
Estimating Distributional Treatment Effects in Randomized Experiments:
Machine Learning for Variance Reduction

Undral Byambadalai 1 Tatsushi Oka 2 Shota Yasui 1

Abstract

We propose a novel regression adjustment method
designed for estimating distributional treatment
effect parameters in randomized experiments.
Randomized experiments have been extensively
used to estimate treatment effects in various sci-
entific fields. However, to gain deeper insights, it
is essential to estimate distributional treatment ef-
fects rather than relying solely on average effects.
Our approach incorporates pre-treatment covari-
ates into a distributional regression framework,
utilizing machine learning techniques to improve
the precision of distributional treatment effect es-
timators. The proposed approach can be readily
implemented with off-the-shelf machine learning
methods and remains valid as long as the nui-
sance components are reasonably well estimated.
Also, we establish the asymptotic properties of
the proposed estimator and present a uniformly
valid inference method. Through simulation re-
sults and real data analysis, we demonstrate the
effectiveness of integrating machine learning tech-
niques in reducing the variance of distributional
treatment effect estimators in finite samples.

1. Introduction
Randomized experiments have played a crucial role in un-
derstanding the effects of interventions and guiding policy
decisions, ever since the seminal work by Fisher (1935).
The estimation of causal effects through randomized ex-
periments has found widespread application across various
scientific disciplines (Rubin, 1974; Heckman et al., 1997;
Imai, 2005; Imbens & Rubin, 2015) and has also become a
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standard practice within the technology sector (Tang et al.,
2010; Bakshy et al., 2014; Xie & Aurisset, 2016; Kohavi
et al., 2020).

When analyzing data from randomized experiments, one
commonly used measure is the Average Treatment Effect
(ATE). However, it is often the case that understanding the
distributional treatment effects can provide a richer perspec-
tive than solely focusing on overall average effects. Fur-
thermore, while randomized experiments simplify outcome-
based analysis, pre-treatment auxiliary information is fre-
quently available. This quest for a more comprehensive
understanding of treatment effects, marked by supplement-
ing auxiliary data, calls for new approaches to enhance
precision through pre-treatment data incorporation.

In this work, we propose a novel regression-adjusted method
to estimate a wide range of distributional parameters in the
randomized experiment setup. Our approach draws inspira-
tion from the generic Neyman-orthogonal moment condition
(Chernozhukov et al., 2018), which facilitates the decou-
pling of nuisance parameter and treatment effect estimation
into two stages. The nuisance parameters of our interest are
the conditional outcome distributions given pre-treatment
covariates, and we propose the use of machine learning mod-
els (e.g., LASSO, random forests, neural networks, etc.),
allowing for complex data and distributional structures. By
integrating these sophisticated machine learning techniques
with cross-fitting, we reduce the sensitivity of our treatment
effect estimator to errors arising from nuisance parameter
estimation.

Our paper makes several noteworthy contributions. First,
our approach expands the scope regression adjustment.
While regression adjustment is commonly employed for
variance reduction in the estimation of the ATE with mean
regression (Deng et al., 2013; Poyarkov et al., 2016; Guo
et al., 2021), our method leverages pre-treatment informa-
tion under the distributional regression framework, incorpo-
rating machine learning methods. This enables us to con-
duct more powerful statistical inference for distributional
parameters, including the Distributional Treatment Effect
(DTE) and the Quantile Treatment Effect (QTE). Second,
we provide theoretical validation for the regression-adjusted
method by demonstrating the variance reduction of the esti-
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mator of outcome distribution. Third, we establish asymp-
totic properties for the proposed treatment effect estimators
and provide a uniformly valid inference method. Lastly, our
simulation and real-data analysis highlight the significance
and effectiveness of our method.

The rest of the paper is structured as follows. Section 2
describes related literature. We setup the problem and intro-
duce notations in Section 3. Section 4 then introduces the
regression-adjusted estimators for distributional parameters.
We derive the asymptotic results in Section 5. Section 6
reports empirical results based on simulated experiments
and real datasets. Section 7 concludes. The Appendix in the
paper includes all proofs, as well as additional experimental
details and results.

2. Related Work
Regression Adjustment There is an extensive literature
investigating the use of pre-treatment covariates to reduce
variance in estimating the ATE, dating back to Fisher (1932),
followed by Cochran (1977); Yang & Tsiatis (2001); Rosen-
baum (2002); Freedman (2008a;b); Tsiatis et al. (2008);
Rosenblum & Van Der Laan (2010); Lin (2013); Berk et al.
(2013); Ding et al. (2019); Negi & Wooldridge (2021),
among others, in the case of low-dimensional asymptotics.
In high-dimensional settings, this topic has been studied
by Bloniarz et al. (2016); Wager et al. (2016); Lei & Ding
(2021); Chiang et al. (2023), among others. Recent work
by List et al. (2022) has linked regression adjustment to the
semiparametric problem of estimating a low-dimensional
parameter when a high-dimensional but orthogonal nuisance
parameter is present, focusing on estimating the ATE. Our
work extends those existing studies to estimate distributional
parameters of treatment effects.

Conditional Average Treatment Effects To character-
ize the heterogeneity in treatment effects, an alternative
approach is to condition on observed variables and estimate
the Conditional Average Treatment Effect (CATE) (Imai &
Ratkovic, 2013; Athey & Imbens, 2016; Johansson et al.,
2016; Shalit et al., 2017; Alaa & Van Der Schaar, 2017;
Wager & Athey, 2018; Chernozhukov et al., 2018; Künzel
et al., 2019; Shi et al., 2019; Nie & Wager, 2021; Guo et al.,
2023; Sverdrup & Cui, 2023; van der Laan et al., 2023).
The CATE can be regarded as the ATE within subgroups de-
fined by observed characteristics, such as gender, age, prior
engagement with the platform, and more. Consequently,
the CATE captures observed heterogeneity given the infor-
mation available to the researchers, whereas our approach
is valuable for quantifying unobserved heterogeneity and
can be extended to estimate distributional parameters condi-
tional on observed information.

Distributional Treatment Effects Distributional and
quantile treatment effects have long been recognized as im-
portant parameters to estimate beyond the mean effects. The
quantile treatment effect was first introduced by Doksum
(1974) and Lehmann & D’Abrera (1975). Subsequently,
estimation and inference methods for distributional and
quantile treatment effects in various settings have been de-
veloped and applied in econometrics, statistics and machine
learning community, including Heckman et al. (1997); Im-
bens & Rubin (1997); Abadie (2002); Abadie et al. (2002);
Chernozhukov & Hansen (2005); Koenker (2005); Bitler
et al. (2006); Athey & Imbens (2006); Firpo (2007); Cher-
nozhukov et al. (2013); Koenker et al. (2017); Callaway
et al. (2018); Callaway & Li (2019); Chernozhukov et al.
(2019); Ge et al. (2020); Zhou et al. (2022); Kallus et al.
(2024), among others. Some recent works, including Park
et al. (2021) and Kallus & Oprescu (2023), explore the Con-
ditional Distributional Treatment Effects as distributional
analysis is useful even after conditioning on observed vari-
ables. However, there has been limited research on regres-
sion adjustment for unconditional distributional treatment
effects. One exception is by Jiang et al. (2023), who con-
sider quantile-regression adjustment for the QTE, but under
covariate-adaptive randomization. Another exception is the
study by Oka et al. (2024), which investigates the distribu-
tion regression approach using finite-dimensional covariates.
We bridge this gap by proposing regression-adjusted esti-
mators for various distributional parameters when data are
obtained from randomized experiments with possibly high-
dimensional covariates. Furthermore, our approach accom-
modates both discrete and mixed discrete-and-continuous
outcome distributions, whereas quantile regression adjust-
ment is specifically designed for continuous outcomes.

Semiparametric Estimation Our work is closely linked
to the extensive literature on semiparametric estima-
tion, which addresses the challenge of estimating low-
dimensional parameters in the presence of high-dimensional
nuisance parameters. This literature includes seminal
contributions such as Klaassen (1987); Robinson (1988);
Bickel et al. (1993); Andrews (1994a); Newey (1994);
Robins & Rotnitzky (1995); Chernozhukov et al. (2018);
Ichimura & Newey (2022), among others. Our setup can
be framed as a semiparametric problem characterized by
the Neyman-orthogonal moment condition, as outlined in
Neyman (1959); Chernozhukov et al. (2018; 2022). No-
tably, cross-fitting is a commonly used technique in this
literature. While our technical arguments share similari-
ties with classical semiparametric methods, our research
introduces a novel perspective by emphasizing the signifi-
cance of flexible machine learning methods for estimating
distributional treatment effects, within the framework of
randomized experiments.
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3. Setup and Parameters
3.1. Setup and Notation

We assume that our data are generated from a randomized
experiment with K treatment arms. Let Y ∈ Y ⊂ R de-
note the scalar-valued observed outcome, W ∈ W :=
{1, . . . ,K} denote the index of the treatment arm, and
X ∈ X ⊂ Rdx denote pre-treatment covariates. We observe
a size n random sample {Zi}ni=1 := {(Xi,Wi, Yi)}ni=1

from the distribution of Z := (X,W, Y ). The proba-
bility of assignment to treatment arm w is denoted as
πw := P (Wi = w) satisfying

∑
w∈W πw = 1, while nw

indicates the number of observations in treatment group w,
satisfying

∑
w∈W nw = n.

We follow the potential outcome framework [e.g., Rubin
(1974); Imbens & Rubin (2015)] and let Y (1), . . . , Y (K)
denote the potential outcomes, which are hypothetical and
represent what the outcome for an individual would be under
each treatment scenario. These are unobserved variables
and we only observe the outcome for the treatment that
is actually administered to each individual. We assume
no interference and impose Stable Unit Treatment Values
Assumption (SUTVA), which gives us Y = Y (W ). In other
words, treatment assigned to one unit does not affect the
outcome for another unit, and so the potential outcome under
any treatment is equal to its observed outcome. Throughout
the paper, we also maintain the following two assumptions.
Assumption 3.1. Y (1), . . . , Y (K), X ⊥⊥W.

Assumption 3.2. 0 < πw < 1 for each w ∈ W .

Assumption 3.1 states that the treatment indicator is inde-
pendent of the potential outcomes and the pre-treatment
covariates. Assumption 3.2 states that the treatment assign-
ment probabilities are bounded away from 0 and 1. These
assumptions are satisfied because we have a randomized
experiment where the researcher assigns individuals to treat-
ment groups randomly and have a control over the treatment
assignment probabilities.

3.2. Parameters of interest

The parameters of our interest are based on (cumulative)
distribution functions of potential outcomes, denoted by

FY (w)(y) := E[1l{Y (w)⩽y}],

for y ∈ Y ⊂ R and w ∈ W , where 1l{·} represents
the indicator function. In general, the potential outcomes
{Y (w)}w∈W are unobserved variables. However, under
Assumptions 3.1 and 3.2, the potential outcome distri-
bution FY (w)(y) is the same as the outcome distribution
FY |W (y|w) under each treatment w. Therefore, they are
identifiable given the data from Z = (X,W, Y ).

The results of this paper can be applied to estimate a range

of distributional parameters, provided that they rely on
(Hadamard) differentiable transformations of potential out-
come distributions. We provide a few illustrative examples
below.

Example 1: Distributional Treatment Effect Let
w,w′ ∈ W be two different treatment groups. We are inter-
ested in the Distributional Treatment Effect (DTE), which
is defined as, for y ∈ Y,

DTEw,w′(y) := FY (w)(y)− FY (w′)(y).

To contrast, the Average Treatment Effect (ATE) is defined
as

ATEw,w′ := E[Y (w)]− E[Y (w′)].

The DTE is a parameter that is indexed by a continuum of
y ∈ Y and measures the effect of treatment on the whole
distribution, whereas the ATE only quantifies the mean ef-
fect. As a special case, one can also be interested in the
DTE at a certain threshold; i.e., Y can be defined to be a
singleton set. One advantage of this measure is that it is
well-defined for any type of outcome, including discrete,
continuous, and mixed discrete-continuous variables.

