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Abstract001

Spatial Reasoning is an important component002
of human cognition and is an area in which the003
latest Vision-language models (VLMs) show004
signs of difficulty. The current analysis works005
use image captioning tasks and visual ques-006
tion answering. In this work, we propose us-007
ing the Referring Expression Comprehension008
task instead as a platform for the evaluation009
of spatial reasoning by VLMs. This platform010
provides the opportunity for a deeper analysis011
of spatial comprehension and grounding abil-012
ities when there is 1) ambiguity in object de-013
tection, 2) complex spatial expressions with014
a longer sentence structure and multiple spa-015
tial relations, and 3) expressions with negation016
(‘not’). In our analysis, we use task-specific017
architectures as well as large VLMs and high-018
light their strengths and weaknesses in dealing019
with these specific situations. While all these020
models face challenges with the task at hand,021
the relative behaviors depend on the underlying022
models and the specific categories of spatial023
semantics (topological, directional, proximal,024
etc.). Our results highlight these challenges025
and behaviors and provide insight into research026
gaps and future directions.027

1 Introduction028

Vision-language model (VLM) research has029

boomed in the recent past, owing to the enhanced030

user interaction and accessibility they provide.031

Models such as GPT 4o1, LLaVA (Liu et al., 2024),032

Google Gemini (Team et al., 2023) have become033

adept at solving vision-language tasks such as Vi-034

sual Question Answering (VQA), Image Caption-035

ing, and more. However, VLMs still lack human-036

level ‘Spatial Reasoning’ capabilities (Liu et al.,037

2023a; Kamath et al., 2023). Spatial reasoning038

involves comprehending relations that depict the039

absolute/relative position or orientation of an ob-040

ject, such as ‘left’, ‘above’, or ‘near’. Inaccurate041
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spatial reasoning by VLMs can lead to serious con- 042

sequences in embodied AI domains such as au- 043

tonomous driving and surgical robotics. A focused 044

analysis of VLMs’ spatial reasoning capabilities 045

can help identify potential reasoning issues. 046

Most of the previous works confine their analy- 047

sis to testing which models work well for spatial 048

relations. We go further to analyze the comparative 049

performance of these models for spatial categories 050

that represent different orientational and positional 051

relations between objects. A novel aspect of our 052

work is the analysis of the effect of varying spatial 053

composition (number of spatial relations) in the 054

expressions on the performance of the models. 055

Previous works focused on spatial analysis with 056

image captioning-related tasks, thus failing to lo- 057

cate the source of error in the presence of visual 058

and linguistic ambiguity. To avoid this, we adopt 059

the Referring Expression Comprehension (REC) 060

task (Qiao et al., 2020) where the models output 061

bounding boxes around the target entity based on a 062

natural language expression, the analysis of which 063

could reveal the parts of the input that the models 064

fail to comprehend. Comprehension accuracy (or 065

simply, accuracy) is a common metric for this task; 066

it captures how often a model correctly outputs the 067

bounding box around the target entity. 068

We test four popular VLMs - LLaVA (Liu et al., 069

2024), Grounding DINO (GDINO) (Liu et al., 070

2023b), DeepSeek-VL2 (Wu et al., 2024), and 071

Qwen2.5-VL (Bai et al., 2025). We also include 072

‘MGA-Net’ (Zheng et al., 2020), a model specif- 073

ically designed for the REC task. These models 074

offer diversity in the evaluation as they cover differ- 075

ent architectural elements, training strategies, and 076

input formats. We further compare these models 077

with an object detector baseline to test if the images 078

are truly complex and require elaborate referring 079

expressions to ground the correct object. 080

Some of our important findings are as follows: 081

(1) Referring expressions that include spatial re- 082
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(a) The white nap-
kin that is wrapped
around the hot dog

(b) The white box that
is around the mirror

(c) The brown table
that is to the left of the
black cell phone

(d) The sandy shore
that is near the murky
water

(e) The baseball player
that is to the left of the
black helmet and to the
right of the home plate

(f) The large branch that is
to the right of the log that
is behind the large bear

(g) The black monitor that
is to the left of the key-
board or on the desk

(h) The blanket that is not
green and that is not on the
bed

(i) The fence that is not
black and that is not to the
left of the man

Figure 1: Figures for qualitative analysis. Bounding box legend - Red: MGA-Net, Blue: GDINO, Yellow: LLaVA,
Orange: DeepSeek-VL2, Pink: Qwen2.5-VL, Green: Ground-truth

