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Abstract

Spatial Reasoning is an important component
of human cognition and is an area in which the
latest Vision-language models (VLMs) show
signs of difficulty. The current analysis works
use image captioning tasks and visual ques-
tion answering. In this work, we propose us-
ing the Referring Expression Comprehension
task instead as a platform for the evaluation
of spatial reasoning by VLMs. This platform
provides the opportunity for a deeper analysis
of spatial comprehension and grounding abil-
ities when there is 1) ambiguity in object de-
tection, 2) complex spatial expressions with
a longer sentence structure and multiple spa-
tial relations, and 3) expressions with negation
(‘not’). In our analysis, we use task-specific
architectures as well as large VLMs and high-
light their strengths and weaknesses in dealing
with these specific situations. While all these
models face challenges with the task at hand,
the relative behaviors depend on the underlying
models and the specific categories of spatial
semantics (topological, directional, proximal,
etc.). Our results highlight these challenges
and behaviors and provide insight into research
gaps and future directions.

1 Introduction

Vision-language model (VLM) research has
boomed in the recent past, owing to the enhanced
user interaction and accessibility they provide.
Models such as GPT 40!, LLaVA (Liu et al., 2024),
Google Gemini (Team et al., 2023) have become
adept at solving vision-language tasks such as Vi-
sual Question Answering (VQA), Image Caption-
ing, and more. However, VLMs still lack human-
level ‘Spatial Reasoning’ capabilities (Liu et al.,
2023a; Kamath et al., 2023). Spatial reasoning
involves comprehending relations that depict the
absolute/relative position or orientation of an ob-
ject, such as ‘left’, ‘above’, or ‘near’. Inaccurate
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spatial reasoning by VLMs can lead to serious con-
sequences in embodied Al domains such as au-
tonomous driving and surgical robotics. A focused
analysis of VLMs’ spatial reasoning capabilities
can help identify potential reasoning issues.

Most of the previous works confine their analy-
sis to testing which models work well for spatial
relations. We go further to analyze the comparative
performance of these models for spatial categories
that represent different orientational and positional
relations between objects. A novel aspect of our
work is the analysis of the effect of varying spatial
composition (number of spatial relations) in the
expressions on the performance of the models.

Previous works focused on spatial analysis with
image captioning-related tasks, thus failing to lo-
cate the source of error in the presence of visual
and linguistic ambiguity. To avoid this, we adopt
the Referring Expression Comprehension (REC)
task (Qiao et al., 2020) where the models output
bounding boxes around the target entity based on a
natural language expression, the analysis of which
could reveal the parts of the input that the models
fail to comprehend. Comprehension accuracy (or
simply, accuracy) is a common metric for this task;
it captures how often a model correctly outputs the
bounding box around the target entity.

We test four popular VLMs - LLaVA (Liu et al.,
2024), Grounding DINO (GDINO) (Liu et al.,
2023b), DeepSeek-VL2 (Wu et al., 2024), and
Qwen2.5-VL (Bai et al., 2025). We also include
‘MGA-Net’ (Zheng et al., 2020), a model specif-
ically designed for the REC task. These models
offer diversity in the evaluation as they cover differ-
ent architectural elements, training strategies, and
input formats. We further compare these models
with an object detector baseline to test if the images
are truly complex and require elaborate referring
expressions to ground the correct object.

Some of our important findings are as follows:
(1) Referring expressions that include spatial re-
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(b) The white box that
is around the mirror

(a) The white nap-
kin that is wrapped
around the hot dog
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(f) The large branch that is
to the right of the log that
is behind the large bear

(g) The black monitor that
is to the left of the key-
board or on the desk

(c) The brown table
that is to the left of the
black cell phone

(d) The sandy shore
that is near the murky
water

(e) The baseball player
that is to the left of the
black helmet and to the
right of the home plate

(h) The blanket that is not
green and that is not on the
bed left of the man

(i) The fence that is not
black and that is not to the

Figure 1: Figures for qualitative analysis. Bounding box legend - Red: MGA-Net, Blue: GDINO, Yellow: LLaVA,
Orange: DeepSeek-VL2, Pink: Qwen2.5-VL, Green: Ground-truth

lations, in addition to object attributes, result in
higher accuracy on the REC task compared to ex-
pressions with only attributes. (2) Increasing the
spatial complexity (no. of spatial relations) of an
expression affects the performance of the VLMs,
but models with explicit compositional learning
components maintain the performance. (3) Ex-
pressions involving dynamic spatial relations yield
low average accuracy across models, indicating the
difficulty in modelling these relations. (4) The task-
specific trained models achieve higher accuracy for
expressions with geometric spatial relations (e.g.,
left of, right of) while the VLMs show relatively
better accuracy for expressions having ambiguous
relations such as proximity. (5) The models fail
to recognize negated spatial relations in referring
expressions in multiple instances, though the extent
of this failure varies across models.

2 Related Work

Previous works have conducted a broad analysis on
the ability of VLMs to perform multimodal percep-
tion and reasoning tasks, such as Spatial Reasoning,
Multimodal conversation, etc. Many comprehen-
sive real-world benchmarks have been introduced
to test multiple VLM capabilities. (Liu et al., 2024;
Tian et al., 2024; Liu et al., 2023c; Fu et al., 2025).