Example 2: Probability Treatment Effect The DTE
may not be straightforward to interpret since it measures the
differences between two cumulative distributions. However,
we can compute more intuitive measures based on these
differences. Specifically, the DTE can be used to compute,
what we will call, the Probability Treatment Effect (PTE),
which is given by

PTEw,w′(y, h) :=(FY (w)(y + h)− FY (w)(y))

− (FY (w′)(y + h)− FY (w′)(y)),

for y ∈ Y and some h > 0. The PTE measures the changes
in the probability that the outcome falls in interval (y, y+h].
The PTE is also well-defined for any type of outcome, in-
cluding discrete, continuous, and mixed discrete-continuous
variables.

Example 3: Quantile Treatment Effect Another com-
mon measure used to characterize the entire distribution
is the quantile function, defined as F−1

Y (w)(τ) := inf{y :

FY (w)(y) ⩾ τ} for τ ∈ (0, 1). The Quantile Treatment
Effect (QTE) for quantile τ ∈ (0, 1) is then given by

QTEw,w′(τ) :=F−1
Y (w)(τ)− F−1

Y (w′)(τ).

The QTE quantifies the difference in quantiles between
two potential outcome distributions across a continuum of
τ ∈ (0, 1). For example, one might be interested in the
difference between the medians (when τ = 0.5) of two
groups. It is important to note that the QTE is only well-
defined for continuous outcomes and may not be appropriate
for discrete or mixed discrete-continuous outcomes.
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4. Regression-Adjusted Estimator
As explained in the previous section, the potential outcome
distribution serves as the fundamental building block for a
broad range of distributional parameters. A simple estima-
tor for the distribution function FY (w)(y) is the empirical
distribution function, given by:

F̂simple
Y (w) (y) :=

1

nw

∑
i:Wi=w

1l{Yi⩽y},

for each treatment w ∈ W . While this estimator is an
unbiased and consistent estimator, we aim to enhance its
precision by leveraging pre-treatment covariates.

To incorporate pre-treatment covariates X , we consider the
distribution regression framework, in which the conditional
distribution function FY (w)|X(y|x) is regarded as the mean
regression for a binary dependent variable 1l{Y (w)⩽y}. That
is, for each y ∈ Y and w ∈ W , we can write

FY (w)|X(y|X) = E[1l{Y (w)⩽y}|X].

For each location y ∈ Y , the conditional mean function
can be separetely estimated using various methods, such as
linear regression, logistic regression, or other machine learn-
ing techniques (e.g., LASSO, random forests, boosted trees,
deep neural networks, etc.). Additionally, the distribution
regression is applicable for continuous, discrete, and mixed
discrete-and-continuous outcome variable as explained in
Chernozhukov et al. (2013).

For the regression-adjusted estimator of FY (w)(y), the
conditional distribution functions are nuisance parameters.
We represent them as γ(w)

y (x) := FY (w)|X(y|x) for each
w ∈ W and let γ̂(w)

y (·) be an estimator for γ(w)
y (·). We will

explain the necessary conditions for the estimator γ̂(w)
y (·) in

the following section. The regression-adjusted estimator of
FY (w)(y) for each w ∈ W is then defined as

F̂Y (w)(y) :=
1

nw

∑
i:Wi=w

(
1l{Yi⩽y} − γ̂(w)

y (Xi)
)

︸ ︷︷ ︸
averaged over observations in treatment group w

+
1

n

n∑
i=1

γ̂(w)
y (Xi).︸ ︷︷ ︸

averaged over all observations

(1)

The regression-adjusted estimator is obtained by adjusting
the empirical distribution function by subtracting γ̂(w)

y (·)
that is averaged over observations in that treatment group
and adding γ̂(w)

y (·) that is averaged over all observations.

This characterization of regression adjustment aligns closely
with the concept of the augmented inverse propensity
weighted estimator, as explored in Robins et al. (1994);

Robins & Rotnitzky (1995). List et al. (2022) also consider
a similar adjustment method for estimating the ATE. We
extend this formulation to encompass distribution functions
for any arbitrary outcome location y ∈ Y . It is worth not-
ing that this estimator also serves as an unbiased estimator
for the distribution function, as the expected value of the
adjustment terms cancels out to zero.

Moment condition problem We rewrite our problem
as a moment condition problem. In what follows, we
will simply write γ(w)

y to denote γ(w)
y (·) and let γy :=

(γ
(1)
y , . . . , γ

(K)
y )⊤. Let θ(w)

y := FY (w)(y) and θy :=

(θ
(1)
y , . . . , θ

(K)
y )⊤. Define moment functions

ψy(Z; θy, γy) :=
(
ψ(1)
y (Z; θy, γy), . . . , ψ

(K)
y (Z; θy, γy)

)⊤
,

where, for each w ∈ W ,

ψ(w)
y (Z; θy, γy) :=

1l{W=w} · (1l{Y⩽y} − γ
(w)
y (X))

πw

+ γ(w)
y (X)− θ(w)

y . (2)

The following lemma shows what moment conditions are
implied by our setup with a randomized experiment. Later,
we will show how the regression-adjusted estimator, given
in (1), can be seen as a method of moments estimator that
solves the sample counterpart of these moment conditions.
Lemma 4.1 (Moment conditions). We have the following
moment conditions for a continuum of y ∈ Y:

E[ψy(Z; θy, γy)] = 0, (3)

where ψ(w)
y (Z; θy, γy) for each w ∈ W is given in (2).

Our parameter of interest θy for each y ∈ Y is identi-
fied as the solution to the moment condition in (3), where
Z = (X,W, Y ) is the data and γy is the possibly infinite-
dimensional nuisance parameter.

An important property of the moment conditions defined in
(3) is that they are Neyman orthogonal with respect to the
nuisance parameters (Neyman, 1959; Chernozhukov et al.,
2018; 2022; Ichimura & Newey, 2022). More precisely, the
derivative of its expectation with respect to the nuisance
parameters vanishes when evaluated at the true parameter
values. The following lemma states it formally.
Lemma 4.2 (Neyman Orthogonality). For the continuum
of moment conditions defined in (2) for each w ∈ W and
y ∈ Y , we have

∂

∂t
E[ψy(Z; θy, t)]

∣∣∣
t=γy

= 0, a.s.

Neyman orthogonality implies that the moment condition
is first-order insensitive to the estimation errors of the nui-
sance parameters. This property, coupled with a form of
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Algorithm 1 Regression-adjusted estimator
Input: Data {(Xi,Wi, Yi)}ni=1 split randomly into L
roughly equal-sized folds where L > 1; S a supervised
learning algorithm
for ℓ = 1 to L do

Generate γ̂(w)
y (Xi) predicting 1l{Yi⩽y} given Wi = w

and Xi for each treatment group w ∈ W and each
level y ∈ Y , by training on data not in fold ℓ but in
treatment group w, using S.

end for
Compute F̂Y (w)(y), for each y ∈ Y and w ∈ W , accord-
ing to (1).
Result: Regression-adjusted estimator (θ̂y)y∈Y .

sample-splitting called cross-fitting, allows us to derive the
asymptotic distribution of the regression-adjusted estimator
under mild conditions, even when the conditional distri-
bution functions are estimated via machine learning (ML)
methods.

The following lemma shows how the regression-adjusted
estimator, given in (1), can be seen as an estimator that
solves the sample counterpart of the moment conditions
defined earlier.

Lemma 4.3 (Sample moment condition). For each y ∈ Y ,
let the vector γ̂y denote the ML estimator of the vec-
tor γy. Then the regression-adjusted estimator θ̂y :=

(F̂Y (1)(y), . . . , F̂Y (K)(y))
⊤, where F̂Y (w)(y) forw ∈ W is

defined in (1), is constructed as the solution to the following
sample moment condition:

1

n

n∑
i=1

ψy(Zi; θ̂y, γ̂y) = 0.

Estimation procedure We now explain our algorithm,
which is summarized in Algorithm 1. Our estimation proce-
dure involves a sample-splitting method called cross-fitting
[e.g., Chernozhukov et al. (2018)]. First, we split the data
into L roughly equal-sized folds, where L > 1. Then, for
every observation, we use a ML method and predict nui-
sance functions γ̂(w)

y (Xi) by training on data from treatment
groupw, excluding data points from the fold the observation
belongs to. This ensures that the observation and the nui-
sance estimates are independent. Finally, we form a point
estimate of FY (w)(y) by plugging in estimates of the nui-
sances in (1). We do this for all y ∈ Y and w ∈ W . Then
we stack the estimators together to get a regression-adjusted
estimator (θ̂y)y∈Y . We discuss the statistical inference in
the next section.

Efficiency Gain To illustrate the potential efficiency gain
from the proposed regression-adjusted method, consider

the scenario where the true conditional distribution func-
tion, γy, is employed in (1), leading to the idealized form
of the regression-adjusted estimator, denoted by θ̃(w)

y :=

F̃Y (w)(y). Let θ̃y := (θ̃
(1)
y , . . . , θ̃

(K)
y )⊤. The following

theorem highlights the efficiency improvements of this
regression-adjusted estimator in comparison to the empirical
distribution function. As demonstrated in the next section,
our estimator asymptotically possess the same efficiency
property in terms of variance.

Theorem 4.4. Suppose that nw/n = πw + o(1) as n→ ∞
for every w ∈ W . Then, we have
(a) for any w ∈ W and y ∈ Y ,

Var
(
F̂simple
Y (w) (y)

)
≥ Var

(
F̃Y (w)(y)

)
+ o(n−1),

where the equality holds only if FY (w)|X(y) = FY (w)(y),
(b) for any y ∈ Y ,

Var
(
θ̂simple
y

)
⪰ Var

(
θ̃y
)
+ o(n−1),

where ⪰ denotes the positive semi-definiteness. When
Var
(
FY (w)(y|X)− r · FY (w′)(y|X)

)
> 0 for any distinct

w,w′ ∈ W and r ∈ R, the positive definite result holds.

Theorem 4.4(a) shows the efficiency gains achieved by ap-
plying regression adjustment to distribution functions. Fur-
thermore, Theorem 4.4(b) elaborates on these gains in terms
of a vector of regression-adjusted estimators, indicating a
marked improvement in the precision of the estimator for
the DTE as a special case.

5. Asymptotic distribution
In this section, we derive the asymptotic distribution of the
regression-adjusted estimator. These results are built upon
the functional central limit theorem, functional delta method
and other related results from Belloni et al. (2017).

Additional Notation We introduce some additional nota-
tions to state our results. For a vector a = (a1, . . . , ap)

⊤ ∈
Rp, ∥a∥ =

√
a⊤a denotes the Euclidean norm of a. Let

ℓ∞(Y) be the space of uniformly bounded functions map-
ping an arbitrary index set Y to the real line; UC(Y) be
the space of uniformly continuous functions mapping Y
to the real line. Gn,P f denotes the empirical process√
n
∑n

i=1(f(Zi)−
∫
f(z)dP (z)); but we will omit P and

simply write Gnf . Let Pn denote the set of probability
measures, that is weakly increasing in n, i.e., Pn ⊆ Pn+1.
We use⇝ to denote the convergence in distribution or law.
Lastly, let GP denote the P-Brownian bridge, as defined in
Appendix Section D.1.

The following theorem shows that under regularity condi-
tions, stated fully in Appendix D.3, our estimator (θ̂y)y∈Y
is asymptotically Gaussian. Since we employ cross-fitting,
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the conditions required for the estimation of nuisance func-
tions become much milder compared to not using any data-
splitting. It is required that the estimators of nuisance func-
tions attain sufficiently rapid rates of convergence τn, in
particular τn = o(n−1/4) in smooth problems.
Theorem 5.1 (Uniform Functional Central Limit Theorem).
Suppose Assumption D.11, D.12 and D.13 hold. Then, for
an estimator (θ̂y)y∈Y that is defined in Algorithm 1,

√
n(θ̂y − θy)y∈Y = (Gnψy)y∈Y + op(1)

in ℓ∞(Y)K uniformly in P ∈ Pn, where

Zn,P := (Gnψy)y∈Y ⇝ ZP := (GPψy)y∈Y

in ℓ∞(Y)K uniformly in P ∈ Pn, where the paths of y 7→
Gpψy are a.s. uniformly continuous on a semi-metric space
(Y, dY) and

sup
P∈Pn

EP sup
y∈Y

∥GPψy∥ <∞,

lim
δ→0

sup
P∈Pn

EP sup
dY(y,y′)⩽δ

∥GPψy −GPψy′∥ = 0.