lations, in addition to object attributes, result in083

higher accuracy on the REC task compared to ex-084

pressions with only attributes. (2) Increasing the085

spatial complexity (no. of spatial relations) of an086

expression affects the performance of the VLMs,087

but models with explicit compositional learning088

components maintain the performance. (3) Ex-089

pressions involving dynamic spatial relations yield090

low average accuracy across models, indicating the091

difficulty in modelling these relations. (4) The task-092

specific trained models achieve higher accuracy for093

expressions with geometric spatial relations (e.g.,094

left of, right of) while the VLMs show relatively095

better accuracy for expressions having ambiguous096

relations such as proximity. (5) The models fail097

to recognize negated spatial relations in referring098

expressions in multiple instances, though the extent099

of this failure varies across models.100

2 Related Work101

Previous works have conducted a broad analysis on102

the ability of VLMs to perform multimodal percep-103

tion and reasoning tasks, such as Spatial Reasoning,104

Multimodal conversation, etc. Many comprehen-105

sive real-world benchmarks have been introduced106

to test multiple VLM capabilities. (Liu et al., 2024;107

Tian et al., 2024; Liu et al., 2023c; Fu et al., 2025).108

Some works (Subramanian et al., 2022; Rösch109

and Libovickỳ, 2023) focus solely on spatial anal-110

ysis of VLMs. Wang et al., 2024 go a step further111

to analyze the role of each modality in spatial rea- 112

soning. However, these works do not analyze the 113

factors that affect the spatial reasoning ability of 114

the VLMs. Another class of works performs a 115

category-wise analysis of spatial relations, either 116

based on their spatial properties (Liu et al., 2023a; 117

Gokhale et al., 2022) or their linguistic properties 118

and complexity (Kuhnle et al., 2018). In contrast, 119

Kamath et al., 2023 analyze the effects of spatial bi- 120

ases in the datasets for the REC task performance. 121

Task Complexity and Interpretability. The 122

above-mentioned works use image-caption agree- 123

ment as their evaluation task. Due to the inherent 124

limitations of this task, these works simplified the 125

expressions to have only 2 objects and 1 spatial 126

relation. To improve the interpretability of model 127

output, synthetic datasets have been used instead 128

of real-world images (Subramanian et al., 2022; 129

Lewis et al., 2022). However, it simplifies the prob- 130

lem due to bounded expressivity (a limited set of 131

attributes and spatial relations). On the other hand, 132

REC models output bounding boxes around the tar- 133

get objects. Analyzing the characteristics of these 134

boxes helps identify the parts of the input that the 135

models fail to process. This enables comparative 136

analysis of expressions with 0, 1, or more spatial 137

relations, a unique feature of our work. The REC 138

task also enables us to test the models over images 139

of different visual complexities (single or multiple 140

instances of objects in an image). 141
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Dataset Object Cate-
gories

Image Source Avg. Length of
Expression

Avg. No. of Objects
per Image

No. of Spatial
Relations

RefCOCO 80 Real-world 3.6 10.6 59
RefCOCOg 80 Real-world 8.4 8.2 72
CLEVR-Ref+ 3 Synthetic 22.4 6.5 4
CopsRef 508 Real-world 14.4 17.4 51

Table 1: Statistics of Popular Referring Expression Comprehension Datasets. For the last column, the relation
types are taken from various resources explained in Section 2 and (Marchi Fagundes et al., 2021), in addition to the
relations in Table 2.

Category Number Spatial Relations

Absolute 56 on the right, on the left, in the middle, in the center, from the right, from the left
Adjacency 14 attached, against, on the side, on the back, on the front, on the edge
Directional 29 falling off, along, through, across, down, up, hanging from, coming from, around
Orientation 0 facing
Projective 2361 on top of, beneath, beside, behind, to the left, to the right, under, above, in front of, over, below,

underneath
Proximity 217 by, close to, near
Topological 1054 connected, contain, with, surrounding, surrounded by, inside, between, touching, out of, at, in, on
Unallocated 56 next to, enclosing

Table 2: Category-wise relation split and number of referring expressions in the CopsRef test set with 1 spatial
relation in each category. While there are no referring expressions with only one relation from the orientation
category, these relations co-occur with relations from other categories in some expressions.

3 Dataset142

Table 1 shows the key characteristics of some pop-143

ular REC datasets. We chose CopsRef because144

among real-world datasets, it has the longest refer-145

ring expressions, which go beyond describing the146

simple, distinctive properties of the objects. Cop-147

sRef is also a highly spatial dataset, as 90% of148

expressions consist of spatial relations. Examples149

of such referring expressions and the correspond-150

ing images are given in Figure 1. Table 2 shows151

the category-wise split of the 51 spatial relations152

we identified in the CopsRef test dataset. For ex-153

planations of each category, refer to Appendix A.154

Category No. of relations No. of ex-
pressions

None 0 1202
One 1 3787
Two-chained 2 1324
Two-and 2 3890
Two-or 2 2203
Three 3 180

Table 3: Frequency of occurrence of spatial relations in
referring expressions.

Table 3 shows the number of expressions having155

0, 1, 2, and 3 spatial relations. For expressions with156

2 spatial relations, we have introduced three cate-157

gories. The first category, ‘Two-chained’, includes158

expressions where the spatial clauses are chained159

sequentially. The second category, ‘Two-and’, con- 160

tains expressions where the referred object satisfies 161

both spatial clauses. Finally, ‘Two-or’ consists 162

of expressions where the referred object satisfies 163

either of the two spatial clauses. Figures 1e-1g 164

illustrate examples of the three categories. 165

4 Approach 166

In our analysis, we seek to answer the following 167

research questions: 168

RQ1. Which spatial relation categories result in 169

low accuracy for REC models? RQ2. How do dif- 170

ferent model characteristics/architectures influence 171

the REC task accuracy for certain spatial relation 172

categories compared to the others? RQ3. Does the 173

inclusion of spatial relations increase or decrease 174

the accuracy of REC models? RQ4. How does the 175

number of spatial relations in the expressions af- 176

fect the accuracy across different types of models? 177

RQ5. Do the REC models accurately recognize 178

negated spatial relations in expressions? 179

To answer these questions, we outline our re- 180

search methodology and the designed experiments 181

in this section: 182

4.1 Models Description 183

MGA-Net. (Zheng et al., 2020) It is an REC 184

task-specific model with a compositional archi- 185
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tecture designed to handle complex expressions.186

The model uses soft attention to decompose the187

expression and builds a relational graph among188

objects using the connecting spatial relations and189

attributes. A Gated Graph Neural Network then190

performs multi-step reasoning over this graph. We191

use Faster R-CNN (Ren et al., 2016) to generate192

object proposals and extract their features using a193

pre-trained ResNet-101. The model is designed to194

use the individual bounding box features instead of195

the image as a whole.196

Grounding DINO (GDINO). (Liu et al., 2023b)197

It is an open-set object detector VLM with both198

vision and language backbones, whose outputs are199

fused at multiple levels. Grounded pre-training200

with contrastive loss makes it well-suited for the201

REC task. We use the Swin-B vision backbone202

and the CLIP-text encoder (Radford et al., 2021)203

for the language backbone. We filter all bounding204

box detections for an expression using their output205

labels to see which detections match the target en-206

tity. Then we select the detection with the highest207

confidence score.208

LLaVA. (Liu et al., 2024) It is a general-purpose209

VLM that connects an open-set vision encoder210

from CLIP with a language decoder. The model211

is trained end-to-end, which involves general vi-212

sual instruction tuning for aligning the vision and213

language modalities.214

DeepSeek-VL2. (Wu et al., 2024) It is a popular215

vision-language model with a dynamic tiling-based216

vision encoder (SigLIP) and a Mixture-of-Experts217

(MoE) language model, whose features are aligned218

using a vision-language adaptor. The model has219

been trained for grounded conversation (return the220

bounding box for an expression) using popular221

REC datasets like RefCOCO, which feature sim-222

ple expressions with limited relational complexity.223

We employ the DeepSeek-VL2 Tiny variant of the224

model to suit the available computational resouces.225

Qwen2.5-VL. (Bai et al., 2025) It is a multi-226

modal model built over a Vision Transformer (ViT)227

encoder having native-resolution support to pre-228

serve spatial information and a Qwen2.5 LLM229

decoder. An MLP-based vision-language merger230

aligns these two modalities. Qwen2.5-VL is super-231

vised using both point and bounding box annota-232

tions for grounding tasks. The model is trained on233

diverse referring expressions with over 10,000 real234

and synthetic object categories.235

OWL-ViT. (Minderer et al., 2022) It is an object 236

detector baseline that only takes the target object’s 237

label as the input instead of the referring expression. 238

It is an open-set object detector, suitable for the 239

CopsRef dataset because its expressions include 240

entities from the Visual Genome (Krishna et al., 241

2017) Scene Graphs, some of which are absent in 242

datasets used to train famous closed-set detectors 243

like YOLO (Redmon, 2016). It also has a simple 244

architecture with a Vision transformer and CLIP 245

for zero-shot image–label alignment, making it an 246

ideal baseline. 247

4.2 Evaluation Dataset Splits 248

We create the following dataset test splits for evalu- 249

ation and answering the earlier mentioned research 250

questions, RQ1-RQ5. 251

Fine-grained Spatial Relations Split. In the test 252

dataset, we split the expressions with 1 spatial rela- 253

tion using the categories shown in Table 2. Using 254

the categories from Table 3, we split the remaining 255

expressions based on the number of spatial rela- 256

tions they contain. Then, we rank the models based 257

on their accuracy for each category. To statistically 258

find the correlation between the models’ perfor- 259

mance across categories, we employ the Kendall 260

Tau Independence Test. The details about the test 261

can be found in Appendix B. 262

Visual Complexity Split. To observe the effect 263

of visual complexity on model performance, we 264

split the test dataset into two parts. The first part has 265

images that have multiple instances of one or more 266

objects mentioned in the referring expressions. The 267

second part has images with at most one instance 268

of every object mentioned in the expression. We 269

perform this splitting by first collecting the entities 270

in each expression using spaCy2 and then employ- 271

ing GDINO to find the number of instances in the 272

image for each of the collected entities.

Model Accuracy (%)

MGA-Net 62.92± 0.11
GDINO 70.93± 0.01
LLaVA 34.96± 0.03
DeepSeek-VL2 30.07± 0
Qwen2.5-VL 67.00± 0
OWL-ViT 56.34± 0

Table 4: Comprehension Accuracies

273
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Category MGA-Net GDINO LLaVA DeepSeek-VL2 Qwen2.5-VL
Acc (%) Rank Acc (%) Rank Acc (%) Rank Acc (%) Rank Acc (%) Rank

Absolute 70.24± 2.22 1 82.14± 0 2 44.64± 0 4 47.37± 0 3 80.70± 0 1
Adjacency 52.38± 3.37 12 78.57± 0 4 50.00± 0 1 71.43± 0 1 71.43± 0 4
Directional 52.87± 3.25 11 65.52± 0 12 27.59± 0 12 41.40± 0 5 70.69± 0 5
Projective 64.07± 0.08 4 69.12± 0 8 36.19± 0.08 6 34.57± 0 7 70.52± 0 6
Proximity 62.83± 0.22 8 80.65± 0 3 46.84± 0.22 3 45.16± 0 4 71.89± 0 3
Topological 67.32± 0.49 2 83.02± 0 1 48.51± 0.09 2 59.87± 0 2 72.91± 0 2
Unallocated 63.09± 0.84 6 75.00± 0 5 35.71± 0 7 30.36± 0 9 68.75± 0 7
None 62.39± 0.58 9 73.88± 0 6 42.89± 0.17 5 41.10± 0 6 66.14± 0 8
Two-chained 63.21± 0.22 5 70.67± 0.03 7 30.82± 0 9 18.13± 0 10 65.78± 0 9
Two-and 62.98± 0.09 7 68.45± 0.01 10 31.57± 0.07 8 31.45± 0 8 65.69± 0 10
Two-or 59.39± 0.21 10 68.97± 0.01 9 30.26± 0.04 10 12.68± 0 11 63.20± 0 11
Three 65.18± 2.1 3 67.78± 0 11 30.19± 0.26 11 11.11± 0 12 62.78± 0 12

Table 5: Category-wise accuracy and ranking

Negation Analysis Split. In our analysis, we274

found that models have difficulties in grounding275

spatial expressions with negations. Therefore, we276

created a test split for a more accurate evaluation277

and a deeper analysis of negated spatial expres-278

sions. We collected expressions that include the279

keyword ‘not’ and divided them into two sets ac-280

cording to the number of occurring negations (1 or281

2). Then, we collected those expressions for which282

all the models give an IoU of less than 0.5. For283

each expression, we perform a qualitative analysis284

to verify whether the errors are due to misinterpret-285

ing the negations or conflation of other errors. We286

limit our analysis to the results from the first run of287

the models to facilitate the instance-wise analysis.288

5 Results289

Hardware. For inference of GDINO, LLaVA,290

OWLViT, and training of MGA-Net, we use the291

Quadro RTX 6000. Due to the heavy computa-292

tional (GPU) requirements of DeepSeek-VL2 Tiny293

and Qwen2.5-VL, we use NVIDIA A100-SXM4294

for their inference.295

Evaluation. We evaluate the models using the296

Intersection over Union (IoU) metric. Following297

previous works (Yu et al., 2018; Chen et al., 2024),298

we consider the output as a correct comprehension299

if the IoU is greater than 0.5. We calculate the accu-300

racy as the fraction of data points that have an IoU301

>0.5. We run each model three times (both training302

and testing for MGA-Net, and inference for the303

other models) to ensure the statistical significance304

of the evaluation.305

5.1 Evaluation on Referring Expressions306

We report the average accuracy and standard devi-307

ation across the three runs for each model. Since308

we retrain MGA-Net for each run, the model pre- 309

dictions slightly change every time, resulting in 310

the highest standard deviation among all models. 311

VLMs and the baseline have zero or near-zero stan- 312

dard deviation since we test them zero-shot. This 313

also follows for the future result tables. 314

GDINO performs the best, followed by Qwen 315

and MGA-Net. LLaVA and DeepSeek perform 316

worse than the baseline. A possible reason is that 317

they don’t possess a bounding box regression archi- 318

tecture. Another reason could be that while LLaVA 319

doesn’t have visual grounding instructions during 320

pre-training, DeepSeek’s training referring expres- 321

sions often lack spatial complexity and use simple, 322

non-relational phrases.

MGA-
Net

GDINO LLaVA Deep-
Seek

Qwen

MGA-
Net

1.00 0.18 0.09 -0.12 0.11

GDINO 0.18 1.00 0.73 0.52 0.63
LLaVA 0.09 0.73 1.00 0.73 0.53
DeepSeek -0.12 0.52 0.73 1.00 0.75
Qwen 0.11 0.63 0.53 0.75 1.00

Table 6: Kendall Tau Independence Test results for
category-wise ranks. DeepSeek model’s version is VL2
and Qwen model’s version is 2.5-VL.

323

5.2 Evaluation on Fine-grained Relations 324

Table 5 shows a few general trends in results. The 325

top 3-4 categories which each model performs the 326

best for are categories with a single spatial relation. 327

Among those, all the models perform well for the 328

Topological and Absolute categories. 329

To answer RQ1, we observed that among all cat- 330

egories with a single spatial relation, the average ac- 331

curacy across models is lowest for the Directional 332

category expressions. A possible reason is that the 333
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No. of relations MGA-Net GDINO LLaVA DeepSeek OWL-ViT Qwen

None 62.39± 0.59 73.88± 0 42.89± 0.17 41.10± 0 67.80± 0 66.14± 0
One 64.85± 0.13 73.94± 0 40.33± 0.01 42.53± 0 60.50± 0 71.40± 0
Two 61.96± 0.07 69.00± 0 31.05± 0.06 23.50± 0 52.39± 0 64.96± 0
Three 65.18± 2.1 67.78± 0 30.19± 0.26 11.11± 0 55.00± 0 62.78± 0

