fig. 17), whereas in the case of GLN and GLU this is χ_3
 1433 (Fig. 19 and Fig. 20 first row). Beyond this, there are further factors determining rotamer populations,
 1434 either backbone-independent effects like syn-pentane interactions Dunbrack Jr & Karplus (1994) or
 1435 backbone-dependent ones Chakrabarti & Pal (2001).

1436 D.3.2 ANALYSIS OF GENERATED AMINO ACID ROTAMERS

1437 To not only look at outright rotamer outliers, but also rotamer frequencies and mode coverage, we
 1438 visualize Kernel Density Estimation (KDE) plots for all side chain angles of all amino acids in
 1439 Figs. 15 to 31. We conduct this analysis for the samples generated for *La-Proteina*, all baselines,
 1440 and two reference datasets from the PDB and AFDB (100 structures for each length of 100 to 800
 1441 in steps of 100). The PDB data set was curated by selecting 100 X-ray structures with a resolution
 1442 below 2Å of the respective length ± 5 residues (for length 800, which leads to 60 structures). The
 1443 AFDB reference data set was curated similarly, just with the filtering threshold being a pLDDT score
 1444 above 80 and a radius of gyration of less than 3 to avoid overrepresentation of side-chain angles
 1445 corresponding to extended alpha-helices.

1446 As in the main text, we see that *La-Proteina* often captures not only the correct modes, but often
 1447 also at approximately the correct rotamer frequencies with respect to the reference datasets from
 1448 the PDB and AFDB. This can be seen, for instance, for ARG χ_3 (Fig. 15), HIS χ_2 (Fig. 21) or
 1449 PRO χ_1 (Fig. 27). P(all-atom) and Protpardelle often miss modes completely, while PLAID and
 1450 ProteinGenerator often get the modes correctly but represent them in different frequencies compared
 1451 to the base dataset. We also see that for some side-chain angles, the distribution between PDB and
 1452 AFDB differ significantly, as for ARG χ_4 (Fig. 15), LYS χ_3 (Fig. 24) and LYS χ_4 (Fig. 24 sixth row
 1453 left). In these cases, *La-Proteina* adheres more closely to the AFDB reference since it was trained on
 1454 AFDB structures; however, interestingly none of the other methods capture the PDB modes here as
 1455 well despite being trained on datasets including the PDB.

1456
 1457

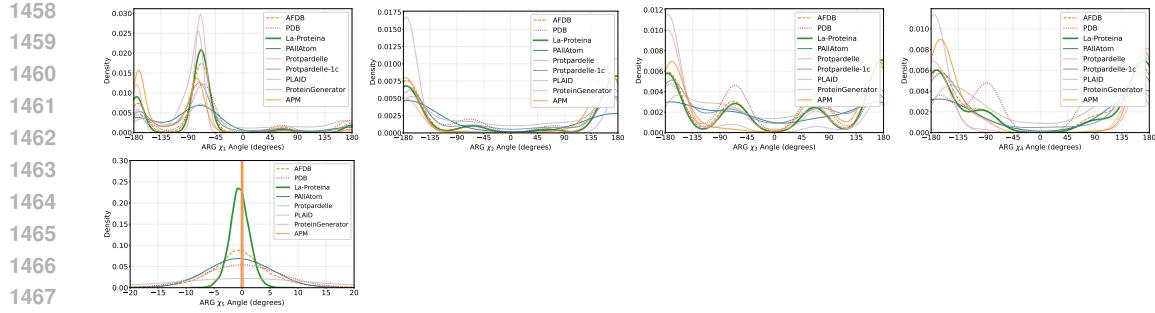


Figure 15: Side-chain angles for amino acid ARG.

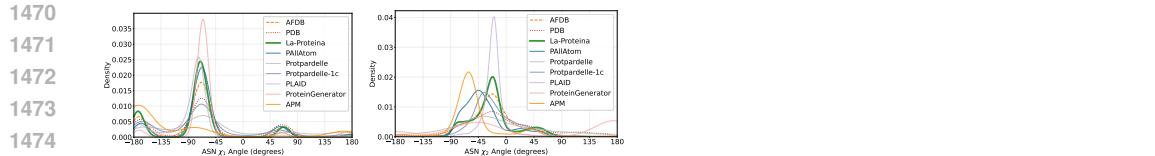


Figure 16: Side-chain angles for amino acid ASN.

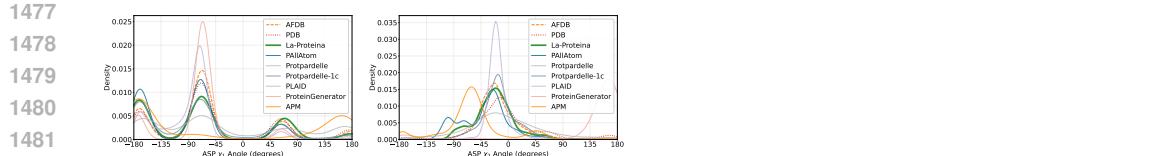


Figure 17: Side-chain angles for amino acid ASP.

Figure 18: Side-chain angles for amino acid CYS.

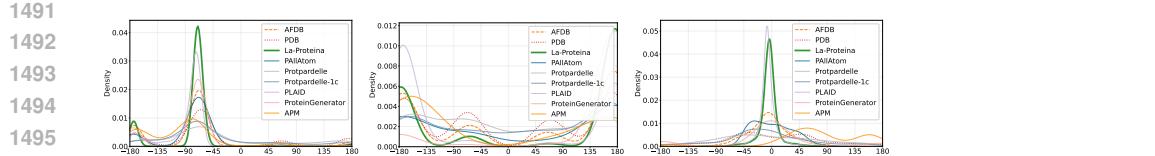


Figure 19: Side-chain angles for amino acid GLN.

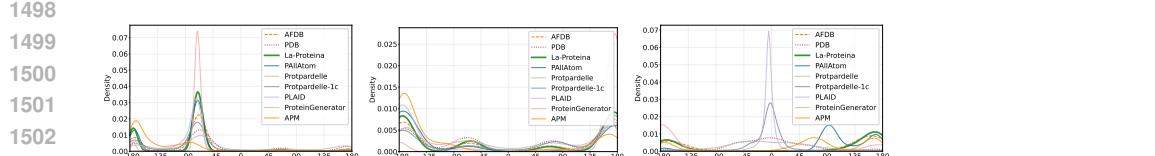


Figure 20: Side-chain angles for amino acid GLU.

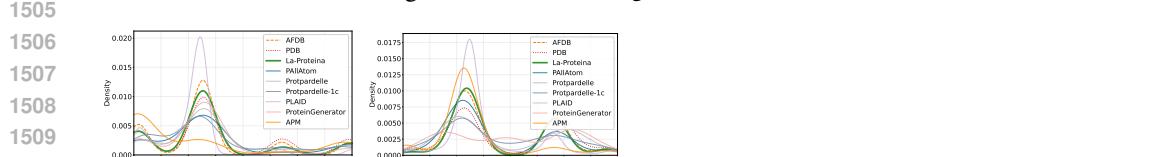


Figure 21: Side-chain angles for amino acid HIS.

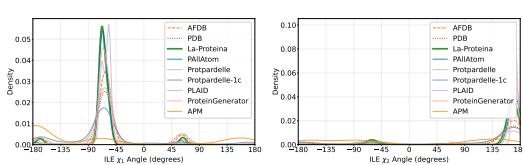


Figure 22: Side-chain angles for amino acid ILE.

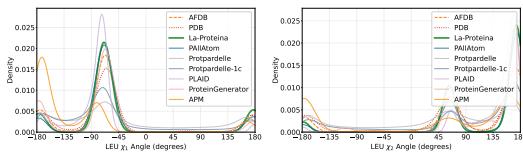


Figure 23: Side-chain angles for amino acid LEU.

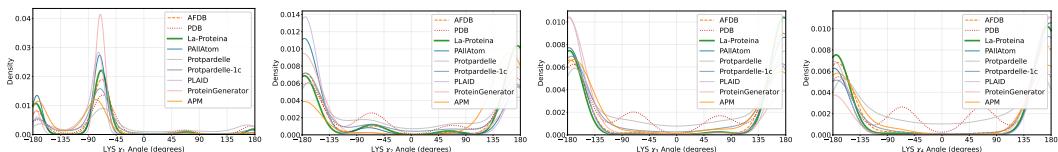


Figure 24: Side-chain angles for amino acid LYS.

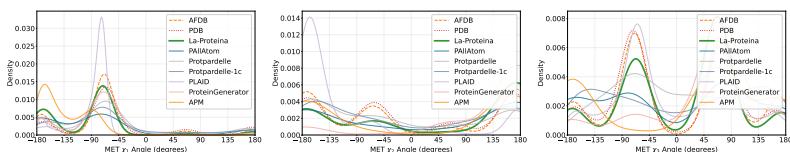


Figure 25: Side-chain angles for amino acid MET.