Then, as a special case of the above theorem, for fixed
y ∈ Y , we have pointwise asymptotic normality, stated as√
n(θ̂y−θy)⇝ N(0,Var(ψy)). Note that, Var(ψy) can be

consistently estimated via sample moment conditions using
cross-fitting as well. The estimate of the asymptotic variance
can then be used to construct the confidence intervals in a
usual manner.

Functionals of θ The parameters we are interested in are
functionals of potential outcome distributions. The exam-
ples include the DTE, the PTE and the QTE we discussed in
Section 3. If, for instance, we are interested in the DTE be-
tween treatments 1 and 2, for each y ∈ Y , we can calculate
it as (1,−1, 0, . . . , 0)θy . Let ϕ(θ0) = ϕ((θy)y∈Y). The fol-
lowing theorem shows the large sample law of the plug-in
estimator ϕ(θ̂) := ϕ((θ̂y)y∈Y). For complex objects, the
inference can be facilitated by bootstrap. The validity of
a multiplier bootstrap method (Giné & Zinn, 1984) is also
shown in the theorem below.
Theorem 5.2 (Uniform Limit Theory and Validity of Mul-
tiplier Bootstrap for Smooth Functionals of θ). Suppose
that for each P ∈ P := ∪n⩾n0

Pn, θ0 = θ0P is an element
of a compact set Dθ. Let ϕ : Dϕ ⊂ ℓ∞(Y)K 7−→ ℓ∞(Q)
be Hadamard-differentiable uniformly in θ ∈ Dθ ⊂ Dϕ

tangentially to UC(Y)K with derivative map ϕ′θ. Then,
√
n(ϕ(θ̂)− ϕ(θ0))⇝ TP := ϕ′θ0

P
(ZP ) in ℓ∞(Q),

uniformly in P ∈ Pn, where TP is a zero mean tight Gaus-
sian process, for each P ∈ P . Moreover,

√
n(ϕ(θ̂∗)− ϕ(θ̂))⇝B TP in ℓ∞(Q),

uniformly in P ∈ Pn.

Here ⇝B denotes weak convergence of the bootstrap
law in probability, as defined in Appendix D. ϕ(θ̂∗) =

ϕ((θ̂∗)y∈Y) is the bootstrap version of ϕ(θ̂), and θ̂∗y =

θ̂y + n−1
∑n

i=1 ξiψy(Zi; θ̂y, γ̂y) is the multiplier bootstrap
version of θ̂y. More details about the multiplier boot-
strap procedure to obtain pointwise and uniform confidence
bands can be found in the Appendix C. The assumption of
Hadamard differentiability is imposed so that we can use
the delta method. The formal definition can be found in the
Appendix D.

6. Empirical results
In this section, we compare our regression-adjusted estima-
tors to simple estimators in two types of experiments. In
the first experiment, we use a synthetic dataset to assess the
performance of our proposed method in finite samples. For
the second experiment, we reanalyze data from a random-
ized experiment, conducted by Ferraro & Price (2013b), to
compare the methods using real-world data.

6.1. Simulation Study

We conduct Monte Carlo simulation study to evaluate the
performance of our adjusted estimators in finite samples. We
compare the simple estimator with two regression-adjusted
estimators - linear adjustment and ML adjustment. The
simple estimator is based on empirical distribution functions.
The regression-adjusted estimators are calculated according
to the procedure in Algorithm 1 with 5 folds. For the linear
adjustment, we use a linear regression for estimating γ̂y . For
the ML adjustment, we use logistic LASSO for estimating
γ̂y .

In this experiment, we generate i.i.d. sample of size n ∈
{500, 1000, 5000} with covariates, a binary treatment and a
continuous outcome. We design the data generating process
such that the half of covariates are irrelevant to the outcome.
Appendix E contains more details about the data generating
process and describes the evaluation metrics.

The top figure of Figure 1 plots the bias of these estimators
as a % of the true values of the DTE, across different quan-
tiles under the sample sizes we consider. We confirm that
the bias is small for all estimators across all quantiles. Even
when sample size is small (n = 500), the bias is at most
2%. This is as expected since all estimators are unbiased
estimators of the distribution functions and hence the DTE.

Next, we turn to the RMSE. The bottom figure of Figure 1
plots the RMSE reduction in % terms for the linear and ML
adjustment, compared to the simple estimator. We see that
the linear adjustment and ML adjustment estimators yield
smaller RMSE compared to the simple estimator across
all quantiles. Moreover, we see that ML adjustment out-
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Figure 1. Bias (top figure), as a % of true value, of different DTE estimators and RMSE reduction in % (bottom figure) of adjusted
estimators compared to simple DTE estimator, under sample sizes {500, 1000, 5000}, calculated over 1000 simulations. The simple
estimator is calculated from empirical distribution functions. The regression-adjusted estimators (linear adjustment and ML adjustment
based on LASSO) are implemented using 5-fold cross-fitting.
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Figure 2. Distributional Treatment Effect (DTE) and Probability Treatment Effect (PTE) of a nudge (Strong Social Norm vs. Control) on
water consumption (in thousands of gallons). The top left figure represents the simple DTE; the top right figure depicts the regression-
adjusted DTE, computed for y ∈ {0, 1, 2, . . . , 200}. The bottom left figure represents the simple PTE; the bottom right figure represents
the regression-adjusted PTE, computed for y ∈ {0, 10, 20, . . . , 200} and h = 10. The regression adjustment is implemented via gradient
boosting with 10-fold cross-fitting. The shaded areas and error bars represent the 95% pointwise confidence intervals. n = 78, 500.
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performs linear adjustment in all cases. Specifically, for
n = 5000, RMSE reduction over the simple estimator is
around 40-50% for the ML adjusted estimator, while it is
between roughly 15-35% for the linearly adjusted estima-
tor. This is as expected because our data generating process
consists of variables that are irrelevant to the outcome, and
so ML adjustment better captures the relationship between
the outcome and covariates compared to the linear model.
Improved prediction quality for γ̂y results in more variance
reduction for the DTE.

6.2. Nudges to reduce water consumption

We reanalyze data from a randomized experiment conducted
by Ferraro & Price (2013b) in 2007, to examine the effect
of norm-based messages or nudges on water usage in Cobb
County, Atlanta, Georgia. Three different interventions to
reduce water usage were implemented and compared to the
control group (no nudge). List et al. (2022) re-estimate the
regression-adjusted ATE for the intervention called “strong
social norm” that combines prosocial appeal and social com-
parison (the strongest intervention) relative to the control
group. We extend their analysis by estimating the regression-
adjusted DTE and PTE of this intervention over the control
group (W ∈ {0, 1}) using the same pre-treatment covariates
X , which is monthly water consumption in the year prior to
the experiment. Thus, the dimension of the covariate space
X is dx = 12. The outcome variable Y is level of water
consumption from June to September of 2007. The unit
of our outcome variable is in thousands of gallons and is
discretely distributed. Note that although the measure in
gallons appears to be approximately continuous in practice,
the presence of subtle discreteness can create problems for
both theoretical and practical statistical inference. Thus, the
QTE is not applicable here. The results for the other two
treatments - “technical advice” and “weak social norm” -
relative to the control group are summarized in Appendix
E.2.

Figure 2 plots the DTE and the PTE of the intervention
compared to the control group. We compute the DTE for
y ∈ {0, 1, 2, . . . , 200}. Figure 2 top left represents the sim-
ple estimate of the DTE, whereas the top right figure depicts
the regression-adjusted estimate of the DTE. For regression
adjustment, we estimate the conditional distribution func-
tions γ̂y via gradient boosting using 10-fold cross-fitting.
The shaded areas represent the 95% pointwise confidence
intervals. We can see that the regression-adjusted DTE has
substantially smaller variance and hence tighter confidence
intervals compared to the simple DTE, especially between
15 and 110. Based on the regression-adjusted DTE results,
we see that the DTE is increasing up until 40-50 and starts
declining after that. We can draw conclusions about how
the outcome distributions differ under treatment and control,
keeping in mind this is differences in cumulative distribu-

tions.

More intuitive measure of this distribution change is the
PTE. Figure 2 bottom left represents the simple PTE, while
the bottom right represents the regression-adjusted PTE,
with the 95% pointwise confidence intervals. We show the
PTE in increments of h = 10 for y ∈ {0, 10, 20, . . . , 200}.
We see that the treatment is effective in that it reduces the
probability of high water consumption and increases the
probability of low water consumption. Specifically, the
results from the regression-adjusted PTE indicate increase
in water usage in the range of 20-40; decrease in water usage
in the range of 60-110 (with a minor exception that within
the range (80, 90], which is represented by point 80 in the
graph, the confidence interval exceeds 0 by only a little).
The variance reduction is especially helpful at the range (70,
80]. The probability change for the range (70,80] is not
significant under simple estimates, while it is significantly
negative under regression adjustment.

7. Conclusion
We provide a novel regression adjustment method to esti-
mate various measures of distributional treatment effects to
capture heterogeneity. Our framework accommodates high-
dimensional setup with many pre-treatment covariates and
offers flexible modeling by incorporating machine learning
techniques for the regression adjustment.

Some limitations of our method are as follows. Firstly, we
consider a setting where we have an experimental data with
perfect compliance and no interference (no network or peer
effects). While suitable for some applications, these assump-
tions may prove restrictive in other contexts. Secondly, our
approach relies on the presence of pre-treatment covariates
highly predictive of the outcome. While we enhance vari-
ance reduction compared to linear regression by employing
flexible machine learning methods to improve prediction
quality, substantial variance reduction may not occur if the
covariates lack high-quality information. Thirdly, we focus
on a setup where experimental data is already collected,
neglecting opportunities to incorporate variance reduction
strategies at the design stage of the experiment. These limi-
tations suggest avenues for future research on distributional
analysis that incorporates these concerns.
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Appendix
The Appendix is structured as follows. Section A summarizes the notation in the main text and introduces additional
notations used in the Appendix. Section B provides key tools and proofs for the claims appeared in Section 4. Section C
describes the multiplier bootstrap procedure for inference. Section D provides key tools and proofs for the claims presented
in Section 5. Finally, Section E contains more detailed information and additional results from the experiments.

A. Summary of Notation

Table 1. Summary of Notation

Notation in the main text
X Pre-treatment covariates
W Treatment variable
Y Outcome variable
Y (w) Potential outcome for treatment group w
{Zi}ni=1 {(Xi,Wi, Yi)}ni=1, observed data
πw Treatment assignment probability for treatment group w
nw Number of observations in treatment group w
FY (w)(y) E[1l{Y (w)⩽y}], potential outcome distribution function
θy (FY (1)(y), . . . , FY (K)(y))

⊤, vector of potential outcome distribution functions
γ
(w)
y (x) E[1l{Y⩽y}|W = w,X = x], conditional distribution function
γy (γ

(1)
y , . . . , γ

(K)
y )⊤, vector of conditional distribution functions

ψ
(w)
y (Z; θy, γy) moment function defined in (2)

ψy(Z) ψy(Z; θy, γy) :=
(
ψ
(1)
y (Z; θy, γy), . . . , ψ

(K)
y (Z; θy, γy)

)⊤
, vector of moment functions

⪰ positive semi-definiteness
∥a∥

√
a⊤a, Euclidean norm of a vector a = (a1, . . . , ap)

⊤ ∈ Rp

ℓ∞(Y) space of uniformly bounded functions mapping an arbitrary index set Y to the real line
UC(Y) space of uniformly continuous functions mapping an arbitrary index set Y to the real line
Gnf

√
n
∑n

i=1(f(Zi)−
∫
f(z)dP (z)), empirical process

GP P-Brownian bridge
Zn,P (Gnψy)y∈Y
ZP (GPψy)y∈Y
TP ϕ′

θ0
P
(ZP ), where ϕ′θ is derivative map of functional ϕ

Pn set of probability measures, that is weakly increasing in n
⇝ convergence in distribution or law
⇝B weak convergence of the bootstrap law in probability

Additional notation in the Appendix
N(ϵ,F , ∥ · ∥) ϵ-covering number of the class of functions F with respect to the norm ∥ · ∥
a ∨ b max{a, b} for real numbers a and b
a ∧ b min{a, b} for real numbers a and b
[K] {1, . . . ,K} for a positive integer K
xn ≲ yn for sequences xn and yn in R, xn ⩽ Ayn for a constant A that does not depend on n
∥ · ∥P,q Lq(P ) norm
BL1(D) space of functions mapping D to [0, 1] with Lipschitz norm at most 1
Xn = OP (an) limK→∞ limn→∞ P (|Xn| > Kan) = 0 for a sequence of positive constants an
Xn = oP (an) supK>0 limn→∞ P (|Xn| > Kan) = 0 for a sequence of positive constants an

14
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B. Key Tools and Proofs for Section 4
B.1. Proofs of Lemmas in Section 4

Proof of Lemma 4.1. Let y ∈ Y held constant. It is sufficient to show that each element in the vector of moment conditions
in (3) holds. From the definition of ψ(w)

y (Z; θy, γy) in (2), we can show, for each w ∈ W ,

E
[
ψ(w)
y (Z; θy, γy)

]
= E

[1l{W=w} · (1l{Y⩽y} − γ
(w)
y (X))

πw
+ γ(w)

y (X)− FY (w)(y)
]

= E
[1l{W=w} · (1l{Y (w)⩽y} − γ

(w)
y (X))

πw
+ γ(w)

y (X)− FY (w)(y)
]

= E
[
E[1l{W=w}] ·

(1l{Y (w)⩽y} − γ
(w)
y (X))

πw
+ γ(w)

y (X)− FY (w)(y)
]

= E
[
πw ·

(1l{Y (w)⩽y} − γ
(w)
y (X))

πw
+ γ(w)

y (X)− FY (w)(y)
]

= E
[
1l{Y (w)⩽y} − γ(w)

y (X) + γ(w)
y (X)− FY (w)(y)

]
= 0.