Table 7: Spatial relation frequency results and ranking

spatial configurations of the involved objects are334

dynamic, as they vary from image to image for the335

same spatial relation. This makes it difficult for the336

models to learn common patterns for recognizing337

these relations, resulting in low accuracy.338

5.3 Impact of Multiple Spatial Relations339

Table 6 shows the Kendall Tau correlation values340

for all pairs of models. From the Kendall Tau Inde-341

pendence test, we observed that while all the VLMs342

are correlated, MGA-Net is not correlated with any343

of them. We study the reasons behind MGA-Net344

and VLMs differing in category-wise performance.345

Among spatial categories of MGA-Net and346

VLMs, the major difference occurs with the Prox-347

imity and Projective categories. To answer RQ2,348

we can observe that the ‘Proximity’ category349

ranked similarly for the VLMs and higher than350

MGA-Net. On the other hand, ‘Projective’ has a351

higher rank for MGA-Net compared to all VLMs.352

We can see that MGA-Net prefers geometric spatial353

relations like left of, on top of, etc., as it explicitly354

encodes the relative locations of bounding boxes,355

which helps represent such relations. On the other356

hand, the VLMs have a better ranking for ambigu-357

ous relation categories that do not specify a clear358

distance or geometric direction (e.g., by, close to).359

This is because the vision backbones of the VLMs360

utilize the entire image and help capture relations361

between a region in the image and its surrounding362

regions, unlike MGA-Net, which only receives the363

detected bounding boxes as input.364

Table 7 shows the performance of all models365

and the OWL-ViT baseline for expressions hav-366

ing different numbers of spatial relations. We ob-367

serve that VLMs perform considerably better for368

expressions with 0/1 spatial relations compared369

to expressions with 2/3 spatial relations. This370

proves that VLMs find it comparatively difficult371

to ground multiple spatial relations. Among the372

VLMs, GDINO has the least drop in accuracy as373

no. of relations increase, while DeepSeek has the374

maximum drop. However, MGA-Net utilizes its375

compositional learning architecture to handle multi-376

step reasoning, resulting in a similar performance 377

for all categories. 378

An interesting observation is that the perfor- 379

mance of the baseline considerably drops for the 380

‘Two’ and ‘Three’ categories, even though the spa- 381

tial relations aren’t being passed as input to the 382

baseline. The reason might be that 41.4% of these 383

images have multiple instances of objects, the im- 384

pact of which is explained in the next section. 385

Now, to answer RQ3, we observe in Table 7 that 386

for all models except GDINO and LLaVA, the per- 387

formance is better for expressions with one spatial 388

relation than no spatial relations. Table 5 further 389

shows that among the seven categories of single 390

spatial relations, GDINO and LLaVa perform bet- 391

ter for 4-5 of them compared to expressions with 392

no relations. Thus, we can conclude that in a setup 393

involving visual and linguistic ambiguity (such as 394

ours), spatial relations along with visual attributes 395

often aid the models in grounding the expressions, 396

compared to the attributes alone. This is also rein- 397

forced by the results of the baseline. From Table 7, 398

we can observe that while the baseline gives the 399

second-best performance for expressions with no 400

spatial relations, it drops to the third place for ex- 401

pressions with one spatial relation, with a 7.3% 402

reduction in performance. This is because the base- 403

line doesn’t have access to the spatial relations. 404

Finally, Table 7 helps us answer RQ4 as it shows 405

the effect of increasing spatial relations on the per- 406

formance of MGA-Net versus the VLMs (as dis- 407

cussed before). 408

5.4 Impact of Visual Complexity 409

Model Acc Single Acc Multi

MGA-Net 64.91± 0.15 59.61± 0.04
G-DINO 72.54± 0.01 68.94± 0.01
LLaVA 37.69± 0.01 30.43± 0.1
DeepSeek-VL2 32.53± 0 27.46± 0
Qwen2.5-VL 68.47± 0 63.76± 0
OWL-ViT 59.71± 0 51.30± 0

Table 8: Results for accuracy in different visual com-
plexity settings. All accuracies are in (%).
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Out of 12586 test instances, we found that 4730410

instances have images with multiple instances of411

objects mentioned in the referring expressions.412

Table 8 shows the accuracies of all models and413

the OWL-ViT baseline for images with a single414

instance (‘Acc Single’ column) and multiple in-415

stances (‘Acc Multi’ column). The models perform416

better for the single instance images by 5.7% on av-417

erage compared to the multi-instance images. The418

8.4% performance drop of the baseline for multi-419

instance images proves that the images are indeed420

complex and require more than just the label as the421

input for grounding the right object. Excluding the422

baseline, LLaVa has the steepest performance drop,423

showing that grounded pre-training also plays a424

crucial role in helping the models ground the right425

object instance in multi-instance images.426

5.5 Impact of Negation427

2 Negations 1 Negation

Total 42 16
Negation failure 39 15
DeepSeek 37 14
GDINO 33 10
LLaVA 15 4
MGA-Net 22 8
Qwen2.5-VL 21 10

Table 9: Results for negations in expressions.