Some works (Subramanian et al., 2022; Rosch
and Libovicky, 2023) focus solely on spatial anal-
ysis of VLMs. Wang et al., 2024 go a step further

to analyze the role of each modality in spatial rea-
soning. However, these works do not analyze the
factors that affect the spatial reasoning ability of
the VLMs. Another class of works performs a
category-wise analysis of spatial relations, either
based on their spatial properties (Liu et al., 2023a;
Gokhale et al., 2022) or their linguistic properties
and complexity (Kuhnle et al., 2018). In contrast,
Kamath et al., 2023 analyze the effects of spatial bi-
ases in the datasets for the REC task performance.

Task Complexity and Interpretability. The
above-mentioned works use image-caption agree-
ment as their evaluation task. Due to the inherent
limitations of this task, these works simplified the
expressions to have only 2 objects and 1 spatial
relation. To improve the interpretability of model
output, synthetic datasets have been used instead
of real-world images (Subramanian et al., 2022;
Lewis et al., 2022). However, it simplifies the prob-
lem due to bounded expressivity (a limited set of
attributes and spatial relations). On the other hand,
REC models output bounding boxes around the tar-
get objects. Analyzing the characteristics of these
boxes helps identify the parts of the input that the
models fail to process. This enables comparative
analysis of expressions with O, 1, or more spatial
relations, a unique feature of our work. The REC
task also enables us to test the models over images
of different visual complexities (single or multiple
instances of objects in an image).



Dataset Object Cate- ImageSource Avg. Length of Avg. No. of Objects No. of Spatial
gories Expression per Image Relations

RefCOCO 80 Real-world 3.6 10.6 59

RefCOCOg 80 Real-world 8.4 8.2 72

CLEVR-Ref+ 3 Synthetic 224 6.5 4

CopsRef 508 Real-world 14.4 17.4 51

Table 1: Statistics of Popular Referring Expression Comprehension Datasets. For the last column, the relation
types are taken from various resources explained in Section 2 and (Marchi Fagundes et al., 2021), in addition to the

relations in Table 2.

Category Number Spatial Relations

Absolute 56 on the right, on the left, in the middle, in the center, from the right, from the left

Adjacency 14 attached, against, on the side, on the back, on the front, on the edge

Directional 29 falling off, along, through, across, down, up, hanging from, coming from, around

Orientation 0 facing

Projective 2361 on top of, beneath, beside, behind, to the left, to the right, under, above, in front of, over, below,
underneath

Proximity 217 by, close to, near

Topological 1054 connected, contain, with, surrounding, surrounded by, inside, between, touching, out of, at, in, on

Unallocated 56 next to, enclosing

Table 2: Category-wise relation split and number of referring expressions in the CopsRef test set with 1 spatial
relation in each category. While there are no referring expressions with only one relation from the orientation
category, these relations co-occur with relations from other categories in some expressions.

3 Dataset

Table 1 shows the key characteristics of some pop-
ular REC datasets. We chose CopsRef because
among real-world datasets, it has the longest refer-
ring expressions, which go beyond describing the
simple, distinctive properties of the objects. Cop-
sRef is also a highly spatial dataset, as 90% of
expressions consist of spatial relations. Examples
of such referring expressions and the correspond-
ing images are given in Figure 1. Table 2 shows
the category-wise split of the 51 spatial relations
we identified in the CopsRef test dataset. For ex-
planations of each category, refer to Appendix A.

Category No. of relations  No. of ex-
pressions

None 0 1202

One 1 3787
Two-chained 2 1324
Two-and 2 3890
Two-or 2 2203

Three 3 180

Table 3: Frequency of occurrence of spatial relations in
referring expressions.

Table 3 shows the number of expressions having
0, 1, 2, and 3 spatial relations. For expressions with
2 spatial relations, we have introduced three cate-
gories. The first category, ‘Two-chained’, includes
expressions where the spatial clauses are chained

sequentially. The second category, ‘“Two-and’, con-
tains expressions where the referred object satisfies
both spatial clauses. Finally, ‘Two-or’ consists
of expressions where the referred object satisfies
either of the two spatial clauses. Figures le-1g
illustrate examples of the three categories.

4 Approach

In our analysis, we seek to answer the following
research questions:
RQ1. Which spatial relation categories result in
low accuracy for REC models? RQ2. How do dif-
ferent model characteristics/architectures influence
the REC task accuracy for certain spatial relation
categories compared to the others? RQ3. Does the
inclusion of spatial relations increase or decrease
the accuracy of REC models? RQ4. How does the
number of spatial relations in the expressions af-
fect the accuracy across different types of models?
RQS5. Do the REC models accurately recognize
negated spatial relations in expressions?

To answer these questions, we outline our re-
search methodology and the designed experiments
in this section:

4.1 Models Description

MGA-Net. (Zheng et al., 2020) It is an REC
task-specific model with a compositional archi-



tecture designed to handle complex expressions.
The model uses soft attention to decompose the
expression and builds a relational graph among
objects using the connecting spatial relations and
attributes. A Gated Graph Neural Network then
performs multi-step reasoning over this graph. We
use Faster R-CNN (Ren et al., 2016) to generate
object proposals and extract their features using a
pre-trained ResNet-101. The model is designed to
use the individual bounding box features instead of
the image as a whole.