Here, the first equality is due to the definition in (2) and the second equality comes from the definition of potential outcomes
Y = Y (W ). The third equality holds because of the independence assumption in Assumption 3.1. The fourth equality comes
from the fact thatE[1l{W=w}] = P (W = w) = πw. Finally, all terms cancel out to be zero sinceE[1l{Y (w)⩽y}] = FY (w)(y)
by definition.

Proof of Lemma 4.2. For each y ∈ Y and w ∈ W , with probability approaching 1, we have

∂

∂t
E
[
ψ(w)
y (Z; θy, t)

]
= E

[ ∂
∂t

(1l{W=w} · (1l{Y⩽y} − t)

πw
+ t− FY (w)(y)

)]
= E

[
−

1l{W=w}

πw
+ 1
]

= −
E[{1l{W=w}]

πw
+ 1

= 0.

Thus, the desired conclusion follows.

Proof of Lemma 4.3. For each y ∈ Y and w ∈ W , we substitute the estimate γ̂(w)
y (Xi) for γ(w)

y (Xi) and nw/n for πw in
equation (3). Then, θ̂y :=

(
F̂Y (1)(y), . . . , F̂Y (K)(y)

)⊤
solves the sample counterpart of equation (3) for θy , so that

F̂Y (w)(y) =
1

n

n∑
i=1

[1l{Wi=w} · (1l{Yi⩽y} − γ̂
(w)
y (Xi))

nw/n
+ γ̂(w)

y (Xi)
]
.

Rearranging the terms in the above equation, we obtain

F̂Y (w)(y) =
1

nw

∑
i:Wi=w

(
1l{Yi⩽y} − γ̂(w)

y (Xi)
)
+

1

n

n∑
i=1

γ̂(w)
y (Xi),

which is the regression-adjusted estimator given in equation (1).
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B.2. Proof of Theorem 4.4

For the sake of proof completeness, we first present a variant of Lagrange’s identity and Bergström’s inequality in the below
lemma, which is useful to prove the efficiency gain of the regression adjustment.

Lemma B.1. For any (a1, . . . , aK) ∈ RK and (b1, . . . , bK) ∈ RK with bk > 0 for all k = 1, . . . ,K, we can show that

K∑
k=1

a2k
bk

−
(∑K

k=1 ak
)2∑K

k=1 bk
=

1∑K
k=1 bk

· 1
2

K∑
k=1

K∑
ℓ=1
ℓ ̸=k

(akbℓ − aℓbk)
2

bkbℓ
,

which implies Bergström’s inequality, given by

K∑
k=1

a2k
bk
⩾

(∑K
k=1 ak

)2∑K
k=1 bk

.

Proof. Lagrange’s identity is that, for any (c1, . . . , cK) ∈ RK and (d1, . . . , dK) ∈ RK ,( K∑
k=1

c2k

)( K∑
k=1

d2k

)
−
( K∑

k=1

ckdk

)2

=
1

2

K∑
k=1

K∑
ℓ=1
ℓ ̸=k

(ckdℓ − cℓdk)
2. (4)

Fix arbitrary (a1, . . . , aK) ∈ RK and (b1, . . . , bK) ∈ RK with bk > 0 for all k = 1, . . . ,K. Then, taking ck = ak/
√
bk

and dk =
√
bk for all k = 1, . . . ,K in (4), we can show that( K∑

k=1

a2k
bk

)( K∑
k=1

b2k

)
−
( K∑

k=1

ak

)2

=
1

2

K∑
k=1

K∑
ℓ=1
ℓ̸=k

(
ak√
bk

√
bℓ −

aℓ√
bℓ

√
bk

)2

=
1

2

K∑
k=1

K∑
ℓ=1
ℓ̸=k

(akbℓ − aℓbk)
2

bkbℓ
,

which leads to the desired equality. Also, the last expression in the math display above is non-negative, which leads to
Bergström’s inequality.

To prove Theorem 4.4, we introduce additional notation. Define the empirical probability measures of X as

P̂X :=
1

n

n∑
i=1

δXi
and P̂(w)

X :=
1

nw

n∑
i=1

1l{Wi=w} · δXi
,

for all observations and observations in the treatment group w ∈ W , respectively. Here, δx is the measure that assigns
mass 1 at x ∈ X and thus P̂X and P̂(w)

X can be interpreted as the random discrete probability measures, which put mass
1/n and 1/nw at each of the n and nw points {Xi}ni=1 and {Xi :Wi = w}ni=1, respectively. Given a real-valued function
f : X → R, we denote by

P̂Xf =

∫
f P̂X =

1

n

n∑
i=1

f(Xi) and P̂(w)
X f =

∫
f P̂(w)

X =
1

nw

n∑
i=1

1l{Wi=w} · f(Xi).

Given that the true conditional distribution γ
(w)
y (X) ≡ FY (w)|X(y|X), the infeasible version of regression-adjusted

distribution function for treatment w ∈ W is written as

F̃Y (w)(y) = F̂simple
Y (w) (y)− (P̂(w)

X − P̂X)γ(w)
y .
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Proof of Theorem 4.4. Part (a) Choose any arbitraryw ∈ W and y ∈ Y . Applying the quadratic expansion for F̃Y (w)(y) =

F̂simple
Y (w) (y)− (P̂(w)

X − P̂X)γ
(w)
y , we can show that

Var
(
F̃Y (w)(y)

)
=Var

(
F̂simple
Y (w) (y)

)
− 2Cov

(
F̂simple
Y (1) (y), (P̂(w)

X − P̂X)γ(w)
y

)
+Var

(
(P̂(w)

X − P̂X)γ(w)
y

)
. (5)

We can write P̂X =
∑

w′∈W π̂w′ P̂(w′)
X . It is assumed that observations are a random sample and nw′/n = πw′ + o(1)

for every w′ ∈ W as n → ∞. Furthermore, all unconditional and conditional functions are bounded. By applying the
dominated convergence theorem, we can show

nCov
(
F̂simple
Y (w) (y), (P̂(w)

X − P̂X)γ(w)
y

)
= Cov

(
F̂simple
Y (w) (y), (1− π̂w)P̂(w)

X γ(w)
y (X)

)
=

1− πw
πw

Cov
(
1l{Y (w)⩽y}, γ

(w)
y (X)

)
+ o(1). (6)

Similarly, we can show that

nVar
(
(P̂(w)

X − P̂X)γ(w)
y

)
= nVar

(
(1− π̂w)P̂(w)

X γ(w)
y

)
+ n

∑
w′:w′ ̸=w

Var
(
π̂w′ P̂(w′)

X γ(w)
y

)
=

(1− πw)
2

πw
Var
(
γ(w)
y (X)

)
+

∑
w′:w′ ̸=w

π2
w′

πw′
Var
(
γ(w)
y (X)

)
+ o(1)

=

(
(1− πw)

2

πw
+

∑
w′:w′ ̸=w

πw′

)
Var
(
γ(w)
y (X)

)
+ o(1)

=
1− πw
πw

Var
(
γ(w)
y (X)

)
+ o(1). (7)

It follows from (5)-(7) that

n
{
Var
(
F̂simple
Y (w) (y)

)
−Var

(
F̃Y (w)(y)

)}
=

1− πw
πw

{
2Cov

(
1l{Y (w)⩽y}, γ

(w)
y (X)

)
−Var

(
γ(w)
y (X)

)}
+ o(1). (8)

An application of the law of iterated expectation yields

Cov
(
1l{Y (w)⩽y}, γ

(w)
y (X)

)
= Var

(
E[1l{Y (w)⩽y}|X]

)
,

which together with (8) shows

n
{
Var
(
F̂simple
Y (w) (y)

)
−Var

(
F̃Y (w)(y)

)}
=

1− πw
πw

Var
(
γ(w)
y (X)

)
+ o(1).

Since πw ∈ (0, 1) and Var
(
γ
(w)
y (X)

)
⩾ 0, it follows that Var

(
F̂simple
Y (w) (y)

)
⩾ Var

(
F̃Y (w)(y)

)
+o(n−1). Here, the equality

hold only when FY (w)|X(y) = FY (w)(y) or X has no predictive power for the event 1l{Y (w)⩽y}.

Part (b) Choose any arbitrary y ∈ Y . First, we shall show that, for any w,w′ ∈ W ,

nCov
(
F̂Y (w)(y), F̃Y (w′)(y)

)
= Cov

(
γ(w)
y (X), γ(w

′)
y (X)

)
. (9)

Fix any two distinct treatment statuses w,w′ ∈ W . We can write F̃Y (w)(y) =
(
F̂simple
Y (w) (y)− P̂(w)

X γ
(w)
y

)
+ P̂Xγ

(w)
y and also

P̂Xγ
(w)
y =

∑
v∈W π̂vP̂(v)

X γ
(w)
y . Given random sample and the bi-linear property of the covariance function, we can show

that

Cov
(
F̃Y (w)(y), F̃Y (w′)(y)

)
=Cov

(
F̂simple
Y (w) (y)− P̂(w)

X γ(w)
y , π̂w′ P̂(w′)

X γ(w
′)

y

)
+Cov

(
π̂wP̂(w)

X γ(w)
y , F̂simple

Y (w′) − P̂(w′)
X γ(w

′)
y

)
+Cov

(
P̂Xγ

(w)
y , P̂Xγ

(w′)
y

)
,
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where it can be shown that the first and second terms on the right-hand side are equal zero, due to the fact that
E
[
F̂simple
Y (w) (y) − P̂(w)

X γ
(w)
y |X1, . . . , Xn

]
= 0. Furthermore, under the random sample assumption, we can show that

Cov
(
P̂Xγ

(w)
y , P̂Xγ

(w′)
y

)
= n−1Cov

(
γ
(w)
y (X), γ

(w′)
y (X)

)
. Thus, we can prove the equality in (9).

Next, we compare the variance-covariance matrices of the simple and regression-adjusted estimators. By applying the result
from part (a) of this theorem and the one in (9), we are able to show that

n
{
Var
(
θ̂simple
y

)
−Var

(
θ̃y
)}

=


1−π1

π1
Var
(
γ
(1)
y (X)

)
, −Cov

(
γ
(1)
y (X), γ

(2)
y (X)

)
, . . . , −Cov

(
γ
(1)
y (X), γ

(K)
y (X)

)
−Cov

(
γ
(2)
y (X), γ

(1)
y (X)

)
, 1−π2

π2
Var
(
γ
(2)
y (X)

)
, . . . , −Cov

(
FY (2)|X , FY (K)|X

)
...

...
. . .

...
−Cov

(
γ
(K)
y (X), γ

(1)
y (X)

)
, −Cov

(
γ
(K)
y (X), γ

(2)
y (X)

)
, . . . , 1−πK

πK
Var
(
γ
(K)
y (X)

)

+ o(1),

which can be written as

n
{
Var
(
θ̂simple
y

)
−Var

(
θ̃y
)}

= E
[(
γy(X)− E[γy(X)]

)
A
(
γy(X)− E[γy(X)]

)⊤]
+ o(1),

where γy(X) = [γ
(1)
y (X), . . . , γ

(K)
y (X)]⊤ and

A :=


π−1
1 − 1, −1, . . . , −1
−1, π−1

2 − 1, . . . , −1
...

