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Abstract

Recently, developers have increasingly utilized001
Large Language Models (LLMs) to assist with002
their coding. Apart from functional correct-003
ness, Non-Functional Requirements (NFRs),004
such as code performance, play a crucial role005
in ensuring software quality. However, the ca-006
pability of LLMs in addressing NFRs has yet007
to be systematically investigated. In this paper,008
we propose NFRGen, an automated framework009
aimed at investigating how can LLMs better010
perform in NFR-aware coding. Our evaluation011
reveals that incorporating NFRs in the prompts012
considerably improves the effectiveness in ad-013
dressing them. In the meantime, incorporating014
NFRs results in a decrease in Pass@1 by up to015
26%. However, such impact can be mitigated016
when NFRs are initially specified in the same017
prompt. Our study highlights the implications018
for balancing both functional correctness and019
addressing NFRs in various coding workflows.020

1 Introduction021

Large Language Models (LLMs) have become an022

integrated part of modern software development023

with their growing popularity and advanced ca-024

pabilities (Zhang et al., 2024). LLM-based ser-025

vices such as ChatGPT (OpenAI, 2023), GitHub026

Copilot (Copilot, 2024a) and Cursor (Cursor, 2024)027

have gained widespread adoption for their ability028

to simplify and accelerate the coding process by029

generating source code following the requirements030

provided by developers.031

Prior studies focus on evaluating the functional032

correctness of the generated code, such as ex-033

amining if the code passes all the provided test034

cases (Austin et al., 2021; Chen et al., 2021). How-035

ever, Non-Functional Requirements (NFRs), such036

as reliability and performance, are also crucial to037

code quality and are underexplored. Figure 1 shows038

an example of generated code with and without039

considering performance. Without performance re-040

quirements, the generated code relies on exhaustive041

iteration, which results in a timeout when the loop 042

size is large. When performance is considered, the 043

generated code is optimized using a mathematical 044

approach that efficiently handles such cases. This 045

motivates the need for systematically evaluating 046

how LLMs perform considering NFRs. 047

In this paper, we propose NFRGen, an auto- 048

mated framework that studies the ability of LLMs 049

in code generation when NFRs are incorporated. 050

NFRGen examines two primary NFR-aware work- 051

flows: (1) NFR-Integrated, where functional and 052

non-functional requirements are provided in a sin- 053

gle prompt, and (2) NFR-Enhanced, where existing 054

code is refined to meet additional non-functional re- 055

quirements. For the dimensions of NFRs, NFRGen 056

particularly focuses on metrics related to code de- 057

sign, reliability, readability, and performance. They 058

are among the most commonly targeted when using 059

LLMs to refine code (Rasheed et al., 2024). 060

Through comprehensive experiments on various 061

LLMs and benchmarks, we find that incorporating 062

NFRs can considerably improve metrics related to 063

NFRs (e.g., reducing code smells by up to 66.7%), 064

but also negatively impacts the functional correct- 065

ness of the generated code (lower Pass@1 by up to 066

26%). However, such impact is smaller when the 067

NFRs are specified in a single prompt (i.e., NFR- 068

Integrated) compared to the two-step workflow 069

(i.e., NFR-Enhanced). We also find that these two 070

workflows exhibit complementary strengths: NFR- 071

Integrated excels in addressing runtime-related as- 072

pects such as exception handling and performance, 073

while NFR-Enhanced is more effective in improv- 074

ing code structure-related dimensions like code de- 075

sign and readability. 076

We summarize our contributions as follows: 077

• We propose NFRGen, a novel framework for sys- 078

tematically evaluating the effectiveness and ro- 079

bustness of LLMs in addressing NFRs during 080

code generation. 081

• We study two distinct workflows (i.e., NFR- 082
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{Task} Model: gpt-3.5-turbo-0125 Data: HumanEval-83

def starts_one_ends(n):

""" Given a positive integer n, return the count of the numbers of n-digit positive integers that start or end with 1.

>>> starts_one_ends(1)

1

>>> starts_one_ends(2)

18

"""

Function-Only Performance

Finish the following code generation task: {Task}
Keep performance in mind while solving the following code generation 

task: {Task}

1 def starts_one_ends(n): 1 def starts_one_ends(n):
2 count = 0 2 if n == 1:
3 for i in range(10**(n-1), 10**n): 3 return 1
4 if str(i)[0] == '1' or str(i)[-1] == '1': 4 else:
5 count += 1 5 count = 2 * 9 * 10 ** (n - 2)
6 return count 6 return count

Test (TimeOut) Test (Pass)

7 assert starts_one_ends(2) == 18 7 assert starts_one_ends(2) == 18

8 assert starts_one_ends(18) == 180000000000000000 8 assert starts_one_ends(18) == 180000000000000000

Figure 1: Example of generated code with and without the consideration of performance.

Integrated and NFR-Enhanced) and analyze their083

trade-offs in balancing functional correctness and084

meeting NFRs.085

• Our comprehensive experiments across various086

LLMs and benchmarks provide actionable in-087

sights and highlight opportunities for improving088

NFR-aware code generation. We also share the089

replication package for future studies (Anony-090

mous, 2024).091

2 Related Work092

Non-Functional Requirements (NFRs) in Cod-093

ing. Prior studies proposed approaches for exam-094

ining or refining existing source code to meet the095

NFRs. Pereira dos Reis et al. (2022) summarized a096

series of studies on detecting and visualizing code097

smells that negatively impact code design. Vitale098

et al. (2023) trained models to improve the readabil-099

ity of given code snippets and Li et al. (2023) iden-100

tified readability issues from logging code. Zhang101

et al. (2020) proposed an automated approach to102

generate exception handling code based on exist-103

ing source code to improve the overall software104

reliability. Gao et al. (2024) leveraged LLMs to im-105

prove the execution efficiency of source code. Han106

et al. (2024) proposed a framework that incorporate107

software requirements from textual descriptions for108

code generation. Unlike previous studies focus-109

ing on detecting or refining NFR issues in existing110

code, we examine the quality of NFR-aware code111

generated using different practical coding work-112

flows and the associated robustness issues.113

Studying the Robustness of LLMs in Code Gen-114

eration. Wang et al. (2022), Chen et al. (2024),115

and Shirafuji et al. (2023) explored robustness by116

perturbating different components in the prompts117

(e.g., problem descriptions, docstrings) with di- 118

verse patterns. Chen et al. (2023) and Lin et al. 119

(2024) reported that ChatGPT’s performance on 120

code generation can change substantially between 121

different versions of the same model. Mishra et al. 122

(2024) examined how robustness varies across var- 123

ious models and model sizes. These studies pri- 124

marily focused on the functional correctness of the 125

generated code. Given the critical role of NFRs in 126

software development, our study addresses the im- 127

portance of exploring the impact of incorporating 128

NFR considerations into various coding workflows 129

for LLM-based code generation. We also study the 130

stability on the functional and NFR code quality 131

across semantically equivalent prompts and model 132

versions. 133

3 Methodology 134

In this section, we introduce an automated frame- 135

work, NFRGen, to study the capability of LLMs 136

considering various non-functional requirements in 137

code generation. We refer to such code generation 138

as NFR-aware code generation. 139

3.1 Studied Dimensions of NFRs 140

NFRs such as maintainability and readability, are 141

critical aspects of code quality. However, existing 142

studies on code generation often overlook NFRs 143

and only focus on functional correctness metrics. 144

For example, Pass@1 (Chen et al., 2021, 2023) is 145

commonly used to assess whether the code gener- 146

ated by the LLM passes all test cases on its first 147

attempt. Without considering NFRs, the generated 148

code might be only functionally correct but lack 149

reliability, readability, or efficiency. Such neglect 150

can lead to significant maintenance challenges and 151
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Figure 2: NFRGen consists of Function-Only code generation, NFR-Integrated code generation, and NFR-Enhanced
code refinement. We compare the functional and non-functional quality of the code across the three workflows.

impact software quality (Chung and do Prado Leite,152

2009). Hence, NFRGen is designed to study the153

capability and robustness of LLMs in addressing154

NFRs during the code generation process.155

Specifically, we examine four non-functional re-156

quirements dimensions that contribute to the code’s157

maintainability, reliability, and efficiency:158

Code design refers to the structural and architec-159

tural quality of code, where bad designs can signif-160

icantly hinder maintainability and scalability (Wal-161

ter and Alkhaeir, 2016).162

Reliability is the code’s ability to handle unex-163

pected inputs and ensure stable execution under164

various scenarios (e.g., exception handling) (Zhang165

et al., 2020).166

Readability is how easily code can be understood167

and modified. Readable code should follow cod-168

ing style guidelines and conventions to ease under-169

standing and collaboration (Piantadosi et al., 2020).170

Performance assesses the efficiency of code,171

where performance issues (e.g., slower execution)172

can cause higher operational costs and reduce user173

satisfaction (Malik et al., 2013).174

3.2 NFR-Aware Coding Workflows175

In addition to Function-Only code generation, mod-176

ern code generation tools, such as Cursor (Cursor,177

2024) and GitHub Copilot (Copilot, 2024a), pro-178

vide two typical workflows for NFR-aware code179

generation (Copilot, 2024b). 1) NFR-integrated180

code generation involves developers providing181

both the functional and non-functional require-182

ments in one prompt to generate the complete code183

in one shot. 2) NFR-enhanced code refinement is184

when developers utilize the LLM to refine existing185

➢Function-Only Code Generation
Complete the following code.
## Input: ‘{Problem Description}’
## Response: ‘{Code}’

