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Abstract

Recently, developers have increasingly utilized
Large Language Models (LLMs) to assist with
their coding. Apart from functional correct-
ness, Non-Functional Requirements (NFRs),
such as code performance, play a crucial role
in ensuring software quality. However, the ca-
pability of LLMs in addressing NFRs has yet
to be systematically investigated. In this paper,
we propose NFRGen, an automated framework
aimed at investigating how can LLMs better
perform in NFR-aware coding. Our evaluation
reveals that incorporating NFRs in the prompts
considerably improves the effectiveness in ad-
dressing them. In the meantime, incorporating
NFRs results in a decrease in Pass@1 by up to
26%. However, such impact can be mitigated
when NFRs are initially specified in the same
prompt. Our study highlights the implications
for balancing both functional correctness and
addressing NFRs in various coding workflows.

1 Introduction

Large Language Models (LLMs) have become an
integrated part of modern software development
with their growing popularity and advanced ca-
pabilities (Zhang et al., 2024). LLM-based ser-
vices such as ChatGPT (OpenAl, 2023), GitHub
Copilot (Copilot, 2024a) and Cursor (Cursor, 2024)
have gained widespread adoption for their ability
to simplify and accelerate the coding process by
generating source code following the requirements
provided by developers.

Prior studies focus on evaluating the functional
correctness of the generated code, such as ex-
amining if the code passes all the provided test
cases (Austin et al., 2021; Chen et al., 2021). How-
ever, Non-Functional Requirements (NFRs), such
as reliability and performance, are also crucial to
code quality and are underexplored. Figure 1 shows
an example of generated code with and without
considering performance. Without performance re-
quirements, the generated code relies on exhaustive

iteration, which results in a timeout when the loop
size is large. When performance is considered, the
generated code is optimized using a mathematical
approach that efficiently handles such cases. This
motivates the need for systematically evaluating
how LLMs perform considering NFRs.

In this paper, we propose NFRGen, an auto-
mated framework that studies the ability of LLMs
in code generation when NFRs are incorporated.
NFRGen examines two primary NFR-aware work-
flows: (1) NFR-Integrated, where functional and
non-functional requirements are provided in a sin-
gle prompt, and (2) NFR-Enhanced, where existing
code is refined to meet additional non-functional re-
quirements. For the dimensions of NFRs, NFRGen
particularly focuses on metrics related to code de-
sign, reliability, readability, and performance. They
are among the most commonly targeted when using
LLMs to refine code (Rasheed et al., 2024).

Through comprehensive experiments on various
LLMs and benchmarks, we find that incorporating
NFRs can considerably improve metrics related to
NFRs (e.g., reducing code smells by up to 66.7%),
but also negatively impacts the functional correct-
ness of the generated code (lower Pass@1 by up to
26%). However, such impact is smaller when the
NFRs are specified in a single prompt (i.e., NFR-
Integrated) compared to the two-step workflow
(i.e., NFR-Enhanced). We also find that these two
workflows exhibit complementary strengths: NFR-
Integrated excels in addressing runtime-related as-
pects such as exception handling and performance,
while NFR-Enhanced is more effective in improv-
ing code structure-related dimensions like code de-
sign and readability.

We summarize our contributions as follows:

* We propose NFRGen, a novel framework for sys-
tematically evaluating the effectiveness and ro-
bustness of LLMs in addressing NFRs during
code generation.

* We study two distinct workflows (i.e., NFR-



{Task}
def starts_one_ends(n):

>>> starts_one_ends(1)
1

>>> starts_one_ends(2)
18

Model: gpt-3.5-turbo-0125 Data: HumanEval-83

""" Given a positive integer n, return the count of the numbers of n-digit positive integers that start or end with 1.