...
. . .

...
−1, −1, . . . , π−1

K − 1

 .
The variant of Lagrange’s identity in Lemma B.1 with

∑
w∈W πw = 1 shows that, for an arbitrary vector v :=

(v1, . . . , vK)⊤ ∈ Rk,

v⊤
(
γy(X)− E[γy(X)]

)
A
(
γy(X)− E[γy(X)]

)⊤
v

=
∑
w∈W

v2w
(
γ
(w)
y (X)− E[γ

(w)
y (X)]

)2
πw

−
( ∑

w∈W
vw
(
γ(w)
y (X)− E[γ(w)

y (X)]
))2

=
1

2

∑
w∈W

∑
w′∈W
w′ ̸=w

{
vw
(
γ
(w)
y (X)− E[γ

(w)
y (X)]

)
πw′ − vw′

(
γ
(w′)
y (X)− E[γ

(w′)
y (X)]

)
πw
}2

πwπw′
.

It follows that

v⊤
{
Var
(
θ̂simple
y

)
−Var

(
θ̃y
)}
v =

1

2

∑
w∈W

∑
w′∈W
w′ ̸=w

Var
(
vwγ

(w)
y (X)πw′ − vw′γ

(w′)
y (X)πw

)
πwπw′

+ o(n−1).

The above equality implies the desired positive semi-definiteness result, because Var
(
vwγ

(w)
y (X)πw′ − vw′γ

(w′)
y (X)πw

)
⩾

0 for any w,w′ ∈ W with w ̸= w′.

Furthermore, the positive definite result holds when Var
(
vwγ

(w)
y (X)πw′ − vw′γ

(w′)
y (X)πw

)
> 0 for any v ∈ Rk with

v ̸= 0 and for any w,w′ ∈ W with w ̸= w′. Because v ∈ Rk is chosen arbitrarily except v ̸= 0 and πw ∈ (0, 1) for all
w ∈ W , the condition for the positive definiteness can be written as Var

(
γ
(w)
y (X)− r · γ(w

′)
y (X)

)
> 0 for any r ∈ R and

for any w,w′ ∈ W with w ̸= w′.
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C. Multiplier Bootstrap Procedure
We can obtain pointwise and uniform confidence bands for distributional parameters using multiplier bootstrap following,
for example, Chernozhukov et al. (2013) and Belloni et al. (2017). We outline the procedure to obtain uniform confidence
bands in Algorithm 2. The algorithm can be altered slightly to generate pointwise confidence bands as explained in Remark
C.1.

Algorithm 2 Multiplier bootstrap procedure to obtain uniform confidence bands

Input: Data {(Xi,Wi, Yi)}ni=1; point estimates θ̂y; influence functions ψ̂y(Zi) := ψy(Zi; θ̂y, γ̂y)

(1) Draw multipliers {ξi}ni=1 = {m1,i/
√
2 + ((m2,i)

2 − 1)/2}ni=1 independently from the data {Zi}ni=1, where m1,i

and m2,i are i.i.d. draws from two independent standard normal random variables.

(2) For each y ∈ Y , obtain the bootstrap draws ϕb(θ̂y) of ϕ(θ̂y) as

ϕb(θ̂y) = ϕ(θ̂by) where θ̂by = θ̂y +
1

n

n∑
i=1

ξiψ̂y(Zi).

(3) Repeat (1)-(2) B times and index the bootstrap draws by b = 1, . . . , B.

(4) Obtain bootstrap standard error estimates for ϕ(θ̂y) for each y ∈ Y as

Σ̂(y) =
q0.75(y)− q0.25(y)

z0.75 − z0.25
,

where qp(y) is the p-th quantile of {ϕb(θ̂y) : 1 ⩽ b ⩽ B} and zp is the p-th quantile of the standard normal
distribution.

(5) Construct the bootstrap draw of the Kolmogorov-Smirnov maximal t-statistic as

tbmax = max
y∈Y

|ϕb(θ̂y)− ϕ(θ̂y)|
Σ̂(y)

,

(6) Obtain the bootstrap estimators of the critical values as

t̂1−α = (1− α)− quantile of {tbmax : 1 ⩽ b ⩽ B}.

(7) Construct (1− α)× 100% uniform confidence band for (ϕ(θy))y∈Y as

I1−α = {[ϕ(θ̂y)± t̂1−α × Σ̂(y)] : y ∈ Y}.

Result: Uniform confidence band I1−α for (ϕ(θy))y∈Y

Remark C.1. To obtain pointwise confidence intervals using bootstrap, we skip Steps (5)-(6) and use z1−α/2 as a critical
value instead of t̂1−α.
Remark C.2. Note that the multiplier bootstrap method is computationally efficient since it does not involve recomputing
the nuisance estimates γ̂y and the influence functions ψ̂y .

D. Key Tools and Proofs for Section 5
D.1. Additional Definitions: Empirical Processes

We first introduce some basic definitions related to empirical processes in this section. The following definitions are taken
from van der Vaart & Wellner (1996).
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Definition D.1 (Brownian bridge). GP is called a P-Brownian bridge on F if it is a mean-zero Gaussian process with
covariance function E[GP fGP g] = P (fg)− P (f)P (g).

Definition D.2 (Covering numbers and entropies). The covering number N(ϵ,F , ∥ · ∥) is the minimal number of balls
{g : ∥g − f∥ < ϵ} of radius ϵ needed to cover the set F . The centers of the balls need not belong to F , but they should have
finite norms. The entropy is the logarithm of the covering number.

Definition D.3 (Envelope function). An envelope function of a class F is any function x 7→ F (x) such that |f(x)| ⩽ F (x)
for every x and f .

D.2. Key tools

In this subsection, we introduce some key tools to derive our asymptotic results. Let {Zi}∞i=1 be a sequence of i.i.d. copies
of the random element Z taking values in the measure space (Z,AZ) according to the probability law P on that space. Let
FP = {ft,P : t ∈ T} be a set of suitably measurable functions z 7−→ ft,P (z) mapping Z to R, equipped with a measurable
envelope FP : Z 7−→ R. The class is indexed by P ∈ P and t ∈ T , where T is a fixed, totally bounded semi-metric space
equipped with a semi-metric dT . Let N(ϵ,FP , ∥ · ∥Q,2) denote the ϵ-covering number of the class of functions FP with
respect to the L2(Q) seminorm ∥ · ∥Q,2 for Q a finitely-discrete measure on (Z,AZ).

Theorem D.4 (Uniform in P Donsker Property). Suppose that for q > 2

sup
P∈P

∥FP ∥P,q ⩽ C and lim
δ↘0

sup
P∈P

sup
dT (t,t̄)⩽δ

∥ft,P − ft̄,P ∥P,2 = 0. (10)

Furthermore, suppose that

lim
δ↘0

sup
P∈P

∫ δ

0

sup
Q

√
logN(ϵ∥FP ∥Q,2,FP , ∥ · ∥Q,2)dϵ = 0. (11)

Let GP denote the P-Brownian Bridge, and consider

Zn,P := (Zn,P (t))t∈T := (Gn(ft,P ))t∈T , ZP := (ZP (t))t∈T := (GP (ft,P ))t∈T .

(a) Then, Zn,P ⇝ ZP in ℓ∞(T ) uniformly in P ∈ P , namely

sup
P∈P

sup
h∈BL1(ℓ∞(T ))

|E∗
Ph(Zn,P )− EPh(ZP )| → 0.

(b) The process Zn,P is stochastically equicontinuous uniformly in P ∈ P , i.e., for every ε > 0,

lim
δ↘0

lim sup
n→∞

sup
P∈P

P∗
P

(
sup

dT (t,t̄)⩽δ

|Zn,P (t)− Zn,P (t̄)| > ε

)
= 0.

(c) The limit process ZP has the following continuity properties:

sup
P∈P

EP sup
t∈T

|ZP (t)| <∞, lim
δ↘0

sup
P∈P

EP sup
dT (t,t̄)⩽δ

|ZP (t)− ZP (t̄)| = 0.

(d) The paths t 7−→ ZP (t) are a.s. uniformly continuous on (T, dT ) under each P ∈ P .

Proof. See the proof of Theorem B.1 in Belloni et al. (2017).

Uniform in P Validity of Multiplier Bootstrap Let (ξi)ni=1 be i.i.d. multipliers whose distribution does not depend on P ,
such that Eξ = 0, Eξ2 = 1, and E|ξ|q ⩽ C for q > 2. Consider the multiplier empirical process:

Z∗
n,P := (Z∗

n,P (t))t∈T := (Gn(ξft,P ))t∈T :=

(
1√
n

n∑
i=1

ξift,P (Zi)

)
t∈T

.

Here Gn is taken to be an extended empirical processes defined by the empirical measure that assigns mass 1/n to each
point (Zi, ξi) for i = 1, ..., n. Let ZP = (ZP (t))t∈T = (GP (ft,P ))t∈T as defined in Theorem D.4.
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Theorem D.5 (Uniform in P Validity of Multiplier Bootstrap). Assume the conditions of Theorem D.4 hold.

(a) Then, the following unconditional convergence takes place, Z∗
n,P ⇝ ZP in ℓ∞(T ) uniformly in P ∈ P , namely

sup
P∈P

sup
h∈BL1(ℓ∞(T ))

|E∗
Ph(Z

∗
n,P )− EPh(ZP )| → 0.

(b) The following conditional convergence takes place, Z∗
n,P ⇝B ZP in ℓ∞(T ) uniformly in P ∈ P , namely uniformly in

P ∈ P
sup

h∈BL1(ℓ∞(T ))

|EBnh(Z
∗
n,P )− EPh(ZP )| = o∗P (1),

where EBn
denotes the expectation over the multiplier weights (ξi)ni=1 holding the data (Zi)

n
i=1 fixed.

Proof. See Theorem B.2 of Belloni et al. (2017) for the proof.

Definition D.6 (Uniform Hadamard Tangential Differentiability). Consider a map ϕ : Dϕ 7−→ E, where the domain of
the map Dϕ is a subset of a normed space D and the range is a subset of the normed space E. Let D0 be a normed space,
with D0 ⊂ D, and Dρ be a compact metric space, a subset of Dϕ. The map ϕ : Dϕ 7−→ E is called Hadamard-differentiable
uniformly in ρ ∈ Dρ tangentially to D0 with derivative map h 7−→ ϕ′ρ(h), if∣∣∣ϕ(ρn + tnhn)− ϕ(ρn)

tn
− ϕ′ρ(h)

∣∣∣→ 0,
∣∣∣ϕ′ρn

(hn)− ϕ′ρ(h)
∣∣∣→ 0, n→ ∞,

for all convergent sequences ρn → ρ in Dρ, tn → 0 in R, and hn → h ∈ D0 in D such that ρn + tnhn ∈ Dϕ for every n.
As a part of the definition, we require that the derivative map h 7−→ ϕ′ρ(h) from D0 to E is linear for each ρ ∈ Dρ.

Theorem D.7 (Functional delta-method uniformly in P ∈ P). Let ϕ : Dϕ ⊂ D 7−→ E be Hadamard-differentiable
uniformly in ρ ∈ Dρ ⊂ Dϕ tangentially to D0 with derivative map ϕ′ρ. Let ρ̂n,P be a sequence of stochastic processes taking
values in Dϕ, where each ρ̂n,P is an estimator of the parameter ρP ∈ Dρ. Suppose there exists a sequence of constants
rn → ∞ such that Zn,P = rn(ρ̂n,P − ρP )⇝ ZP in D uniformly in P ∈ Pn. The limit process ZP is separable and takes
its values in D0 for all P ∈ P = ∪n⩾n0

Pn, where n0 is fixed. Moreover, the set of stochastic processes {ZP : P ∈ P} is
relatively compact in the topology of weak convergence in D0, that is, every sequence in this set can be split into weakly
convergent subsequences. Then, rn (ϕ(ρ̂n,P )− ϕ(ρP )) ⇝ ϕ′ρP

(ZP ) in E uniformly in P ∈ Pn. If (ρ, h) 7−→ ϕ
′

ρ(h) is
defined and continuous on the whole of Dρ×D, then the sequence rn (ϕ(ρ̂n,P )− ϕ(ρP ))−ϕ′ρP

(rn(ρ̂n,P − ρP )) converges
to zero in outer probability uniformly in P ∈ Pn. Moreover, the set of stochastic processes {ϕ′ρP

(ZP ) : P ∈ P} is relatively
compact in the topology of weak convergence in E.