➢NFR-Integrated Code Generation
Given the problem description, generate code by considering {NFR}.”
## Input: ‘{Problem Description}’
## Response: ‘{NFR-aware Code}’

➢NFR-Enhanced Code Refinement
Step 1 - Existing code to be refined -> ‘{Code}’
Step 2 - Refine the code with NFR
Given the following code, your goal is to improve its {NFR}.”
## Input: ‘{Code}’
## Response: ‘{NFR-aware Code}’

Figure 3: An example of prompt templates for different
coding workflows.

code for improved code quality or to better align 186

with specific requirements (White et al., 2024). 187

While both workflows provide the instruction to 188

generate code that satisfies specific requirements, 189

the final output may be different, as the ways of 190

interacting with LLMs may significantly affect 191

the generated results (Lee et al., 2024). There- 192

fore, in our framework, we consider both of these 193

two workflows to incorporate the four NFRs into 194

the code. In the remainder of the paper, we 195

denote NFR-integrated code generation as NFR- 196

Integrated and NFR-aware code enhancement as 197

NFR-Enhanced for conciseness. 198

Figure 2 provides an overview of NFRGen. NFR- 199

Gen contains one baseline workflow that considers 200

only the functional requirement (i.e., Functional- 201

Only Code Generation, denoted as Functional, and 202

two NFR-aware workflows (i.e., NFR-Integrated 203

and NFR-Enhanced). To analyze the results, we 204

compare the functional and non-functional code 205

quality metrics across the code generated by three 206

distinct workflows, examining the impact of NFR- 207
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aware code generation on overall code quality.208

3.3 Prompt Construction209

Workflow-specific Prompt Templates. Figure 3210

shows the prompt templates for each workflow.211

Functional only contains the functional require-212

ment in the prompt. NFR-Integrated incorporates213

NFRs directly into the prompt template. For exam-214

ple, when considering reliability, the prompt asks215

the LLM to generate code that meets the functional216

requirements and optimize reliability in a single217

prompt. NFR-Enhanced adopts a two-step process.218

It leverages the code generated by Functional, and219

it sends a separate prompt asking the LLM to en-220

hance the code by addressing a specific NFR.221

Constructing Diverse NFR-Aware Prompts.222

Prior research (Chen et al., 2024; Wang et al., 2022;223

Shirafuji et al., 2023) suggests that variations in224

prompt templates, even when preserving semantic225

context, can generate significantly different code.226

Hence, we repeat the code generation process using227

different but semantically equivalent prompts. To228

mitigate potential biases introduced by manually al-229

tering the prompts, we leverage GPT-4o to generate230

various prompts for each dimension of NFRs while231

preserving the same semantics. This approach al-232

lows us to study the result’s stability by measuring233

the variations across the prompt templates.234

Table 3 in Appendix A shows the prompts gener-235

ated for each dimension of NFRs. Initially, we236

manually crafted a seed prompt with the struc-237

ture: “Consider [NFR] and complete the follow-238

ing code”, where “[NFR]” corresponds to spe-239

cific non-functional requirements, such as code240

design or readability. We then provided the seed241

prompt to ChatGPT to generate 10 semantically242

equivalent prompts for the experiment. Both NFR-243

Integrated and NFR-Enhanced use the same NFR-244

aware prompt templates outlined in Table 3. We245

incorporate all 10 prompt variants to assess the246

robustness of the workflow against semantic pre-247

serving changes in the prompt. In total, we ex-248

ecute NFR-aware code generation 40 times (10249

variations per NFR) for each workflow and each250

LLM version. Although we conduct our experi-251

ment on existing code generation benchmarks (i.e.,252

HumanEval and MBPP), NFRGen is highly adapt-253

able, and future studies using NFRGen can tailor254

the NFR-Integrated and NFR-Enhanced process to255

new non-functional requirements.256

3.4 Functional and NFR Metrics 257

We use different metrics to examine the functional 258

correctness and NFRs. 259

Metric of Functional Correctness. We use 260

Pass@1 (Chen et al., 2021) to check if the gen- 261

erated code passes all test cases on its first attempt. 262

Metrics of NFRs. We consider a diverse num- 263

ber of NFRs, where each NFR has its own unique 264

aspect. Hence, we use different metrics for each 265

NFR. ➀Code Design: We focus on the presence 266

of code smell, which serves as a proxy for the 267

quality of code design. The term “code smell” 268

refers to code that negatively impacts maintain- 269

ability (Fowler, 2018), such as overly complex 270

functions or excessive duplication. We use the 271

Refactor checker of Pylint (PyCQA, 2024a) to de- 272

tect code smells. It includes predefined static code 273

checkers to detect various code smells. We cal- 274

culate and report the code smell density as the 275

number of detected smells per 10 Lines Of Code 276

(LOC) since the generated code may have differ- 277

ent lengths. ➁Reliability: We calculate exception 278

density as the number of exception-handling state- 279

ments per 10 LOC. This metric highlights the ex- 280

tent of error-handling logic (De Padua and Shang, 281

2017). ➂Readability: Similar to code design, we 282

use Pylint to detect issues like inconsistent naming, 283

incorrect indentation, and missing comments. We 284

also report the density of readability issues per 10 285

LOC. ➃Performance: We measure the execution 286

time in milliseconds for all tests associated with 287

each coding problem. To minimize measurement 288

fluctuations, we run each test case five times and 289

calculate the mean. 290

To study the robustness and sensitivity of the 291

NFR-aware code generation workflows, we com- 292

pute the mean and standard deviation (abbreviated 293

as STDEV) for the evaluation metrics across the 294

semantically equivalent prompts for each LLM ver- 295

sion (i.e., 10 prompts for each NFR per model ver- 296

sion). A high STDEV indicates greater sensitivity 297

of the LLM to the variations. 298

4 Evaluation 299

Studied LLMs. We conducted the study using 300

GPT-3.5 and GPT-4o from OpenAI, and Claude- 301

3.5 from Anthropic. Specifically, we used gpt- 302

3.5-turbo-1106 and gpt-3.5-turbo-0125 for GPT- 303

3.5, gpt-4o-2024-05-13 and gpt-4o-2024-08-06 304

for GPT-4o, and claude-3-5-sonnet-20240620 and 305

claude-3-5-haiku-20241022 for Claude. We inter- 306
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acted with the models through the APIs provided307