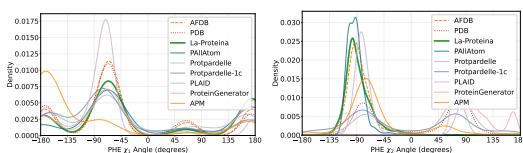


Figure 26: Side-chain angles for amino acid PHE.

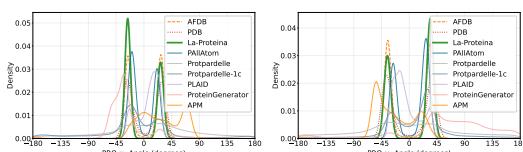


Figure 27: Side-chain angles for amino acid PRO.

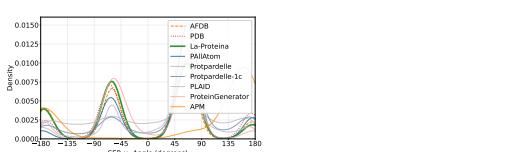


Figure 28: Side-chain angles for amino acid SER.

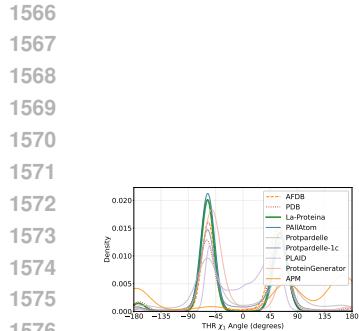


Figure 29: Side-chain angles for amino acid THR.

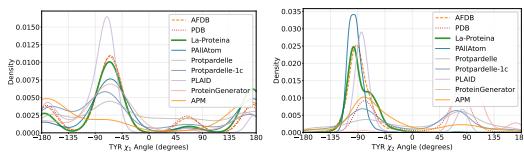


Figure 30: Side-chain angles for amino acid TYR.

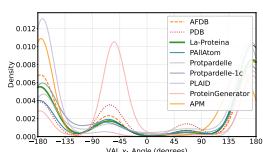


Figure 31: Side-chain angles for amino acid VAL.

1620 **E SAMPLING**
 1621

1622 We sample *La-Proteina* by numerically simulating the SDE from Eq. (7). This SDE relies on the
 1623 score function (gradient of log probability) of intermediate densities. Since we use a Gaussian flow
 1624 and linear interpolants, we can compute these directly from the learned vector field \mathbf{v}_θ as (Ma et al.,
 1625 2024; Zheng et al., 2023)

$$1626 \quad \zeta^x(\mathbf{x}_{C_\alpha}^{t_x}, \mathbf{z}^{t_z}, t_x, t_z) = \frac{t \mathbf{v}_\phi^x(\mathbf{x}_{C_\alpha}^{t_x}, \mathbf{z}^{t_z}, t_x, t_z) - \mathbf{x}_{C_\alpha}^{t_x}}{1 - t_x} \approx \nabla_{\mathbf{x}_{C_\alpha}^{t_x}} \log p_\phi(\mathbf{x}_{C_\alpha}^{t_x}, \mathbf{z}^{t_z}, t_x, t_z) \quad (8)$$

$$1627 \quad \zeta^z(\mathbf{x}_{C_\alpha}^{t_x}, \mathbf{z}^{t_z}, t_x, t_z) = \frac{t \mathbf{v}_\phi^z(\mathbf{x}_{C_\alpha}^{t_x}, \mathbf{z}^{t_z}, t_x, t_z) - \mathbf{z}^{t_z}}{1 - t_z} \approx \nabla_{\mathbf{z}^{t_z}} \log p_\phi(\mathbf{x}_{C_\alpha}^{t_x}, \mathbf{z}^{t_z}, t_x, t_z). \quad (9)$$

1632 Simulating the SDE from Eq. (7) requires selecting the noise scaling parameters η_x and η_z and the
 1633 scaling functions $\beta_x(t_x)$ and $\beta_z(t_z)$, which modulate the Langevin-like term in the SDE. For the
 1634 former, we experiment with values in $[0, 1]$, noting that $\eta_x = \eta_z = 1$ yields "unbiased sampling" (for
 1635 any choice of β_x and β_z (Karras et al., 2022)), and smaller values sample distributions which differ
 1636 from the original one defined by the flow matching model (often referred to as "low temperature
 1637 sampling" (Geffner et al., 2025; Ingraham et al., 2023)).⁹ For the scaling functions we use

$$1638 \quad \beta_x(t_x) = \frac{1}{t_x} \quad \text{and} \quad \beta_z(t_z) = \frac{\pi}{2} \tan\left(\frac{\pi}{2}(1 - t_z)\right). \quad (10)$$

1640 We show ablations for these choices in App. G.
 1641

1642 **E.1 NUMERICAL DISCRETIZATION SCHEME**
 1643

1644 We simulate the system of stochastic differential equations from Eq. (7) using the Euler-Maruyama
 1645 method (Higham, 2001). Since t_x and t_z are sampled independently (as discussed in Sec. 3.2.2), the
 1646 model allows the exploration of different paths going from $(t_x, t_z) = (0, 0)$ to $(t_x, t_z) = (1, 1)$ (that
 1647 is, different paths in the $[0, 1] \times [0, 1]$, space). We parameterize these paths by defining $t_x = f_x(t)$ and
 1648 $t_z = f_z(t)$ using a shared time variable $t \in [0, 1]$, where $f_x, f_z : [0, 1] \rightarrow [0, 1]$ are monotonically
 1649 increasing functions. As highlighted in Secs. 1 and 3.4, using distinct schedules $f_x(t)$ and $f_z(t)$
 1650 for the α -carbon coordinates \mathbf{x}_{C_α} and latent variables \mathbf{z} is critical for good performance. More
 1651 specifically, our empirical analyses show that schedules evolving \mathbf{x}_{C_α} faster than \mathbf{z} yield the best
 1652 results (see App. G). We therefore adopt an "exponential" schedule (Geffner et al., 2025) for $f_x(t)$
 1653 and a "quadratic" schedule for $f_z(t)$

$$1654 \quad f_x(t) = \frac{1 - 10^{-2t}}{1 - 10^{-2}} \quad \text{and} \quad f_z(t) = t^2, \quad (11)$$

1656 visualized in Fig. 32. The corresponding numerical integration scheme is obtained by uniformly
 1657 partitioning the interval $t \in [0, 1]$ (i.e., $t_n = n/N$ for $n = 0, 1, \dots, N$), yielding the discrete steps
 1658

$$1659 \quad t_x[n] = f_x(t_n) = \frac{1 - 10^{-2n/N}}{1 - 10^{-2}} \quad \text{and} \quad t_z[n] = f_z(t_n) = \left(\frac{n}{N}\right)^2. \quad (12)$$

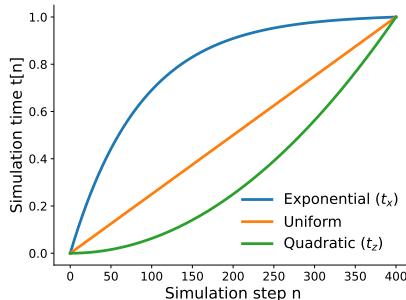
1661 Ablations for different choices of $f_x(t)$ and $f_z(t)$ are presented in App. G. For all our experiments
 1662 we use $N = 400$ integration steps.
 1663

1664 **F ATOMISTIC MOTIF SCAFFOLDING**
 1665

1667 For atomistic motif scaffolding we included two different tasks: *all-atom motif scaffolding* and
 1668 *tip-atom motif scaffolding*. For all-atom motif scaffolding, for a certain selection of residues (the
 1669 motif) information about backbone position, side chain positions as well as amino acid identity is
 1670 provided and the task of the model is to generate a new protein that includes this motif as part of it.
 1671 For tip-atom motif scaffolding, the provided information includes only the amino acid identity as well

1672 ⁹Most existing generative models for protein design rely on some variant of low temperature sampling
 1673 (Ingraham et al., 2023; Yim et al., 2023b;a; Watson et al., 2023; Lin et al., 2024; Bose et al., 2024; Wang et al.,
 2024a; Huguet et al., 2024; Campbell et al., 2024; Geffner et al., 2025).

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683



1684

Figure 32: Discretization schemes, including uniform as reference.

1686

1687

as the coordinates of the side chain atoms after the final rotatable bond. This means the following atoms are made available for the respective amino acids, following the task definition of Protpardelle (Chu et al., 2024):

1691

ALA: {CA, CB}
 ARG: {CD, CZ, NE, NH1, NH2}
 ASP: {CB, CG, OD1, OD2}
 ASN: {CB, CG, ND2, OD1}
 CYS: {CA, CB, SG}
 GLU: {CG, CD, OE1, OE2}
 GLN: {CG, CD, NE2, OE1}
 GLY: {}
 HIS: {CB, CG, CD2, CE1, ND1, NE2}
 ILE: {CB, CG1, CG2, CD1}
 LEU: {CB, CG, CD1, CD2}
 LYS: {CE, NZ}
 MET: {CG, CE, SD}
 PHE: {CB, CG, CD1, CD2, CE1, CE2, CZ}
 PRO: {CA, CB, CG, CD, N}
 SER: {CA, CB, OG}
 THR: {CA, CB, CG2, OG1}
 TRP: {CB, CG, CD1, CD2, CE2, CE3, CZ2, CZ3, CH2, NE1}
 TYR: {CB, CG, CD1, CD2, CE1, CE2, CZ, OH}
 VAL: {CB, CG1, CG2}

1715

1716

We also evaluate two distinct scaffolding setups that differ in their conditioning information. In the standard *indexed* task, the model is provided with the sequence positions for each motif residue. In the more challenging *unindexed* task, these indices are withheld, requiring the model to discover a viable placement for the motif while simultaneously generating the scaffold.