We obtained 16 expressions with 1 ‘not’ and428

42 expressions with 2 ‘not’s for which all models429

gave incorrect predictions (as shown in Table 9).430

The ‘Negation failure’ row gives the number of431

instances for which at least 1 model gives an incor-432

rect prediction due to failing to recognize negations433

and not due to conflation of other errors. We can434

observe that DeepSeek has the highest number of435

failure instances, while GDINO records the second436

most failures. However, while DeepSeek has the437

worst comprehension accuracy for the REC task,438

GDINO has the highest accuracy (refer to Table 4).439

A possible reason for VLMs like LLaVA and440

Qwen2.5-VL performing better than GDINO in441

recognizing negations is due to their superior lan-442

guage backbones (Vicuna (novita.ai, 2024) and443

Qwen-2.5 LLM, respectively) that have better lan-444

guage understanding (including negations) com-445

pared to GDINO’s CLIP text encoder. MGA-Net446

outperforms GDINO since its training involves ex-447

pressions with negations, increasing its ability to448

comprehend negations during testing. Hence, to449

answer RQ5, we observe that while all REC mod-450

els face issues with recognizing negations, certain 451

model characteristics and training paradigms might 452

reduce the failure cases. 453

Models Negations Precision Recall

MGA-Net 1 53.60 70.8
MGA-Net 2 41.38 51
LLaVA 1 64.54 47.23
LLaVA 2 60.35 41

Table 10: Negation Precision (%) and Recall (%): MGA-
Net vs. LLaVA

Another interesting observation was for the out- 454

puts of MGA-Net and LLaVA models when they 455

are close to the target object. From Table 10, we 456

can see that while LLaVA has a better precision in 457

such cases, MGA-Net has a better recall. 458

6 Qualitative Analysis 459

In this section, we provide a qualitative analysis 460

of certain issues faced by the models in handling 461

referring expressions. 462

6.1 Directional Relations 463

The expressions pertaining to Figures 1a and 1b 464

consist of the same spatial relation (‘around’). In 465

the first figure, the wrapping of the napkin around 466

the hot dog only makes the napkin partially visible. 467

But in the second figure, the white box around the 468

mirror is almost entirely visible. This shows how 469

the interpretation of ‘around’ is highly dependent 470

on the configuration of the involved objects. For 471

the first image, LLaVA fails to precisely localize 472

the object, while MGA-Net only returns a part of 473

the napkin that is visible. In the second image, both 474

models fail to localize the object. DeepSeek fails 475

to output a bounding box for the first image but 476

gets it right for the second. 477

6.2 Projective and Proximity Relations 478

Figure 1c shows an example of a Projective rela- 479

tion (‘to the left’). MGA-Net succeeds in returning 480

the correct part of the table that is to the left of 481

the phone. While GDINO, DeepSeek, and Qwen 482

simply return the entire table, LLaVA identifies the 483

wrong part. This shows the ability of MGA-Net to 484

comprehend projective relations better, particularly 485

when the target object is not apparent. An exam- 486

ple of Proximity relations is in Figure 1d, where 487

LLaVA, GDINO, and DeepSeek return the shore 488

that is ‘near’ the murky water, but MGA-Net fails 489
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to do so. Interestingly, Qwen only returns that part490

of the shore which isn’t occluded by the elephants.491

6.3 Multiple Spatial Relations492

For ‘Two-and’ category expressions, the models493

sometimes only satisfy one of the spatial clauses.494

This often happens if multiple objects of the same495

class are in the image. For example, in Figure 1e’s496

prediction for all models (except DeepSeek, which497

doesn’t return any output), the output baseball498

player is to the left of the black helmet but is not to499

the right of the home plate.500

Similarly, for ’Two-chained’ category expres-501

sions, the models sometimes do not consider the502

entire expression. For example, in Figure 1f, MGA-503

Net, LLaVA, DeepSeek, and Qwen return the ‘log504

that is behind the large bear’, and GDINO returns505

the bear itself. None of the models consider the506

‘large branch’ part of the expression, which should507

have been the output.508

Finally, for ’Two-or’ category expressions, the509

models might consider only one spatial clause.510

Consequently, it returns an object satisfying that511

clause but not the additional attributes mentioned512

in the expression. For example, in Figure 1g, the513

models return the monitor that is to the ‘left of the514

keyboard’, but it does not satisfy the color attribute.515

6.4 Negation516

Figures 1h and 1i show two cases where all models517

fail to recognize negation. In 1h, we can observe518

that while MGA-Net is wrong, LLaVA is close519

to the ground truth but partially covers the target520

object (high precision, low recall). In 1i, while521

LLaVA, GDINO and Qwen are wrong, MGA-Net522

is closest to the ground truth but covers an excess523

area (low precision, high recall).524

7 Conclusion525

Spatial reasoning is an integral aspect of cognitive526

reasoning and embodied AI tasks. However, re-527

cent studies have shown that state-of-the-art VLMs528

often fail to accurately comprehend spatial rela-529

tions. To analyze the limitations of these mod-530

els, we evaluate their spatial understanding using531

the referring expression comprehension task. We532

picked multiple models, including Vision-language533

models (LLaVA, GDINO, DeepSeek, Qwen) and534

task-specific models (MGA-Net). We observed535

that the VLMs that are trained in the wild with vi-536

sual and textual data perform worse in grounding.537

The models perform the worst in grounding Direc- 538

tional relations on average. However, the VLMs do 539

better in vague relations such as proximity, while 540

the task-specific models are better in geometrically 541

well-defined relations such as left and right. While 542

using spatial relations increases the grounding accu- 543

racy, using multiple relations makes the reasoning 544

more challenging for all models, with a higher im- 545

pact on VLMs. However, MGA-Net maintains its 546

performance for complex spatial expressions due 547

to its compositional learning architecture. In the 548

presence of visual complexity, the performance of 549

all models drops, but DeepSeek and LLaVa’s per- 550

formances are affected the most due to a lack of 551

grounded pre-training with complex expressions. 552

Finally, both VLMs and task-specific models have 553

failure cases when grounding expressions that in- 554

clude negation. These findings shed light on the 555

gaps for future work on Vision-language models. 556

8 Future Directions 557

Increasing the number of parameters in VLMs 558

can improve performance on expressions with sim- 559

ple spatial relations, but architectural changes are 560

needed to handle novel, complex compositions ef- 561

fectively. Unlike VLMs, MGA-Net maintains con- 562

sistent performance across spatial complexities by 563

using a soft attention module that decomposes ex- 564

pressions into semantic components for compo- 565

sitional reasoning. This suggests expression de- 566

composition can enhance VLM generalization. Al- 567

ternative strategies (Sinha et al., 2024) could be 568

using multi-modal transformer models (Sikarwar 569

et al., 2022; Qiu et al., 2021) and techniques such as 570

weight sharing across transformer layers or ‘Push- 571

down layers’ with recursive language understand- 572

ing (Murty et al., 2023). Another promising direc- 573

tion is Neuro-symbolic processing (Kamali et al., 574

2024; Hsu et al., 2024), which involves generating 575

symbolic programs from expressions using LLMs 576

and conducting explicit symbolic compositions be- 577

fore grounding into visual modality. We plan to 578

explore integrating such techniques with VLMs. 579

Another issue to address is the VLMs’ inability 580

to comprehend negations. Our experiments with 581

the VLMs and MGA-Net suggest that augmenting 582

the training/instruction tuning with synthetically 583

generated negated expressions can help. Addition- 584

ally, we also plan to formulate contrastive learning 585

objectives to penalize the model when it fails to 586

comprehend negations. 587
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Limitation588