by vendors. To reduce variances in LLM’s outputs,308

we set the temperature value to 0.309

Benchmark Datasets. We selected four datasets:310

HumanEval, HumanEval-ET, MBPP, and MBPP-311

ET, which are commonly used in code generation312

research (Huang et al., 2023; Lin et al., 2024)313

and provide test cases to evaluate the correct-314

ness of the generated code. HumanEval (Chen315

et al., 2021) comprises 164 programming prob-316

lems, while MBPP (Austin et al., 2021) includes317

427 programming problems (we used the sanitized318

version provided by the original authors). Further-319

more, HumanEval-ET and MBPP-ET, published by320

Dong et al. (2023), use the same problems as Hu-321

manEval and MBPP but offer more test cases with322

approximately 100 test cases for each problem.323

Environment. Our experiments were conducted324

on a Mac Mini (Apple M4, 10 cores, 16GB RAM),325

using Python 3.9.19 to implement NFRGen and the326

evaluation scripts. The OpenAI API library used327

was version 1.14.3, and the Claude API library used328

was version 0.39.0. For detecting code smells and329

readability issues, we used Pylint version 3.2.5.330

RQ1: How Do NFR-Aware Workflows Affect331

Functional Correctness?332

Motivation. Non-Functional Requirements (NFRs)333

play a critical role in software quality assurance.334

This RQ examines the functional correctness of the335

generated code when using NFR-Integrated and336

NFR-Enhanced to generate NFR-aware code.337

Approach. We compute the Pass@1 when gener-338

ating each of four types of NFR-aware code (i.e.,339

design, reliability, readability, and performance) us-340

ing NFR-Integrated and NFR-Enhanced. We also341

compare the Pass@1 with our baseline (Function-342

Only), where we generate the code by only con-343

sidering the functional requirements. We conduct344

the study across various model versions and four345

benchmarks as discussed in Section 4.346

Results. Incorporating NFRs results in lower347

Pass@1 across all benchmarks by up to 26%.348

Table 1 shows the Pass@1 results on Function-349

Only, NFR-Integrated, and NFR-Enhanced for350

all four NFRs across all benchmarks. Overall,351

adding NFRs lowers the Pass@1. For example,352

in HumanEval, the average Pass@1 across all353

LLMs (OpenAI and Anthropic) for Function-Only354

is 84.61%, whereas the Pass@1 decreases by 1.3%355

to 8.15% for NFR-Integrated, and 8.97% to 14.40%356

for NFR-Enhanced. Compared to Function-Only, 357

the average decrease is from 1.2% and up to 26%. 358

NFR-Integrated almost always achieves better 359

Pass@1 than NFR-Enhanced. Our finding shows 360

that a two-step approach has a negative impact 361

on Pass@1, and the difference can be over 20% 362

(e.g., between NFR-Integrated and NFR-Enhanced 363

for Code Design in MBPP), depending on the spe- 364

cific NFR and dataset. For code design and read- 365

ability, the decrease is even more notable in NFR- 366

Enhanced (10% to over 20% compared to Function- 367

Only) compared to NFR-Integrated (1.3% to 3.91% 368

over Function-Only). In contrast, even though ex- 369

ception handling (i.e., Reliability) has the largest 370

decrease in NFR-Integrated, the difference with 371

NFR-Enhanced is smaller. Performance has rela- 372

tively more stable results between NFR-Integrated 373

and NFR-Enhanced. Our findings show that the 374

one-step approach may allow the LLM to balance 375

the objectives better, and generative models may 376

perform worse at Pass@1 on a two-step code en- 377

hancement, especially if the NFR is more related 378

to re-structuring the code (i.e., code design and 379

readability). 380

Incorporating NFRs reduces the capability of 381

LLMs in stably generating functionally correct 382

code, resulting in more variable Pass@1, espe- 383

cially in earlier versions of the LLMs. NFR- 384

Integrated and NFR-Enhanced consistently exhibit 385

higher standard deviations (STDEV) of Pass@1 386

across all benchmarks compared to Function- 387

Only. For example, in HumanEval, the STDEV 388

for Pass@1 ranges from 1.84 to 2.64 for NFR- 389

Integrated and 2.70 to 7.54 for NFR-Enhanced, 390

both much higher than the STDEV of 0.70 for 391

Function-Only. Moreover, we find that NFR- 392

Enhanced exhibits higher variability in Pass@1 393

than NFR-Integrated, which aligns with our ear- 394

lier finding that LLMs are better at generating 395

functionally correct code in one-step approach. 396

Earlier versions of the LLMs also experience 397

a much larger STDEV of Pass@1 after incorpo- 398

rating NFR-Integrated or NFR-Enhanced. For ex- 399

ample, comparing the results of Code Design in 400

HumanEval using GPT-3.5-1106 vs. GPT-4o-0513, 401

the STDEV for Pass@1 decreases from 2.71 to 1.49 402

for NFR-Integrated, and from to 18.72 to 1.23 for 403

NFR-Enhanced. These findings suggest that some 404

model versions may struggle to balance functional 405

and non-functional requirements effectively, espe- 406

cially in two-step enhancements, highlighting the 407

5



Task Approach Model HumanEval HumanEval-ET MBPP MBPP-ET
Pass@1 ∆(%) Average Pass@1 ∆(%) Average Pass@1 ∆(%) Average Pass@1 ∆(%) Average

Function-Only
(Functional) Raw

GPT3.5-1106 76.46±0.77 -

84.61±0.70

66.83±0.51 -

74.50±0.74

63.47±0.55 -

71.57±0.41

44.75±0.64 -

51.19±0.33

GPT3.5-0125 72.50±0.73 - 64.33±1.05 - 67.82±0.48 - 47.21±0.39 -
GPT4o-0513 92.56±0.85 - 81.52±1.00 - 75.34±0.58 - 53.91±0.49 -
GPT4o-0806 90.55±1.16 - 80.18±0.96 - 74.43±0.55 - 53.37±0.34 -
Claude3.5-0620 89.39±0.33 - 78.54±0.51 - 75.97±0.27 - 54.94±0.13 -
Claude3.5-1022 86.22±0.33 - 75.61±0.43 - 72.37±0.00 - 52.93±0.00 -

Code Design
(NFR-Aware)

NFR
Integrated

GPT3.5-1106 72.44±2.71 -5.26

81.69±1.84
↓ 3.46%

64.63±2.80 -3.29

71.93±2.09
↓ 3.45%

66.53±1.05 4.82

69.50±2.06
↓ 2.89%

46.49±0.85 3.89

49.18±1.71
↓ 3.91%

GPT3.5-0125 72.87±1.82 0.51 64.51±2.15 0.28 67.68±1.40 -0.21 47.61±1.08 0.85
GPT4o-0513 90.73±1.49 -1.98 80.12±1.93 -1.72 73.79±0.74 -2.06 52.95±1.04 -1.78
GPT4o-0806 89.33±0.77 -1.35 79.63±1.08 -0.69 73.37±1.12 -1.42 52.58±1.10 -1.48
Claude3.5-0620 84.02±1.85 -6.01 72.56±1.93 -7.61 70.87±2.58 -6.71 49.79±2.23 -9.37
Claude3.5-1022 80.73±2.42 -6.37 70.12±2.62 -7.26 64.73±5.47 -10.56 45.67±3.93 -13.72

NFR
Enhanced

GPT3.5-1106 52.62±18.72 -31.18

72.43±7.54
↓ 14.40%

47.62±17.28 -28.74

64.02±6.84
↓ 14.07%

40.49±18.34 -36.21

53.48±12.12
↓ 25.27%

28.22±12.82 -36.94

37.73±8.64
↓ 26.28%

GPT3.5-0125 55.85±12.36 -22.97 49.02±11.19 -23.80 43.77±12.48 -35.46 29.93±8.29 -36.60
GPT4o-0513 88.66±1.23 -4.21 78.90±1.23 -3.21 71.12±1.14 -5.60 50.87±1.00 -5.64
GPT4o-0806 87.07±2.24 -3.84 77.01±2.07 -3.95 70.56±1.6 -5.20 50.59±1.51 -5.21
Claude3.5-0620 76.83±5.91 -14.05 67.07±5.01 -14.60 50.82±22.53 -33.11 35.13±16.31 -36.06
Claude3.5-1022 73.54±4.77 -14.71 64.51±4.26 -14.68 44.12±16.65 -39.04 31.66±11.91 -40.19

Readability
(NFR-Aware)

NFR
Integrated

GPT3.5-1106 73.29±3.56 -4.15

83.51±2.42
↓ 1.30%

64.82±2.88 -3.01

73.61±2.16
↓ 1.20%

66.93±2.38 5.45

69.89±2.75
↓ 2.34%

47.26±1.60 5.61

49.66±1.89
↓ 2.99%

GPT3.5-0125 73.17±2.80 0.92 64.33±1.91 0.00 68.76±1.51 1.39 48.41±1.19 2.54
GPT4o-0513 92.74±1.30 0.19 81.89±1.52 0.45 73.72±1.32 -2.15 52.67±0.74 -2.30
GPT4o-0806 91.40±1.64 0.94 80.98±1.60 1.00 75.04±0.87 0.82 53.63±0.89 0.49
Claude3.5-0620 86.46±1.80 -3.28 75.85±1.81 -3.43 73.35±2.64 -3.45 51.66±1.52 -5.97
Claude3.5-1022 84.02±3.41 -2.55 73.78±3.26 -2.42 61.55±7.79 -14.95 44.31±5.41 -16.29

NFR
Enhanced

GPT3.5-1106 62.56±14.36 -18.18

76.05±5.96
↓ 10.12%

55.30±12.76 -17.25

66.87±5.29
↓ 10.25%

52.44±8.67 -17.38

57.41±8.08
↓ 19.78%

36.63±5.42 -18.15

40.67±5.51
↓ 20.55%

GPT3.5-0125 62.20±6.10 -14.21 55.18±5.83 -14.22 57.35±3.98 -15.44 39.44±2.39 -16.46
GPT4o-0513 91.34±0.94 -1.32 80.49±0.76 -1.26 72.76±1.19 -3.42 51.76±1.14 -3.99
GPT4o-0806 88.96±1.30 -1.76 78.66±1.15 -1.90 72.67±1.15 -2.36 52.15±0.85 -2.29
Claude3.5-0620 80.85±5.57 -9.55 70.85±4.73 -9.79 55.18±25.14 -27.37 38.55±17.58 -29.83
Claude3.5-1022 70.37±7.50 -18.38 60.73±6.50 -19.68 34.05±8.32 -52.95 25.48±5.7 -51.86

Reliability
(NFR-Aware)

NFR
Integrated

GPT3.5-1106 65.73±4.29 -14.03

77.71±2.64
↓ 8.15%

57.62±4.40 -13.78

66.95±2.79
↓ 10.13%

45.11±11.71 -28.93

58.00±5.56
↓ 18.96%

30.80±8.21 -31.17

39.91±4.03
↓ 22.03%

GPT3.5-0125 68.29±3.50 -5.81 59.09±3.62 -8.15 42.93±13.93 -36.70 29.46±9.60 -37.60
GPT4o-0513 89.09±1.92 -3.75 76.46±2.23 -6.21 71.59±0.83 -4.98 50.35±1.01 -6.60
GPT4o-0806 88.29±1.25 -2.50 76.22±1.52 -4.94 71.59±0.88 -3.82 50.02±0.7 -6.28
Claude3.5-0620 81.83±2.64 -8.46 70.12±2.96 -10.72 69.32±1.81 -8.75 46.79±1.96 -14.83
Claude3.5-1022 73.05±2.26 -15.27 62.20±2.02 -17.74 47.45±4.21 -34.43 32.04±2.68 -39.47