1720

1721

F.1 TRAINING

1722

1723

1724

1725

1726

1727

We train the motif scaffolding models following the same training procedure as for the main models, with additional input features extracted from the motif. In the case of all-atom motif scaffolding, these features include (for the motif’s residues) absolute atomic coordinates, coordinates relative to the corresponding α -carbon atom, residue type, side chain angles, and backbone torsion angles. For tip-atom motif scaffolding, these features only include absolute atomic coordinates of the atoms present in the motif (i.e. atoms after the last rotatable bond) and residue type. For the indexed version,

1728
1729

Table 2: Motif data with minimum and maximum lengths, and contig strings (all atom and tip atom).

1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756

Motif Name	Min Length	Max Length	Contig String All Atom	Contig String Tip Atom
1PRW_AA	60	105	5-20/A1-20/10-25/B1-20/5-20	5-20/A16-22/1/A24/1/A26-32/1/A34-35/10-25/A52-58/1/A60/1/A62-71/5-20
1BCF_AA	96	152	8-15/A92-99/16-30/A123-130/16-30/A47-54/16-30/A18-25/8-15	8-15/A92-96/1/A98-99/16-30/A123-128/1/A130/16-30/A47-54/16-30/A18-25/8-15
5TPN_AA	50	75	10-40/A163-181/10-40	10-40/A163-181/10-40
5IUS_AA	57	142	0-30/B119-140/15-40/A63-82/0-30	1-31/A120-123/1/A125-130/1/A132-140/15-40/A63-73/1/A75-82/0-30
3IXT_AA	50	75	10-40/P254-277/10-40	10-40/P254-277/10-40
5YUL_AA	50	100	5-30/A93-97/5-20/B118-120/10-35/C198-200/10-30	5-30/A93-97/5-20/A118-120/10-35/A198-200/10-30
5AOU_AA	230	270	40-60/A1051/20-40/A2083/20-35/A2110/100-140	40-60/A1051/20-40/A2083/20-35/A2110/100-140
5AOU_QUAD_AA	230	270	40-60/A1051/20-40/A2083/20-35/A2110/60-80/A2180/40-60	40-60/A1051/20-40/A2083/20-35/A2110/60-80/A2180/40-60
7K4V_AA	280	320	40-50/A44/3-8/A50/70-85/A127/150-200	40-50/A44/3-8/A50/70-85/A127/150-200
1YCR_AA	40	100	10-40/B19-27/10-40	10-40/B19-27/10-40
4JHW_AA	60	90	10-25/F196-212/15-30/F63-69/10-25	10-25/F196-212/15-30/F63-69/10-25
5WN9_AA	35	50	10-40/A170-189/10-40	10-40/A170-186/1/A188-189/10-40
4ZYP_AA	30	50	10-40/A422-436/10-40	10-40/A422-429/1/A431-436/10-40
6VW1_AA	62	83	20-30/A24-42/4-10/A64-82/0-5	20-30/A24-42/4-10/A64-65/1/A67-82/0-5
1QJG_AA	53	103	10-20/A38/15-30/A14/15-30/A99/10-20	10-20/A14/15-30/A38/50-70/A99/25-30
1QJG_AA_NATIVE	115	135	10-20/A14/15-30/A38/50-70/A99/25-30	10-20/A14/15-30/A38/50-70/A99/25-30
2KL8_AA	79	79	A1-7/20/A28-79	A1-7/20/A28-79
7MRX_AA_60	60	60	0-38/B25-46/0-38	0-38/B25-30/1/B32-42/1/B44-46/0-38
7MRX_AA_85	85	85	0-63/B25-46/0-63	0-63/B25-30/1/B32-42/1/B44-46/0-63
7MRX_AA_128	128	128	0-122/B25-46/0-122	0-122/B25-30/1/B32-42/1/B44-46/0-122
5TRV_AA_SHORT	56	56	0-35/A45-65/0-35	1-36/A46-48/1/A50-55/1/A57-59/1/A61-65/0-35
5TRV_AA_MED	86	86	0-65/A45-65/0-65	1-66/A46-48/1/A50-55/1/A57-59/1/A61-65/0-65
5TRV_AA_LONG	116	116	0-95/A45-65/0-95	1-96/A46-48/1/A50-55/1/A57-59/1/A61-65/0-95
6E6R_AA_SHORT	48	48	0-35/A23-35/0-35	0-35/A23-32/1/A34/1-36
6E6R_AA_MED	78	78	0-65/A23-35/0-65	0-65/A23-32/1/A34/1-66
6E6R_AA_LONG	108	108	0-95/A23-35/0-95	0-95/A23-32/1/A34/1-95

1757
1758
1759
1760
1761
1762
1763
1764
1765

these features are added to the corresponding residue indices of the motif; while for the unindexed task they are concatenated to the initial sequence representation without providing any information related to the motif residue indices to the model. The dataset used was the standard dataset used for training the main models, i.e. the Foldseek-clusters of the AFDB with a maximum length of 356 and a minimum average pLDDT of 80. The indexed all-atom motif model was trained for 150k steps on 64 NVIDIA A100-80GB GPUs, and the indexed tip-atom motif model was trained for 120k steps on 128 NVIDIA A100-80GB GPUs. The unindexed models (all-atom and tip-atom) were trained on 32 NVIDIA A100-80GB GPUs for 650k steps.

1766
1767

F.2 SAMPLING

1768
1769
1770
1771
1772
1773
1774

For sampling, the standard sampling schedule of the main models was used (App. E). The motifs were sampled according to the specifications in the Protpardelle benchmark/RFDiffusion benchmark, with the only difference being that for tip-atom motif scaffolding the residues that did not include any atoms to be scaffolded (Glycine, or Lysine if the tip atoms specified in the description were not present in the motif structure) were excluded from the motif. This resulted in the definition of benchmark tasks in Table 2.

1775
1776

F.3 EVALUATION

1777
1778

We evaluate each generated sample via four criteria:

1779
1780
1781

1. The sequence of the motif has to be 100% recovered,
2. The motif α -carbon coordinates should have an all-atom RMSD $< 1\text{\AA}$,
3. The motif coordinates should have an all-atom RMSD $< 2\text{\AA}$,

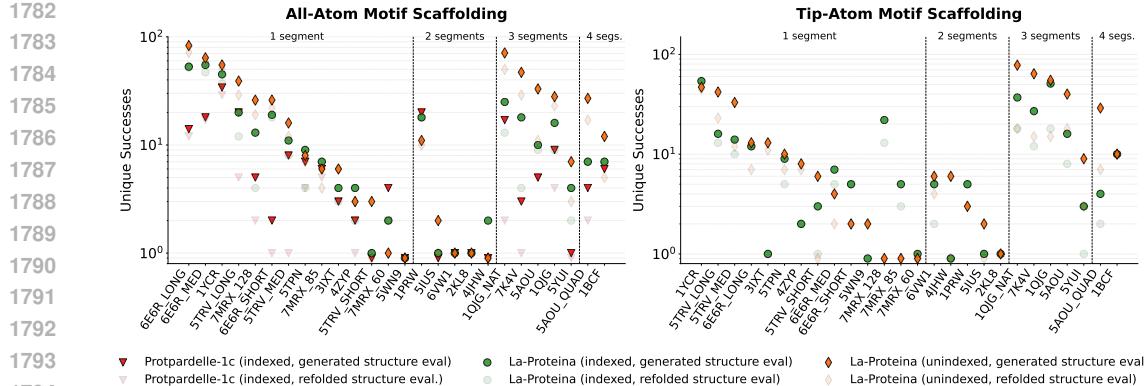


Figure 33: Atomistic motif scaffolding using generated vs. refolded structures. 26 atomistic motif-scaffolding tasks (x-axis), comparing Protpardelle-1c (limited to all-atom indexed), *La-Proteina* (indexed) and *La-Proteina* (unindexed). Solid markers indicate performance when evaluating the model produced structures directly (App. F.3), while light markers indicate performance when performing the evaluation using refolded structures instead of the model generated ones (App. F.4). “# segments” refers to the number of residue segments in the motif.