Function-Only

Performance

Finish the following code generation task: {Task}

Keep performance in mind while solving the following code generation
task: {Task}

1 def starts_one_ends(n): 1 def starts_one_ends(n):

2 count = @ 2 if n == 1:

3 for i in range(10**(n-1), 10**n): 3 return 1

4 if str(i)[@] == '1' or str(i)[-1] == '1': 4 else:

5 count += 1 5 count = 2 * 9 * 10 ** (n - 2)

6 return count 6 return count

Test (TimeOut) Test (Pass)

7 assert starts_one_ends(2) == 18 7 assert starts_one_ends(2) == 18

8 assert starts_one_ends(18) == 180000000000000000 8 assert starts_one_ends(18) == 180000000000000000

Figure 1: Example of generated code with and without the consideration of performance.

Integrated and NFR-Enhanced) and analyze their
trade-offs in balancing functional correctness and
meeting NFRs.

* Our comprehensive experiments across various
LLMs and benchmarks provide actionable in-
sights and highlight opportunities for improving
NFR-aware code generation. We also share the
replication package for future studies (Anony-
mous, 2024).

2 Related Work

Non-Functional Requirements (NFRs) in Cod-
ing. Prior studies proposed approaches for exam-
ining or refining existing source code to meet the
NFRs. Pereira dos Reis et al. (2022) summarized a
series of studies on detecting and visualizing code
smells that negatively impact code design. Vitale
et al. (2023) trained models to improve the readabil-
ity of given code snippets and Li et al. (2023) iden-
tified readability issues from logging code. Zhang
et al. (2020) proposed an automated approach to
generate exception handling code based on exist-
ing source code to improve the overall software
reliability. Gao et al. (2024) leveraged LLMs to im-
prove the execution efficiency of source code. Han
et al. (2024) proposed a framework that incorporate
software requirements from textual descriptions for
code generation. Unlike previous studies focus-
ing on detecting or refining NFR issues in existing
code, we examine the quality of NFR-aware code
generated using different practical coding work-
flows and the associated robustness issues.

Studying the Robustness of LL.Ms in Code Gen-
eration. Wang et al. (2022), Chen et al. (2024),
and Shirafuji et al. (2023) explored robustness by
perturbating different components in the prompts

(e.g., problem descriptions, docstrings) with di-
verse patterns. Chen et al. (2023) and Lin et al.
(2024) reported that ChatGPT’s performance on
code generation can change substantially between
different versions of the same model. Mishra et al.
(2024) examined how robustness varies across var-
ious models and model sizes. These studies pri-
marily focused on the functional correctness of the
generated code. Given the critical role of NFRs in
software development, our study addresses the im-
portance of exploring the impact of incorporating
NFR considerations into various coding workflows
for LLM-based code generation. We also study the
stability on the functional and NFR code quality
across semantically equivalent prompts and model
versions.

3 Methodology

In this section, we introduce an automated frame-
work, NFRGen, to study the capability of LLMs
considering various non-functional requirements in
code generation. We refer to such code generation
as NFR-aware code generation.

3.1 Studied Dimensions of NFRs

NFRs such as maintainability and readability, are
critical aspects of code quality. However, existing
studies on code generation often overlook NFRs
and only focus on functional correctness metrics.
For example, Pass@1 (Chen et al., 2021, 2023) is
commonly used to assess whether the code gener-
ated by the LLM passes all test cases on its first
attempt. Without considering NFRs, the generated
code might be only functionally correct but lack
reliability, readability, or efficiency. Such neglect
can lead to significant maintenance challenges and
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Figure 2: NFRGen consists of Function-Only code generation, NFR-Integrated code generation, and NFR-Enhanced
code refinement. We compare the functional and non-functional quality of the code across the three workflows.

impact software quality (Chung and do Prado Leite,
2009). Hence, NFRGen is designed to study the
capability and robustness of LLMs in addressing
NFRs during the code generation process.
Specifically, we examine four non-functional re-
quirements dimensions that contribute to the code’s
maintainability, reliability, and efficiency:
Code design refers to the structural and architec-
tural quality of code, where bad designs can signif-
icantly hinder maintainability and scalability (Wal-
ter and Alkhaeir, 2016).
Reliability is the code’s ability to handle unex-
pected inputs and ensure stable execution under
various scenarios (e.g., exception handling) (Zhang
et al., 2020).
Readability is how easily code can be understood
and modified. Readable code should follow cod-
ing style guidelines and conventions to ease under-
standing and collaboration (Piantadosi et al., 2020).
Performance assesses the efficiency of code,
where performance issues (e.g., slower execution)
can cause higher operational costs and reduce user
satisfaction (Malik et al., 2013).