Proof. See Theorem B.3 of Belloni et al. (2017) for the proof.

Let Dn,P = (Wi,P )
n
i=1 denote the data vector and Bn = (ξi)

n
i=1 be a vector of random variables used to generate bootstrap.

Consider sequences of stochastic processes ρ̂n,P = ρ̂n,P (Dn,P ), where Zn,P = rn(ρ̂n,P − ρP )⇝ ZP in the normed space
D uniformly in P ∈ Pn. Also consider the bootstrap stochastic process Z∗

n,P = Zn,P (Dn,P , Bn) in D, where Zn,P is a
measurable function of Bn for each value of Dn. Suppose that Z∗

n,P converges conditionally given Dn in distribution to ZP

uniformly in P ∈ Pn, namely that

sup
h∈BL1(D)

|EBn [h(Z
∗
n,P )]− EPh(ZP )| = o∗P (1),

uniformly in P ∈ Pn, where EBn denotes the expectation computed with respect to the law of Bn holding the data Dn,P

fixed and BL1(D) denotes the space of functions mapping D to [0, 1] with Lipschitz norm at most 1. This is denoted as
Z∗
n,P ⇝B ZP uniformly in P ∈ Pn. Finally, let ρ̂∗n,P = ρ̂n,P + Z∗

n,P /rn denote the bootstrap or simulation draw of ρ̂n,P .

Theorem D.8 (Uniform in P functional delta-method for bootstrap and other simulation methods). Assume the
conditions of Theorem D.7 hold. Let ρ̂n,P and ρ̂∗n,P be maps as indicated previously taking values in Dϕ such that
rn(ρ̂n,P −ρP )⇝ ZP and rn(ρ̂∗n,P −ρ̂n,P )⇝B ZP in D uniformly in P ∈ Pn. Then,X∗

n,P = rn(ϕ(ρ̂
∗
n,P )−ϕ(ρ̂n,P ))⇝B

XP = ϕ′ρP
(ZP ) uniformly in P ∈ Pn.

Proof. See Theorem B.4 of Belloni et al. (2017) for the proof.
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Lemma D.9 (Maximal Inequality (Chernozhukov et al., 2014)). Suppose that F ⩾ supf∈F |f | is a measurable
envelope with ∥F∥P,q < ∞ for some q ⩾ 2. Let M = maxi⩽n F (Zi) and σ2 > 0 be any positive constant such that
supf∈F ∥f∥2P,2 ⩽ σ

2 ⩽ ∥F∥2P,2. Suppose that there exist constants a ⩾ e and v ⩾ 1 such that log supQN(ϵ∥F∥Q,2,F , ∥ ·
∥Q,2) ⩽ v(log a+ log(1/ϵ)), 0 < ϵ ⩽ 1. Then

EP [∥Gn∥F ] ⩽ C

(√
vσ2 log

(
a∥F∥P,2

σ

)
+
v∥M∥PP ,2√

n
log

(
a∥F∥P,2

σ

))
,

where C is an absolute constant. Moreover, for every t ⩾ 1, with probability > 1− t−q/2,

∥Gn∥F ⩽ (1 + α)EP [∥Gn∥F ] + C(q)
[
(σ + n−1/2∥M∥PP ,q)

√
t + α−1n−1/2∥M∥PP ,2t

]
, ∀α > 0,

where C(q) > 0 is a constant depending only on q. In particular, setting a ⩾ n and t = log n, with probability
> 1− c(log n)−1,

∥Gn∥F ⩽ C(q, c)

(
σ

√
v log

(
a∥F∥P,2

σ

)
+
v∥M∥PP ,q√

n
log

(
a∥F∥P,2

σ

))
, (12)

where ∥M∥PP ,q ⩽ n1/q∥F∥P,q and C(q, c) > 0 is a constant depending only on q and c.

Proof. See Chernozhukov et al. (2014) for the proof.

Lemma D.10 (Algebra for Covering Entropies). (1) Let F be a VC subgraph class with a finite VC index k or any other
class whose entropy is bounded above by that of such a VC subgraph class, then the covering entropy of F obeys:

sup
Q

logN(ϵ∥F∥Q,2,F, ∥ · ∥Q,2) ≲ 1 + k log(1/ϵ) ∨ 0

(2) For any measurable classes of functions F and F′ mapping Z to R,

logN(ϵ∥F + F ′∥Q,2,F+ F′, ∥ · ∥Q,2) ⩽ logN
(
ϵ
2∥F∥Q,2,F, ∥ · ∥Q,2

)
+ logN

(
ϵ
2∥F

′∥Q,2,F′, ∥ · ∥Q,2

)
,

logN(ϵ∥F · F ′∥Q,2,F · F′, ∥ · ∥Q,2) ⩽ logN
(
ϵ
2∥F∥Q,2,F, ∥ · ∥Q,2

)
+ logN

(
ϵ
2∥F

′∥Q,2,F′, ∥ · ∥Q,2

)
,

N(ϵ∥F ∨ F ′∥Q,2,F ∪ F′, ∥ · ∥Q,2) ⩽ N (ϵ∥F∥Q,2,F, ∥ · ∥Q,2) +N (ϵ∥F ′∥Q,2,F′, ∥ · ∥Q,2) .

(3) Given a measurable class F mapping Z to R and a random variable ξ taking values in R,

log sup
Q
N(ϵ∥|ξ|F∥Q,2, ξF, ∥ · ∥Q,2) ⩽ log sup

Q
N (ϵ/2∥F∥Q,2,F, ∥ · ∥Q,2)

(4) Given measurable classes Fj and envelopes Fj , j = 1, . . . , k, mapping Z to R, a function ϕ : Rk → R such that for
fj , gj ∈ Fj , |ϕ(f1, . . . , fk)− ϕ(g1, . . . , gk)| ⩽

∑k
j=1 Lj(x)|fj(x)− gj(x)|, Lj(x) ⩾ 0, and fixed functions f̄j ∈ Fj , the

class of functions L = {ϕ(f1, . . . , fk)− ϕ(f̄1, . . . , f̄k) : fj ∈ Fj , j = 1, . . . , k} satisfies

log sup
Q
N(ϵ∥

k∑
j=1

LjFj∥Q,2,L, ∥ · ∥Q,2) ⩽
k∑

j=1

log sup
Q
N
(
ϵ
k∥Fj∥Q,2,Fj , ∥ · ∥Q,2

)
.

Proof. See Andrews (1994b) for the proofs of (1) and (2). (3) follows from (2). See Lemma K.1 of Belloni et al. (2017)
for the proof of (4).

D.3. Regularity conditions for Theorem 5.1

In this subsection, we lay out the regularity conditions for Theorem 5.1. In what follows, let δ, c0, c, and C denote some
positive constants. Let ∆n ↘ 0, δn ↘ 0, and τn ↘ 0 be sequences of constants approaching zero from above at a speed at
most polynomial in n.
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Assumption D.11 (Moment condition problem). Uniformly for all n ⩾ n0 and P ∈ Pn, the following conditions hold: (i)
The true parameter value θy obeys (3) and is interior relative to Θy ⊂ Θ ⊂ RK , namely there is a ball of radius δ centered
at θy contained in Θy for all y ∈ Y , and Θ is compact.

(ii) For ν := (νk)
2K
k=1 = (θ, t), each w ∈ W and y ∈ Y , the map Θy × Γy ∋ ν 7−→ EP [ψ

(w)
y (Z; ν)] is twice continuously

differentiable a.s. with derivatives obeying the integrability conditions specified in Assumption D.12.

(iii) The following identifiability condition holds: ∥EP [ψy(Z, θ, γy)])∥ ⩾ 2−1(∥(θ − θy)∥ ∧ c0) for all θ ∈ Θy .

Assumption D.12 (Entropy and smoothness). The set (Y, dY) is a semi-metric space such that logN(ϵ,Y, dY) ⩽
C log(e/ϵ) ∨ 0. Let α ∈ [1, 2], and let α1 and α2 be some positive constants. Uniformly for all n ⩾ n0 and P ∈ Pn, the
following conditions hold:

(i) The set of functions F0 = {ψ(w)
y (Z; θy, γy) : w ∈ W, y ∈ Y}, viewed as functions of Z is suitably measurable;

has an envelope function F0(Z) = supw∈W,y∈Y,ν∈θy×Γy
|ψ(w)

y (Z; ν)| that is measurable with respect to Z and obeys
∥F0∥P,q ⩽ C, where q ⩾ 4 is a fixed constant; and has a uniform covering entropy obeying supQ logN(ϵ∥F0∥Q,2,F0, ∥ ·
∥Q,2) ⩽ C log(e/ϵ) ∨ 0.

(ii) For all w ∈ W and k, r ∈ [2K], and ψ(w)
y (Z) := ψ

(w)
y (Z; θy, γy),

(a) supy∈Y,(ν,ν̄)∈(θy×Γy)2 EP [(ψ
(w)
y (Z; ν)− ψ

(w)
y (Z; ν̄))2]/∥ν − ν̄∥α ⩽ C, P -a.s.,

(b) supdY(y,ȳ)⩽δ EP [(ψ
(w)
y (Z)− ψ

(w)
ȳ (Z))2] ⩽ Cδα1 ,

(c) EP supy∈Y,ν∈Θy×Γy
|∂νr

EP

[
ψ
(w)
y (Z; ν)

]
|2 ⩽ C,

(d) supy∈Y,ν∈Θy×Γy
|∂νk

∂νrEP [ψ
(w)
y (Z; ν)]| ⩽ C, P -a.s.

Assumption D.13 (Estimation of nuisance functions). The following conditions hold for each n ⩾ n0 and all P ∈ Pn. The
estimated functions γ̂y = (γ̂

(w)
y )Kw=1 ∈ Gyn with probability at least 1 −∆n, where Gyn is the set of measurable maps

x 7−→ γ = (γ(w))Kw=1(x) ∈ Γy(x) such that

∥γ(w) − γ(w)
y ∥P,2 ⩽ τn, τ2n

√
n ⩽ δn,

and whose complexity does not grow too quickly in the sense that F1 = {ψ(w)
y (Z; θ, γ) : w ∈ W, y ∈ Y, θ ∈ Θy, γ ∈ Gyn}

is suitably measurable and its uniform covering entropy obeys

sup
Q

logN(ϵ∥F1∥Q,2,F1, ∥ · ∥Q,2) ⩽ log(e/ϵ) ∨ 0,

where F1(Z) is an envelope for F1 which is measurable with respect to Z and satisfies F1(Z) ⩽ F0(Z) for F0 defined in
Assumption D.12.

D.4. Proofs for Section 5

In this subsection, we state the proofs for Theorems 5.1 and 5.2.

Proof of Theorem 5.1. STEP 0. In the proof a ≲ b means that a ⩽ Ab, where the constant A depends on the constants
in Assumptions D.12, but not on n once n ⩾ n0, and not on P ∈ Pn. In Step 1, we consider a sequence Pn in Pn, but
for simplicity, we write P = Pn throughout the proof, suppressing the index n. Since the argument is asymptotic, we can
assume that n ⩾ n0 in what follows.

Also, let

B(Z) := max
w∈W,k∈[2K]

sup
ν∈Θy×Γy,y∈Y

∣∣∣∂νk
EP [ψ

(w)
y (Z; ν)]

∣∣∣. (13)
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STEP 1. (A Preliminary Rate Result). In this step, we claim that with probability 1− o(1),

sup
y∈Y

∥θ̂y − θy∥ ≲ τn.

Since θ̂y is defined as a solution to the sample moment condition, we have

∥Enψy(Z, θ̂y, γ̂y)∥ ⩽ inf
θ∈Θy

∥Enψy(Z, θ, γ̂y)∥+ ϵn for each y ∈ Y ,

where ϵn = o(n−1/2). This implies via triangle inequality that uniformly in y ∈ Y with probability 1− o(1)∥∥∥P [ψy(Z; θ̂y, γy)]
∥∥∥ ⩽ ϵn + 2I1 + 2I2 ≲ τn, (14)

for I1 and I2 defined in Step 2 below. The ≲ bound in (14) follows from Step 2 and from the assumption ϵn = o(n−1/2).
Since by Assumption D.11 (iii), 2−1(∥(θ̂y − θy)∥∧ c0) does not exceed the left side of (14), we conclude that supy∈Y ∥θ̂y −
θy∥ ≲ τn.

STEP 2. (Define and bound I1 and I2) We claim that with probability 1− o(1):

I1 := sup
θ∈Θy,y∈Y

∥∥∥Enψy(Z; θ, γ̂y)− Enψy(Z; θ, γy)
∥∥∥ ≲ τn,

I2 := sup
θ∈Θy,y∈Y

∥∥∥Enψy(Z; θ, γy)− Pψy(Z; θ, γy)
∥∥∥ ≲ τn.

To establish this, we can bound I1 ⩽ 2I1a + I1b and I2 ⩽ I1a, where with probability 1− o(1),

I1a := sup
θ∈Θy,y∈Y,γ∈Gyn∪{γy}

∥∥∥Enψy(Z; θ, γ)− Pψy(Z; θ, γ)
∥∥∥ ≲ τn,

I1b := sup
θ∈Θy,y∈Y,γ∈Gyn∪{γy}

∥∥∥Pψy(Z; θ, γ)− Pψy(Z; θ, γy)
∥∥∥ ≲ τn.

These bounds in turn hold by the following arguments.

In order to bound I1b, we employ Taylor’s expansion and the triangle inequality. For γ̄(X, y,w, θ) denoting a point on a
line connecting vectors γ(X) and γy(X), and tm denoting the mth element of the vector t,

I1b ⩽
K∑

w=1

K∑
m=1

sup
θ∈Θy,y∈Y,γ∈Gyn

∣∣∣P [∂tmP [ψ(w)
y (Z, θ, γ̄(X, y,w, θ))

]
(γ(m)(X)− γ(m)

y (X))
] ∣∣∣

⩽ K ·K · ∥B∥P,2 max
y∈Y,γ∈Gyn,w∈W

∥γ(w) − γ(w)
y ∥P,2,

where the last inequality holds by the definition of B(Z) given earlier and Hölder’s inequality. By Assumption D.12(ii)(c),
∥B∥P,2 ⩽ C, and by Assumption D.13, supy∈Y,γ∈Gyn,w∈W ∥γ(w) − γ

(w)
y ∥P,2 ≲ τn, hence we conclude that I1b ≲ τn

since K is fixed.

In order to bound I1a, we employ the maximal inequality of Lemma D.9 to the class

F1 = {ψ(w)
y (Z, θ, γ) : w ∈ W, y ∈ Y, θ ∈ Θy, γ ∈ Gyn ∪ {γy}},

defined in Assumption D.13 and equipped with an envelope F1 ⩽ F0, to conclude that with probability 1− o(1),

I1a ≲ τn.

Here we use that log supQN(ϵ∥F1∥Q,2,F1, ∥ · ∥Q,2) ⩽ log(e/ϵ) ∨ 0 by Assumption D.13; ∥F0∥P,q ⩽ C and
supf∈F1

∥f∥2P,2 ⩽ σ
2 ⩽ ∥F0∥2P,2 for c ⩽ σ ⩽ C by Assumption D.12(i).
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STEP 3. (Linearization) By definition, we have
√
n∥Enψy(Z; θ̂y, γ̂y)∥ ⩽ inf

θ∈Θy

√
n∥Enψy(Z; θ, γ̂y)∥+

√
n · ϵn.

By Taylor’s theorem, for all y ∈ Y ,
√
nEnψy(Z; θ̂y, γ̂y) =

√
nEnψy(Z; θy, γy)

−
√
n(θ̂y − θy) + Du,0(γ̂y − γy) + II1(y) + II2(y),

where the terms II1(y) and II2(y) are defined in Step 4 and Dy,0(γ̂y − γy) is treated in the next paragraph. Then, by the
triangle inequality, for all y ∈ Y and Steps 4 and 5, we have∥∥∥√nEnψy(Z; θy, γy)−

√
n(θ̂y − θy) + Dy,0(γ̂y − γy)

∥∥∥
⩽ ϵn

√
n+ sup

y∈Y

(
inf

θ∈Θy

√
n∥Enψy(Z; θ, γ̂y)∥+ ∥II1(y)∥+ ∥II2(y)∥

)
= oP (1),

where the oP (1) bound follows from Step 4, ϵn
√
n = o(1) by assumption, and Step 5.

Moreover, by the orthogonality condition:

Dy,0(γ̂y − γy) :=

(
K∑

m=1

√
nP
[
∂tmP [ψ

(w)
y (Z; θy, γy)](γ̂

(m)(X)− γ(m)
y (X))

])K

w=1

= 0.

Conclude using Assumption D.11 (iii) that

sup
y∈Y

∥∥∥−√
nEnψy(Z; θy, γy) +

√
n(θ̂y − θy)

∥∥∥ ⩽ oP (1).
Furthermore, the empirical process (

√
nEnψy(Z; θy, γy))y∈Y is equivalent to an empirical process Gn indexed by FP :={

ψ
(w)
y : w ∈ W, y ∈ Y

}
, where ψ(w)

y is the w-th element of ψy(Z; θy, γy) and we make explicit the dependence of FP on
P .

The conditions on F0 in Assumption D.12(ii) imply that FP has a uniformly well-behaved uniform covering entropy by
Lemma D.10, namely

sup
P∈P=∪n⩾n0

Pn

log sup
Q
N(ϵ∥CF0∥Q,2,FP , ∥ · ∥Q,2) ≲ log(e/ϵ) ∨ 0,

where FP = CF0 is an envelope for FP since supf∈FP
|f | ≲ CF0 by Assumption D.12 (i). The class FP is therefore

Donsker uniformly in P because supP∈P ∥FP ∥P,q ⩽ C supP∈P ∥F0∥P,q is bounded by Assumption D.12 (ii), and
supP∈P ∥ψy − ψȳ∥P,2 → 0 as dY(y, ȳ) → 0 by Assumption D.12 (ii) (b). Application of Theorem D.4 gives the results of
the theorem.

STEP 4. (Define and Bound II1(y) and II2(y)). Let II1(y) := (II1w(y))
K
w=1 and II2(y) = (II2w(y))

K
w=1, where

II1w(y) :=

2K∑
r,k=1

√
nP

[
∂νk∂νrP [ψ(w)

y (Z, ν̄y(X,w))]{ν̂yr(X)− νyr(X)}{ν̂yk(X)− νyk(X)}
]
,

II2w(y) := Gn(ψ
(w)
y (Z, θ̂y, γ̂y)− ψ(w)

y (Z, θy, γy)),

νy(X) := (νyk(X))2Kk=1 := (θ⊤y , γy(X)⊤)⊤, ν̂y(X) := (ν̂yk(X))dν

k=1 := (θ̂⊤y , γ̂
⊤
y )⊤, and ν̄y(X,w) is a vector on the line

connecting νy(X) and ν̂y(X).

First, by Assumptions D.12(ii)(d) and D.13, the claim of Step 1, and the Hölder inequality,

max
w∈W

sup
y∈Y

|II1w(y)| ⩽ sup
y∈Y

2K∑
r,k=1

√
nP [C|ν̂yr(X)− νyr(X)||ν̂yk(X)− νyk(X)|]

⩽ C
√
nK2 max

k∈[2K]
sup
y∈Y

∥ν̂yk − νyk∥2P,2 ≲P

√
nτ2n = o(1).
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Second, we have that with probability 1− o(1), maxw∈W supy∈Y |II2w(y)| ≲ supf∈F2
|Gn(f)|, where, for Θyn := {θ ∈

Θy : ∥θ − θy∥ ⩽ Cτn},

F2 =
{
ψ(w)
y (Z; θ, γ)− ψ(w)

y (Z; θy, γy) : w ∈ W, y ∈ Y, γ ∈ Gyn, θ ∈ Θyn

}
.

Application of Lemma D.9 with an envelope F2 ≲ F0 gives that with probability 1− o(1)

sup
f∈F2

|Gn(f)| ≲ τα/2n + n−1/2n
1
q , (15)

since supf∈F2
|f | ⩽ 2 supf∈F1

|f | ⩽ 2F0 by Assumption D.13; ∥F0∥P,q ⩽ C by Assumption D.12(i);
log supQN(ϵ∥F2∥Q,2,F2, ∥ · ∥Q,2) ≲ (1 + log(e/ϵ)) ∨ 0 by Lemma D.10 because F2 = F1 − F0 for the F0 and

F1 defined in Assumptions D.12(i) and D.13; and σ can be chosen so that supf∈F2
∥f∥P,2 ⩽ σ ≲ τ

α/2
n . Indeed,

sup
f∈F2

∥f∥2P,2 ⩽ sup
w∈W,y∈Y,ν∈Θyn×Gyn

P
(
P [(ψ(w)

y (Z; ν(X))− ψ(w)
y (Z, νy(X)))2]

)
⩽ sup

y∈Y,ν∈Θyn×Gyn

P (C∥ν(X)− νy(X)∥α)

= sup
y∈Y,ν∈Θyn×Gyn

C∥ν − νy∥αP,α ⩽ sup
y∈Y,ν∈Θyn×Gyn

C∥ν − νu∥αP,2 ≲ τ
α
n ,

where the first inequality follows by the law of iterated expectations; the second inequality follows by Assumption D.12(ii)(a);
and the last inequality follows from α ∈ [1, 2] by Assumption D.12, the monotonicity of the norm ∥ · ∥P,α in α ∈ [1,∞],
and Assumption D.13. Conclude that with probability 1− o(1)

max
w∈W

sup
y∈Y

|II2w(y)| ≲ τα/2n + n−1/2n
1
q = o(1). (16)

STEP 5. In this step we show that supy∈Y infθ∈Θy

√
n∥Enψy(Z; θ, γ̂y)∥ = oP (1). We have that with probability 1− o(1)

inf
θ∈Θy

√
n∥Enψy(Z; θ, γ̂y)∥ ⩽

√
n∥Enψy(Z; θ̄y, γ̂y)∥,

where θ̄y = θy +Enψy(Z, θy, γy), since θ̄y ∈ Θy for all y ∈ Y with probability 1− o(1), and, in fact, supy∈Y ∥θ̄y − θy∥ =
OP (1/

√
n) by the last paragraph of Step 3.

Then, arguing similarly to Step 3 and 4, we can conclude that uniformly in y ∈ Y:
√
n∥Enψy(Z; θ̄y, γ̂y)∥ ⩽

√
n∥Enψy(Z; θy, γy)− (θ̄y − θy) + Dy,0(γ̂y − γy)∥+ oP (1)

where the first term on the right side is zero by definition of θ̄y and Dy,0(γ̂y − γy) = 0.

Proof of Theorem 5.2. STEP 0. In the proof a ≲ b means that a ⩽ Ab, where the constant A depends on the constants in
Assumptions D.11– D.13, but not on n once n ⩾ n0, and not on P ∈ Pn. In Step 1, we consider a sequence Pn in Pn, but
for simplicity, we write P = Pn throughout the proof, suppressing the index n. Since the argument is asymptotic, we can
assume that n ⩾ n0 in what follows.

We first show that
Ẑ∗
n,P ⇝B ZP in ℓ∞(Y)K , uniformly in P ∈ Pn.

In other words, we first show that the multiplier bootstrap provides a valid approximation to the large sample law of√
n(θ̂y − θy)y∈Y . Let Pn denote the measure that puts mass n−1 at the points (ξi, Zi) for i = 1, ..., n. Let En denote the

expectation with respect to this measure, so that Enf = n−1
∑n

i=1 f(ξi, Zi), and Gn denote the corresponding empirical
process

√
n(En − P ), i.e.

Gnf =
√
n(Enf − Pf) =

1√
n

n∑
i=1

(
f(ξi, Zi)−

∫
f(s, z)dPξ(s)dP (z)

)
.
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Recall that we define the bootstrap draw as:

Z∗
n,P :=

√
n(θ̂∗ − θ̂) =

(
1√
n

n∑
i=1

ξiψ̂y(Zi)

)
y∈Y

=
(
Gnξψ̂y

)
y∈Y

,

where ψ̂y(Z) = ψy(Z, θ̂y, γ̂y).