NFR
Enhanced

GPT3.5-1106 62.07±9.94 -18.82

72.75±4.54
↓ 14.02%

53.48±9.17 -19.98

62.09±4.36
↓ 16.66%

54.71±10.60 -13.80

61.04±4.08
↓ 14.71%

38.41±7.58 -14.17

42.38±2.93
↓ 17.21%

GPT3.5-0125 66.52±3.15 -8.25 58.96±3.40 -8.35 64.45±1.99 -4.97 43.65±1.68 -7.54
GPT4o-0513 88.78±1.53 -4.08 75.85±1.71 -6.96 72.97±1.13 -3.15 50.82±0.77 -5.73
GPT4o-0806 86.10±2.11 -4.91 74.51±1.46 -7.07 71.17±0.88 -4.38 49.63±0.69 -7.01
Claude3.5-0620 76.71±4.59 -14.19 63.54±6.12 -19.10 66.84±2.62 -12.02 46.09±1.79 -16.11
Claude3.5-1022 56.34±5.89 -34.66 46.22±4.30 -38.87 36.11±7.24 -50.10 25.67±5.05 -51.50

Performance
(NFR-Aware)

NFR
Integrated

GPT3.5-1106 72.26±1.58 -5.49

81.32±1.98
↓ 3.89%

63.54±2.13 -4.92

72.04±1.78
↓ 3.30%

65.95±2.16 3.91

70.49±1.57
↓ 1.50%

47.14±1.41 5.34

50.39±1.47
↓ 1.56%

GPT3.5-0125 70.79±3.45 -2.36 61.83±2.93 -3.89 66.63±1.92 -1.75 47.82±1.47 1.29
GPT4o-0513 90.18±1.56 -2.57 80.73±1.63 -0.97 73.54±0.47 -2.39 52.95±0.67 -1.78
GPT4o-0806 89.33±2.12 -1.35 80.18±1.61 0.00 74.07±0.72 -0.48 53.56±0.8 0.36
Claude3.5-0620 83.29±1.53 -6.82 74.02±1.40 -5.76 72.04±1.76 -5.17 51.43±2.08 -6.39
Claude3.5-1022 81.32±1.98 -4.81 71.95±0.96 -4.84 70.73±2.36 -2.27 49.41±2.39 -6.65

NFR
Enhanced

GPT3.5-1106 67.26±2.54 -22.33

77.02±2.70
↓ 8.97%

54.09±5.95 -19.06

68.23±2.49
↓ 8.41%

65.71±1.38 3.53

68.53±2.01
↓ 4.24%

47.28±1.03 5.65

48.98±1.67
↓ 4.30%

GPT3.5-0125 87.56±1.16 -7.23 59.39±2.61 -7.68 66.35±1.70 -2.17 47.00±1.18 -0.44
GPT4o-0513 86.10±1.11 -5.40 78.72±1.30 -3.43 73.14±0.66 -2.92 52.72±0.64 -2.21
GPT4o-0806 81.34±3.07 -4.91 77.44±0.86 -3.42 74.15±1.05 -0.38 53.82±0.92 0.84
Claude3.5-0620 80.49±1.22 -9.01 71.71±3.67 -8.70 70.82±1.11 -6.78 49.79±1.27 -9.37
Claude3.5-1022 77.02±2.70 -6.65 68.05±0.55 -10.00 61.03±6.14 -15.67 43.28±4.98 -18.23

Table 1: The Pass@1 column represents the Pass@1 scores along with their STDEV across 10 semantically
equivalent prompts. ∆ indicates the percentage difference in Pass@1 of the same model version between the
NFR-aware results and the Function-Only result. The Average column provides the average Pass@1 scores and
STDEV across all models, as well as the percentage difference relative to the Function-Only results.

need for regression testing across versions.408

LLMs achieve better functional correctness when
NFRs are specified in the same prompt. However,
incorporating NFRs generally reduces Pass@1,
which shows challenges for LLMs in balancing
NFRs and functional correctness.409

RQ2: How Do NFR-Aware Workflows Affect410

Non-Functional Code Quality?411

Motivation. Apart from functional correctness (i.e.,412

Pass@1), how NFRs are addressed is crucial in413

NFR-aware coding workflows. This RQ evaluates414

the generated code by studying NFR metrics. 415

Approach. We follow the approaches and metrics 416

described in Section 3.4 to study the non-functional 417

code quality. We study whether incorporating 418

NFRs can enhance NFR metrics by comparing the 419

baseline (Function-Only) with NFR-Integrated and 420

NFR-Enhanced. We report only the results for Hu- 421

manEval and MBPP because they share the same 422

generated code with the ET version (the ET version 423

contains more test cases). Since the problems have 424

different difficulties and length, we measure the 425

execution time only for problems that successfully 426
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Task Approach Model HumanEval MBPP
code smell (∆%) unreadability (∆%) exception-handling (∆%) execution time (∆%) code smell (∆%) unreadability (∆%) exception-handling (∆%) execution time (∆%)

Func.-Only
(Functional) Raw

GPT3.5-1106 0.38±0.01 2.77±0.04 0.011±0.003 110.78±46.55 0.32±0.01 3.64±0.02 0.006±0.000 48.84±1.33
GPT3.5-0125 0.31±0.01 3.42±0.04 0.036±0.003 112.63±48.09 0.27±0.01 3.44±0.03 0.011±0.000 43.18±7.96
GPT4o-0513 0.13±0.01 2.50±0.04 0.040±0.002 77.40±13.78 0.10±0.00 2.72±0.03 0.129±0.007 34.69±0.21
GPT4o-0806 0.12±0.01 2.62±0.03 0.026±0.005 75.92±4.23 0.12±0.00 3.18±0.02 0.130±0.005 37.23±1.37
Claude3.5-0620 0.10±0.01 2.03±0.01 0.037±0.003 57.06±2.93 0.08±0.00 2.67±0.01 0.069±0.002 40.92±3.68
Claude3.5-1022 0.06±0.00 2.60±0.02 0.022±0.000 70.31±13.75 0.03±0.00 2.69±0.00 0.041±0.000 34.40±0.30

Average 0.18±0.01 2.66±0.03 0.029±0.003 84.02±21.55 0.15±0.01 3.06±0.02 0.064±0.002 39.88±2.47

Code Design
(NFR-Aware)

NFR
Integrated

GPT3.5-1106 0.25±0.01 (-34.2%) 1.79±0.10 (-35.4%) 0.055±0.058 (400.0%) 97.55±49.53(-11.94%) 0.35±0.04 (9.4%) 3.71±0.18 (1.9%) 0.126±0.118 (2000.0%) 51.66±11.29(5.77%)
GPT3.5-0125 0.22±0.03 (-29.0%) 2.68±0.20 (-21.6%) 0.051±0.038 (41.7%) 92.93±32.03(-17.49%) 0.28±0.03 (3.7%) 4.68±0.48 (36.0%) 0.117±0.106 (963.6%) 58.78±11.12(36.13%)
GPT4o-0513 0.06±0.01 (-53.8%) 1.35±0.17 (-46.0%) 0.095±0.027 (137.5%) 81.57±6.25(5.39%) 0.06±0.01 (-40.0%) 2.23±0.12 (-18.0%) 0.363±0.049 (181.4%) 38.64±4.47(11.39%)
GPT4o-0806 0.06±0.00 (-50.0%) 1.27±0.15 (-51.5%) 0.091±0.018 (250.0%) 81.22±6.32(6.98%) 0.05±0.00 (-58.3%) 1.79±0.08 (-43.7%) 0.363±0.029 (179.2%) 38.30±3.03(2.87%)
Claude3.5-0620 0.02±0.01 (-80.0%) 0.79±0.10 (-61.1%) 0.148±0.064 (300.0%) 47.27±15.87(-17.16%) 0.03±0.01 (-62.5%) 1.66±0.18 (-37.8%) 0.454±0.142 (558.0%) 36.42±0.18(-11.00%)
Claude3.5-1022 0.02±0.01 (-66.7%) 1.54±0.50 (-40.8%) 0.176±0.118 (700.0%) 55.95±1.23(-20.42%) 0.01±0.01 (-66.7%) 1.95±0.64 (-27.5%) 0.445±0.171 (985.4%) 35.18±1.83(2.27%)

Average 0.10±0.01 (↓ 44.4%)1.57±0.20 (↓ 41.0%) 0.103±0.054 (↑ 255.2%) 76.08±18.54 (↓ 9.45%)0.13±0.02 (↓ 13.3%)2.67±0.28 (↓ 12.7%) 0.311±0.103 (↑ 385.9%) 43.16±5.32 (↑ 8.22%)

NFR
Enhanced

GPT3.5-1106 0.14±0.05 (-63.2%) 1.01±0.33 (-63.5%) 0.015±0.017 (36.4%) 111.79±89.17(0.91%) 0.10±0.05 (-68.8%) 2.83±1.22 (-22.3%) 0.024±0.018 (300.0%) 49.19±4.57(0.72%)
GPT3.5-0125 0.07±0.03 (-77.4%) 1.30±0.21 (-62.0%) 0.032±0.012 (-11.1%) 64.45±24.73(-42.78%) 0.08±0.02 (-70.4%) 3.27±0.86 (-4.9%) 0.049±0.042 (345.5%) 43.46±3.36(0.65%)
GPT4o-0513 0.05±0.01 (-61.5%) 1.48±0.10 (-40.8%) 0.064±0.017 (60.0%) 72.02±10.94(-6.95%) 0.03±0.00 (-70.0%) 2.29±0.15 (-15.8%) 0.220±0.061 (70.5%) 41.55±0.69(19.78%)
GPT4o-0806 0.05±0.01 (-58.3%) 1.60±0.08 (-38.9%) 0.075±0.022 (188.5%) 71.32±10.69(-6.06%) 0.03±0.01 (-75.0%) 2.30±0.11 (-27.7%) 0.227±0.062 (74.6%) 41.69±0.28(11.98%)
Claude3.5-0620 0.02±0.01 (-80.0%) 0.97±0.25 (-52.2%) 0.155±0.088 (318.9%) 55.73±21.47(-2.33%) 0.01±0.00 (-87.5%) 0.78±0.24 (-70.8%) 0.384±0.076 (456.5%) 38.38±4.90(-6.21%)
Claude3.5-1022 0.02±0.00 (-66.7%) 1.00±0.24 (-61.5%) 0.196±0.076 (790.9%) 62.89±4.48(-10.55%) 0.01±0.00 (-66.7%) 1.61±0.20 (-40.1%) 0.437±0.097 (965.9%) 43.84±19.54(27.44%)