4. The generated protein should be all-atom co-designable, i.e., it should have an all-atom scRMSD < 2 Å.

For all methods we generate 200 samples per task. We then evaluate these samples via the criteria above, which results in the number of successes per task. Finally, the number of unique successes is obtained by clustering the successes with Foldseek (van Kempen et al., 2024) and reporting the number of clusters. We use the following command to cluster:

```
foldseek easy-cluster <path_samples> <path_tmp>/res <path_tmp>
--alignment-type 1 --cov-mode 0 --min-seq-id 0
--tmscore-threshold 0.5 --single-step-clustering
```

The full results for all methods can be found in Table 3 for all-atom motif scaffolding and in Table 4 for tip-atom motif scaffolding. Results show that *La-Proteina* outperforms both Protpardelle and Protpardelle-1c. Additionally, we observe that Protpardelle is able to solve 4/26 tasks in both the all-atom and tip-atom setups. This is consistent with the findings reported in the original Protpardelle paper (Chu et al., 2024); our evaluation criteria, as outlined above, align closely with their “strict” definition of success, under which they also report limited task success. While they additionally report results under a more lenient “weak” success criterion, we emphasize that this criterion is easier to satisfy than both their strict definition and our own. Notably, our model already achieves strong performance under the stricter standard, underscoring its robustness even under more challenging evaluation settings.

Note on indexed vs. unindexed evaluation. Evaluating motif accuracy via RMSD differs significantly between the *indexed* and *unindexed* scaffolding tasks. In the indexed setting, the motif's sequence indices are known, making the RMSD calculation a straightforward comparison between the known motif residues of the ground truth and generated structures. For the unindexed task, however, these residue indices must first be inferred from the generated output. We address this by employing a greedy matching procedure (Chen et al., 2025): for each residue in the ground truth motif, we identify its structurally closest counterpart in the generated protein. The motif RMSD is then calculated using this newly identified set of residues. Because the model may place the motif at different sequence positions in each sample, this matching process must be performed independently for every generated protein.

F.4 EVALUATION VIA REFOLDED STRUCTURES

In addition to evaluating the directly generated structures, we conduct an alternative validation by analyzing refolded structures. To this end, we take the sequences produced by each model (*La-*

1836 **Table 3: All-atom motif scaffolding.** “All” indicates total number of successes produced by the model (we
 1837 produce 200 samples per task), while “Unique” indicates number of unique successes, obtained by clustering all
 1838 successes as explained in App. F.3. “Indexed” indicates the motif residue indices are provided as input to the
 1839 model, “Unindexed” indicates that the motif residue indices are not provided as input. “# segments” refers to the
 1840 number of residue segments in the motif.

Motif Task	# segments	Protpardelle (indexed)		Protpardelle-1c (indexed)		La-Proteina (indexed)		La-Proteina (unindexed)	
		All	Unique	All	Unique	All	Unique	All	Unique
6E6R_AA_long	1	0	0	16	14	91	53	110	83
6E6R_AA_med	1	0	0	19	18	92	55	96	64
1YCR_AA	1	1	1	62	34	123	45	97	55
5TRV_AA_long	1	0	0	22	20	78	20	84	39
7MRX_AA_128	1	0	0	10	5	55	13	83	26
6E6R_AA_short	1	0	0	2	2	48	19	51	26
5TRV_AA_med	1	0	0	9	8	68	11	53	16
5TPN_AA	1	0	0	16	7	49	9	28	8
7MRX_AA_85	1	0	0	18	6	53	7	100	6
3IXT_AA	1	0	0	4	3	25	4	52	6
4ZYP_AA	1	0	0	2	2	7	4	65	3
5TRV_AA_short	1	0	0	0	0	19	1	7	3
7MRX_AA_60	1	0	0	9	4	64	2	47	1
5WN9_AA	1	0	0	0	0	0	0	0	0
1PRW_AA	2	0	0	162	20	174	18	120	11
5IUS_AA	2	0	0	0	0	5	1	12	2
6VW1_AA	2	0	0	14	1	23	1	70	1
2KL8_AA	2	80	1	177	1	119	1	193	1
4JHW_AA	2	0	0	0	0	2	2	0	0
1QIG_AA_NAT	3	0	0	23	17	62	25	109	71
7K4V_AA	3	0	0	11	3	91	18	47	47
5AOU_AA	3	0	0	89	5	166	10	35	33
1QIG_AA	3	1	1	13	9	50	16	62	28
5YUI_AA	3	0	0	1	1	6	4	16	7
5AOU_QUAD_AA	4	0	0	55	4	144	7	74	27
1BCF_AA	4	70	1	196	6	147	7	147	12

1860
 1861
 1862 *Proteina* and Protpardelle-1c), predict their structures using ESMFold, and then re-evaluate their
 1863 success. In short, in this case the success criteria is given by
 1864

- 1865 1. The sequence of the motif has to be 100% recovered,
- 1866 2. The motif α -carbon coordinates should have an all-atom RMSD $<1\text{\AA}$ when comparing to the
 1867 refolded structure, obtained by running ESMFold on the *La-Proteina* produced sequence,
- 1868 3. The motif coordinates should have an all-atom RMSD $<2\text{\AA}$ when comparing to the refolded
 1869 structure,
- 1870 4. The generated protein should be all-atom co-designable, i.e., it should have have an all-atom
 1871 scRMSD $<2\text{\AA}$.
- 1872

1873 The results of this refolding analysis for all-atom and tip-atom motif scaffolding are presented in
 1874 Fig. 33, Tab. 5 and Tab. 6. We do not include Protpardelle in this more stringent evaluation as its
 1875 performance is not competitive with *La-Proteina* and Protpardelle-1c. From the results, it can be
 1876 observed that *La-Proteina* yields state-of-the-art performance under this evaluation as well.

1883 F.5 BASELINE SAMPLING

1884
 1885 We sampled Protpardelle (Chu et al., 2024) (limited to indexed scaffolding) we used the option
 1886 `--type allatom` and generate template pdb files with the motif coordinates as well as template
 1887 residues for representing the scaffold in order to represent the correct length sampling ranges. For
 1888 Protpardelle-1c (Lu et al., 2025) (limited to all-atom indexed scaffolding) we used the samples
 1889 generated by the authors, as they evaluated their model on the same motif scaffolding benchmark,
 and we processed the samples using our own evaluation pipeline.

1890 **Table 4: Tip-atom motif scaffolding.** “All” indicates total number of successes produced by the model (we
 1891 produce 200 samples per task), while “Unique” indicates number of unique successes, obtained by clustering all
 1892 successes as explained in App. F.3. “Indexed” indicates the motif residue indices are provided as input to the
 1893 model, “Unindexed” indicates that the motif residue indices are not provided as input. “# segments” refers to the
 1894 number of residue segments in the motif.

Motif Task	# segments	Protpardelle (indexed)		La-Proteina (indexed)		La-Proteina (unindexed)	
		All	Unique	All	Unique	All	Unique
1YCR_AA	1	0	0	112	54	109	47
5TRV_AA_long	1	0	0	75	16	66	42
5TRV_AA_med	1	0	0	41	14	67	33
6E6R_AA_long	1	0	0	30	12	17	13
3IXT_AA	1	0	0	1	1	96	13
5TPN_AA	1	0	0	20	9	22	10
4ZYP_AA	1	0	0	6	2	38	8
5TRV_AA_short	1	0	0	14	3	24	6
6E6R_AA_med	1	0	0	35	7	14	4
6E6R_AA_short	1	0	0	16	5	3	2
5WN9_AA	1	0	0	0	0	5	2
7MRX_AA_128	1	0	0	44	22	0	0
7MRX_AA_85	1	0	0	72	5	0	0
7MRX_AA_60	1	0	0	1	1	0	0
4JHW_AA	2	0	0	0	0	8	6
6VW1_AA	2	0	0	28	5	63	6
1PRW_AA	2	2	1	45	5	25	3
5IUS_AA	2	0	0	1	1	2	2
2KL8_AA	2	6	1	189	1	154	1
1QJG_AA_NAT	3	0	0	109	37	85	78
7K4V_AA	3	0	0	28	27	68	64
1QJG_AA	3	2	1	125	51	61	55
5AOU_AA	3	0	0	64	16	43	40
5YUI_AA	3	0	0	3	3	10	9
5AOU_QUAD_AA	4	0	0	95	4	35	29
1BCF_AA	4	42	1	152	10	146	10

G ABLATIONS

G.1 VAE ABLATIONS

We first ablate multiple choices in the VAE’s design: The weight use for the KL term in the ELBO loss from Eq. (3), the architecture type used for the decoder, and building a fully-latent model that encodes α -carbon coordinates as well (in contrast to *La-Proteina*, which models α -carbon coordinates explicitly).

G.1.1 KL PENALTY WEIGHT

KL-weight. The weight use for the KL term in the ELBO loss from Eq. (3), for which we tested values in $\{10^{-3}, 10^{-4}, 10^{-5}\}$.

G.1.2 DECODER ARCHITECTURE

Decoder arch. The type of architecture used for the decoder, for which we compare the transformer used by all our models evaluated in the main text, against using a feed forward network with 7M parameters. For this we use a weight of 10^{-5} for the KL term in the ELBO loss from Eq. (3).