3.2 NFR-Aware Coding Workflows

In addition to Function-Only code generation, mod-
ern code generation tools, such as Cursor (Cursor,
2024) and GitHub Copilot (Copilot, 2024a), pro-
vide two typical workflows for NFR-aware code
generation (Copilot, 2024b). 1) NFR-integrated
code generation involves developers providing
both the functional and non-functional require-
ments in one prompt to generate the complete code
in one shot. 2) NFR-enhanced code refinement is
when developers utilize the LLM to refine existing

>Function-Only Code Generation

Complete the following code.
## Input: ‘{Problem Description}’
## Response: ‘{Code}’

>NFR-Integrated Code Generation

Given the problem description, generate code by considering {NFR)}.”
## Input: ‘{Problem Description}’

## Response: ‘{NFR-aware Code}’

>NFR-Enhanced Code Refi t

Step 1 - Existing code to be refined -> ‘{Code}’

Step 2 - Refine the code with NFR

Given the following code, your goal is to improve its {NFR}.”
## Input: ‘{Code}’

## Response: ‘{NFR-aware Code}’

Figure 3: An example of prompt templates for different
coding workflows.

code for improved code quality or to better align
with specific requirements (White et al., 2024).

While both workflows provide the instruction to
generate code that satisfies specific requirements,
the final output may be different, as the ways of
interacting with LLMs may significantly affect
the generated results (Lee et al., 2024). There-
fore, in our framework, we consider both of these
two workflows to incorporate the four NFRs into
the code. In the remainder of the paper, we
denote NFR-integrated code generation as NFR-
Integrated and NFR-aware code enhancement as
NFR-Enhanced for conciseness.

Figure 2 provides an overview of NFRGen. NFR-
Gen contains one baseline workflow that considers
only the functional requirement (i.e., Functional-
Only Code Generation, denoted as Functional, and
two NFR-aware workflows (i.e., NFR-Integrated
and NFR-Enhanced). To analyze the results, we
compare the functional and non-functional code
quality metrics across the code generated by three
distinct workflows, examining the impact of NFR-



aware code generation on overall code quality.

3.3 Prompt Construction

Workflow-specific Prompt Templates. Figure 3
shows the prompt templates for each workflow.
Functional only contains the functional require-
ment in the prompt. NFR-Integrated incorporates
NFRs directly into the prompt template. For exam-
ple, when considering reliability, the prompt asks
the LLM to generate code that meets the functional
requirements and optimize reliability in a single
prompt. NFR-Enhanced adopts a two-step process.
It leverages the code generated by Functional, and
it sends a separate prompt asking the LLM to en-
hance the code by addressing a specific NFR.

Constructing Diverse NFR-Aware Prompts.
Prior research (Chen et al., 2024; Wang et al., 2022;
Shirafuji et al., 2023) suggests that variations in
prompt templates, even when preserving semantic
context, can generate significantly different code.
Hence, we repeat the code generation process using
different but semantically equivalent prompts. To
mitigate potential biases introduced by manually al-
tering the prompts, we leverage GPT-40 to generate
various prompts for each dimension of NFRs while
preserving the same semantics. This approach al-
lows us to study the result’s stability by measuring
the variations across the prompt templates.