Grounding DINO (GDINO). (Liu et al., 2023b)
It is an open-set object detector VLM with both
vision and language backbones, whose outputs are
fused at multiple levels. Grounded pre-training
with contrastive loss makes it well-suited for the
REC task. We use the Swin-B vision backbone
and the CLIP-text encoder (Radford et al., 2021)
for the language backbone. We filter all bounding
box detections for an expression using their output
labels to see which detections match the target en-
tity. Then we select the detection with the highest
confidence score.

LLaVA. (Liu et al., 2024) It is a general-purpose
VLM that connects an open-set vision encoder
from CLIP with a language decoder. The model
is trained end-to-end, which involves general vi-
sual instruction tuning for aligning the vision and
language modalities.

DeepSeek-VL2. (Wu et al., 2024) It is a popular
vision-language model with a dynamic tiling-based
vision encoder (SigL.IP) and a Mixture-of-Experts
(MoE) language model, whose features are aligned
using a vision-language adaptor. The model has
been trained for grounded conversation (return the
bounding box for an expression) using popular
REC datasets like RefCOCO, which feature sim-
ple expressions with limited relational complexity.
We employ the DeepSeek-VL?2 Tiny variant of the
model to suit the available computational resouces.

Qwen2.5-VL. (Bai et al., 2025) It is a multi-
modal model built over a Vision Transformer (ViT)
encoder having native-resolution support to pre-
serve spatial information and a Qwen2.5 LLM
decoder. An MLP-based vision-language merger
aligns these two modalities. Qwen2.5-VL is super-
vised using both point and bounding box annota-
tions for grounding tasks. The model is trained on
diverse referring expressions with over 10,000 real
and synthetic object categories.

OWL-VIiT. (Minderer et al., 2022) It is an object
detector baseline that only takes the target object’s
label as the input instead of the referring expression.
It is an open-set object detector, suitable for the
CopsRef dataset because its expressions include
entities from the Visual Genome (Krishna et al.,
2017) Scene Graphs, some of which are absent in
datasets used to train famous closed-set detectors
like YOLO (Redmon, 2016). It also has a simple
architecture with a Vision transformer and CLIP
for zero-shot image—label alignment, making it an
ideal baseline.

4.2 Evaluation Dataset Splits

We create the following dataset test splits for evalu-
ation and answering the earlier mentioned research
questions, RQ1-RQ5.

Fine-grained Spatial Relations Split. In the test
dataset, we split the expressions with 1 spatial rela-
tion using the categories shown in Table 2. Using
the categories from Table 3, we split the remaining
expressions based on the number of spatial rela-
tions they contain. Then, we rank the models based
on their accuracy for each category. To statistically
find the correlation between the models’ perfor-
mance across categories, we employ the Kendall
Tau Independence Test. The details about the test
can be found in Appendix B.

Visual Complexity Split. To observe the effect
of visual complexity on model performance, we
split the test dataset into two parts. The first part has
images that have multiple instances of one or more
objects mentioned in the referring expressions. The
second part has images with at most one instance
of every object mentioned in the expression. We
perform this splitting by first collecting the entities
in each expression using spaCy? and then employ-
ing GDINO to find the number of instances in the
image for each of the collected entities.

Model Accuracy (%)
MGA-Net 62.92 £0.11
GDINO 70.93 £ 0.01
LLaVA 34.96 £ 0.03
DeepSeek-VL2 30.07£0
Qwen2.5-VL 67.00 £ 0
OWL-ViT 56.34 £0

Table 4: Comprehension Accuracies
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Category MGA-Net GDINO LLaVvA DeepSeek-VL2 Qwen2.5-VL
Acc (%) Rank | Acc (%) Rank | Acc (%) Rank | Acc (%) Rank | Acc (%) Rank

Absolute 70.24 £2.22 1 82.14+0 2 | 44.64+0 4 | 4737+0 3 80.70 £ 0 1
Adjacency 52.38+3.37 12 | 7857+0 4 50.00 £ 0 1 71.43+0 1 71.43+0 4
Directional 52.87+£3.25 11 | 65.52£0 12 | 27.59+0 12 | 41.40+0 5 70.69 £ 0 5
Projective 64.07+0.08 4 69.12+0 8 36.19+£0.08 6 | 34.57£0 7 70.52 £ 0 6
Proximity 62.83+0.22 8 80.65 £ 0 3 146.844+022 3 |4516+0 4 71.89+0 3
Topological 67.32+0.49 2 | 83.02+0 1 48.51 £0.09 2 59.87+0 2 | 7291+£0 2
Unallocated 63.09+£0.84 6 | 75.00+0 5 35.71+£0 7 30.36 £ 0 9 68.75 £ 0 7
None 62.39£0.58 9 73.88+0 6 | 42.89+0.17 5 | 41.10+0 6 66.14 £ 0 8
Two-chained | 63.214+0.22 5 70.67 £0.03 7 30.82+0 9 | 18.13+0 10 | 65.78 £ 0 9
Two-and 62.98£0.09 7 68.45+£0.01 10 | 31.57+0.07 8 31.45+0 8 65.69 £ 0 10
Two-or 59.39+0.21 10 | 6897+0.01 9 | 30.26+0.04 10 | 12.68+0 11 | 63.20£0 11
Three 65.18 £ 2.1 3 67.78 £ 0 11 | 30.19+0.26 11 | 11.11+0 12 | 62.78 £0 12

Table 5: Category-wise accuracy and ranking

Negation Analysis Split. In our analysis, we
found that models have difficulties in grounding
spatial expressions with negations. Therefore, we
created a test split for a more accurate evaluation
and a deeper analysis of negated spatial expres-
sions. We collected expressions that include the
keyword ‘not’ and divided them into two sets ac-
cording to the number of occurring negations (1 or
2). Then, we collected those expressions for which
all the models give an IoU of less than 0.5. For
each expression, we perform a qualitative analysis
to verify whether the errors are due to misinterpret-
ing the negations or conflation of other errors. We
limit our analysis to the results from the first run of
the models to facilitate the instance-wise analysis.

5 Results

Hardware. For inference of GDINO, LLaVA,
OWLVIT, and training of MGA-Net, we use the
Quadro RTX 6000. Due to the heavy computa-
tional (GPU) requirements of DeepSeek-VL2 Tiny
and Qwen2.5-VL, we use NVIDIA A100-SXM4
for their inference.

Evaluation. We evaluate the models using the
Intersection over Union (IoU) metric. Following
previous works (Yu et al., 2018; Chen et al., 2024),
we consider the output as a correct comprehension
if the IoU is greater than 0.5. We calculate the accu-
racy as the fraction of data points that have an IoU
>(.5. We run each model three times (both training
and testing for MGA-Net, and inference for the
other models) to ensure the statistical significance
of the evaluation.

5.1 Evaluation on Referring Expressions

We report the average accuracy and standard devi-
ation across the three runs for each model. Since

we retrain MGA-Net for each run, the model pre-
dictions slightly change every time, resulting in
the highest standard deviation among all models.
VLMs and the baseline have zero or near-zero stan-
dard deviation since we test them zero-shot. This
also follows for the future result tables.

GDINO performs the best, followed by Qwen
and MGA-Net. LLaVA and DeepSeek perform
worse than the baseline. A possible reason is that
they don’t possess a bounding box regression archi-
tecture. Another reason could be that while LLaVA
doesn’t have visual grounding instructions during
pre-training, DeepSeek’s training referring expres-
sions often lack spatial complexity and use simple,
non-relational phrases.

MGA- GDINO LLaVA Deep- Qwen
Net Seek
MGA- 1.00 0.18 0.09 -0.12 0.11

Net

GDINO 0.18 1.00 0.73 0.52 0.63
LLaVA 0.09 0.73 1.00 0.73 0.53
DeepSeek -0.12  0.52 0.73 1.00 0.75
Qwen 0.11 0.63 0.53 0.75 1.00

Table 6: Kendall Tau Independence Test results for
category-wise ranks. DeepSeek model’s version is VL2
and Qwen model’s version is 2.5-VL.

5.2 Evaluation on Fine-grained Relations

Table 5 shows a few general trends in results. The
top 3-4 categories which each model performs the
best for are categories with a single spatial relation.
Among those, all the models perform well for the
Topological and Absolute categories.

To answer RQ1, we observed that among all cat-
egories with a single spatial relation, the average ac-
curacy across models is lowest for the Directional
category expressions. A possible reason is that the



No. of relations MGA-Net GDINO LLaVA DeepSeek OWL-ViT Qwen
None 62.39+0.59 7388+0 42.89+0.17 41.10+0 67.80£0 66.14+0
One 64.85+0.13 73.94+0 40.33+0.01 4253+0 60.50£0 71.40+0
Two 61.96 £0.07 69.00£0 31.05+0.06 2350+0 52.39+£0 64.96+0
Three 65.18+2.1 67.78+0 30.19+£0.26 11.11£0 55000 62.78+0

Table 7: Spatial relation frequency results and ranking

spatial configurations of the involved objects are
dynamic, as they vary from image to image for the
same spatial relation. This makes it difficult for the
models to learn common patterns for recognizing
these relations, resulting in low accuracy.

5.3 Impact of Multiple Spatial Relations

Table 6 shows the Kendall Tau correlation values
for all pairs of models. From the Kendall Tau Inde-
pendence test, we observed that while all the VLMs
are correlated, MGA-Net is not correlated with any
of them. We study the reasons behind MGA-Net
and VLMs differing in category-wise performance.

Among spatial categories of MGA-Net and
VLMs, the major difference occurs with the Prox-
imity and Projective categories. To answer RQ2,
we can observe that the ‘Proximity’ category
ranked similarly for the VLMs and higher than
MGA-Net. On the other hand, ‘Projective’ has a
higher rank for MGA-Net compared to all VLMs.
We can see that MGA-Net prefers geometric spatial
relations like left of, on top of, etc., as it explicitly
encodes the relative locations of bounding boxes,
which helps represent such relations. On the other
hand, the VLMs have a better ranking for ambigu-
ous relation categories that do not specify a clear
distance or geometric direction (e.g., by, close to).
This is because the vision backbones of the VLMs
utilize the entire image and help capture relations
between a region in the image and its surrounding
regions, unlike MGA-Net, which only receives the
detected bounding boxes as input.

Table 7 shows the performance of all models
and the OWL-VIiT baseline for expressions hav-
ing different numbers of spatial relations. We ob-
serve that VLMs perform considerably better for
expressions with 0/1 spatial relations compared
to expressions with 2/3 spatial relations. This
proves that VLMs find it comparatively difficult
to ground multiple spatial relations. Among the
VLMs, GDINO has the least drop in accuracy as
no. of relations increase, while DeepSeek has the
maximum drop. However, MGA-Net utilizes its
compositional learning architecture to handle multi-

step reasoning, resulting in a similar performance
for all categories.

An interesting observation is that the perfor-
mance of the baseline considerably drops for the
“Two’ and ‘Three’ categories, even though the spa-
tial relations aren’t being passed as input to the
baseline. The reason might be that 41.4% of these
images have multiple instances of objects, the im-
pact of which is explained in the next section.

Now, to answer RQ3, we observe in Table 7 that
for all models except GDINO and LLaVA, the per-
formance is better for expressions with one spatial
relation than no spatial relations. Table 5 further
shows that among the seven categories of single
spatial relations, GDINO and LLaVa perform bet-
ter for 4-5 of them compared to expressions with
no relations. Thus, we can conclude that in a setup
involving visual and linguistic ambiguity (such as
ours), spatial relations along with visual attributes
often aid the models in grounding the expressions,
compared to the attributes alone. This is also rein-
forced by the results of the baseline. From Table 7,
we can observe that while the baseline gives the
second-best performance for expressions with no
spatial relations, it drops to the third place for ex-
pressions with one spatial relation, with a 7.3%
reduction in performance. This is because the base-
line doesn’t have access to the spatial relations.

Finally, Table 7 helps us answer RQ4 as it shows
the effect of increasing spatial relations on the per-
formance of MGA-Net versus the VLMs (as dis-
cussed before).

5.4 TImpact of Visual Complexity

Model Acc Single Acc Multi
MGA-Net 64.91 £0.15 59.61 £0.04
G-DINO 72.54+0.01 68.94+£0.01
LLaVA 37.69£0.01 3043£0.1
DeepSeek-VL2 3253+ 0 2746 £0
Qwen2.5-VL 68.47+£0 63.76 £ 0
OWL-ViIiT 59.71+£0 51.30£0

Table 8: Results for accuracy in different visual com-
plexity settings. All accuracies are in (%).



Out of 12586 test instances, we found that 4730
instances have images with multiple instances of
objects mentioned in the referring expressions.
Table 8 shows the accuracies of all models and
the OWL-VIT baseline for images with a single
instance (‘Acc Single’ column) and multiple in-
stances (‘Acc Multi’ column). The models perform
better for the single instance images by 5.7% on av-
erage compared to the multi-instance images. The
8.4% performance drop of the baseline for multi-
instance images proves that the images are indeed
complex and require more than just the label as the
input for grounding the right object. Excluding the
baseline, LLaVa has the steepest performance drop,
showing that grounded pre-training also plays a
crucial role in helping the models ground the right
object instance in multi-instance images.

5.5 Impact of Negation

2 Negations 1 Negation

Total 42 16
Negation failure 39 15
DeepSeek 37 14
GDINO 33 10
LLaVA 15 4

MGA-Net 22 8

Qwen2.5-VL 21 10

Table 9: Results for negations in expressions.

We obtained 16 expressions with 1 ‘not’ and
42 expressions with 2 ‘not’s for which all models
gave incorrect predictions (as shown in Table 9).
The ‘Negation failure’ row gives the number of
instances for which at least 1 model gives an incor-
rect prediction due to failing to recognize negations
and not due to conflation of other errors. We can
observe that DeepSeek has the highest number of
failure instances, while GDINO records the second
most failures. However, while DeepSeek has the
worst comprehension accuracy for the REC task,
GDINO has the highest accuracy (refer to Table 4).

A possible reason for VLMs like LLaVA and
Qwen2.5-VL performing better than GDINO in
recognizing negations is due to their superior lan-
guage backbones (Vicuna (novita.ai, 2024) and
Qwen-2.5 LLM, respectively) that have better lan-
guage understanding (including negations) com-
pared to GDINO’s CLIP text encoder. MGA-Net
outperforms GDINO since its training involves ex-
pressions with negations, increasing its ability to
comprehend negations during testing. Hence, to
answer RQS5, we observe that while all REC mod-

els face issues with recognizing negations, certain
model characteristics and training paradigms might
reduce the failure cases.

Models Negations  Precision Recall
MGA-Net 1 53.60 70.8
MGA-Net 2 41.38 51
LLaVA 1 64.54 47.23
LLaVA 2 60.35 41

Table 10: Negation Precision (%) and Recall (%): MGA-
Net vs. LLaVA

Another interesting observation was for the out-
puts of MGA-Net and LLaVA models when they
are close to the target object. From Table 10, we
can see that while LLaVA has a better precision in
such cases, MGA-Net has a better recall.

6 Qualitative Analysis

In this section, we provide a qualitative analysis
of certain issues faced by the models in handling
referring expressions.

6.1 Directional Relations

The expressions pertaining to Figures la and 1b
consist of the same spatial relation (‘around’). In
the first figure, the wrapping of the napkin around
the hot dog only makes the napkin partially visible.
But in the second figure, the white box around the
mirror is almost entirely visible. This shows how
the interpretation of ‘around’ is highly dependent
on the configuration of the involved objects. For
the first image, LLaVA fails to precisely localize
the object, while MGA-Net only returns a part of
the napkin that is visible. In the second image, both
models fail to localize the object. DeepSeek fails
to output a bounding box for the first image but
gets it right for the second.

6.2 Projective and Proximity Relations

Figure 1c shows an example of a Projective rela-
tion (‘to the left’). MGA-Net succeeds in returning
the correct part of the table that is to the left of
the phone. While GDINO, DeepSeek, and Qwen
simply return the entire table, LLaVA identifies the
wrong part. This shows the ability of MGA-Net to
comprehend projective relations better, particularly
when the target object is not apparent. An exam-
ple of Proximity relations is in Figure 1d, where
LLaVA, GDINO, and DeepSeek return the shore
that is ‘near’ the murky water, but MGA-Net fails



to do so. Interestingly, Qwen only returns that part
of the shore which isn’t occluded by the elephants.

6.3 Multiple Spatial Relations

For ‘Two-and’ category expressions, the models
sometimes only satisfy one of the spatial clauses.
This often happens if multiple objects of the same
class are in the image. For example, in Figure le’s
prediction for all models (except DeepSeek, which
doesn’t return any output), the output baseball
player is to the left of the black helmet but is not to
the right of the home plate.

Similarly, for *Two-chained’ category expres-
sions, the models sometimes do not consider the
entire expression. For example, in Figure 1f, MGA-
Net, LLaVA, DeepSeek, and Qwen return the ‘log
that is behind the large bear’, and GDINO returns
the bear itself. None of the models consider the
‘large branch’ part of the expression, which should
have been the output.

Finally, for *Two-or’ category expressions, the
models might consider only one spatial clause.
Consequently, it returns an object satisfying that
clause but not the additional attributes mentioned
in the expression. For example, in Figure 1g, the
models return the monitor that is to the ‘left of the
keyboard’, but it does not satisfy the color attribute.

6.4 Negation

Figures 1h and 1i show two cases where all models
fail to recognize negation. In 1h, we can observe
that while MGA-Net is wrong, LLaVA is close
to the ground truth but partially covers the target
object (high precision, low recall). In 1i, while
LLaVA, GDINO and Qwen are wrong, MGA-Net
is closest to the ground truth but covers an excess
area (low precision, high recall).

7 Conclusion

Spatial reasoning is an integral aspect of cognitive
reasoning and embodied Al tasks. However, re-
cent studies have shown that state-of-the-art VLMs
often fail to accurately comprehend spatial rela-
tions. To analyze the limitations of these mod-
els, we evaluate their spatial understanding using
the referring expression comprehension task. We
picked multiple models, including Vision-language
models (LLaVA, GDINO, DeepSeek, Qwen) and
task-specific models (MGA-Net). We observed
that the VLMs that are trained in the wild with vi-
sual and textual data perform worse in grounding.

The models perform the worst in grounding Direc-
tional relations on average. However, the VLMs do
better in vague relations such as proximity, while
the task-specific models are better in geometrically
well-defined relations such as left and right. While
using spatial relations increases the grounding accu-
racy, using multiple relations makes the reasoning
more challenging for all models, with a higher im-
pact on VLMs. However, MGA-Net maintains its
performance for complex spatial expressions due
to its compositional learning architecture. In the
presence of visual complexity, the performance of
all models drops, but DeepSeek and LLaVa’s per-
formances are affected the most due to a lack of
grounded pre-training with complex expressions.
Finally, both VLMs and task-specific models have
failure cases when grounding expressions that in-
clude negation. These findings shed light on the
gaps for future work on Vision-language models.

8 Future Directions

Increasing the number of parameters in VLMs
can improve performance on expressions with sim-
ple spatial relations, but architectural changes are
needed to handle novel, complex compositions ef-
fectively. Unlike VLMs, MGA-Net maintains con-
sistent performance across spatial complexities by
using a soft attention module that decomposes ex-
pressions into semantic components for compo-
sitional reasoning. This suggests expression de-
composition can enhance VLM generalization. Al-
ternative strategies (Sinha et al., 2024) could be
using multi-modal transformer models (Sikarwar
etal.,2022; Qiu et al., 2021) and techniques such as
weight sharing across transformer layers or ‘Push-
down layers’ with recursive language understand-
ing (Murty et al., 2023). Another promising direc-
tion is Neuro-symbolic processing (Kamali et al.,
2024; Hsu et al., 2024), which involves generating
symbolic programs from expressions using LLMs
and conducting explicit symbolic compositions be-
fore grounding into visual modality. We plan to
explore integrating such techniques with VLMs.

Another issue to address is the VLMs’ inability
to comprehend negations. Our experiments with
the VLMs and MGA-Net suggest that augmenting
the training/instruction tuning with synthetically
generated negated expressions can help. Addition-
ally, we also plan to formulate contrastive learning
objectives to penalize the model when it fails to
comprehend negations.



Limitation

This paper is an analysis study on the shortcomings
of the vision and language models when it comes to
fine-grained spatial reasoning. Our analysis covers
a variety of vision and language models including
closed and open ones. However, the number of
language models that we cover is by no means ex-
haustive. Spatial reasoning is important for many
downstream applications however, we chose refer-
ring expressions as a platform that can demonstrate
the challenges in both language and vision sides.
While spatial understanding becomes a very impor-
tant skill for embodied Al, in this work we do not
consider the interaction with the environment and
we do not consider the change of perspective. Our
study can serve as a complement studies in this
area that can provide insight into the difficulties
of spatial language understanding and grounding
language into visual perception. Our study was
constrained by the cost of proprietary LLMs and
the computational resources for open source ones.
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A Description of spatial categories

For our analysis, we utilize the spatial categories
introduced by (Marchi Fagundes et al., 2021) and
replace the *Cardinal Direction’ category with *Ab-
solute’. The descriptions and examples for the
chosen categories are as follows:

1. Absolute: Consists of relations that describe
the location of an object in an absolute manner
and not in relation to another object.

E.g.: man on the right that is standing and
wearing gray pant

. Adjacency: Consists of relations that describe
the close, side-by-side positioning of two ob-
jects. They may or may not imply a particular
direction.

E.g.: The large poster that is leaning against
the wall

. Directional: Consists of dynamic action verbs
/ directional relations. They describe the



movement or change in position of an object
relative to other objects in the image. The
interpretation of these relations heavily relies
on the configuration of the involved objects
and/or the dynamic spatial relationship be-
tween them.

E.g.: The gray car that is driving down the
road

. Orientation: Consists of relations which de-
scribe the orientation of an object w.r.t another
object.

E.g.: The sitting dog that is facing the window
that is to the right of the mirror

. Projective: Consists of relations that indicate
the concrete spatial relationship between two
objects, i.e., these relations can be quantified
in terms of the coordinates of the two objects.
E.g.: The black oven that is above the drawer

. Proximity: Consists of relations that indicate
that two objects are near each other without
giving a specific directional relationship.
E.g.: The blue chair that is close to the white
monitor

. Topological: Consists of relations that indi-
cate the broader arrangement or the contain-
ment of an object w.r.t another object
E.g.: The silver train that is at the colorful
station

. Unallocated: Consists of relations that cannot
be allocated to any of the above categories.

B Kendall Tau Independence Test

To compare the models’ performances across the
categories, we employ a statistical test known as
the Kendall Tau Independence Test. It evaluates
the degree of similarity between two sets of ranks
given to the same set of objects. We calculate
the Kendall rank coefficient (7), which yields the
correlation between two ranked lists. Given 7 value,
we calculate the z statistic, which follows standard
normal distribution, as:

2=3x7x \/n(n—1)//22n +5). (D)

Using the 2-tailed p-test at 0.05 level of signifi-
cance, we test the following:

* Null hypothesis: There is no correlation be-
tween the two ranked lists.
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* Alternative hypothesis: There is a correla-
tion between the two ranked

C Additional Model Settings and

Experiments
Model Accuracy (%)
MGA-Net (Layer 3) 62.92 £0.11
MGA-Net (Layer 4) 61.30 £0.09
LLaVA - Short Prompt 34.96 £0.03
LLaVA - Long Prompt 33.79 £0.01

Table 11: Additional Experiment Results - Comprehen-
sion Accuracies

For LLaVa (Liu et al., 2024), we experimented
with the following two prompts:

* Short prompt: (USER: <image>\n Give
the bounding box for: "Referring Expres-
sion"\nASSISTANT:)

* Long prompt: (USER: <image>\n Provide
the bounding box coordinates for the object
described by the referring expression: "Refer-
ring Expression"\n ASSISTANT?)

Both prompts are similar in structure, but the
latter prompt is more verbose.

For MGA-Net (Zheng et al., 2020), we experi-
ment with the Resnet-101 backbone by experiment-
ing with Layers 3 and 4 for the visual features.

The results of these experiments are in Table
11. For LLaVA, the shorter prompt gives a slightly
better result. For MGA-Net, the features captured
by Layer 3 give a better result. Hence, we consider
these two variants in all our experiments.

MGA-Net Hyperparameters. Since MGA-Net
is the only model we train in this paper, we provide
the hyperparameters used. These hyperparame-
ters are derived from (Zheng et al., 2020)’s work.
The model is trained for 15 epochs, as validation
performance begins to degrade beyond that point.
Training uses the Adam optimizer with a learning
rate of le-4, batch size of 30, and gradient clipping
set to 0.3. The language encoder is a 2-layer Bi-
LSTM with a hidden size of 512 and no dropout.
Word embeddings are 512-dimensional. Visual
features are extracted via ResNet101, and object
features include both visual and normalized spatial
information, processed through MLPs. The model
employs Gated Graph Neural Networks (GGNN5)
for multi-step relational reasoning, using 3 update
steps.