This paper is an analysis study on the shortcomings589

of the vision and language models when it comes to590

fine-grained spatial reasoning. Our analysis covers591

a variety of vision and language models including592

closed and open ones. However, the number of593

language models that we cover is by no means ex-594

haustive. Spatial reasoning is important for many595

downstream applications however, we chose refer-596

ring expressions as a platform that can demonstrate597

the challenges in both language and vision sides.598

While spatial understanding becomes a very impor-599

tant skill for embodied AI, in this work we do not600

consider the interaction with the environment and601

we do not consider the change of perspective. Our602

study can serve as a complement studies in this603

area that can provide insight into the difficulties604

of spatial language understanding and grounding605

language into visual perception. Our study was606

constrained by the cost of proprietary LLMs and607

the computational resources for open source ones.608
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A Description of spatial categories 781

For our analysis, we utilize the spatial categories 782

introduced by (Marchi Fagundes et al., 2021) and 783

replace the ’Cardinal Direction’ category with ’Ab- 784

solute’. The descriptions and examples for the 785

chosen categories are as follows: 786

1. Absolute: Consists of relations that describe 787

the location of an object in an absolute manner 788

and not in relation to another object. 789

E.g.: man on the right that is standing and 790

wearing gray pant 791

2. Adjacency: Consists of relations that describe 792

the close, side-by-side positioning of two ob- 793

jects. They may or may not imply a particular 794

direction. 795

E.g.: The large poster that is leaning against 796

the wall 797

3. Directional: Consists of dynamic action verbs 798

/ directional relations. They describe the 799
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movement or change in position of an object800

relative to other objects in the image. The801

interpretation of these relations heavily relies802

on the configuration of the involved objects803

and/or the dynamic spatial relationship be-804

tween them.805

E.g.: The gray car that is driving down the806

road807

4. Orientation: Consists of relations which de-808

scribe the orientation of an object w.r.t another809

object.810

E.g.: The sitting dog that is facing the window811

that is to the right of the mirror812

5. Projective: Consists of relations that indicate813

the concrete spatial relationship between two814

objects, i.e., these relations can be quantified815

in terms of the coordinates of the two objects.816

E.g.: The black oven that is above the drawer817

6. Proximity: Consists of relations that indicate818

that two objects are near each other without819

giving a specific directional relationship.820

E.g.: The blue chair that is close to the white821

monitor822

7. Topological: Consists of relations that indi-823

cate the broader arrangement or the contain-824

ment of an object w.r.t another object825

E.g.: The silver train that is at the colorful826

station827

8. Unallocated: Consists of relations that cannot828

be allocated to any of the above categories.829

B Kendall Tau Independence Test830

To compare the models’ performances across the831

categories, we employ a statistical test known as832

the Kendall Tau Independence Test. It evaluates833

the degree of similarity between two sets of ranks834

given to the same set of objects. We calculate835

the Kendall rank coefficient (τ ), which yields the836

correlation between two ranked lists. Given τ value,837

we calculate the z statistic, which follows standard838

normal distribution, as:839

z = 3 ∗ τ ∗
√
n(n− 1)/

√
2(2n+ 5). (1)840

Using the 2-tailed p-test at 0.05 level of signifi-841

cance, we test the following:842

• Null hypothesis: There is no correlation be-843

tween the two ranked lists.844

• Alternative hypothesis: There is a correla- 845

tion between the two ranked 846

C Additional Model Settings and 847

Experiments 848

Model Accuracy (%)

MGA-Net (Layer 3) 62.92± 0.11
MGA-Net (Layer 4) 61.30± 0.09
LLaVA – Short Prompt 34.96± 0.03
LLaVA – Long Prompt 33.79± 0.01

Table 11: Additional Experiment Results - Comprehen-
sion Accuracies

For LLaVa (Liu et al., 2024), we experimented 849

with the following two prompts: 850

• Short prompt: (USER: <image>\n Give 851

the bounding box for: "Referring Expres- 852

sion"\nASSISTANT:) 853

• Long prompt: (USER: <image>\n Provide 854

the bounding box coordinates for the object 855

described by the referring expression: "Refer- 856

ring Expression"\n ASSISTANT:) 857

Both prompts are similar in structure, but the 858

latter prompt is more verbose. 859

For MGA-Net (Zheng et al., 2020), we experi- 860

ment with the Resnet-101 backbone by experiment- 861

ing with Layers 3 and 4 for the visual features. 862

The results of these experiments are in Table 863

11. For LLaVA, the shorter prompt gives a slightly 864

better result. For MGA-Net, the features captured 865

by Layer 3 give a better result. Hence, we consider 866

these two variants in all our experiments. 867

MGA-Net Hyperparameters. Since MGA-Net 868

is the only model we train in this paper, we provide 869

the hyperparameters used. These hyperparame- 870

ters are derived from (Zheng et al., 2020)’s work. 871

The model is trained for 15 epochs, as validation 872

performance begins to degrade beyond that point. 873

Training uses the Adam optimizer with a learning 874

rate of 1e-4, batch size of 30, and gradient clipping 875

set to 0.3. The language encoder is a 2-layer Bi- 876

LSTM with a hidden size of 512 and no dropout. 877

Word embeddings are 512-dimensional. Visual 878

features are extracted via ResNet101, and object 879

features include both visual and normalized spatial 880

information, processed through MLPs. The model 881

employs Gated Graph Neural Networks (GGNNs) 882

for multi-step relational reasoning, using 3 update 883

steps. 884
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Model parameters. Among the models evalu-885