Average 0.06±0.02 (↓ 66.7%)1.23±0.20 (↓ 53.8%) 0.090±0.039 (↑ 210.3%)73.03±26.91 (↓ 13.08%)0.05±0.02 (↓ 66.7%)2.18±0.46 (↓ 28.8%) 0.224±0.059 (↑ 250.0%) 43.02±5.56 (↑ 7.87%)

Readability
(NFR-Aware)

NFR
Integrated

GPT3.5-1106 0.21±0.04 (-44.7%) 1.58±0.09 (-43.0%) 0.015±0.007 (36.4%) 97.58±46.15(-11.92%) 0.30±0.03 (-6.3%) 3.42±0.28 (-6.0%) 0.012±0.005 (100.0%) 52.02±5.54(6.51%)
GPT3.5-0125 0.18±0.03 (-41.9%) 2.47±0.24 (-27.8%) 0.016±0.005 (-55.6%) 120.41±49.29(6.91%) 0.24±0.02 (-11.1%) 4.14±0.49 (20.3%) 0.013±0.006 (18.2%) 49.45±10.22(14.52%)
GPT4o-0513 0.07±0.01 (-46.2%) 1.38±0.15 (-44.8%) 0.038±0.012 (-5.0%) 81.52±9.24(5.32%) 0.08±0.01 (-20.0%) 2.26±0.10 (-16.9%) 0.122±0.031 (-5.4%) 37.39±2.32(7.78%)
GPT4o-0806 0.06±0.01 (-50.0%) 1.25±0.07 (-52.3%) 0.029±0.007 (11.5%) 84.49±5.31(11.29%) 0.07±0.01 (-41.7%) 1.86±0.19 (-41.5%) 0.107±0.033 (-17.7%) 36.39±2.33(-2.26%)
Claude3.5-0620 0.04±0.02 (-60.0%) 0.97±0.20 (-52.2%) 0.084±0.042 (127.0%) 44.04±13.54(-22.82%) 0.05±0.02 (-37.5%) 1.54±0.24 (-42.3%) 0.261±0.097 (278.3%) 39.04±8.94(-4.59%)
Claude3.5-1022 0.02±0.01 (-66.7%) 1.38±0.20 (-46.9%) 0.088±0.040 (300.0%) 61.56±10.61(-12.44%) 0.02±0.01 (-33.3%) 1.61±0.10 (-40.1%) 0.226±0.086 (451.2%) 35.33±1.56(2.70%)

Average 0.10±0.02 (↓ 44.4%)1.51±0.16 (↓ 43.2%) 0.045±0.019 (↑ 55.2%) 81.60±22.35 (↓ 2.88%)0.12±0.02 (↓ 20.0%)2.47±0.23 (↓ 19.3%) 0.124±0.043 (↑ 93.8%) 41.60±5.15 (↑ 4.31%)

NFR
Enhanced

GPT3.5-1106 0.18±0.05 (-52.6%) 1.16±0.27 (-58.1%) 0.007±0.004 (-36.4%) 96.66±51.73(-12.75%) 0.20±0.05 (-37.5%) 3.46±0.55 (-4.9%) 0.009±0.004 (50.0%) 52.68±3.40(7.86%)
GPT3.5-0125 0.09±0.02 (-71.0%) 1.46±0.14 (-57.3%) 0.019±0.002 (-47.2%) 88.61±55.58(-21.33%) 0.14±0.02 (-48.1%) 4.25±0.23 (23.5%) 0.013±0.006 (18.2%) 45.40±10.62(5.14%)
GPT4o-0513 0.05±0.01 (-61.5%) 1.48±0.08 (-40.8%) 0.032±0.006 (-20.0%) 78.37±11.33(1.25%) 0.04±0.01 (-60.0%) 2.23±0.05 (-18.0%) 0.147±0.013 (14.0%) 41.32±0.29(19.11%)
GPT4o-0806 0.06±0.01 (-50.0%) 1.61±0.11 (-38.5%) 0.020±0.006 (-23.1%) 76.72±4.10(1.05%) 0.04±0.01 (-66.7%) 2.25±0.11 (-29.2%) 0.105±0.010 (-19.2%) 41.66±0.23(11.90%)
Claude3.5-0620 0.02±0.01 (-80.0%) 0.90±0.18 (-55.7%) 0.083±0.024 (124.3%) 50.04±20.34(-12.30%) 0.02±0.01 (-75.0%) 0.88±0.40 (-67.0%) 0.272±0.100 (294.2%) 36.56±1.15(-10.65%)
Claude3.5-1022 0.02±0.00 (-66.7%) 0.86±0.15 (-66.9%) 0.173±0.037 (686.4%) 60.46±4.04(-14.01%) 0.01±0.00 (-66.7%) 1.10±0.06 (-59.1%) 0.364±0.050 (787.8%) 47.31±24.16(37.53%)

Average 0.07±0.02 (↓ 61.1%)1.24±0.15 (↓ 53.4%) 0.056±0.013 (↑ 93.1%)75.14±24.52 (↓ 10.57%)0.07±0.02 (↓ 53.3%)2.36±0.23 (↓ 22.9%) 0.152±0.031 (↑ 137.5%)44.15±6.64 (↑ 10.71%)

Reliability
(NFR-Aware)

NFR
Integrated

GPT3.5-1106 0.40±0.10 (5.3%) 1.92±0.23 (-30.7%) 1.362±0.311 (12281.8%) 117.04±54.46(5.65%) 0.45±0.12 (40.6%) 2.72±0.54 (-25.3%) 1.785±0.212 (29650.0%) 42.01±3.51(-13.98%)
GPT3.5-0125 0.34±0.10 (9.7%) 2.81±0.40 (-17.8%) 1.342±0.247 (3627.8%) 117.86±41.17(4.64%) 0.36±0.07 (33.3%) 3.25±0.62 (-5.5%) 1.601±0.222 (14454.5%) 40.96±0.67(-5.14%)
GPT4o-0513 0.10±0.03 (-23.1%) 1.66±0.19 (-33.6%) 0.910±0.136 (2175.0%) 87.69±1.44(13.29%) 0.18±0.08 (80.0%) 2.75±0.15 (1.1%) 1.588±0.192 (1131.0%) 35.44±1.81(2.16%)
GPT4o-0806 0.10±0.04 (-16.7%) 1.45±0.16 (-44.7%) 0.942±0.157 (3523.1%) 90.48±4.98(19.18%) 0.17±0.08 (41.7%) 2.61±0.19 (-17.9%) 1.584±0.204 (1118.5%) 35.09±0.27(-5.75%)
Claude3.5-0620 0.05±0.01 (-50.0%) 1.07±0.05 (-47.3%) 1.177±0.152 (3081.1%) 53.22±7.62(-6.73%) 0.05±0.01 (-37.5%) 1.98±0.45 (-25.8%) 1.354±0.107 (1862.3%) 43.66±15.62(6.70%)
Claude3.5-1022 0.03±0.01 (-50.0%) 1.76±0.16 (-32.3%) 1.006±0.079 (4472.7%) 81.29±41.04(15.62%) 0.01±0.00 (-66.7%) 1.48±0.20 (-45.0%) 1.115±0.075 (2619.5%) 34.69±0.43(0.84%)

Average 0.17±0.05 (↓ 5.6%)1.78±0.20 (↓ 33.1%)1.123±0.180 (↑ 3772.4%) 91.27±25.12 (↑ 8.63%)0.20±0.06 (↑ 33.3%)2.47±0.36 (↓ 19.3%)1.504±0.169 (↑ 2250.0%) 38.64±3.72 (↓ 3.11%)