G.1.3 ENCODING α -CARBONS

CA-enc. We test encoding the α -carbons as well (with a transformer decoder). In this case, the α -carbon coordinates are not modeled explicitly, as in *La-Proteina*, but also encoded into the eight-dimensional latent space. This ablation shows the importance of explicitly modeling the α -carbon coordinates. For this we use a weight of 10^{-5} for the KL term in the ELBO loss from Eq. (3).

1944 **Table 5: All-atom motif scaffolding, evaluation with refolded structures.** “Evaluation using refolded
 1945 structures” indicates that a success is given by the criteria specified in App. F.4, which compares refolded
 1946 structures—where the sequence is produced by *La-Proteina* and then folded with ESMFold—against the motif
 1947 (instead of comparing the generated structure directly, as explained in App. F.3). “All” indicates total number
 1948 of successes produced by the model (we produce 200 samples per task), while “Unique” indicates number of
 1949 unique successes, obtained by clustering all successes as explained in App. F.3. “Indexed” indicates the motif
 1950 residue indices are provided as input to the model, “Unindexed” indicates that the motif residue indices are not
 1951 provided as input. “# segments” refers to the number of residue segments in the motif.

Motif Task	# segments	Evaluation using refolded structures			
		Protpardeille-1c (indexed)		<i>La-Proteina</i> (indexed)	
All	Unique	All	Unique	All	Unique
6E6R_AA_long	1	13	12	84	52
6E6R_AA_med	1	18	17	78	47
1YCR_AA	1	56	29	117	37
5TRV_AA_long	1	5	5	36	12
7MRX_AA_128	1	2	2	9	4
6E6R_AA_short	1	1	1	26	18
5TRV_AA_med	1	1	1	25	8
5TPN_AA	1	8	4	25	4
7MRX_AA_85	1	13	5	25	7
3IXT_AA	1	3	3	21	3
4ZYP_AA	1	1	1	4	2
5TRV_AA_short	1	0	0	1	1
7MRX_AA_60	1	7	2	49	2
5WN9_AA	1	0	0	0	0
1PRW_AA	2	162	20	174	18
5IUS_AA	2	0	0	1	1
6VW1_AA	2	11	1	22	1
2KL8_AA	2	74	1	51	1
4JHW_AA	2	0	0	0	0
1QJG_AA_NAT	3	3	2	23	13
7K4V_AA	3	2	1	33	4
5AOU_AA	3	39	5	157	9
1QJG_AA	3	6	4	29	9
5YUI_AA	3	0	0	2	2
5AOU_QUAD_AA	4	12	2	80	7
1BCF_AA	4	195	6	144	7

G.1.4 RESULTS

For each VAE variant, we train a dedicated flow matching model using the Foldseek clustered AFDB dataset (filtered to a maximum protein length of 256 residues). We then evaluate the generative performance by measuring all-atom co-designability and diversity on proteins sampled at lengths of $\{50, 100, 150, 200, 250\}$. We use the sampling hyperparameters detailed in App. E for the **KL-weight** and **Dec-arch** VAE variants. However, this setting is not directly applicable to the **CA-enc** model, as it encodes the entire protein, including α -carbon coordinates, into its latent variables and does not explicitly model α -carbons separately. To ensure a fair comparison and optimize its performance, we conducted a hyperparameter search for the **CA-enc** model. This involved exploring both Langevin scaling functions (“1/t” and “tan” from Eq. (10)) and all three numerical discretization schemes (“exponential”, “uniform”, “quadratic” from App. E.1), and selected the combination that yielded best results.

The results from this VAE ablation study are shown in Tab. 7, which reports all-atom co-designability and diversity values for each model. The three main conclusions are: First, Lower weights for the KL divergence term in the ELBO objective (10^{-4} and 10^{-5}) yield better generative performance than a higher weight (10^{-3}). Second, replacing the transformer architecture in the decoder by a feed forward network (7M parameters) leads to worse performance. Third, and most critically, explicitly modeling α -carbon coordinates, a cornerstone of *La-Proteina*’s design, leads to substantially better results than an approach that encodes the entire protein structure, including α -carbon coordinates, into a unified latent space (as in the **CA-enc** model). This last finding is particularly relevant, as it strongly validates *La-Proteina*’s fundamental design choice of treating the α -carbon backbone explicitly, rather than relying on a fully latent representation for the whole protein structure.

1998 **Table 6: Tip-atom motif scaffolding, evaluation with refolded structures.** “Evaluation using refolded
 1999 structures” indicates that a success is given by the criteria specified in App. F.4, which compares refolded
 2000 structures—where the sequence is produced by *La-Proteina* and then folded with ESMFold—against the motif
 2001 (instead of comparing the generated structure directly, as explained in App. F.3). “All” indicates total number
 2002 of successes produced by the model (we produce 200 samples per task), while “Unique” indicates number of
 2003 unique successes, obtained by clustering all successes as explained in App. F.3. “Indexed” indicates the motif
 2004 residue indices are provided as input to the model, “Unindexed” indicates that the motif residue indices are not
 2005 provided as input. “# segments” refers to the number of residue segments in the motif.

Motif Task	# segments	Evaluation using refolded structures			
		<i>La-Proteina</i> (indexed)		<i>La-Proteina</i> (unindexed)	
		All	Unique	All	Unique
1YCR_AA	1	111	54	92	45
5TRV_AA_long	1	46	13	29	23
5TRV_AA_med	1	19	10	20	12
6E6R_AA_long	1	28	12	8	7
3IXT_AA	1	1	1	94	11
5TPN_AA	1	6	5	16	7
4ZYP_AA	1	6	2	32	7
5TRV_AA_short	1	2	1	0	0
6E6R_AA_med	1	30	5	2	2
6E6R_AA_short	1	16	5	3	2
5WN9_AA	1	0	0	5	2
7MRX_AA_128	1	18	13	0	0
7MRX_AA_85	1	39	3	0	0
7MRX_AA_60	1	0	0	0	0
4JHW_AA	2	0	0	0	0
6VW1_AA	2	19	2	61	4
1PRW_AA	2	45	5	25	3
5IUS_AA	2	1	1	0	0
2KL8_AA	2	77	1	6	1
1QJG_AA_NAT	3	38	18	18	18
7K4V_AA	3	12	12	15	15
1QJG_AA	3	67	18	17	15
5AOU_AA	3	52	8	18	18
5YUI_AA	3	1	1	3	3
5AOU_QUAD_AA	4	29	2	7	7
1BCF_AA	4	145	10	132	10

2034 **Table 7: Ablation study for the VAE design, including different weights for the KL penalty term, a variant of
 2035 the VAE which uses a feed forward network instead of the transformer in the decoder, and a variant that also
 2036 encodes the α -carbon coordinates (that is, in this specific case, the flow matching model operates entirely in the
 2037 latent space, without explicitly modeling α -carbon coordinates, which are also captured by the latent variables).
 2038 For all VAEs we train a flow matching model on proteins of length up to 256 residues and report co-designability
 2039 and diversity metrics. All models were evaluated for multiple noise scaling parameters, and we selected the one
 2040 that led to the best performance (not reported for simplicity).**

VAE Type	KL weight	Co-designability (%) \uparrow		Diversity (# clusters) \uparrow		
		All-atom	Str	Seq	Seq+Str	
Transformer (enc), Transformer (dec)	10^{-3}	65.2	154	163	248	
Transformer (enc), Transformer (dec)	10^{-4}	83.8	246	317	374	
Transformer (enc), Transformer (dec)	10^{-5}	82.4	214	295	339	
Transformer (enc), Feed Forward (dec)	10^{-5}	58.0	151	242	233	
Transformer (enc), Transformer (dec), encode α -carbons	10^{-5}	21.2	51	105	91	

G.2 FLOW MATCHING SAMPLING HYPERPARAMETERS

2049 As explained in Sec. 3.4 and App. E, sampling *La-Proteina* requires selecting the discretization
 2050 scheme used for the α -carbon coordinates \mathbf{x}_{C_α} and latent variables \mathbf{z} , and the functions to scale the

2052 Table 8: Ablation study over discretization scheme and Langevin term scaling functions for *La-Proteina*
 2053 sampling. The table includes combinations that yield an all-atom co-designability of at least 0.5. Details for
 2054 the different discretization schemes and Langevin scaling functions are given in App. E. The diversity metric is
 2055 computed over the subset of all-atom co-designable samples.

Method	Discretization		Langevin scaling		Noise scaling		Co-designability (%) ↑	Diversity (# clusters) ↑			
	α -carbon	Latent \mathbf{z}	$\beta_x(t_x)$	$\beta_z(t_z)$	η_x	η_z		All-atom	Str	Seq	Seq+Str
<i>La-Proteina</i>	exp.	quad.	1/t	tan	0.1	0.1	68.4	206	216	310	
<i>La-Proteina</i>	exp.	quad.	1/t	tan	0.2	0.1	60.6	198	197	261	
<i>La-Proteina</i>	exp.	quad.	1/t	tan	0.3	0.1	53.8	180	189	249	
<i>La-Proteina</i>	exp.	quad.	1/t	1/t	0.1	0.1	59.2	164	198	247	
<i>La-Proteina</i>	exp.	quad.	1/t	1/t	0.1	0.2	57.0	163	189	253	
<i>La-Proteina</i>	exp.	quad.	1/t	1/t	0.1	0.3	53.4	190	191	245	
<i>La-Proteina</i>	exp.	unif.	1/t	1/t	0.1	0.1	50.6	194	189	226	
<i>La-Proteina</i>	exp.	unif.	1/t	tan	0.1	0.1	54.0	210	197	247	
<i>La-Proteina</i>	exp.	unif.	1/t	tan	0.2	0.1	52.4	208	185	246	
<i>La-Proteina</i>	exp.	quad.	tan	1/t	0.1	0.1	57.0	161	212	243	
<i>La-Proteina</i>	exp.	quad.	tan	1/t	0.1	0.2	53.6	171	203	244	
<i>La-Proteina</i>	exp.	quad.	tan	tan	0.1	0.1	57.4	168	217	251	
<i>La-Proteina</i>	exp.	quad.	tan	tan	0.1	0.2	55.4	183	216	252	

2069
 2070 Langevin term in the SDE from Eq. (7). As a brief reminder, App. E introduced three discretization
 2071 schemes, "exponential", "quadratic" and "uniform"; and also two scaling functions for the Langevin
 2072 term in the SDE, the "1/t" and "tan", shown in Eq. (10). While our primary *La-Proteina* configuration
 2073 (evaluated in Tab. 1) uses a specific pairing (namely, "exponential" discretization with "1/t" scaling for
 2074 the α -carbon coordinates, and "quadratic" discretization with "tan" scaling for the latent variables),
 2075 alternative combinations are viable. To systematically assess how these choices affect performance,
 2076 we conducted an ablation study by sampling a specific variant of *La-Proteina* (the model from
 2077 Sec. 4 without triangular multiplicative layers) with all possible combinations of these schemes and
 2078 functions for generating both the α -carbon coordinates \mathbf{x}_{C_α} and the latent variables \mathbf{z} .
 2079

2080 The outcomes of this ablation are presented in Tab. 8, which includes hyperparameter combinations
 2081 that yield an all-atom co-designability of at least 0.5. A clear pattern emerges from these results:
 2082 only sampling configurations that generate α -carbon coordinates at an effectively faster rate than
 2083 the latent variables surpass the 0.5 all-atom co-designability threshold. More specifically, every
 2084 successful combination listed employs the "exponential" discretization scheme for \mathbf{x}_{C_α} , using either
 2085 the "quadratic" or "uniform" scheme for \mathbf{z} . This implies that other pairings, such as applying
 2086 "quadratic" or "uniform" schedules for \mathbf{x}_{C_α} , or the "exponential" schedule for \mathbf{z} , did not yield
 2087 competitive co-designability values. While the choice of Langevin scaling function also influences
 2088 performance, its impact was observed to be less pronounced than that of the discretization scheme.
 2089

2090 G.3 MAIN CONCLUSIONS FROM ABLATION STUDIES

2091 The primary conclusion from our ablation studies is that achieving strong performance critically
 2092 depends on two key factors: first, the explicit modeling of α -carbon coordinates, and second,
 2093 generating these coordinates at an effectively faster rate than the latent variables (which encapsulate
 2094 all remaining atomic and sequence details).
 2095

H ARCHITECTURES

2097 The three neural networks used in *La-Proteina*, the encoder, decoder, and denoiser, rely on the
 2098 same core architecture based on transformers with pair-biased attention mechanisms (Jumper et al.,
 2099 2021; Abramson et al., 2024). Our implementation closely follows Geffner et al. (2025), to which
 2100 we refer for comprehensive details. This architecture processes inputs into two primary tensors:
 2101 a sequence representation of shape $[L, C_{\text{seq}}]$, which encodes per-residue features (e.g., atomic
 2102 coordinates, residue type, etc.), and a pair representation of shape $[L, L, C_{\text{pair}}]$, which encodes
 2103 features between residue pairs (e.g., relative sequence separation, inter-residue distances, etc.).
 2104 The sequence representation is iteratively updated through the transformer blocks, while the pair
 2105 representation provides biases to the attention logits via a learned linear projection within each
 2106 block, effectively incorporating relational information (Jumper et al., 2021). As aforementioned, we

2106 explore two variants for the denoiser network. One that keeps the pair representation fixed throughout
 2107 the architecture, and one where we use triangular multiplicative update layers to update the pair
 2108 representation, including one such layer every two transformer blocks (Jumper et al., 2021). While
 2109 these updates have shown performance gains in complex structural biology tasks (Lin et al., 2024;
 2110 Jumper et al., 2021; Abramson et al., 2024), they also add considerable computational expense.
 2111 Most *La-Proteina* models we evaluate do not use triangular update layers and yield state-of-the-art
 2112 performance. In practice, we use $C_{\text{seq}} = 768$ and $C_{\text{pair}} = 256$, 14 transformer layers for the
 2113 encoder and decoder, and 16 layers for the denoiser, yielding a total of 130M and 160M parameters,
 2114 respectively.

2115 The primary distinction between our three networks lies in the specific inputs they receive, how
 2116 these inputs are featurized to construct the initial sequence and pair representations, and the target
 2117 outputs they predict. The feature construction follows closely McPartlon & Xu (2023). The sequence
 2118 representation captures features for each independent residue (e.g. atomic coordinates), while the pair
 2119 representation captures features for residue pairs (e.g. relative distance and sequence separation).

2120 **Encoder.** The encoder parameterizes the Gaussian distribution $q_{\psi}(\mathbf{z} | \mathbf{x}_{\neg C_{\alpha}}, \mathbf{s}, \mathbf{x}_{C_{\alpha}})$, mapping the
 2121 inputs $(\mathbf{x}_{C_{\alpha}}, \mathbf{x}_{\neg C_{\alpha}}, \mathbf{s})$ to the distribution’s mean $\mu \in \mathbb{R}^{L \times 8}$ and log-scale $\log \sigma \in \mathbb{R}^{L \times 8}$. The input
 2122 features used by the encoder to construct the initial sequence representation are: (i) Raw absolute
 2123 Atom37 coordinates; (ii) Raw Atom37 coordinates, relative to the α -carbons; (iii) Residue type,
 2124 as a one-hot vector; (iv) Side chain angles, consisting of at most four angles (depends on residue
 2125 type), which are binned into 20 bins between $-\pi$ and π ; (v) Backbone torsion angles, which are
 2126 binned into 20 bins between $-\pi$ and π . The input features to construct the initial pair representation
 2127 are: (i) Relative sequence separation, as one-hot vectors, capped at ± 64 ; (ii) Relative orientations
 2128 between pairs of residues Yang et al. (2020), which are binned into 20 bins between $-\pi$ and π ; (iii)
 2129 Pairwise distances between α -carbons and all other backbone atoms, binned into 20 bins between
 2130 1Å and 20Å. The initial representations are then processed through 12 transformer blocks. The final
 2131 sequence representation is fed through a linear layer to produce μ and $\log \sigma$, and the latent variables
 2132 are obtained as $\mathbf{z} \sim \mathcal{N}(\mu, \sigma^2) \in \mathbb{R}^{L \times 8}$.

2133 **Decoder.** The decoder parameterizes the Categorical distribution $p_{\phi}(\mathbf{s} | \mathbf{z}, \mathbf{x}_{C_{\alpha}})$ and the Gaussian
 2134 distribution $p_{\phi}(\mathbf{x}_{\neg C_{\alpha}} | \mathbf{z}, \mathbf{x}_{C_{\alpha}})$, mapping the inputs $(\mathbf{z}, \mathbf{x}_{C_{\alpha}})$ to the logits of the Categorical, $\ell \in$
 2135 $\mathbb{R}^{L \times 20}$, and the mean of the Gaussian, $\mu_{\text{dec}} \in \mathbb{R}^{L \times 36 \times 3}$ (variance fixed to one). The input features
 2136 used by the decoder to construct the initial sequence representation are: (i) Raw α -carbon coordinates
 2137 $\mathbf{x}_{C_{\alpha}}$; (ii) Raw latent variables \mathbf{z} . The input features to construct the initial pair representation are:
 2138 (i) Relative sequence separation, as one-hot vectors, capped at ± 64 ; (ii) Pairwise distances between
 2139 α -carbons, binned into 30 bins between 1Å and 30Å. The initial representations are then processed
 2140 through 12 transformer blocks. The final sequence representation is fed through a linear layer to
 2141 produce ℓ and μ_{dec} .