Table 3 in Appendix A shows the prompts gener-
ated for each dimension of NFRs. Initially, we
manually crafted a seed prompt with the struc-
ture: “Consider [NFR] and complete the follow-
ing code”, where “[NFR]” corresponds to spe-
cific non-functional requirements, such as code
design or readability. We then provided the seed
prompt to ChatGPT to generate 10 semantically
equivalent prompts for the experiment. Both NFR-
Integrated and NFR-Enhanced use the same NFR-
aware prompt templates outlined in Table 3. We
incorporate all 10 prompt variants to assess the
robustness of the workflow against semantic pre-
serving changes in the prompt. In total, we ex-
ecute NFR-aware code generation 40 times (10
variations per NFR) for each workflow and each
LLM version. Although we conduct our experi-
ment on existing code generation benchmarks (i.e.,
HumanEval and MBPP), NFRGen is highly adapt-
able, and future studies using NFRGen can tailor
the NFR-Integrated and NFR-Enhanced process to
new non-functional requirements.

3.4 Functional and NFR Metrics

We use different metrics to examine the functional
correctness and NFRs.

Metric of Functional Correctness. We use
Pass@1 (Chen et al., 2021) to check if the gen-
erated code passes all test cases on its first attempt.
Metrics of NFRs. We consider a diverse num-
ber of NFRs, where each NFR has its own unique
aspect. Hence, we use different metrics for each
NFR. ®Code Design: We focus on the presence
of code smell, which serves as a proxy for the
quality of code design. The term “code smell”
refers to code that negatively impacts maintain-
ability (Fowler, 2018), such as overly complex
functions or excessive duplication. We use the
Refactor checker of Pylint (PyCQA, 2024a) to de-
tect code smells. It includes predefined static code
checkers to detect various code smells. We cal-
culate and report the code smell density as the
number of detected smells per 10 Lines Of Code
(LOC) since the generated code may have differ-
ent lengths. @Reliability: We calculate exception
density as the number of exception-handling state-
ments per 10 LOC. This metric highlights the ex-
tent of error-handling logic (De Padua and Shang,
2017). ®Readability: Similar to code design, we
use Pylint to detect issues like inconsistent naming,
incorrect indentation, and missing comments. We
also report the density of readability issues per 10
LOC. @Performance: We measure the execution
time in milliseconds for all tests associated with
each coding problem. To minimize measurement
fluctuations, we run each test case five times and
calculate the mean.

To study the robustness and sensitivity of the
NFR-aware code generation workflows, we com-
pute the mean and standard deviation (abbreviated
as STDEV) for the evaluation metrics across the
semantically equivalent prompts for each LLM ver-
sion (i.e., 10 prompts for each NFR per model ver-
sion). A high STDEV indicates greater sensitivity
of the LLM to the variations.

4 Evaluation

Studied LLMs. We conducted the study using
GPT-3.5 and GPT-40 from OpenAl, and Claude-
3.5 from Anthropic. Specifically, we used gpt-
3.5-turbo-1106 and gpt-3.5-turbo-0125 for GPT-
3.5, gpt-40-2024-05-13 and gpt-40-2024-08-06
for GPT-40, and claude-3-5-sonnet-20240620 and
claude-3-5-haiku-20241022 for Claude. We inter-



acted with the models through the APIs provided
by vendors. To reduce variances in LLM’s outputs,
we set the temperature value to 0.

Benchmark Datasets. We selected four datasets:
HumanEval, HumanEval-ET, MBPP, and MBPP-
ET, which are commonly used in code generation
research (Huang et al., 2023; Lin et al., 2024)
and provide test cases to evaluate the correct-
ness of the generated code. HumanEval (Chen
et al., 2021) comprises 164 programming prob-
lems, while MBPP (Austin et al., 2021) includes
427 programming problems (we used the sanitized
version provided by the original authors). Further-
more, HumanEval-ET and MBPP-ET, published by
Dong et al. (2023), use the same problems as Hu-
manEval and MBPP but offer more test cases with
approximately 100 test cases for each problem.
Environment. Our experiments were conducted
on a Mac Mini (Apple M4, 10 cores, 16GB RAM),
using Python 3.9.19 to implement NFRGen and the
evaluation scripts. The OpenAl API library used
was version 1.14.3, and the Claude API library used
was version 0.39.0. For detecting code smells and
readability issues, we used Pylint version 3.2.5.

RQ1: How Do NFR-Aware Workflows Affect
Functional Correctness?

Motivation. