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Abstract001

In this paper, we propose a new method to002
enhance compositional understanding in pre-003
trained vision and language models (VLMs)004
without sacrificing performance in the model’s005
original zero-shot multi-modal tasks. Tradi-006
tional fine-tuning methods often improve com-007
positional reasoning at the expense of multi-008
modal capabilities. This drawback stems from009
the use of global hard negative loss, which con-010
trasts the global representations of images and011
texts. This can distort multi-modal representa-012
tions by pushing original texts due to ambigu-013
ous global representations. To address this, we014
propose the Fine-grained Selective Calibrated015
CLIP (FSC-CLIP). This incorporates local hard016
negative loss and selective calibrated regular-017
ization, designed to provide fine-grained nega-018
tive supervision while maintaining the integrity019
of representations. Our extensive evaluation020
across various benchmarks for compositional-021
ity and multi-modal tasks shows that FSC-CLIP022
not only achieves compositionality on par with023
state-of-the-art models but also maintains multi-024
modal capabilities.025

1 Introduction026

Humans naturally excel at multi-modal understand-027

ing, effortlessly perceiving and interpreting dif-028

ferent modalities, such as images and text, and029

forming associations between them. This capabil-030

ity is evident in recognizing novel concepts (Fu031

et al., 2018), cross-modal retrieval (Kaur et al.,032

2021), and compositional reasoning (Levesque033

et al., 2012). To achieve this ability in artificial034

intelligence, foundational vision and language mod-035

els (VLMs) have been trained on large-scale image-036

text datasets (Schuhmann et al., 2022b), signifi-037

cantly bridging the gap between human and ma-038

chine capabilities in tasks like zero-shot recogni-039

tion and image-text retrieval (Radford et al., 2021).040

Despite these advances, VLMs still face chal-041

lenges in compositional understanding (Yuksek-042

ARO
CREPE

EqBen

ImageCode

SPEC

SugarCrepe

SVO Probes

VALSE VL Checklist

WhatsUp

Winoground

11 Comp Avg.

21 ZS Avg.

3 I2T Ret Avg.

3 T2I Ret Avg.

57.523.8

21.7

73.1

84.1
67.5 70.8 8.8

46.1

57.1

60.0

45.8

39.9

86.4
60.6

25.6

30.8

85.3

83.5

42.6

4.8

54.7

51.1

36.9

29.1

24.7

33.4

90.1

73.6

55.5

CLIP TSVLC (RB, LLM) DAC-LLM FSC-CLIP (Ours)

Figure 1: A holistic comparison of fine-tuning meth-
ods for visio-linguistic compositionality. Enhancing
compositionality often compromises multi-modal task
performance in previous approaches. Our FSC-CLIP
bridges this gap, minimizing these trade-offs. Full ex-
perimental results are provided in Tab. 1.

gonul et al., 2023). Humans intuitively grasp com- 043

plex compositional language within images, involv- 044

ing spatial reasoning, attributes and relationships 045

in objects, and equivariance between image and 046

text (Wang et al., 2023). In contrast, VLMs often 047

fail to understand these nuanced relationships (Liu 048

et al., 2023a; Ray et al., 2023). This shortfall is 049

attributed to their reliance on single-vector repre- 050

sentations (Kamath et al., 2023a) and limited ability 051

to match compositional knowledge (Wang et al., 052

2024), which restricts effective encoding and uti- 053

lization of compositional language. 054

To improve compositionality in VLMs, both pre- 055

training (Singh et al., 2023; Zheng et al., 2024) and 056

fine-tuning (Zhang et al., 2024; Singh et al., 2024) 057

methods have been proposed. In particular, fine- 058

tuning, which leverages pre-trained knowledge and 059

is cost-effective, is widely adopted in academia. 060

Typically, this involves incorporating hard negative 061

texts (Doveh et al., 2022, 2023; Herzig et al., 2023) 062

into training. However, as shown in Fig. 1, this ap- 063
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proach can result in a trade-off, where gains in com-064

positionality come at the expense of performance in065

the multi-modal tasks: zero-shot classification (ZS)066

and image-to-text retrieval (I2T Ret). The hard067

negative losses in previous methods, which oper-068

ate on global image and text representations, may069

disrupt the well-established multi-modal represen-070

tations due to the ambiguous encoding of original071

and negative texts (Kamath et al., 2023b).072

To this end, we propose a new fine-tuning frame-073

work designed to enhance compositional reason-074

ing in pre-trained VLMs while preserving their075

capabilities in original multi-modal tasks. This ap-076

proach tackles the degradation of multi-modal rep-077

resentations caused by global hard negative loss on078

single vector representations, which struggles to079

capture subtle informational differences between080

hard negative texts and the original text.081

Our framework introduces two key innovations:082

(1) Local Hard Negative (LHN) Loss. We utilize083

dense alignments between image patches and text084

tokens to calculate the hard negative loss. This ap-085

proach, inspired by the dense alignment for vision-086

language representation (Huang et al., 2021; Bica087

et al., 2024), aggregates local similarity scores to088

enhance compositional understanding without un-089

dermining multi-modal representations.090

(2) Selective Calibrated Regularization (SCR).091

To mitigate the adverse effects of hard negative092

losses, which can push original text representations093

away due to blurred text representations, SCR se-094

lectively focuses on challenging hard negative texts.095

Furthermore, it introduces a slight positive margin096

for these texts, helping to calibrate the confusion.097

The whole framework, dubbed Fine-grained and098

Selective Calibrated CLIP, offers fine-grained su-099

pervision of hard negatives while preserving the100

integrity of multi-modal representations. As shown101

in Fig. 1, FSC-CLIP not only improves composi-102

tionality but also maintains high performance in103

multi-modal tasks. It outperforms DAC-LLM in ZS104

and I2T Ret scores, while achieving similar com-105

positionality (Comp) across a wide range of tasks.106

We summarize our contributions as follows:107

• We propose a novel fine-tuning methodology,108

FSC-CLIP, that aims to enhance visio-linguistic109

compositionality in pre-trained VLMs while main-110

taining their multi-modal task capabilities.111

• We design a local hard negative (LHN) loss and112

a selective calibrated regularization (SCR) mech-113

anism, effectively capturing subtle differences in114

hard negative texts and preserving the integrity of 115

multi-modal representations. 116

• We validate FSC-CLIP through an extensive 117

range of experiments, covering 11 composition- 118

ality, 21 zero-shot recognition, and 3 image-text 119

retrieval tasks, establishing a comprehensive eval- 120

uation of VLMs’ multifaceted capabilities. 121

2 Related Work 122

Contrastive Vision-Language Models. CLIP 123

(Radford et al., 2021) has revolutionized the multi- 124

modal domain through large-scale pre-training of 125

image-text alignment, showing the remarkable 126

zero-shot capabilities. CLIP utilizes a dual-encoder 127

architecture, which enables versatility across a 128

broad spectrum of vision (Zhou et al., 2022; Liang 129

et al., 2023), and vision-language (Mokady et al., 130

2021; Kwon and Ye, 2022) downstream tasks. They 131

also serve as the building blocks for modern foun- 132

dational models in various tasks, including ad- 133

vanced VLMs (Li et al., 2022b), multi-modal lan- 134

guage models (MLLMs) (Li et al., 2023; Liu et al., 135

2023b), and generative models (Podell et al., 2023; 136

Huang et al., 2023). Additionally, these models 137

extend their utility to linking 3D (Sun et al., 2024) 138

or audio (Elizalde et al., 2023) to language, high- 139

lighting the essential roles of both multi-modal and 140

compositional tasks in practical applications. We 141

aim to enhance CLIP’s compositional understand- 142

ing while preserving its multi-modal capabilities. 143

Visio-Linguistic Compositionality. Although vi- 144

sion and language models (VLMs) have promis- 145

ing capabilities like zero-shot classification and re- 146

trieval (Radford et al., 2021; Zeng et al., 2022), they 147

still lack compositional reasoning that requires fine- 148

grained understanding (Peng et al., 2024) between 149

image and text. Numerous benchmarks have been 150

proposed, testing various aspects such as attributes, 151

relationships and objects (Zhao et al., 2022; Yuk- 152

sekgonul et al., 2023), spatial reasoning (Kamath 153

et al., 2023b; Liu et al., 2023a) and linguistic phe- 154

nomena (Parcalabescu et al., 2022). Meanwhile, 155

incorporating hard negative captions during fine- 156

tuning has become common to enhance composi- 157

tionality (Zhang et al., 2024), generated through 158

rule-based methods (Doveh et al., 2022; Yuksek- 159

gonul et al., 2023), large language models (Doveh 160

et al., 2023), and scene graphs (Singh et al., 2023; 161

Herzig et al., 2023). We comprehensively evaluate 162

the capabilities of VLMs across a broad range of 163

compositionality and multi-modal tasks. 164
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Figure 2: A complete FSC-CLIP framework that incorporates Local Hard Negative (LHN) Loss with Selective
Calibrated Regularization (SCR), alongside a global HN loss. The LHN loss measures similarity between an image
and a text at the patch and token levels to more accurately identify subtle differences between original and HN texts.
SCR combines focal loss with label smoothing to mitigate the adverse effects of using hard negative losses.

3 Methodology165

We first outline the fine-tuning setting of CLIP166

in Sec. 3.1. We then introduce FSC-CLIP, which167

includes Local Hard Negative (LHN) Loss and168

Selective Calibrated Regularization (SCR) in169

Secs. 3.2 and 3.3. The training objective for170

FSC-CLIP is detailed in Sec. 3.4. We illustrate the171

FSC-CLIP framework, which integrates both global172

and local HN losses with SCR as shown in Fig. 2.173

3.1 CLIP with Global Contrastive Loss174

CLIP objective. Consider a mini-batch B =175

{(Ii, Ti)}Bi=1 of size B, consisting of image and176

text pairs (Ii, Ti). Using CLIP’s visual and lan-177

guage encoders, fv(·) (e.g., ViT (Dosovitskiy et al.,178

2021)) and ft(·) (e.g., Transformers (Vaswani et al.,179

2017)), each image Ii is encoded into a sequence180

of visual tokens Vi = fv(Ii), and each text Ti into181

a sequence of textual tokens Ti = ft(Ti). These182

sequences are represented in a shared multi-modal183

space, with Vi = {vp,i}Pp=1 comprising P local184

patch embeddings and Ti = {tw,i}Ww=1 consisting185

of W token embeddings, both in the shared embed-186

ding dimension d. The global representations of187

image and text vi and ti ∈ Rd can be obtained by188

pooling the local representations: vi = Pool (Vi)189

and ti = Pool (Ti), respectively. For example,190

Pool(·) corresponds to avgpool and argmax for191

images and texts in (Radford et al., 2021)).192

CLIP aligns the corresponding images and texts193

by measuring the global-level similarity:194

Sg (Ii, Ti) = exp (cos (vi, ti) /τ) , (1)195

where cos (v, t) = vT t
∥v∥·∥t∥ . The image to text loss 196

Li2t of CLIP maximizes Sg (Ii, Ti), while minimiz- 197

ing Sg (Ii, Tj) for all non-matching texts j ̸= i: 198

Li2t = − 1

B

B∑
i=1

log
Sg (Ii, Ti)∑B
j=1 Sg (Ii, Tj)

, (2) 199

and the text to image loss Lt2i is the reciprocal of 200

Li2t which aligns the matching image per text. The 201

final CLIP loss is Lclip = 1
2 (Li2t + Lt2i). 202

Incorporating hard negative texts. To enhance 203

the compositional reasoning of CLIP, hard nega- 204

tive (HN) texts are commonly incorporated into 205

training, whether they are rule-based (Yuksek- 206

gonul et al., 2023) or generated by language mod- 207

els (Doveh et al., 2023). Consider a set of K dif- 208

ferent HN texts T̃i = {T̃ k
i }Kk=1 originated from Ti. 209

We introduce a separate hard negative loss added to 210

Lclip, similar to (Doveh et al., 2022). First, we com- 211

pute a similarity prediction probability pgi , assigned 212

to the original caption Ti as follows: 213

pgi =
Sg (Ii, Ti)

Sg (Ii, Ti) +
∑K

k=1 Sg

(
Ii, T̃ k

i

) . (3) 214

Here, g represents the global representation, and 215

the hard negative (HN) loss applied to this similar- 216

ity assignment is formulated as cross entropy: 217

Lg
neg = − 1

B

B∑
i=1

log pgi . (4) 218

However, incorporating such global HN loss can 219

inadvertently harm the multi-modal representations 220

due to the similarly encoded global text representa- 221

tions between original and HN texts. 222
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3.2 Local Hard Negative (LHN) Loss223

To address the issue, we propose a novel Local224

Hard Negative (LHN) loss that utilizes a local sim-225

ilarity score Sl(I, T ). This score focuses on the226

local alignment between text tokens and sub-image227

regions (Huang et al., 2021; Bica et al., 2024), bet-228

ter capturing subtle differences between the origi-229

nal text and HN texts. Replacing the global simi-230

larity Sg with Sl, the LHN loss is formulated as:231

Ll
neg =

−1

B

B∑
i=1

log
Sl (Ii, Ti)

Sl (Ii, Ti) +

K∑
k=1

Sl

(
Ii, T̃

k
i

)
︸ ︷︷ ︸

pli

,

(5)232

where pli represents the local similarity prediction,233

and the LHN loss is calculated in the same manner234

as Lg
neg in Eq. (4). We further describe the process235

for obtaining the local similarity Sl(I, T ).236

Textual-aligned Visual Patches. Sl(I, T ) mea-237

sures the similarity between token and patch em-238

beddings for each token in the given text T . From239

the patch representations V = {vp}Pp=1, we first240

derive the textual-aligned patch embeddings V̂ =241

{v̂w}Ww=1, corresponding to each textual token fea-242

ture tw in T ∈ RW,d. This is achieved by perform-243

ing a weighted average of patches V using attention244

weights a ∈ RW,P derived from normalizing the245

similarity map s ∈ RW,P between token and patch246

embeddings. This process assigns a patch embed-247

ding to each token, enabling similarity measure-248

ment on a per-token basis. We denote the similarity249

map as s = TTV ∈ RW,P , where sw,p = tTwvp. To250

relate multiple similar patches for a single token,251

we min-max normalize s to obtain a:252

aw,p =
sw,p −mink sw,k

maxk sw,k −mink sw,k
, (6)253

and use the attention weights a to aggregate V,254

obtaining textual-aligned patches V̂ = {v̂w}Ww=1:255

v̂w =
1∑P

p=1 aw,p

·
P∑

p=1

aw,p · vp. (7)256

Token-level Similarity. Having obtained the257

textual-aligned visual tokens V̂, we aggregate the258

per-token similarities between V̂ and T:259

Sl (I, T ) =
W∑
w=1

exp (cos (v̂w, tw) /τ) , (8)260

where v̂w ∈ V̂ and tw ∈ T. Unlike Sg(I, T ), 261

Sl(I, T ) focuses on the local alignment between 262

image and text, better distinguishing features be- 263

tween correct and HN texts, thereby reducing the 264

negative impact on the multi-modal representations 265

by the hard negative loss, as illustrated in Fig. 2. 266

We observe that Ll
neg maintains multi-modal 267

task performance close to that of the pre-trained 268

representations, while significantly boosting com- 269

positionality. Additionally, we highlight this pro- 270

cess does not introduce any additional model pa- 271

rameters for heavy modality interaction layers (e.g., 272

cross attention) (Li et al., 2022b; Yu et al., 2022). 273

It also maintains the efficient inference pipeline 274

of CLIP without relying on text-dependent image 275

embeddings during inference (Lavoie et al., 2024). 276

3.3 Selective Calibrated Regularization (SCR) 277

Reliance on the HN losses can adversely affect 278

multi-modal representations. To counteract this, 279

we propose a Selective Calibrated Regularization 280

(SCR) mechanism applicable to both global and 281

local HN losses. SCR comprises two complemen- 282

tary components: one regulates the prediction of 283

image-text similarity, while the other adjusts the 284

assignment labels. Our experimental validation 285

confirms that both components are crucial for pre- 286

serving the integrity of the representations. 287

Focal Loss to Target Challenging HN Texts. 288

We intend to focus selectively on challenging HN 289

texts, i.e., those with higher similarity to the image 290

than positive texts. This strategy is aligned with 291

the concept behind focal loss (Lin et al., 2017). 292

Formally, let the similarity prediction logit vec- 293

tor of the i-th batch item along with K generated 294

HN texts be pi ∈ R1+K , where the first element 295

corresponds to the original text. Depending on 296

whether using global or local representations, the 297

logit vector is further represented as either pgi or 298

pli, similar to Eqs. (4) and (5). The respective HN 299

losses can be re-formulated in a vector represen- 300

tation with pi as CE(pi, yi) =
∑K

k=0 li,k, where 301

li,k = −yi,k log pi,k and yi = 1[k=0] ∈ R1+K in- 302

dicates the assignment label between an image and 303

all texts. To reduce the negative impact caused 304

by the confidently correct associations, we apply 305

confidence-based weighting to CE loss: 306

Focal (pi, yi) =
K∑
k=0

(1− pi,k)
γ li,k, (9) 307

where γ is the modulation parameter. This strat- 308
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egy prioritizes challenging image-text associations,309

which are crucial for learning compositionality.310

Label Smoothing to Calibrate HN Text Assign-311

ments. From the HN losses in Eqs. (4) and (5), the312

label vector yi assigns a value of 1 exclusively to313

the single positive text, while assigning a value of314

0 to all HN texts, thereby producing a binary label315

vector. This treats HN texts as certainly negative.316

Given that the original text and its hard negative317

(HN) texts exhibit similar representations from a318

global perspective, we assign a slight positive mar-319

gin to the HN texts instead of categorizing them320

as entirely negative. Specifically, we adopt label321

smoothing (Guo et al., 2017) to the assignment322

label vector yi, using a smoothing parameter β:323

ỹi,k = (1− β) · yi,k +
β

1 +K
, (10)324

where ỹi provides such non-binary label for the325

global and local HN losses, i.e., Focal(pi, ỹi). This326

accommodates similar representations in the HN327

texts, preserving the original representations.328

3.4 Overall Training Objective329

Our framework incorporates two hard negative330

losses, Lg
neg and Ll

neg, representing global and lo-331

cal HN losses respectively, into the CLIP training332

loss Lclip with additional hard negative texts:333

Ltotal = Lclip + λgLg
neg + λlLl

neg, (11)334

where λg and λl are the weighting factors for the335

global and local HN losses, respectively. Training336

with Ltotal neither modifies the architecture of CLIP337

nor introduces additional model parameters.338

4 Experiments339

For reproducibility, we will release our codes for340

training and evaluation, along with the checkpoints.341

Training Datasets. We consider two image-text342

datasets for fine-tuning: LAION-COCO (Schuh-343

mann et al., 2022a) and CC-3M (Sharma et al.,344

2018), each with a 100K randomly sampled subset,345

consistent with the literature (Singh et al., 2023;346

Zhang et al., 2024). For training, we use synthetic347

captions generated by an image captioning model348

from paired images instead of raw captions. Specif-349

ically, LAION-COCO captions are generated using350

BLIP (Li et al., 2022b) with ViT-L/14, applied to351

LAION-2B (Schuhmann et al., 2022b). For the352

CC-3M subset, we generated synthetic captions353

using CoCa (Yu et al., 2022) with ViT-L/14. Impor- 354

tantly, we avoid using COCO 100K subset (Yuk- 355

sekgonul et al., 2023) for fine-tuning as it shares 356

data with several evaluation benchmarks, which 357

could inadvertently influence the results, as also 358

noted by (Singh et al., 2023). 359

Hard Negative (HN) Texts. We adopt a simple 360

rule-based methods for generating hard negative 361

texts that do not rely on external language models 362

such as (Le Scao et al., 2023) adopted in (Doveh 363

et al., 2023). Consequently, rule-based approach 364

enables online text augmentation at each training 365

step, ensuring variations in each iteration. For each 366

caption, we apply three distinct negative augmenta- 367

tions in an online version: negclip (Yuksekgonul 368

et al., 2023), replace (Hsieh et al., 2023), and 369

bi-gram shuffle. This process results in a total 370

of four captions, including the original one, paired 371

with an image for every batch item. We provide 372

further details on these augmentations, along with 373

corresponding examples, in Appendix A.1. 374

Training Setup. Consistent with previous meth- 375

ods (Yuksekgonul et al., 2023; Zhang et al., 2024; 376

Singh et al., 2023), we trained our models during 377

5 epochs with batch size 256, using OpenCLIP 378

repository (Ilharco et al., 2021). The learning rate 379

is set to 5e-6 and decayed by a cosine schedule, 380

with a warmup of 50 steps. Models are optimized 381

using AdamW with a weight decay of 0.1. We 382

use a single Quadro RTX 8000 GPU with 48GB 383

memory for training. Images are re-scaled to 224, 384

and the context length is 77 for texts. We set the 385

weighting factors λg = 0.5 and λl = 0.2. For SCR, 386

we set γ = 2.0 and β = 0.02 for focal loss and 387

label smoothing, respectively. We also explore fine- 388

tuning with LoRA (Hu et al., 2022) setting the rank 389

to 4 as in (Doveh et al., 2022, 2023). Training our 390

model takes less than one hour for 100K samples. 391

Evaluation Setup. We use an extensive range 392

of compositionality and multi-modal task bench- 393

marks for a comprehensive evaluation, far sur- 394

passing the scope of previous works. For com- 395

positionality, we employ 11 benchmarks in to- 396

tal: ARO (Yuksekgonul et al., 2023), CREPE- 397

Productivity (Ma et al., 2023), EqBen (Wang 398

et al., 2023), ImageCoDe (Krojer et al., 2022), 399

SPEC (Peng et al., 2024), SugarCrepe (Hsieh 400

et al., 2023), SVO Probes (Hendricks and Ne- 401

matzadeh, 2021), VALSE (Parcalabescu et al., 402

2022), VL-Checklist (Zhao et al., 2022), What- 403

sUp (Kamath et al., 2023b), Winoground (Thrush 404

et al., 2022), testing a diverse array of aspects 405
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CLoVe7 83.0 41.7 26.9 25.3 84.6 87.9 71.8 66.6 41.8 6.5 31.7 51.6 51.0 53.1 56.0

Fine-tuned: LAION-COCO, 100K Samples
NegCLIP‡ 86.4 48.7 27.2 25.3 80.9 89.6 70.9 76.0 43.0 7.8 32.3 53.5 54.1 52.3 54.1
FSC-CLIP (Ours) 82.8 46.8 29.1 24.7 82.6 90.1 73.6 75.7 42.4 6.8 33.4 53.5 55.3 58.2 55.5
FSC-CLIP (Ours) ✓ 85.5 54.4 29.1 24.9 80.6 89.7 72.6 78.4 42.8 5.8 32.5 54.2 55.9 57.3 54.3
†Numbers taken from the original paper. ∗Fine-tuned on 100K subset of CC12M. ‡Our implementation, without additional image batch.
References: 1(Yuksekgonul et al., 2023) 2(Zhang et al., 2024) 3(Sahin et al., 2024) 4(Singh et al., 2023) 5,6(Doveh et al., 2022, 2023) 7(Castro et al., 2024)

Table 1: A comprehensive comparison of various fine-tuning methods applied to the pre-trained CLIP ViT-B/32
model across 11 compositionality, 21 zero-shot classification, and 3 retrieval tasks, including their meta averages:
Comp, ZS, and I2T/T2I Ret. FSC-CLIP achieves superior compositionality scores while maintaining strong multi-
modal task performance. The best numbers are bold, and the second-best numbers are underlined for each metric.

for compositional reasoning. For the multi-modal406

tasks, we consider 21 zero-shot classification tasks,407

combining ImageNet (Deng et al., 2009) and 20408

datasets from the ELEVATER toolkit (Li et al.,409

2022a). We also evaluate on COCO (Chen et al.,410

2015), Flickr30k (Young et al., 2014), and COCO-411

Counterfactuals (Le et al., 2023) for retrieval.412

We report a single aggregated number, which is413

the average of sub-tasks for each compositional-414

ity benchmark. We also provide the meta-average415

across all compositionality benchmarks (Comp), the416

average performance over 21 zero-shot classifica-417

tion tasks (ZS), and the average Recall@1 for three418

image-to-text (I2T Ret) and text-to-image (T2I419

Ret) retrieval tasks, as shown in Tab. 1. For a fair420

and consistent comparison, we run evaluations for421

all the models including previous methods with422

available checkpoints, across all the benchmarks.423

4.1 Main Results424

We compare our FSC-CLIP to previous fine-tuning425

methods for compositionality. We report both com-426

positionality and multi-modal task performance as 427

shown in Tab. 1. In Fig. 3, we visualize the trade- 428

off trajectory between Comp and ZS through the 429

robust fine-tuning method (Wortsman et al., 2022). 430

Here, CLIP ViT-B/32 from OpenAI (Radford et al., 431

2021) is fine-tuned on the respective datasets. 432

Compositionality while Sacrificing Multi-Modal 433

Tasks. We introduce our baseline, NegCLIP‡, di- 434

rectly comparable to our FSC-CLIP. Unlike the 435

original implementation (Yuksekgonul et al., 2023), 436

we utilize an online version of hard negatives gen- 437

eration (e.g., negclip) and omit additional simi- 438

lar image batches. This baseline will be further 439

used in our ablation study. As indicated in Tab. 1, 440

NegCLIP, fine-tuned with subsets of CC-3M and 441

LAION-COCO, demonstrates competitive Comp 442

scores compared to methods like TSVLC5, and 443

CLoVe7. However, both NegCLIP and other meth- 444

ods experience a significant decline in ZS and I2T 445

Ret scores relative to the pre-trained CLIP. For in- 446

stance, CE-CLIP2 increases the meta-average of 447

compositionality scores, Comp, by 5.9 but the ZS 448

6



50 52 54 56 58
21 Zero-shot Classification Avg.

46

48

50

52

54

56
11

 C
om

po
sit

io
na

l T
as

ks
 A

vg
.

4.9 point in ZS
+0.5 2.1 point in ZS

+2.9

DAC-LLM
CE-CLIP
CLoVe
FSC-CLIP (Ours)
CLIP

Figure 3: Fine-tuning trajectories between composi-
tionality (Comp) and zero-shot classification (ZS) via ro-
bust fine-tuning method (Wortsman et al., 2022). Each
point represents the interpolated model between the pre-
trained and each fine-tuned version, at varying ratios.
FSC-CLIP offers better trade-offs between Comp and ZS,
maintaining ZS scores in the fully fine-tuned model.

score drops drastically by 7.2, compared to the449

pre-trained CLIP. Similarly, DAC-LLM6, despite450

strong Comp score aided by LLM-augmented cap-451

tions, shows marked declines in both ZS and I2T452

Ret by 6.0 and 23.1, respectively. Meanwhile,453

GNM-CLIP3 maintains a ZS score close to that of454

the pre-trained model, but shows only a modest in-455

crease in Comp. These methods apply hard negative456

(HN) loss to global-level representations, poten-457

tially causing the observed performance drops. As458

note, we have grayed out the retrieval scores of459

models fine-tuned on COCO due to the influence460

of overlapping data on these tasks.461

Preserving Multi-Modal Tasks. FSC-CLIP stands462

out by achieving Comp scores higher than previous463

models and comparable to DAC-LLM, while also464

maintaining robust multi-modal task performance.465

Specifically, when fine-tuned on the 100K subset466

of LAION-COCO, our model attains a Comp score467

of 53.5 – significantly surpassing its pre-trained468

counterpart – and a ZS score of 55.9, nearly match-469

ing the pre-trained CLIP. It also reaches an I2T470

Ret score of 58.2, the highest among models not471

fine-tuned on COCO. Further improvements are472

observed with using LoRA (Hu et al., 2022) for473

fine-tuning, which boosts the Comp score to 54.2474

while maintaining the ZS score. Similar positive475

trends are evident when we fine-tune FSC-CLIP on476

the 100K subset of CC3M. Remarkably, these re-477

sults are achieved by our innovative Local HN loss478

and Selective Calibrated Regularization design. We479

further analyze these contributions in Sec. 4.2.480

id Lg
neg Ll

neg Focal LS Comp ZS I2T Ret T2I Ret

1 ✓ - - - 54.0 53.6 47.4 53.7
2 - ✓ - - 51.7 55.7 61.6 54.5
3 ✓ ✓ - - 54.4 52.6 46.9 53.8

4 ✓ ✓ ✓ - 54.2 54.2 53.1 54.8
5 ✓ ✓ - ✓ 53.9 53.8 51.7 54.9
6 ✓ ✓ ✓ ✓ 53.5 55.3 58.2 55.5

7 ✓ - ✓ ✓ 52.8 55.3 57.1 55.6
8 - ✓ ✓ ✓ 50.2 55.9 63.2 55.1

Table 2: Impact by individual component. The local
HN loss preserves multi-modal task performance. In
addition, focal loss and label smoothing (LS) in SCR
complement each other, improving the decreased multi-
modal task performance caused by the HN losses.

Robust Fine-tuning on Compositionality and 481

Zero-shot Tasks. As depicted in Fig. 3, we uti- 482

lize the weight-space ensembling technique, WiSE- 483

FT (Wortsman et al., 2022), to compare different 484

fine-tuning methods and their trajectories, specif- 485

ically in terms of Comp and ZS scores. We cre- 486

ate intermediate models by interpolating between 487

each fine-tuned model and the pre-trained one. The 488

blending ratio increases from 0.0 (e.g., pre-trained) 489

to 1.0 (e.g., fully fine-tuned), in increments of 0.1. 490

FSC-CLIP attains a ZS score of 58 at the interme- 491

diate, surpassing the scores of other models, while 492

improving Comp to 50. When fully fine-tuned, it 493

attains superior Comp score and offers better trade- 494

offs than CLoVe and CE-CLIP, without the sig- 495

nificant loss in ZS. In contrast, DAC-LLM sees a 496

significant drop in ZS, gaining only 0.5 point in 497

Comp, as highlighted by the red marker. Mean- 498

while, FSC-CLIP not only matches but exceeds the 499

ZS score by 4.9 in the fully fine-tuned model. 500

4.2 Analysis 501

We further present an in-depth analysis on our 502

FSC-CLIP including ablation study, as follows: 503

Impact of Individual Components. From Tab. 2, 504

we observe that applying the local HN loss alone 505

(row 2) surprisingly preserves the multi-modal 506

scores. However, when both global and local HN 507

losses are activated (row 3), Comp is further boosted 508

but at the cost of ZS and I2T Ret scores, likely due 509

to the complicated adverse effects of the losses. 510

The proposed SCR effectively addresses this degra- 511

dation. Both focal loss (row 4) and label smoothing 512

(row 5) are effective and, when combined, comple- 513

mentarily boost all the ZS, I2T Ret, and T2I Ret 514

scores. Notably, I2T Ret increases by 11.3 (rows 515

3 to 6) with only a relatively mild drop in Comp. We 516

also note that comparing rows 7 and 8 with rows 1 517
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id λl Comp ZS I2T Ret T2I Ret

1 - 52.9 55.8 57.5 55.5

2 0.1 53.0 55.7 57.4 55.4
3 0.2 53.5 55.3 58.2 55.5
4 0.5 53.5 55.7 57.3 55.4

(a) Sensitivity to the weighting factor λl

of the local HN loss.

id γ Comp ZS I2T Ret T2I Ret

1 - 53.9 53.8 51.7 54.9

2 1.0 53.4 54.9 54.7 55.1
3 2.0 53.5 55.3 58.2 55.5
4 5.0 52.3 55.6 60.2 55.5

(b) Sensitivity to the modulation factor γ
of focal loss.

id β Comp ZS I2T Ret T2I Ret

1 - 54.2 54.2 53.1 54.8

2 0.02 53.5 55.3 58.2 55.5
3 0.05 53.1 55.2 59.0 55.1
4 0.10 52.3 55.2 58.7 55.3

(c) Sensitivity to the label smoothing fac-
tor β.

Table 3: Sensitivity analysis of each component in our FSC-CLIP framework. (a): With the global HN loss applied,
applying the local HN loss benefits the compositionality while preserving the multi-modal task scores. (b) and
(c): Both focal loss and label smoothing, the two components of our Selective Calibrated Regularization (SCR),
mutually enhance multi-modal task performance but may compromise compositionality when applied too strongly.
We highlight the cells corresponding to our design choices in the final FSC-CLIP model.

CLIP1 LoRA Comp ZS I2T Ret T2I Ret

ViT-B/16 46.2 60.3 62.9 49.0

+ NegCLIP 54.1 55.9 53.8 58.1
+ FSC-CLIP 54.1 57.0 59.7 59.3
+ FSC-CLIP ✓ 54.6 57.4 59.9 58.8
1Pre-trained: 400M OpenAI, Fine-tuned: LAION-COCO 100K subset.

Table 4: Fine-tuning results of CLIP with a ViT-B/16
encoder, pre-trained on 400M samples of OpenAI data.

CLIP2 LoRA Comp ZS I2T Ret T2I Ret

ViT-B/32 44.3 63.0 63.8 51.2

+ NegCLIP 53.5 59.2 52.1 52.3
+ FSC-CLIP 52.9 61.1 56.8 53.8
+ FSC-CLIP ✓ 54.0 60.7 56.8 53.1
2Pre-trained: DataComp-XL, Fine-tuned: LAION-COCO 100K subset.

Table 5: Fine-tuning results of CLIP with a ViT-B/32
encoder, pre-trained on 12.8B DataComp-XL.

and 2, SCR significantly boosts multi-modal task518

scores. Furthermore, as shown in row 6, applying519

both global and local HN losses is essential for520

achieving better Comp and I2T Ret scores.521

Sensitivity Analysis. We explore the impact of in-522

dividually varying each component’s parameters in523

the final model, as detailed in Tab. 3. From Tab. 3a,524

we find that increasing the local HN loss parameter525

λl improves Comp score while preserving multi-526

modal task scores. Tab. 3b shows that enhancing527

the modulation parameter γ boosts multi-modal528

tasks; however, beyond a certain point, it starts to529

diminish compositionality by weakening the learn-530

ing signal from HN texts. Similarly, Tab. 3c in-531

dicates that label smoothing benefits multi-modal532

tasks, particularly I2T Ret. Yet, assigning too533

much positive margin with β to negative samples534

can impede the learning of compositionality.535

Fine-tuning CLIP with ViT-B/16. We also fine-536

tuned CLIP with a ViT-B/16 encoder from OpenAI537

for comparison, as detailed in Tab. 4. This model538

uses more image patches in training, showing better539

multi-modal capabilities. However, no gains are540

observed in Comp compared to the ViT-B/32 model541

from Tab. 1. After fine-tuning, NegCLIP decreases542

ZS and I2T Ret scores. In contrast, FSC-CLIP543

maintains its Comp score and significantly enhances544

multi-modal task performances. With fine-tuning545

using LoRA, it achieves a higher Comp score, along546

with improved ZS and I2T Ret scores.547

Scaling Pre-training Data for Fine-tuning. We 548

explore the effect of large-scale pre-training data 549

when fine-tuned. From Tab. 5, we fine-tuned a 550

CLIP model with a ViT-B/32 encoder, pre-trained 551

on 12.8B DataComp-XL dataset (Gadre et al., 552

2023), far exceeding the 400M samples from Ope- 553

nAI (Radford et al., 2021). Despite the larger scale 554

pre-training yielding a promising ZS score of 63.0, 555

it underperforms in compositionality compared to 556

OpenAI’s pre-trained ViT-B/32 model. For fine- 557

tuning, NegCLIP results in a notable drop in multi- 558

modal task performance. In contrast, FSC-CLIP 559

with LoRA not only counters this degradation but 560

also achieves a higher Comp score than NegCLIP. 561

5 Conclusion 562

In this paper, we introduce Fine-grained and Se- 563

lective Calibrated CLIP (FSC-CLIP), a new fine- 564

tuning framework for visio-linguistic composition- 565

ality. It aims to preserve multi-modal capabilities 566

and address the limitations of existing methods re- 567

lying on global representations. We achieve this by 568

employing dense representations between images 569

and texts and refining the calibration of hard nega- 570

tive losses, thereby facilitating the introduction of 571

Local Hard Negative Loss and Selective Calibrated 572

Regularization. Our extensive validation shows 573

improved compositional reasoning and promising 574

performance in standard multi-modal tasks. 575
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Limitations576

Hard Negative Texts. In our approach, we specif-577

ically focused on enhancing existing hard nega-578

tive losses rather than creating new hard negative579

texts. We utilized rule-based hard negative texts580

readily available within the existing data, simpli-581

fying the process and eliminating the need for ex-582

ternal sources. However, this rule-based method583

may limit the inherent diversity and complexity584

of negative examples. Additionally, employing585

hard negative images alongside texts could pro-586

vide extra learning signals, such as the concept of587

equivariance (Goel et al., 2022; Wang et al., 2023).588

However, generating such counterfactual image-589

text pairs is not as straightforward as rule-based590

hard negative text generation. Integrating richer,591

more diverse negative samples through external592

means remains an intriguing avenue.593

Short captions. Our methodology, like prior ap-594

proaches, relies on short captions for both train-595

ing and evaluation benchmarks. This practice con-596

strains the models’ exposure to and understanding597

of longer contexts, which are essential for a gen-598

uine visio-linguistic compositional understanding.599

Longer and detailed captions involve more com-600

plex associations and contextual nuances that are601

essential for advanced compositionality in visual602

and language models. Moving forward, there is a603

compelling need within the community to develop604

training and evaluation protocols that incorporate605

longer captions to better address compositionality.606
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A Additional Details 963

A.1 Rule-based Hard Negative Texts 964

We provide details on the generation process of 965

hard negative texts adopted in our model. We em- 966

ploy three types of rule-based methods for gener- 967

ating hard negative texts: negclip (Yuksekgonul 968

et al., 2023), replace (Hsieh et al., 2023), and 969

bi-gram shuffle. Each method is implemented 970

in an online version and applied to the original text 971

at every training step, resulting in total of four texts 972

including the original caption for every batch as 973

illustrated in Fig. 2. In the online augmentation 974

process, some captions do not yield a hard negative 975

counterpart; these are masked out and excluded 976

from the hard negative loss calculation. 977

The negclip method rearranges words within 978

captions by swapping similar phrase types – such 979

as nouns, verbs, or adjectives – within the text. 980

The replace method generates hard negative 981

texts by replacing specific elements in the caption 982

– entities, relations, or attributes – using antonyms 983

or co-hyponyms from WordNet (Fellbaum, 2010). 984

The bi-gram shuffle rearranges text by shuf- 985

fling bi-grams (e.g., pairs of adjacent words), 986

within a sentence. It varies the sentence structure, 987

ensuring the generated texts serve as challenging 988

negatives to the original. 989

All the augmentation methods above utilize the 990

SpaCy (Honnibal and Montani, 2017) package. 991

We implemented bi-gram shuffle, while for 992

negclip and replace, we adopted the implemen- 993

tations from CLoVe (Castro et al., 2024). For il- 994

lustrative purposes, we provide examples of each 995

method applied to image-caption pairs, in Fig. 4. 996

A.2 Details on Evaluation Benchmark 997

Compositionality. VLMs are presented with either 998

an image or text query and must identify the correct 999

match from a set of candidates, which includes 1000

subtly altered incorrect options of texts and images. 1001

Depending on the given query modality types, 1002

compositionality benchmarks are classified into 1003

three categories, as presented in Tab. 6 with corre- 1004

sponding licenses. (1) Image-to-Text, where the 1005

objective is to choose the correct textual descrip- 1006

tion for a presented image: ARO (Yuksekgonul 1007

et al., 2023), CREPE (Ma et al., 2023), Sugar- 1008

Crepe (Hsieh et al., 2023), VALSE (Parcalabescu 1009

et al., 2022), VL-Checklist (Zhao et al., 2022), and 1010

WhatsUp (Kamath et al., 2023b). 1011

(2) Text-to-Image requires the selection of the 1012
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Image-Text Pair negclip replace bi-gram shuffle

Three statues of steps on the 
elephants in front of an old building.

Three statues of elephants on the 
steps in building of an old front.

Three elephants of statues on the 
steps in front of an old building.

Three statues of pikas on the steps 
in front of an old building.

Three statues of elephants into the 
steps in front of an old building.

Three statues of megatherian mammal 
on the steps in front of an old building.

on the an old steps in building. Three 
statues front of of elephants

Three statues building. of elephants an 
old steps in front of on the

steps in on the front of an old building. 
Three statues of elephants

Four different sandals of types with 
laces.

Four different laces of sandals with 
types.

Four different types of laces with 
sandals.

Four different types of slingbacks with 
laces.

Four inactive types of sandals with 
laces.

Four different types of sandals with 
arms.

Four different laces. types of sandals 
with

sandals with types of Four different 
laces.

laces. types of Four different sandals 
with

The blue small van is parked 
in front of a fence.

The small blue van is parked 
in fence of a front.

The small blue regiment is parked in 
front of a fence.

The small large van is parked in front 
of a fence.

The small average van is parked in 
front of a fence.

is parked of a The small in front fence. 
blue van

blue van in front of a is parked fence. 
The small

The small in front blue van fence. is 
parked of a

Three statues of elephants on the steps 
in front of an old building.

Four different types of sandals with laces.

The small blue van is parked 
in front of a fence.

Figure 4: Example results of rule-based hard negative texts used for training our model. Image-text pairs were
randomly sampled from LAION-COCO (Schuhmann et al., 2022a). For negclip (Yuksekgonul et al., 2023) and
replace (Hsieh et al., 2023), differences from the original captions are highlighted in red.

correct image that matches a given text query:1013

ImageCoDE (Krojer et al., 2022) and SVO1014

Probes (Hendricks and Nematzadeh, 2021).1015

(3) Involving two counterfactual image-text pairs,1016

where the challenge is to pair each image1017

with its corresponding text and the vice versa:1018

Winoground (Thrush et al., 2022), EqBen (Wang1019

et al., 2023), and SPEC (Peng et al., 2024).1020

For the Image-to-Text and Text-to-Image1021

tasks, top-1 accuracy is used. For the last group1022

tasks, group accuracy measures whether VLMs1023

correctly match all the associated image-text pairs.1024

To elaborate on details in specific benchmarks,1025

for EqBen, we cap the evaluation sample size at1026

20,000. This is because the subtasks eqbenag and1027

eqbenyoucook2 contain 195,872 and 45,849 sam-1028

ples respectively, and evaluating all samples would1029

be excessively time-consuming. Limiting the num-1030

ber of samples does not significantly alter the evalu-1031

ation results. We do not use the official repository’s1032

10% evaluation split because it does not support1033

sub-task-specific evaluations.1034

For SVO-Probes, we downloaded im-1035

ages and corresponding captions using the1036

img2dataset (Beaumont, 2021) package from the1037

provided URL list1, as they are not available as1038

physical files. Out of the original 36.8k samples,1039

1https://huggingface.co/datasets/MichiganNLP/
svo_probes

22,162 were successfully downloaded, with 3,728 1040

for the subj_neg, 13,523 for the verb_neg, and 1041

4,911 for the obj_neg subtasks, respectively. 1042

Zero-shot Classification. We leverage ELE- 1043

VATER toolkit (Li et al., 2022a) for 21 zero-shot 1044

classification tasks, licensed under MIT License. 1045

Image-Text Retrieval. We utilize COCO (Chen 1046

et al., 2015), Flickr30k (Young et al., 2014), and 1047

COCO-CounterFactuals (Le et al., 2023) for the 1048

retrieval task, which are licensed under BSD-3- 1049

Clause, CC0: Public Domain, CC-BY-4.0, respec- 1050

tively. For COCO-CounterFactuals, we randomly 1051

selected 30% of the total 17,410 samples for eval- 1052

uation, resulting in 5,223 samples. This number 1053

is comparable to the scale of the COCO retrieval 1054

evaluation dataset. 1055

A.3 Train Dataset 1056

We used a subset of LAION-COCO (Schuhmann 1057

et al., 2022a) which is licensed under CC-BY-4.0, 1058

and the CC-3M (Sharma et al., 2018)2 datasets. 1059

A.4 Baseline Methods 1060

From the comparisons to previous methods 1061

in Tab. 1, we evaluated previous methods using 1062

the same protocol as ours to ensure a fair and con- 1063

sistent evaluation. As such, we obtained the corre- 1064

2https://github.com/google-research-datasets/
conceptual-captions/blob/master/LICENSE
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Benchmark License Image source Tasks and Subtasks

ARO (Yuksekgonul et al.,
2023)

MIT COCO, Visual Genome, Flickr30k VG_Relation, VG_Attribution, Flickr30k_Order,
COCO_Order

CREPE-Productivity (Ma
et al., 2023)

unspecified Visual Genome Atomic Foils, Negate, Swap

SugarCrepe (Hsieh et al.,
2023)

MIT COCO Add_{object, attribute}, Replace_{object, attribute,
relation}, Swap_{object, attribute}

VALSE (Parcalabescu
et al., 2022)

MIT Visual7w, COCO, SWiG, Vis-
Dial_v1.0, FOIL-it

Actions_{swap, replacement}, Coreference_{hard,
standard}, Counting_{adversarial, hard, small}, Ex-
istence, Foil-it, Plurals, Relations

VL-Checklist (Zhao et al.,
2022)

unspecified Visual Genome, SWiG, COCO,
HAKE, HICO_Det, Pic, HCVRD,
OpenImages

Object_Location_{center, margin, mid}, Ob-
ject_Size_{large, medium, small}, Attribute_{action,
color, material, size, state}, Relation_{action,
spatial}

WhatsUp (Kamath et al.,
2023b)

MIT Controlled_Images (self-captured),
COCO, GQA

Controlled_Images_{A, B}, COCO_QA_{One,
Two}, VG_QA_{One, Two}

ImageCoDe (Krojer et al.,
2022)

MIT OpenImages, MSRVTT, Video-
Storytelling, YouCook

Static (e.g., images), Video (e.g., videos)

SVO Probes (Hendricks
and Nematzadeh, 2021)

Apache-2.0 Google Image Search API Subject, Verb, Object

Winoground (Thrush et al.,
2022)

META IM-
AGES RE-
SEARCH
LICENSE

Getty Images -

EqBen (Wang et al., 2023) Apache-2.0 Action Genome (AG), GEBC,
YouCook2, Kubric, StableDiffusion
(SD)

EQ-AG, EQ-GEBC, EQ-YouCook2, EQ-
Kubric_{location, counting, attribute}, EQ-SD

SPEC (Peng et al., 2024) unspecified Stable-Diffusion-XL 1.0 (Podell
et al., 2023)

Absolute_size, Absolute_position, Count, Rela-
tive_size, Relative_position, Existence

Table 6: A complete list of compositionality benchmarks in our work. The table is further sub-divided depending on
the given query types for a single test.

sponding checkpoints from each official repository1065

and loaded with open_clip package (Ilharco et al.,1066

2021). When loading the previous models’ check-1067

points, also including the other models, we explic-1068

itly set quick_gelu to True in open_clip, for Neg-1069

CLIP (Yuksekgonul et al., 2023), CE-CLIP (Zhang1070

et al., 2024), and GNM-CLIP (Sahin et al., 2024).1071

This adjustment aligns with the original OpenAI1072

models, which were pre-trained and also fine-tuned1073

with this option activated, though it was omitted in1074

their implementations.1075

We list the previous methods with correspond-1076

ing licenses. NegCLIP (Yuksekgonul et al., 2023):1077

MIT License, CE-CLIP (Zhang et al., 2024): MIT1078

License, GNM-CLIP (Sahin et al., 2024): Apache-1079

2.0 License, TSVLC3 and DAC4 (Doveh et al.,1080

2022, 2023): unspecified, CLoVe (Castro et al.,1081

2024): MIT License.1082

B Additional Results1083

For thoroughness, we include additional results not1084

featured in the main paper. Note that all models1085

3https://github.com/SivanDoveh/TSVLC
4https://github.com/SivanDoveh/DAC

were fine-tuned using the CLIP ViT-B/32 encoder 1086

from OpenAI (Radford et al., 2021). 1087

B.1 Multiple Runs 1088

In Tab. 7, we report the mean and standard devia- 1089

tion for our models across all tasks listed in Tab. 1, 1090

using three distinct seeds: 0, 1, and 2 for training 1091

each model. 1092

B.2 Zero-shot Classification 1093

We report the results for each benchmark within 1094

the 21 zero-shot classification tasks in Tab. 8. 1095

B.3 Image-Text Retrieval 1096

We present the results for each benchmark included 1097

in the three image-text retrieval tasks in Tab. 9. 1098
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CLIP-ViT-B/32 88.3 89.8 65.1 17.2 44.4 45.5 42.3 19.7 66.7 84.0 32.6 55.9 63.3 27.4 48.3 87.1 60.6 58.6 60.0 59.7 82.6 57.1

Fine-tuned: MS-COCO, 100K Samples
NegCLIP 88.2 88.9 63.2 15.0 43.1 47.3 47.6 16.8 62.3 79.4 30.2 54.3 60.9 27.6 49.7 85.4 59.7 58.8 56.9 54.0 84.4 55.9
CE-CLIP 82.2 85.9 60.2 9.6 35.2 44.9 39.7 10.0 47.2 70.1 28.0 53.5 49.9 34.6 40.6 66.0 58.8 61.1 51.5 35.3 83.1 49.9
GNM-CLIP 86.8 88.4 65.7 15.2 42.0 50.1 46.6 17.3 62.4 81.8 30.2 54.9 61.4 25.2 54.4 86.3 59.0 58.5 58.7 53.1 84.0 56.3

Fine-tuned: Conceptual Captions – 3M (CC-3M), 100K Samples
TSVLC (RB) 83.7 92.3 66.0 16.2 39.5 52.1 43.6 14.7 58.2 81.2 24.2 57.8 58.5 30.4 46.9 85.5 50.0 59.8 58.6 49.2 84.7 54.9
TSVLC (RB+LLM) 84.6 92.0 66.8 16.2 40.3 56.5 46.8 13.8 58.5 81.6 27.1 56.9 59.7 27.8 43.9 84.7 50.5 60.1 59.5 50.5 84.7 55.4
DAC-LLM 82.6 90.4 64.1 14.3 38.4 52.5 50.7 10.5 49.7 74.1 24.2 56.3 51.0 16.3 42.1 74.4 50.0 54.5 52.2 39.4 85.1 51.1
DAC-SAM 81.3 89.9 64.1 14.8 40.4 49.8 48.0 8.9 48.9 72.3 24.9 55.7 52.3 18.7 45.2 76.7 58.9 60.0 54.7 39.8 84.1 51.9

Fine-tuned: LAION-COCO, 600M Samples
CLoVe 85.5 85.8 66.2 12.6 37.7 49.1 38.0 9.0 44.6 71.9 22.6 54.6 53.1 34.9 36.4 74.2 56.7 51.3 55.2 48.7 81.9 51.0

Fine-tuned: LAION-COCO, 100K Samples
FSC-CLIP (Ours) 86.5 87.5 65.7 15.3 42.4 43.9 48.9 14.9 55.5 80.5 31.6 55.9 58.1 29.1 52.4 84.2 61.0 56.0 56.9 52.0 83.6 55.3
FSC-CLIP (Ours, LoRA) 85.9 88.5 66.3 15.8 39.8 52.8 48.2 14.2 57.0 81.0 27.9 56.3 57.4 33.9 54.3 82.7 59.8 57.2 58.7 52.6 83.7 55.9

Table 8: Expanded results for the 21 zero-shot classification tasks from ELEVATER (Li et al., 2022a).

COCO Retrieval Flickr30k Retrieval COCO-CounterFactuals Retrieval Avg.
Image to text (I2T) Text to image (T2I) Image to text (I2T) Text to image (T2I) Image to text (I2T) Text to image (T2I) I2T T2I

Method R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@1

CLIP-ViT-B-32 50.1 74.9 83.5 30.4 56.0 66.8 78.8 94.9 98.3 58.7 83.5 90.0 51.0 79.3 86.7 48.1 77.4 85.9 60.0 45.8

Fine-tuned: MS-COCO, 100K Samples
NegCLIP 59.3 82.8 89.4 45.2 72.1 81.7 85.7 96.4 98.8 71.6 91.8 95.7 55.3 82.5 89.2 58.3 84.9 91.3 66.8 58.4
CE-CLIP 56.0 81.6 89.0 47.1 74.1 83.1 75.3 93.2 96.9 68.9 89.6 94.2 46.3 75.7 84.5 56.2 83.6 90.5 59.2 57.4
GNM-CLIP 58.1 81.4 88.8 41.1 67.5 77.8 82.9 96.2 98.6 68.8 89.9 94.1 57.2 84.5 90.5 56.7 84.5 91.1 66.1 55.5

Fine-tuned: Conceptual Captions – 3M (CC-3M), 100K Samples
TSVLC (RB) 46.1 71.7 80.4 36.3 62.0 72.4 74.0 93.2 96.4 64.9 87.2 92.7 44.6 72.0 80.2 55.0 83.3 90.0 54.9 52.1
TSVLC (RB+LLM) 46.4 71.8 80.8 36.6 62.2 72.7 74.8 92.6 96.8 65.1 87.6 92.7 44.1 71.5 80.1 55.1 83.3 90.4 55.1 52.3
DAC-LLM 29.9 54.5 65.6 37.3 63.5 73.8 52.9 79.8 87.9 64.6 88.0 93.0 28.1 53.6 64.4 55.2 83.0 90.0 36.9 52.4
DAC-SAM 33.1 57.9 68.8 34.0 59.7 70.0 59.8 82.7 89.0 61.7 85.7 91.2 30.4 55.2 64.8 51.5 79.9 87.3 41.1 49.0

Fine-tuned: LAION-COCO, 600M Samples
CLoVe 48.3 73.9 82.8 42.7 68.7 78.2 69.5 90.4 95.6 68.7 90.0 94.5 41.5 69.1 78.3 56.5 84.2 90.8 53.1 56.0

Fine-tuned: LAION-COCO, 100K Samples
FSC-CLIP (Ours) 49.7 73.6 82.4 40.4 66.4 76.4 75.6 93.3 97.4 68.2 90.0 94.3 49.2 77.5 85.8 57.9 85.4 91.4 58.2 55.5
FSC-CLIP (Ours, LoRA) 48.2 73.6 81.8 39.0 64.9 75.0 75.1 93.2 96.4 66.9 88.6 93.6 48.5 76.0 84.4 57.1 84.7 91.0 57.3 54.3

Table 9: Expanded results for the three zero-shot image-text retrieval tasks, including COCO (Chen et al., 2015),
Flickr30k (Young et al., 2014), and COCO-CounterFactuals (Le et al., 2023).
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