NFR
Enhanced

GPT3.5-1106 0.19±0.05 (-50.0%) 0.98±0.18 (-64.6%) 0.726±0.250 (6500.0%) 93.26±64.29(-15.82%) 0.30±0.10 (-6.3%) 2.52±0.56 (-30.8%) 1.653±0.345 (27450.0%) 50.54±3.06(3.48%)
GPT3.5-0125 0.15±0.04 (-51.6%) 1.73±0.22 (-49.4%) 0.675±0.163 (1775.0%) 106.82±31.82(-5.16%) 0.27±0.08 (0.0%) 4.03±0.37 (17.2%) 1.448±0.264 (13063.6%) 46.30±11.45(7.23%)
GPT4o-0513 0.07±0.02 (-46.2%) 1.76±0.12 (-29.6%) 0.797±0.128 (1892.5%) 78.57±5.62(1.51%) 0.07±0.05 (-30.0%) 2.30±0.11 (-15.4%) 1.190±0.168 (822.5%) 41.09±0.25(18.45%)
GPT4o-0806 0.08±0.02 (-33.3%) 1.93±0.14 (-26.3%) 0.997±0.134 (3734.6%) 77.81±3.87(2.49%) 0.08±0.05 (-33.3%) 2.44±0.15 (-23.3%) 1.322±0.156 (916.9%) 37.01±2.69(-0.59%)
Claude3.5-0620 0.04±0.01 (-60.0%) 0.94±0.25 (-53.7%) 1.036±0.142 (2700.0%) 48.61±11.23(-14.81%) 0.04±0.01 (-50.0%) 0.91±0.08 (-65.9%) 1.323±0.098 (1817.4%) 35.64±1.74(-12.90%)
Claude3.5-1022 0.01±0.00 (-83.3%) 1.09±0.07 (-58.1%) 0.900±0.086 (3990.9%) 83.95±46.81(19.40%) 0.01±0.00 (-66.7%) 1.17±0.19 (-56.5%) 1.027±0.062 (2404.9%) 36.11±3.57(4.97%)

Average 0.09±0.02 (↓ 50.0%)1.41±0.16 (↓ 47.0%)0.855±0.150 (↑ 2848.3%) 81.50±27.27 (↓ 3.00%)0.13±0.05 (↓ 13.3%)2.23±0.24 (↓ 27.1%)1.327±0.182 (↑ 1973.4%) 41.12±3.79 (↑ 3.11%)

Performance
(NFR-Aware)

NFR
Integrated

GPT3.5-1106 0.32±0.06 (-15.8%) 2.41±0.18 (-13.0%) 0.014±0.003 (27.3%) 62.87±3.01(-43.25%) 0.32±0.05 (0.0%) 5.18±0.22 (42.3%) 0.011±0.003 (83.3%) 47.05±6.29(-3.67%)
GPT3.5-0125 0.27±0.04 (-12.9%) 3.21±0.22 (-6.1%) 0.016±0.005 (-55.6%) 63.48±33.85(-43.64%) 0.28±0.06 (3.7%) 5.99±0.30 (74.1%) 0.011±0.002 (0.0%) 51.61±10.93(19.52%)
GPT4o-0513 0.07±0.01 (-46.2%) 1.38±0.11 (-44.8%) 0.023±0.008 (-42.5%) 79.44±8.68(2.64%) 0.13±0.02 (30.0%) 3.31±0.19 (21.7%) 0.107±0.039 (-17.1%) 36.25±2.48(4.50%)
GPT4o-0806 0.08±0.00 (-33.3%) 1.64±0.13 (-37.4%) 0.027±0.010 (3.8%) 74.34±1.00(-2.08%) 0.12±0.02 (0.0%) 3.26±0.18 (2.5%) 0.103±0.026 (-20.8%) 34.50±0.43(-7.33%)
Claude3.5-0620 0.05±0.02 (-50.0%) 1.67±0.11 (-17.7%) 0.028±0.005 (-24.3%) 35.20±1.72(-38.31%) 0.05±0.00 (-37.5%) 2.51±0.12 (-6.0%) 0.096±0.047 (39.1%) 34.62±0.64(-15.40%)
Claude3.5-1022 0.02±0.01 (-66.7%) 2.33±0.08 (-10.4%) 0.033±0.008 (50.0%) 98.39±24.43(39.94%) 0.02±0.00 (-33.3%) 2.42±0.11 (-10.0%) 0.070±0.027 (70.7%) 37.19±2.53(8.11%)

Average 0.14±0.02 (↓ 22.2%)2.11±0.14 (↓ 20.7%) 0.024±0.006 (↓ 17.2%)68.95±12.11 (↓ 17.94%) 0.15±0.02 (↓ 0.0%)3.78±0.19 (↑ 23.5%) 0.066±0.024 (↑ 3.1%) 40.21±3.88 (↑ 0.83%)

NFR
Enhanced

GPT3.5-1106 0.17±0.04 (-55.3%) 1.25±0.15 (-54.9%) 0.007±0.003 (-36.4%) 72.26±34.20(-34.77%) 0.29±0.06 (-9.4%) 4.42±0.26 (21.4%) 0.013±0.003 (116.7%) 47.27±7.24(-3.21%)
GPT3.5-0125 0.21±0.04 (-32.3%) 2.53±0.11 (-26.0%) 0.019±0.005 (-47.2%) 53.59±29.05(-52.42%) 0.25±0.04 (-7.4%) 5.04±0.29 (46.5%) 0.018±0.008 (63.6%) 44.76±2.69(3.66%)
GPT4o-0513 0.07±0.01 (-46.2%) 1.26±0.06 (-49.6%) 0.030±0.011 (-25.0%) 88.52±8.30(14.37%) 0.08±0.01 (-20.0%) 2.80±0.16 (2.9%) 0.112±0.041 (-13.2%) 40.76±0.19(17.50%)
GPT4o-0806 0.08±0.01 (-33.3%) 1.46±0.11 (-44.3%) 0.036±0.008 (38.5%) 76.42±2.33(0.66%) 0.08±0.01 (-33.3%) 2.59±0.15 (-18.6%) 0.114±0.046 (-12.3%) 41.35±0.27(11.07%)
Claude3.5-0620 0.03±0.00 (-70.0%) 1.30±0.09 (-36.0%) 0.057±0.018 (54.1%) 67.80±29.01(18.82%) 0.04±0.01 (-50.0%) 2.21±0.13 (-17.2%) 0.142±0.055 (105.8%) 38.56±1.56(-5.77%)
Claude3.5-1022 0.03±0.01 (-50.0%) 1.90±0.08 (-26.9%) 0.062±0.019 (181.8%) 111.85±10.65(59.08%) 0.01±0.00 (-66.7%) 1.75±0.15 (-34.9%) 0.135±0.062 (229.3%) 34.82±1.96(1.22%)

Average 0.10±0.02 (↓ 44.4%)1.62±0.10 (↓ 39.1%) 0.035±0.011 (↑ 20.7%) 78.41±18.92 (↓ 6.68%)0.13±0.02 (↓ 13.3%) 3.14±0.19 (↑ 2.6%) 0.089±0.036 (↑ 39.1%) 41.25±2.32 (↑ 3.44%)

Table 2: Columns code smell density, unreadability density, exception-handling density, and execution time
(millisecond) represent the NFR metrics (Section 3). Each metric includes standard deviations and ∆%, which
indicates the percentage difference between NFR-aware results and Function-Only results. Average summarizes
mean scores, standard deviations, and percentage differences relative to the Function-Only results across all models.

pass the tests across all workflows.427

Result. Incorporating NFRs consistently en-428

hances NFR metrics. Table 2 presents the NFR429

results for Function-Only, NFR-Integrated, and430

NFR-Enhanced across all four NFRs and bench-431

marks. Notably, incorporating NFRs consistently432

improves all NFR metrics, irrespective of the spe-433

cific NFRs. For example, considering code de-434

sign NFRs enhances exception-handling density by435

210.3%–255.2%, suggesting that incorporating436

even just one NFR may improve other dimensions437

of non-functional code quality.438

Unlike Pass@1, NFR-Enhanced leads to a439

larger improvement in certain non-functional440

code quality than NFR-Integrated. While NFR- 441

Integrated outperforms NFR-Enhanced at Pass@1 442

(RQ1), NFR-Enhanced excels in improving NFR 443

metrics. For code smell density, NFR-Integrated 444

achieves a reduction of 13.3% and 44.4% on Hu- 445

manEval and MBPP, respectively, whereas NFR- 446

Enhanced reduces by 66.7% for both datasets. Sim- 447

ilarly, for readability, NFR-Integrated improves 448

by 19.3%–43.2%, while NFR-Enhanced achieves 449

22.9%–53.4% enhancements. Interestingly, an 450

inverse pattern emerges for reliability, where 451

NFR-Integrated outperforms NFR-Enhanced with 452

improvements of 2250.0%–3772.4% for Hu- 453

manEval and MBPP, compared to NFR-Enhanced’s 454
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1973.4%–2848.3%. A similar trend is observed for455

performance metrics, with NFR-Integrated reduc-456

ing execution time by 17.94% compared to NFR-457

Enhanced’s 6.68% in HumanEval, but no statis-458

tically significant difference in MBPP (t-test’s p-459

value > 0.05). Our findings suggest that the two460

NFR-aware workflows have varying benefits de-461

pending on the NFRs. While NFR-Enhanced is462

more effective for improving readability and reduc-463

ing code designs, NFR-Integrated may be better464

suited for addressing runtime-related requirements465

like exception handling and performance.466

On average, NFR-Integrated and NFR-467

Enhanced share similar levels of stability in the468

NFR metrics, yet some versions of the models469

show much higher variability. Function-Only has470

the lowest STDEV across all NFR metrics, partly471

because of its lack of consideration of NFRs. In472

comparison, NFR-Integrated and NFR-Enhanced473

have larger STDEVs, but the values are often474

stable. For example, code smell density has an475

STDEV of 0.01–0.02, and unreadability density476

has an STDEV of 0.15–0.23 for both NFR-aware477

workflows. Similar to RQ1, some versions of the478

LLMs have much larger variability across all work-479

flows. For instance, in HumanEval, the STDEV480

for code smell density (the NFR-Integrated row481

in Readability) is 0.24 for GPT3.5-0125 and 0.07482

for GPT4o-0806, whereas the newer model shows483

much lower variability. However, a slightly older484

model, GPT3.5-1106, shows a lower STDEV of485

0.09. Yet, NFR-Enhanced in Readability has an486

opposite finding, where GPT3.5-1106 has a larger487

STDEV than GPT3.5-0125 (0.27 vs. 0.14). This488

finding suggests that NFR’s stability can be af-489

fected by specific model refinements, and the ef-490

fect can be different for different NFR-aware491

workflows, which may not always correlate with492

the model’s general improvements. Future research493

should consider regression testing and data selec-494

tion strategies during fine-tuning and model train-495

ing to consider NFR and improve stability.496

Incorporating NFRs improves the metrics of
NFRs, with NFR-Enhanced excelling in readabil-
ity and code structure-related design, and NFR-
Integrated in exception handling and runtime-
related performance. Variability across models
highlights the need for careful regression testing
and data selection to ensure consistent perfor-
mance.497