STEP 1.( Linearization) In this step we establish that

ζ∗n,P := Z∗
n,P −G∗

n,P = oP (1) in D = ℓ∞(Y)K , (17)

where G∗
n,P := (Gnξψ̄y)y∈Y , and ψ̄y(Z) = ψy(Z; θy, γy).

To show (17), we note that with probability 1 − δn, γ̂y ∈ Gyn, θ̂y ∈ Θyn = {θ ∈ Θy : ∥θ − θy∥ ⩽ Cτn}, so that
∥ζ∗n,P ∥D ≲ supf∈F3

|Gn[ξf ]|, where

F3 =
{
ψ̃(w)
y (θ̄y, γ̄y)− ψ̄(w)

y : w ∈ W, y ∈ Y, θ̄y ∈ Θyn, γ̄y ∈ Gyn

}
,

where ψ̃(w)
y (θ̄y, γ̄y)) is the j-th element of ψy(Z; θ̄y, γ̄y(X)), and ψ̄(w)

y is the j-th element of ψy(Z; θy, γy(X)). By the
arguments similar to those employed in the proof of the previous theorem, F3 obeys

log sup
Q
N(ϵ∥F3∥Q,2,F3, ∥ · ∥Q,2) ≲ (1 + log(e/ϵ)) ∨ 0,

for an envelope F3 ≲ F0. By Lemma D.10, multiplication of this class by ξ does not change the entropy bound modulo an
absolute constant, namely

log sup
Q
N(ϵ∥|ξ|F3∥Q,2, ξF3, ∥ · ∥Q,2) ≲ (1 + log(e/ϵ)) ∨ 0.

Also E[exp(|ξ|)] < ∞ implies (E[maxi⩽n |ξi|2])1/2 ≲ log n, so that, using independence of (ξi)ni=1 from (Zi)
n
i=1 and

Assumption D.12(i),

∥max
i⩽n

ξiF0(Zi)∥PP ,2 ⩽ ∥max
i⩽n

ξi∥PP ,2∥max
i⩽n

F0(Zi)∥PP ,2 ≲ n
1/q log n.

Applying Lemma D.9,

sup
f∈ξF3

|Gn(f)| = OP

(
τα/2n +

n1/q log n√
n

)
= oP (1),

for supf∈ξF3
∥f∥P,2 = supf∈F3

∥f∥P,2 ≲ σn ≲ τ
α/2
n , where the details of calculations are similar to those in the proof of

Theorem 5.1. Indeed, with probability 1− o(δn),

sup
f∈F3

∥f∥2P,2 ≲ sup
w∈W,y∈Y,ν∈Θyn×Gyn

P
(
P [(ψ(w)

y (Z, ν(X))− ψ(w)
y (Z, νy(X)))2]

)
≲ sup

y∈Y,ν∈Θyn×Gyn

∥ν − νy∥αP,α

≲ sup
y∈Y,ν∈Θyn×Gyn

∥ν − νy∥αP,2

≲ ταn ,

where the first inequality follows from the triangle inequality and the law of iterated expectations; the second inequality
follows by Assumption D.12(ii)(a) and Assumption D.12(i); the third inequality follows from α ∈ [1, 2] by Assumption
D.12, the monotonicity of the norm ∥ · ∥P,α in α ∈ [1,∞], and Assumption D.13; and the last inequality follows from
∥ν − νy∥P,2 ≲ τn by the definition of Θyn and Gyn. The equation (17) follows.

27



Distributional Treatment Effects in Randomized Experiments

STEP 2. Here we are claiming that Z∗
n,P ⇝B ZP in D = ℓ∞(Y)K , under any sequence P = Pn ∈ Pn, were ZP =

(GP ψ̄y)y∈Y . By the triangle inequality and Step 1,

sup
h∈BL1(D)

∣∣∣EBnh(Z
∗
n,P )− EPh(ZP )

∣∣∣ ⩽ sup
h∈BL1(D)

∣∣∣EBnh(G
∗
n,P )− EPh(ZP )

∣∣∣+ EBn(∥ζ∗n,P ∥D ∧ 2),

where the first term is o∗P (1), since G∗
n,P ⇝B ZP by Theorem D.5, and the second term is oP (1) because ∥ζ∗n,P ∥D = oP (1)

implies that EP (∥ζ∗n,P ∥D ∧ 2) = EPEBn
(∥ζ∗n,P ∥D ∧ 2) → 0, which in turn implies that EBn

(∥ζ∗n,P ∥D ∧ 2) = oP (1) by
the Markov inequality.

E. Additional Experimental Details and Results
All experiments are carried out using R version 4.3.1 on a MacBook Pro with Apple M2 Max chip and 64GB memory.
The code is available at https://github.com/CyberAgentAILab/dte-ml-adjustment. Additionally, we are in the process of
developing a Python package that implements our proposed method.

E.1. Simulation Study

E.1.1. DATA GENERATING PROCESS (DGP)

We fix the number of covariates dx as dx = 100 and the sample size n to be in {500, 1000, 5000}. For each i = 1, . . . , n,
we generate Xi = (X1i, . . . , X100i) from U100((0, 1)

100), a multivariate uniform distribution on (0, 1). Binary treatment
variable Di follows Bernoulli distribution with success probability of ρ = 0.5. A continuous outcome variable Yi is then
generated from the outcome equation Yi = f(Xi, Di) +Ui, where the error term Ui ∼ N(0, 1). We consider the functional
form of

f(Xi, Di) = Di +

100∑
j=1

βjXij +

100∑
j=1

γjX
2
ij (18)

so that the outcome is nonlinear in covariates. We set

βj =

{
1 for j ∈ {1, . . . , 50}
0 for j ∈ {51, . . . , 100},

and

γj =

{
1 for j ∈ {1, . . . , 50}
0 for j ∈ {51, . . . , 100}.

In other words, the first 50 variables are relevant but the other 50 variables are irrelevant to the outcome variable.

E.1.2. EVALUATION METRICS

We evaluate the performance of our estimators using

1. Bias ratio, computed as 100%×
1
R

∑R
r=1(∆̂y,r−∆y)

∆y

2. Root mean squared error (RMSE), computed as RMSE =
√

1
R

∑R
r=1(∆̂y,r −∆y)2

3. RMSE reduction, computed as 100%× (1− RMSEadjusted

RMSEsimple
)

where ∆y is the true distributional parameter (e.g., DTE, QTE) at threshold y, ∆̂y,r is the estimate from the replication r,
and R is the number of replications. We consider R = 1000 in our experiments. To approximate the true distributions, we
generate a dataset with 1,000,000 observations and calculate the distributional parameter at each y. In the simulations, we
consider 9 values of threshold y at the quantiles {0.1, 0.2, . . . , 0.9} of the true outcome distribution.
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E.1.3. IMPLEMENTATION

In the simulation study, we implement logistic LASSO with cv.glmnet function in glmnet package in R (Friedman et al.,
2010; Tay et al., 2023).

E.1.4. RELEVANCE OF COVARIATES AND RMSE REDUCTION

We demonstrate the relationship between the predictive power of covariates on the outcome and the reduction in RMSE
using a simple experiment. For this purpose, we explore a series of data generating processes where the relevance of
covariates ranges from high to low. Specifically, we construct a slowly decaying sequence of coefficients κs = 2× s−1 for
s = 1, . . . , 10. Then, in our outcome equation (18), we set the coefficients as follows:

βj =

{
κs for j ∈ {1, . . . , 50}
0 for j ∈ {51, . . . , 100},

and

γj =

{
κs for j ∈ {1, . . . , 50}
0 for j ∈ {51, . . . , 100}.

Note that we consider a decaying sequence: s = 1 corresponds to the case with the highest relevance, and the relevance
diminishes as we increase s up to s = 10. Figure 3 illustrates how covariates with higher relevance result in a greater
reduction in RMSE across all quantiles when sample size is n = 1000.
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Figure 3. RMSE reduction in % of the ML adjusted estimator compared to the simple DTE estimator, under various data generating
processes indexed by s = 1, . . . , 10, calculated over 1000 simulations. s = 1: highest relevance of covariates, diminishing relevance of
covariates as s increases up to s = 10. The simple estimator is derived from empirical distribution functions, while the ML adjusted
estimator is obtained using LASSO with 5-fold cross-fitting. n = 1000.
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Figure 4. Bias (top figure), as a % of true value, of different QTE estimators and RMSE reduction in % (bottom figure) of adjusted
estimators compared to simple QTE estimator, under sample sizes {500, 1000, 5000}, calculated over 1000 simulations. The simple
estimator is calculated from empirical distribution functions. The regression-adjusted estimators (linear adjustment and ML adjustment
based on LASSO) are implemented using 5-fold cross-fitting.

E.1.5. QUANTILE TREATMENT EFFECT (QTE)

We also consider simple and regression-adjusted QTE estimators. In the setup introduced in Section E.1.1, the outcome
variable is continuous and hence the QTE is well-defined. The true value of QTE is constant and equals 1 at all quantiles.
The top figure of Figure 4 plots the bias as a % of the true value of the QTE. The bottom figure of Figure 4 plots the RMSE
reduction in % terms for the linear and ML adjustment, compared to the simple estimator. We confirm the bias is small
for all QTE estimators. Even when sample size is small (n = 500), the bias is at most 4%. As for the RMSE, the results
are similar to that for the DTE explained in Section 6.1. The variance reduction is around 13%-35% for linearly adjusted
estimator and is around 37%-50% for the ML adjusted estimator when sample size is large (n = 5000).

E.2. Nudges to reduce water consumption

E.2.1. DATA AND IMPLEMENTATION

The dataset from the randomized experiment can be downloaded at https://doi.org/10.7910/DVN1/22633 (Ferraro & Price,
2013a).

In our analysis, we implement gradient boosting with xgboost package in R (Chen & Guestrin, 2016).
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Figure 5. Technical Advice (T1) vs. Control. Distributional Treatment Effect (DTE) and Probability Treatment Effect (PTE) on water
consumption (in thousands of gallons). The top left figure represents the simple DTE; the top right figure depicts the regression-adjusted
DTE, computed for y ∈ {0, 1, 2, . . . , 200}. The bottom left figure represents the simple PTE; the bottom right figure represents the
regression-adjusted PTE, computed for y ∈ {0, 10, 20, . . . , 200} and h = 10. The regression adjustment is implemented via gradient
boosting with 10-fold cross-fitting. The shaded areas and error bars represent the 95% pointwise confidence intervals. n = 78, 478.
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Figure 6. Weak Social Norm (T2) vs. Control. Distributional Treatment Effect (DTE) and Probability Treatment Effect (PTE) on water
consumption (in thousands of gallons). The top left figure represents the simple DTE; the top right figure depicts the regression-adjusted
DTE, computed for y ∈ {0, 1, 2, . . . , 200}. The bottom left figure represents the simple PTE; the bottom right figure represents the
regression-adjusted PTE, computed for y ∈ {0, 10, 20, . . . , 200} and h = 10. The regression adjustment is implemented via gradient
boosting with 10-fold cross-fitting. The shaded areas and error bars represent the 95% pointwise confidence intervals. n = 78, 468.
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E.2.2. RESULTS WITH MULTIPLE TREATMENTS

The randomized experiment considered four treatment groups: technical advice (T1), weak social norm (T2), strong social
norm (T3), and a control group. Technical advice (T1) involved providing residents with information on ways to reduce
water use. The weak social norm (T2) treatment combined technical advice with an appeal to prosocial preferences. The
strong social norm (T3) treatment further included social comparisons along with the elements of T2. On average, all three
treatments resulted in a reduction in water use compared to the control group, with the strong social norm (T3) showing the
largest effect and the technical advice (T1) showing the smallest effect. See Ferraro & Price (2013b) for more details about
the experimental design and average treatment effect analysis.

We extended the analysis by examining the entire distribution of water use. Figure 5 displays the DTE and PTE of technical
advice (T1) compared to the control group. The PTE results indicate a reduction in water use in the range of (120, 140] under
T1. Although regression adjustment results in tighter confidence intervals for the DTE and PTE, the overall conclusions
remain the same.

Figure 6 presents the DTE and PTE of the weak social norm (T2) compared to the control group. Under T2, water use
increased in the range of (20, 30] but decreased in the ranges of (110, 120], (130, 140], and (only slightly in) (170, 180].
Similar to T1, regression adjustment leads to tighter confidence intervals for the DTE and PTE without altering the primary
conclusions for this treatment.
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