2142 **Denoiser network.** The denoiser network maps time-dependent inputs, the interpolation times
 2143 t_x, t_z and corrupted coordinates $\mathbf{x}_{C_{\alpha}}^{t_x}$ and latents \mathbf{z}^{t_z} , to velocity fields $\mathbf{v}_{\phi}^x \in \mathbb{R}^{L \times 3}$ and $\mathbf{v}_{\phi}^z \in \mathbb{R}^{L \times 8}$,
 2144 used to sample $p_{\phi}(\mathbf{x}_{C_{\alpha}}, \mathbf{z})$. The corrupted inputs are featurized into the initial sequence and pair
 2145 representations. More specifically, the initial sequence representation uses: (i) Raw corrupted α -
 2146 carbon coordinates $\mathbf{x}_{C_{\alpha}}^{t_x}$; (ii) Raw corrupted latent variables \mathbf{z}^{t_z} . The input features to construct the
 2147 initial pair representation are: (i) Relative sequence separation, as one-hot vectors, capped at ± 64 ; (ii)
 2148 Pairwise distances between corrupted α -carbon coordinates, binned into 30 bins between
 2149 1Å and 30Å. The initial representations are then processed through 14 transformer blocks. The final
 2150 sequence representation is fed through a linear layer to produce \mathbf{v}_{ϕ}^z and \mathbf{v}_{ϕ}^x . In contrast to the encoder
 2151 and decoder architecture, the denoiser network also conditions on the interpolation times t_x and t_z .
 2152 This is done directly within its transformer blocks using adaptive layer normalization and output
 2153 scaling techniques (Peebles & Xie, 2023).

2154 **I MODEL PARAMETERS, SAMPLING SPEED AND MEMORY CONSUMPTION**

2155
 2156
 2157
 2158
 2159

2160
 2161 Table 9: Sampling time [seconds] for different methods at batch size 1 (top) and maximum batch size (bottom)
 2162 across varying protein lengths on an A100-80GB GPU. For PLAID and *La-Proteina*, the first parameter count is
 2163 the diffusion model and the second one is the decoder.

Method	# Params	Steps	100	200	300	400	500	600	700	800
<i>Batch size: 1</i>										
P(all-atom)	17.7M	200	32.9	62.1	106.1	OOM	OOM	OOM	OOM	OOM
ProteinGenerator	59.8M	100	197.8	239.6	428.6	642.8	981.0	1365.4	1915.0	2690.4
Protpardelle	25.1M	200	2.3	3.2	4.3	5.2	6.1	7.3	8.4	9.5
PLAID	100M + 3.5B	500	6.2	8.0	11.6	18.1	25.4	38.1	54.4	77.6
<i>La-Proteina</i>	158M + 128M	400	2.94	3.00	3.67	4.75	6.33	8.45	10.63	13.52
<i>La-Proteina</i> tri	167M + 128M	400	4.22	9.72	20.78	34.85	59.95	100.00	153.14	196.46
<i>Maximum batch size (runtimes normalised to be per 1 sample; batch size values in Table 10)</i>										
PLAID	100M + 3.5B	500	0.78	3.16	7.29	15.00	22.55	36.75	54.33	78.17
<i>La-Proteina</i>	158M + 128M	400	0.34	0.99	2.04	3.34	5.01	7.01	9.46	12.31
<i>La-Proteina</i> tri	167M + 128M	400	1.72	6.31	16.29	25.74	42.45	59.28	77.38	106.69

2174
 2175 Table 10: Maximum batch size for samples of varying length (the numbers in the top row indicate protein
 2176 backbone chain length) on an A100-80GB GPU.

Method	# Model parameters	Inference steps	100	200	300	400	500	600	700	800
PLAID	100M + 3.5B	500	792	154	73	35	20	12	9	6
<i>La-Proteina</i>	158M + 128M	400	422	118	49	29	17	13	8	7
<i>La-Proteina</i> tri	167M + 128M	400	530	150	60	35	22	17	11	10

2183 To evaluate both model complexity (through parameter counts) and its operational consequences
 2184 for memory usage and generation speed, we perform three complementary experiments following
 2185 Geffner et al. (2025):

- 2187 1. **Single-sequence inference latency:** Measurement of per-sample generation time using
 2188 batch size 1 on an NVIDIA A100-80GB. Results appear in Table 9 upper part.
- 2189 2. **Batch-optimized throughput analysis:** Measurement of generation times at maximum
 2190 batch capacities, with computational efficiency quantified through time-per-sequence nor-
 2191 malization. Executed on A100-80GB GPUs as documented in Table 9 lower part.
- 2192 3. **Memory efficiency assessment:** Determination of maximum viable batch sizes without
 2193 exceeding memory limits, conducted on an NVIDIA A100-80GB GPU to establish practical
 2194 scalability thresholds. See Table 10 for detailed comparisons.

2196 All referenced tables include parameter counts for cross-model comparison.

2197 Our implementation capitalizes on the transformer architecture’s hardware compatibility through
 2198 PyTorch’s compilation framework (Ansel et al., 2024), which accelerates both training and inference
 2199 phases. Reported inference metrics for *La-Proteina* as well as other models leveraging compilation
 2200 such as P(all-atom) reflect performance optimizations achieved via model compilation and report
 2201 timings excluding compilation overhead at the beginning since it becomes negligible for large-scale
 2202 inference which is mostly of interest in the protein design setting.

2203 We can see that *La-Proteina* is fast despite the high parameter count; the model without triangle
 2204 multiplication layers is the fastest together with Protpardelle. The model with triangle multiplication
 2205 layers is slower, but still faster than P(all-atom) and Protein Generator, as well as faster than PLAID
 2206 at short lengths.

2207 Since only *La-Proteina* and PLAID support batched inference, the difference becomes stark there:
 2208 at maximum batch size *La-Proteina* can generate hundreds of proteins in one batch, resulting in
 2209 inference times of below a second for short proteins. Interestingly, after compilation of these models
 2210 the models with triangle multiplication layers is able to fit higher batch sizes than the one without
 2211 triangle multiplication layers, probably as an artifact of the compilation process.

2212 One also sees the *La-Proteina* benefits a lot more from batched inference speed-ups than PLAID.
 2213 This is mostly due to the *La-Proteina* decoder being fairly lightweight and fast, with the majority

2214 of time spent during the diffusion process, while in PLAID the ESMFold-3B decoder is the major
2215 bottleneck.
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Table 11: Results for unconditional generation for proteins of different lengths. Table (A) shows results for 100 proteins of length 100; table (B) for proteins of lengths in {100, 200}, with 100 samples per length; table (C) for proteins of lengths in {100, 200, 300}, with 100 samples per length. η_x and η_z denote the noise scaling factors during generation (Eq. (7)). Best scores for each table **bold**, second best underlined.

Method	All-atom co-designability (%) \uparrow	Diversity (# clusters) \uparrow		
		Structure	Sequence	Sequence+Structure
(A) 100 proteins for each length in {100}				
P(all-atom)	88.0	41	78	70
Protpardelle-1c	76.0	13	67	33
APM	56.0	15	48	33
PLAID	22.0	14	18	15
ProteinGenerator	45.0	13	27	22
Protpardelle	29.0	8	26	17
<i>La-Proteina</i> (η_x, η_z) = (0.1, 0.1)	96.0	43	89	82
<i>La-Proteina</i> (η_x, η_z) = (0.2, 0.1)	90.0	<u>54</u>	78	78
<i>La-Proteina</i> (η_x, η_z) = (0.3, 0.1)	88.0	<u>55</u>	80	80
(B) 100 proteins for each length in {100, 200}				
P(all-atom)	80.5	111	132	143
Protpardelle-1c	70.0	14	115	35
APM	38.0	24	48	56
PLAID	15.5	18	24	20
ProteinGenerator	26.0	14	26	26
Protpardelle	17.0	9	31	19
<i>La-Proteina</i> (η_x, η_z) = (0.1, 0.1)	89.5	93	147	151
<i>La-Proteina</i> (η_x, η_z) = (0.2, 0.1)	84.0	<u>104</u>	145	143
<i>La-Proteina</i> (η_x, η_z) = (0.3, 0.1)	80.5	111	<u>146</u>	<u>149</u>
(C) 100 proteins for each length in {100, 200, 300}				
P(all-atom)	60.7	131	147	164
Protpardelle-1c	58.3	14	133	35
APM	30.0	30	54	62
PLAID	15.3	23	32	25
ProteinGenerator	17.7	14	26	26
Protpardelle	14.7	10	36	20
<i>La-Proteina</i> (η_x, η_z) = (0.1, 0.1)	85.3	150	192	217
<i>La-Proteina</i> (η_x, η_z) = (0.2, 0.1)	<u>77.7</u>	<u>144</u>	<u>181</u>	<u>198</u>
<i>La-Proteina</i> (η_x, η_z) = (0.3, 0.1)	69.7	139	173	191

J ADDITIONAL RESULTS

J.1 UNCONDITIONAL EVALUATION ON SHORTER PROTEINS

To complement our main evaluation from Tab. 1, we performed an additional comparative analysis using subsets of shorter proteins. This accounts for the diverse training distribution of various baseline models, some of which were trained on proteins shorter than those used to train *La-Proteina*. We assessed all models across three scenarios: (A) 100 proteins of length 100; (B) 200 proteins, with 100 samples each for lengths 100 and 200; and (C) 300 proteins, comprising 100 samples each for lengths 100, 200, and 300. The resulting all-atom co-designability and diversity metrics for this analysis are summarized in Tab. 11, where it can be observed that *La-Proteina* yields state-of-the-art performance across all three scenarios.