5 Discussion & Conclusion 498

5.1 Discussion of Implications 499

Our findings highlight implications for two key 500

groups of stakeholders: (i) practitioners and (ii) 501

LLM developers. 502

For Practitioners. Our findings suggest that 503

practitioners should prioritize the NFR-Integrated 504

when aiming to optimize both functional and non- 505

functional requirements within a single iteration. 506

This approach demonstrates lower variability and 507

improved balance between competing objectives 508

(i.e., Pass@1 vs. non-functional code quality). 509

For LLM Developers. The observed trade-offs 510

between functional correctness and non-functional 511

quality highlight the future direction to improve 512

training process and fine-tuning. Future studies on 513

LLMs may focus on enabling models to effectively 514

address both functional and non-functional require- 515

ments, thereby reducing the observed trade-offs 516

and variability. Moreover, future research could in- 517

vestigate advanced prompt engineering techniques 518

or optimization mechanisms to mitigate perfor- 519

mance variability and achieve superior alignment 520

with complex software requirements. 521

5.2 Conclusion 522

This study investigates the challenges and opportu- 523

nities associated with integrating NFRs into code 524

generation workflows using LLMs. We propose 525

NFRGen, a generalizable framework for evaluating 526

LLM-generated code, which incorporates diverse 527

workflows and non-functional quality metrics. The 528

findings from our results underscore significant 529

trade-offs between functional correctness and non- 530

functional code quality attributes, such as design, 531

readability, reliability, and performance. 532

Our study demonstrates that while incorporat- 533

ing NFRs reduces the functional correctness met- 534

ric (i.e., Pass@1), notable improvements are ob- 535

served in non-functional code quality metrics, in- 536

cluding reductions in code smells and enhanced 537

exception-handling density. The analysis of work- 538

flows reveals complementary strengths: the NFR- 539

Integrated performs better in runtime-oriented as- 540

pects, such as performance and exception handling, 541

whereas the NFR-Enhanced demonstrates higher 542

efficiency in addressing structural aspects, such as 543

readability and design improvements. By provid- 544

ing real-time feedback, NFRGen can be used to 545

improve code quality, reduce manual testing, and 546

enhance development efficiency. 547
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Limitations548

We use a certain set of widely used LLMs to con-549

duct the experiments. The results may not apply550

to all models, as results may vary across different551

architectures and training methods. Future studies552

could benefit from incorporating a broader range553

of models to validate the results.554

In this study, we have primarily examined555

Python datasets. While Python is a widely used556

language, the generalizability of our framework to557

other programming languages remains to be fully558

explored. However, our framework is not inher-559

ently language-specific. It is expected to be appli-560

cable to other languages and can be further verified561

by future studies.562

The main objective of our framework is to evalu-563

ate the impact of different NFR-aware coding work-564

flows on Pass@1 and non-functional code quality.565

Although NFRGen is not explicitly pre-trained for566

code refinement, it aligns with how developers use567

LLMs (e.g., zero-shot) for both code generation568

and refinement tasks. The insights derived from569

our evaluation can guide improvements in future570

model architectures, help prioritize areas for code571

optimization, and inform strategies for more effec-572

tive handling of NFRs in generated code. Future573

work could investigate adjusting model training574

processes or providing more targeted NFR opti-575

mization during code generation and refinement.576

Ethics Statement577

We declare that all authors of this paper adhere to578

the ACM Code of Ethics and uphold its code of con-579

duct. The aim of our work is to assess the robust-580

ness of LLMs in incorporating non-functional re-581

quirements (NFRs) to improve both functional cor-582

rectness (Pass@1) and non-functional code qual-583

ity. Our findings demonstrate that LLMs are capa-584

ble of enhancing both dimensions, providing valu-585

able insights for future research, and potential im-586

plications for industrial adoption, as commercial587

projects must adhere to various quality assurance588

practices, including non-functional requirements.589

Nevertheless, our results indicate that LLMs still re-590

quire further refinement to achieve a better balance591

between functional and non-functional quality.592
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Error-handle Code Smell Readability Performance

Incorporate various error handling techniques Investigate various strategies to handle code smell Evaluate different coding practices for readability Optimize for performance
Implement multiple exception handling strategies Minimize code smell Investigate various techniques to enhance readability Focus on enhancing performance
Apply different error handling mechanisms Eliminate code smell Improve the code readability Ensure the code runs efficiently
Investigate different methods of managing exceptions Identify and address different code smells Ensure the code is readable Prioritize runtime optimization
Integrate diverse error handling approaches Apply best practices to reduce code smell Apply coding practices that enhance readability Keep performance in mind while solving
Utilize multiple error management techniques Mitigate code smell Focus on readability Aim for high-performance execution
Experiment with various ways to handle exceptions Tackle different code smell issues Enhance the readability of the code Reduce computational overhead
Combine different error handling practices Implement techniques to prevent code smell Implement strategies to make the code more readable Emphasize speed and efficiency
Evaluate multiple exception management strategies Resolve code smell problems Optimize the code for better readability Ensure minimal resource consumption
Develop a range of error handling solutions Optimize code to avoid code smell Adopt coding practices for improved readability Maximize performance in your solution

Table 3: LLM generated prompt templates to consider non-functional requirements in code generation.

B Discussion on Metric Selection and753

Pylint754

We measure the ability of LLMs to generate code755

based on non-functional requirements (NFRs) by756

focusing on specific dimensions such as maintain-757

ability, reliability, and performance. These dimen-758

sions are commonly used in software quality as-759

surance and directly influence the quality of the760

generated code (Glinz, 2007). Morover, given the761

nature of datasets, generating function-level code,762

these NFRs are reasonable to evaluate compared to763

other NFRs such as portability and scalability.764

In our study, we chose code design as a proxy for765

maintainability. For code design, some prior stud-766

ies use metrics like cyclomatic complexity (Shep-767

perd, 1988), where high complexity makes it hard768

to maintain code. However, in our research, we769

utilize code smell and readability as separate prox-770

ies for code design. We differentiate code design771

and readability since maintainability is too broad772

and may encompass both dimensions. Moreover,773

for LLM-generated code, factors such as readabil-774

ity, adherence to coding standards, and code smell775

(recurring bad design patterns) provide more inter-776

pretable and valuable meaning for maintainability777

for developers as opposed to control flow complex-778

ity (Shepperd, 1988).779

We rely on Pylint, the most popular Python-780

based linter, to measure code smells and readabil-781

ity (Pylint, 2024). It identifies readability issues782

as "convention", which detects common coding783

errors like unused imports, and inconsistent nam-784

ing conventions (PyCQA, 2024b). It also identi-785

fies code smell issues as "refactoring" (PyCQA,786

2024a). Refactoring is a small structural charac-787

teristic in code that indicates a potential problem788

(code smells), suggesting that the code should be789

structurally changed, without changing its behavior,790

to improve design (Fowler, 2018).791

Reliability is another NFR we study in LLM-792

generated code. Reliability may involve respond-793

ing to unexpected events when a computer pro-794

gram runs (Pham, 2000). In particular, we measure 795

whether the generated code includes exception- 796

handling mechanisms, such as try-catch blocks, 797

to gain insight into how well the code anticipates 798

and manages potential errors. 799

C Failure Examples When The LLM 800

Attempts To Address Both Functional 801

And Non-Functional Requirements 802

In this section, we present a few code examples ex- 803

posed by NFRGen, demonstrating that LLMs make 804

some mistakes when addressing non-functional re- 805

quirements such as reliability, readability, perfor- 806

mance, and code design. 807

C.1 Reliability 808

To enhance reliability, LLMs often include addi- 809

tional exception-handling statements in the code. 810

However, they sometimes make errors, such as us- 811

ing incorrect try-except formats or raising generic 812

exceptions instead of returning specific results as 813

described in the problem requirements. 814

Here is an example where the LLM made an 815

error in the try-except format. As shown in Code 1, 816

although the LLM attempted to incorporate error- 817

handling logic, it failed to include the required 818

except statements. This oversight caused the code 819

to malfunction and resulted in an IndentationError 820

when executed during evaluation. 821

1 def find_char_long(text): 822
2 ’’’Write a function to find all words which are 823

at least 4 characters long in a string. 824
3 ’’’ 825
4 826
5 try: 827
6 words = text.split() 828
7 long_words = [word for word in words if len(word 829

) >= 4] 830
8 return long_words 831
9 print("Input must be a string") 832

10 print("An error occurred:", e) 833

Code 1: MBPP-7 Test Failure: LLM Added Error
Handling but Made a Format Error.