ated, LLaVA is a general-purpose vision-language886

model that integrates an open-set vision encoder887

from CLIP with a language decoder. The model is888

trained end-to-end through general visual instruc-889

tion tuning to align visual and linguistic modali-890

ties. The commonly used LLaVA variant based891

on LLaMA-7B consists of approximately 7 bil-892

lion parameters. Grounding DINO (base vari-893

ant) has around 188 million parameters, optimized894

for phrase grounding and open-vocabulary detec-895

tion. DeepSeek-VL2 Tiny is a compact model896

with about 600 million parameters, balancing speed897

and performance for multimodal tasks. Qwen-VL898

2.5 builds on the Qwen2.5 architecture and has899

7 billion parameters, suitable for complex visual-900

language understanding. OWL-ViT, depending901

on the ViT backbone, ranges from 87M (ViT-902

B) to 300M+ (ViT-L) parameters, designed for903

open-vocabulary object detection. Finally, MGA-904

Net, tailored for referring expression grounding905

on datasets like CLEVR-Ref+, is lightweight with906

only 15–20 million parameters, yet delivers com-907

petitive task-specific performance.908

D Experiments with other VLMs909

In our analysis, we also experimented with In-910

structBLIP (Dai et al., 2023) and OpenFlamingo911

(Awadalla et al., 2023) models for the REC task.912

These models are general-purpose VLMs with In-913

structBLIP working in the zero-shot model and914

OpenFlamingo in the few-shot mode. In this sec-915

tion, we discuss the prompts that we used for916

these two models and the outputs obtained for the917

prompts:918

D.1 InstructBLIP919

For InstructBLIP, we designed three prompts for920

the REC task. They are as follows:921

1. Bounding Boxes: bounding box list; Refer-922

ring Expression: Refexp; The index of the923

output bounding box is:924

2. Bounding Boxes: bounding box list; Refer-925

ring Expression: Refexp; The coordinates of926

the output bounding box are:927

3. Provide the bounding box coordinates for:928

"Refexp"929

In the prompts, the ‘bounding box list’ placeholder930

takes the coordinates of the detected bounding931

boxes in the image being passed as the input, along 932

with indices for each bounding box, starting from 933

‘1’. But for the third prompt, the model has no 934

access to pre-detected candidate bounding boxes 935

in the image. While the expected output for the 936

first prompt is the index of the correct bounding 937

box, for the other 2 prompts it is the bounding box 938

coordinates as the output. 939

The bounding box format is [x1, y1, x2, y2], 940

where (x1, y1) is the bottom left corner and (x2, y2) 941

is the top right corner of the box. The coordinate 942

values are a fraction of the total length/width of the 943

image according to the position of the coordinate. 944

Unfortunately, none of the prompts gave consis- 945

tently correct outputs. The outputs were as follows: 946

Prompt 1: The outputs were mostly incorrect. 947

Sometimes, the model also gave ‘0’ as the out- 948

put, even though it is not a valid index. 949

Prompt 2: The output did not return meaningful 950

coordinates in most cases. But in the few instances 951

that it did, they were mostly incorrect. Example 952

outputs when the model could not return meaning- 953

ful coordinates are: 954

• {1: [0.16, 0.55], 2: [0.32, 0.47], 3: 955

[0.55, 0.6], 4: [0.21, 0.06]} 956

• [0.9, 0.53, 0.93, 0.57, 0.0, 0.39] 957

Prompt 3: The model could not understand the 958

task, and it just paraphrased parts of the prompt 959

instead of giving the coordinates as the output. Ex- 960

ample prompts and outputs are: 961

• Prompt: Provide the bounding box coordi- 962

nates for: "The large poster that is leaning 963

against the wall" 964

Output: what is the bounding box coordinates 965

for the large poster that is leaning against the 966

wall 967

• Prompt: Provide the bounding box coordi- 968

nates for: "The young man that is leaning 969

against the wall" 970

Output: is standing in an elevator. the young 971

man that is leaning against the wall is standing 972

in an elevator 973

D.2 OpenFlamingo 974

We tested all the prompts designed for Open- 975

Flamingo in both 2 and 3-shot settings. 976

977

Prompt 1: 978
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• Example output format: <image>Bounding979

Boxes:bounding box list; Expression: Refexp;980

Correct Bounding Box:"ID"<|endofchunk|>981

• Query format: <image>Bounding982

Boxes:bounding box list; Expression:983

Refexp; Correct Bounding Box:“984

‘bounding box list’ placeholder takes the list of985

candidate bounding boxes in the image as input,986

in the same format as InstructBLIP (discussed in987

the previous section). The expected output is the988

index of the correct bounding box. However, we989

observed that irrespective of the query, the model990

gave the same output index for the same set of991

prompting examples.992

993

Prompt 2:994

• Example output format: <im-995

age>Expression: Refexp; Correct996

Bounding Box:[Bounding box coordi-997

nates]<|endofchunk|>998

• Query format: <image>Expression: Refexp;999

Correct Bounding Box:[1000

‘bounding box list’ placeholder takes the same input1001

as explained for Prompt 1. But instead of expecting1002

the index, we expect the coordinates of the bound-1003

ing box as the output. The format of the bounding1004

box is the same as explained for InstructBLIP in1005

the previous section. However, the model failed1006

to give meaningful coordinates as output in most1007

cases. When it did give meaningful coordinates,1008

the outputs were mostly incorrect.1009
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