J.2 pLDDT VALUES

Violin plots showing the distribution of confidence scores (pLDDT) for protein structures generated by *La-Proteina* and baselines are shown in Fig. 34. The samples used for those plots are the same as the ones used for the results in Tab. 1, filtered by all-atom co-designable, that is, we only include samples with all-atom RMSD between the model produced structure and the one obtained by folding the model produced sequence with ESMFold $< 2\text{\AA}$. The results show that all variants of *La-Proteina*, different temperatures and with/without triangular update layers, consistently achieve the highest median and interquartile range (IQR) pLDDT values.

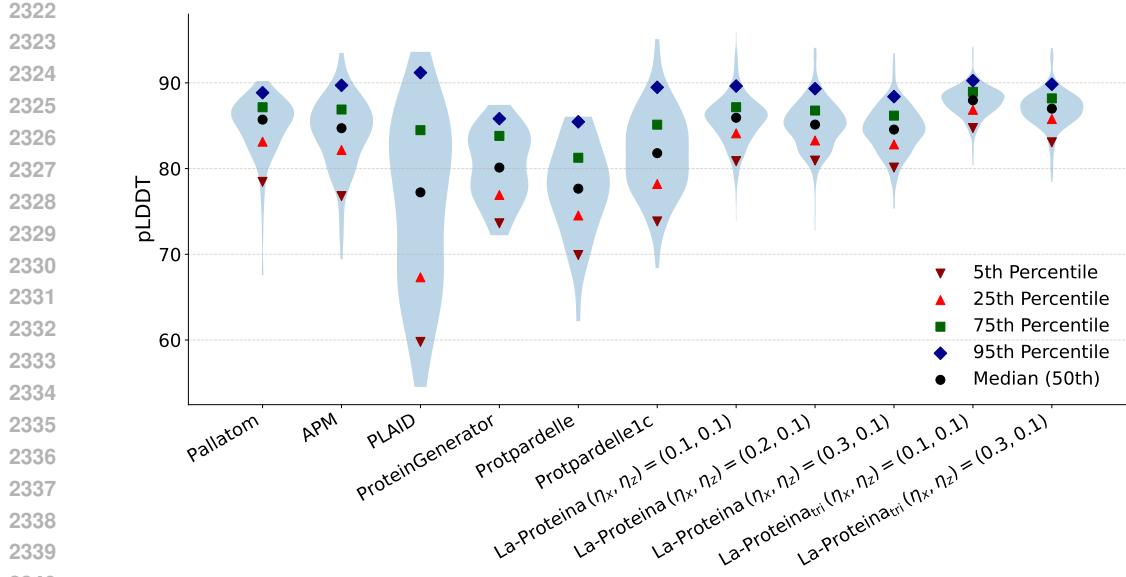


Figure 34: **La-Proteina samples with higher pLDDT than existing all-atom generation baselines.** Samples included in the analysis are the same as those use to compute the metrics in Tab. 1. As for most metrics (App. D) we filter samples to keep only all-atom co-designable ones.

J.3 RESIDUE TYPE DISTRIBUTION

Fig. 35 shows the distribution of amino acids generated by each of the comparative methods against the UniProt reference distribution. The samples used for this figure are identical to those used for Tab. 1, filtered by all-atom co-designability. As it can be observed from the figure, all methods over- and under-represent certain residues when compared against the UniProt reference distribution. Notably, as demonstrated in Fig. 36, *La-Proteina* produces a distribution over amino acid types very similar to the ones produced by ProteinMPNN. We view this as a positive outcome, as sequences generated by ProteinMPNN are generally acknowledged to possess highly desirable properties.

The sequence results discussed above were obtained by our model using low temperature sampling, specifically with parameters $(\eta_x, \eta_z) = (0.1, 0.1)$. To quantitatively assess the effect of temperature parameters on the resulting sequence distribution, we generated 1000 samples of length 100 using various temperatures. Results from this analysis are shown Fig. 37, where it can be observed that increasing the temperature to 0.5 and 0.9 (for both backbone and latent variables jointly) leads to distributions that get increasingly closer to the UniProt reference. However, this increase in temperature comes at the cost of performance in other metrics, manifesting as reduced all-atom co-designability. For instance, across the samples produced for this specific temperature analysis, the all-atom co-designability decreases from 90% for $(\eta_x, \eta_z) = (0.1, 0.1)$, to 54% for $(\eta_x, \eta_z) = (0.5, 0.5)$, and finally to 11% for $(\eta_x, \eta_z) = (0.9, 0.9)$.

K DECLARATION OF LARGE LANGUAGE MODELS USAGE IN THIS WORK

Large Language Models (LLMs) were used as a writing aid to enhance clarity and readability during the preparation of this manuscript. The use of these tools was strictly limited to grammatical correction and stylistic refinements. All intellectual content, analyses, and arguments in the paper did not rely on the use of LLMs in any way.

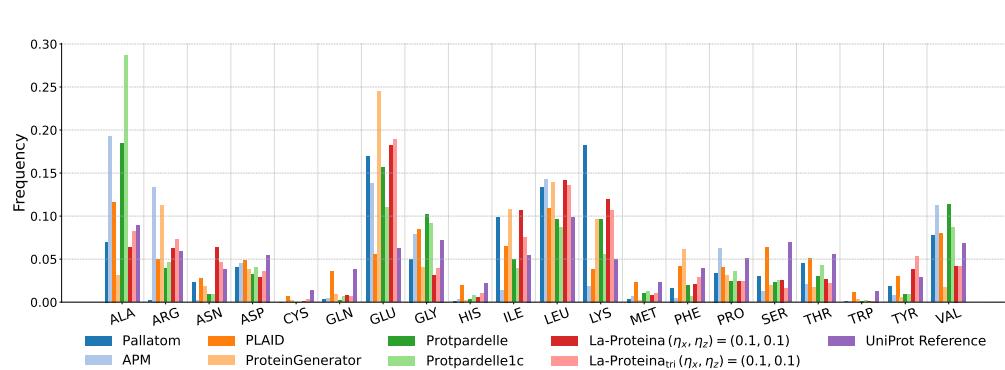
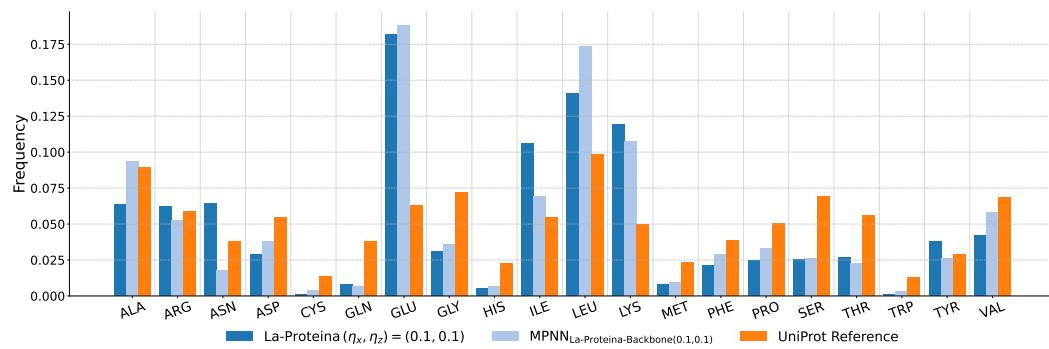
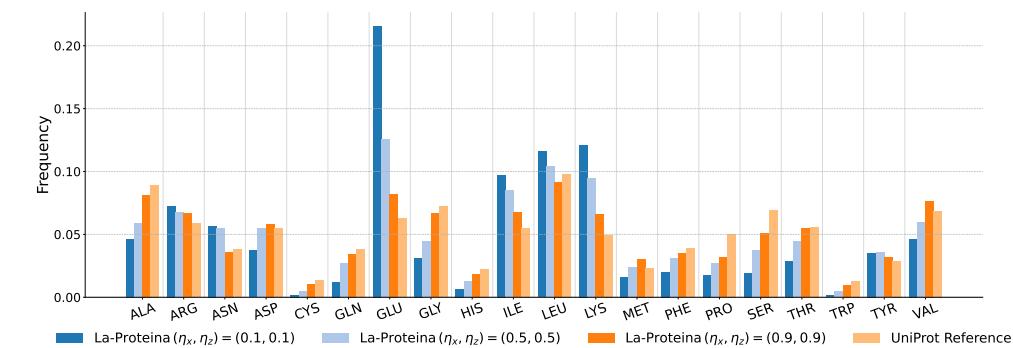


Figure 35: Distribution of amino-acid frequencies of co-designable samples by different methods.

Figure 36: Distribution of amino-acid frequencies of *La-Proteina* for different temperatures. Plots were obtained by filtering for co-designable samples.Figure 37: Distribution of amino-acid frequencies of *La-Proteina* for different temperatures. Plots were obtained by filtering for co-designable samples.