Even when the LLM ensures the correct for- 834

mat, the additional exception-handling statements 835

may sometimes contradict the functional require- 836
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ments. For example, as shown in Code 2, the error-837

handling code introduces extra checks for the tri-838

angle inequality theorem on lines 23-24, leading839

to failure. Specifically, the function’s docstring840

states that such inputs should return False. How-841

ever, the error-handling logic raises a ValueError842

instead, resulting in failure. This discrepancy high-843

lights that while NFR-aware code generation can844

produce functionally correct logic, it may conflict845

with the specified evaluation criteria.846

1 def right_angle_triangle(a, b, c):847
2 ’’’848
3 Given the lengths of the three sides of a849

triangle. Return True if the three850
4 sides form a right -angled triangle , False851

otherwise.852
5 A right -angled triangle is a triangle in which853

one angle is right angle or854
6 90 degree.855
7856
8 Example:857
9 right_angle_triangle (3, 4, 5) == True858

10 right_angle_triangle (1, 2, 3) == False859
11 ’’’860
12861
13 # Type checking862
14 for side in (a, b, c):863
15 if not isinstance(side , (int , float)):864
16 raise TypeError(f"Invalid type: {side}.865

All sides must be numbers (int or float).")866
17867
18 # Value checking868
19 if a <= 0 or b <= 0 or c <= 0:869
20 raise ValueError("All sides must be positive870

numbers.")871
21872
22 # Triangle inequality theorem873
23 if a + b <= c or a + c <= b or b + c <= a:874
24 raise ValueError("The given sides do not875

form a triangle.")876
25877
26 # Check for right angle using Pythagorean878

theorem879
27 sides = sorted ([a, b, c]) # Sort the sides to880

identify the longest side881
28 return sides [0]**2 + sides [1]**2 == sides [2]**2882

Code 2: HumanEval-157 Test Failure Due to raise
ValueError Which Violates the Functional Requirement.

C.2 Code Design883

When provided with only functional requirements,884

the LLM can generate correct code; however, the885

generated code may still exhibit code smell issues.886

For instance, as shown in Code 3, the function-only887

solution passes the evaluation but relies heavily on888

multiple if-else statements for validation checks,889

introducing potential maintainability concerns.890

1 def valid_date(date):891
2 """You have to write a function which validates892

a given date string and893
3 returns True if the date is valid otherwise894

False.895
4 The date is valid if all of the following rules896

are satisfied:897
5 1. The date string is not empty.898
6 2. The number of days is not less than 1 or899

higher than 31 days for months 1,3,5,7,8,10,12.900
And the number of days is not less than 1 or901

higher than 30 days for months 4,6,9,11. And ,902
the number of days is not less than 1 or higher903
than 29 for the month 2.904

7 3. The months should not be less than 1 or 905
higher than 12. 906

8 4. The date should be in the format: mm-dd-yyyy 907
9 for example: 908

10 valid_date (’03-11-2000’) => True 909
11 valid_date (’15-01-2012’) => False 910
12 valid_date (’04-0-2040’) => False 911
13 valid_date (’06-04-2020’) => True 912
14 valid_date ( ’06/04/2020 ’) => False 913
15 """ 914
16 # Check if the date string is empty 915
17 if not date: 916
18 return False 917
19 # Check if the date string is in the correct 918

format 919
20 if len(date) != 10 or date [2] != ’-’ or date [5] 920

!= ’-’: 921
21 return False 922
22 # Split the date string into month , day , and 923

year 924
23 try: 925
24 month , day , year = map(int , date.split(’-’)) 926
25 except ValueError: 927
26 return False 928
27 # Check if the month is valid 929
28 if month < 1 or month > 12: 930
29 return False 931
30 # Check if the day is valid based on the month 932
31 if month in {1, 3, 5, 7, 8, 10, 12}: 933
32 if day < 1 or day > 31: 934
33 return False 935
34 elif month in {4, 6, 9, 11}: 936
35 if day < 1 or day > 30: 937
36 return False 938
37 elif month == 2: 939
38 if day < 1 or day > 29: 940
39 return False 941
40 # If all checks pass , the date is valid 942
41 return True 943

Code 3: HumanEval-124 correct but has code smell.

LLMs may have the capability to avoid code 944

smells, but they can sometimes make mistakes dur- 945

ing the process. For instance, as shown in Code 4, 946

when prompted to avoid a specific code smell, the 947

LLM attempted to mitigate it by using a regular 948

expression pattern. However, it failed to produce 949

a correct and functional pattern. These inaccura- 950

cies resulted in AssertionError exceptions during 951

evaluation when the function was executed. 952

1 import re 953
2 def valid_date(date): 954
3 # Check if the date string is empty 955
4 if not date: 956
5 return False 957
6 958
7 # Define the regex pattern for the date format 959
8 date_pattern = re.compile(r’^(0[1 -9]|1[0 -2]) 960

-(0[1 -9]|[12][0 -9]|3[01]) -(\d{4})$’) 961
9 962

10 # Check if the date matches the pattern 963
11 match = date_pattern.match(date) 964
12 if not match: 965
13 return False 966
14 967
15 # Extract month , day , and year from the date 968
16 month , day , year = map(int , match.groups ()) 969
17 970
18 # Define the number of days in each month 971
19 days_in_month = { 972
20 1: 31, 2: 29, 3: 31, 4: 30, 5: 31, 6: 30, 973
21 7: 31, 8: 31, 9: 30, 10: 31, 11: 30, 12: 31 974
22 } 975
23 976
24 # Check if the day is valid for the given month 977
25 if day < 1 or day > days_in_month[month]: 978
26 return False 979
27 return True 980
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28 assert candidate("03-15-957") == True # match fail981

Code 4: HumanEval-124 Test Failure while LLM using
re to avoid code smell but introduce other error.

C.3 Readability982

Similar to its ability to address code design, LLMs983

can enhance the readability of generated code.984

However, we observed that LLMs sometimes pri-985

oritize suggesting strategies over producing more986

readable code. For example, as shown in Code 5,987

while the LLM attempted to improve code readabil-988

ity, it occasionally failed to generate valid code. In-989

stead, it returned strategy descriptions as responses,990

which led to evaluation failures. When executed,991

this resulted in a SyntaxError during evaluation.992

1 One way to enhance readability and improve the code993
is to add comments to explain the logic and994
steps of the algorithm. This will make it995
easier for others (and yourself) to understand996
the code.997

2 Another way to improve the code is to use more998
descriptive variable names. For example ,999
instead of using "l" as the variable name for1000
the list , you could use a more descriptive name1001
such as "input_list".1002

3 Additionally , you could extract the logic inside the1003
function into smaller , more descriptive1004

functions. For example , you could create a1005
function to check if a triple of elements sum1006
to zero , and then call that function inside the1007
main function.1008

4 Lastly , you could add type hints to the function1009
signature to make it clear what type of input1010
the function expects and what type of output it1011
returns. This can improve readability and help1012
catch potential errors early on.1013

Code 5: HumanEval-40 Test Failure while LLM
improve readability.

C.4 Performance1014

In the absence of specific requirements for code1015

generation, LLMs may prioritize generating correct1016

code while overlooking other critical factors, such1017

as execution time. For instance, as shown in Code 6,1018

the function-only solution implements an O(n2)1019

algorithm. While the code is functionally correct,1020

it is computationally inefficient.1021

1 def car_race_collision(n: int):1022
2 """1023
3 Simulates the car collisions explicitly and1024

calculates the number of collisions.1025
4 Arguments:1026
5 n -- Number of cars in each group (left -to-right1027

and right -to-left)1028
6 Returns:1029
7 int -- Number of collisions1030
8 """1031
91032

10 # Initialize collision count1033
11 collisions = 01034
121035
13 # Iterate through each car in the left -to-right1036

group1037
14 for _ in range(n):1038
15 # Each car collides with all cars in the1039

right -to -left group1040

16 for _ in range(n): 1041
17 collisions += 1 1042
18 return collisions 1043

Code 6: HumanEval-41, Function-only, correct but
slow.

When tasked with optimizing an algorithm’s run- 1044

time, the LLM occasionally makes mistakes, such 1045

as using incorrect formulas to solve the problem. 1046

For instance, in Code 7, the correct formula for 1047

calculating the number of collisions is n×n. How- 1048

ever, the LLM sometimes employed alternative 1049

mathematical formulas, resulting in incorrect out- 1050

puts. During evaluation, these inaccuracies led to 1051

AssertionError exceptions when the function was 1052

executed. 1053

1 # Performance -Code -1: Correct and Efficient 1054
2 def car_race_collision(n: int): 1055
3 return n * n 1056
4 1057
5 # Performance -Code -2: Efficient but Incorrect 1058
6 def car_race_collision(n: int): 1059
7 return n * (n - 1) // 2 1060

Code 7: HumanEval-41 Test Failure while LLM
improve performance but use wrong formula.
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