Model parameters. Among the models evalu-
ated, LLaVA is a general-purpose vision-language
model that integrates an open-set vision encoder
from CLIP with a language decoder. The model is
trained end-to-end through general visual instruc-
tion tuning to align visual and linguistic modali-
ties. The commonly used LLaVA variant based
on LLaMA-7B consists of approximately 7 bil-
lion parameters. Grounding DINO (base vari-
ant) has around 188 million parameters, optimized
for phrase grounding and open-vocabulary detec-
tion. DeepSeek-VL2 Tiny is a compact model
with about 600 million parameters, balancing speed
and performance for multimodal tasks. Qwen-VL
2.5 builds on the Qwen2.5 architecture and has
7 billion parameters, suitable for complex visual-
language understanding. OWL-ViT, depending
on the ViT backbone, ranges from 87M (ViT-
B) to 300M+ (ViT-L) parameters, designed for
open-vocabulary object detection. Finally, MGA-
Net, tailored for referring expression grounding
on datasets like CLEVR-Ref+, is lightweight with
only 15-20 million parameters, yet delivers com-
petitive task-specific performance.

D Experiments with other VLMs

In our analysis, we also experimented with In-
structBLIP (Dai et al., 2023) and OpenFlamingo
(Awadalla et al., 2023) models for the REC task.
These models are general-purpose VLMs with In-
structBLIP working in the zero-shot model and
OpenFlamingo in the few-shot mode. In this sec-
tion, we discuss the prompts that we used for
these two models and the outputs obtained for the
prompts:

D.1 InstructBLIP

For InstructBLIP, we designed three prompts for
the REC task. They are as follows:

1. Bounding Boxes: bounding box list; Refer-
ring Expression: Refexp; The index of the
output bounding box is:

Bounding Boxes: bounding box list; Refer-
ring Expression: Refexp; The coordinates of
the output bounding box are:

Provide the bounding box coordinates for:
"Refexp"

In the prompts, the ‘bounding box list’ placeholder
takes the coordinates of the detected bounding
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boxes in the image being passed as the input, along
with indices for each bounding box, starting from
‘1’. But for the third prompt, the model has no
access to pre-detected candidate bounding boxes
in the image. While the expected output for the
first prompt is the index of the correct bounding
box, for the other 2 prompts it is the bounding box
coordinates as the output.

The bounding box format is [x1, y1, x2, y2],
where (x1, y1) is the bottom left corner and (x2, y2)
is the top right corner of the box. The coordinate
values are a fraction of the total length/width of the
image according to the position of the coordinate.

Unfortunately, none of the prompts gave consis-

tently correct outputs. The outputs were as follows:
Prompt 1: The outputs were mostly incorrect.
Sometimes, the model also gave ‘O’ as the out-
put, even though it is not a valid index.
Prompt 2: The output did not return meaningful
coordinates in most cases. But in the few instances
that it did, they were mostly incorrect. Example
outputs when the model could not return meaning-
ful coordinates are:

e {1: [0.16, ©.551, 2: [0.32, 0.471, 3:
[0.55, 0.6], 4: [0.21, 0.061}

« [0.9, 0.53, 0.93, 0.57, 0.0, 0.39]

Prompt 3: The model could not understand the
task, and it just paraphrased parts of the prompt
instead of giving the coordinates as the output. Ex-
ample prompts and outputs are:

* Prompt: Provide the bounding box coordi-
nates for: "The large poster that is leaning
against the wall"

Output: what is the bounding box coordinates
for the large poster that is leaning against the
wall

Prompt: Provide the bounding box coordi-
nates for: "The young man that is leaning
against the wall"

Output: is standing in an elevator. the young
man that is leaning against the wall is standing
in an elevator

D.2 OpenFlamingo

We tested all the prompts designed for Open-
Flamingo in both 2 and 3-shot settings.

Prompt 1:



* Example output format: <image>Bounding
Boxes:bounding box list; Expression: Refexp;
Correct Bounding Box:"ID"<lendofchunk/>

* Query format: <image>Bounding
Boxes:bounding box list;  Expression:
Refexp; Correct Bounding Box:*

‘bounding box list” placeholder takes the list of
candidate bounding boxes in the image as input,
in the same format as InstructBLIP (discussed in
the previous section). The expected output is the
index of the correct bounding box. However, we
observed that irrespective of the query, the model
gave the same output index for the same set of
prompting examples.

Prompt 2:
* Example output format: <im-
age>Expression: Refexp; Correct

Bounding Box:[Bounding box coordi-
nates]<lendofchunk|>

* Query format: <image>Expression: Refexp;
Correct Bounding Box:[

‘bounding box list’ placeholder takes the same input
as explained for Prompt 1. But instead of expecting
the index, we expect the coordinates of the bound-
ing box as the output. The format of the bounding
box is the same as explained for InstructBLIP in
the previous section. However, the model failed
to give meaningful coordinates as output in most
cases. When it did give meaningful coordinates,
the outputs were mostly incorrect.
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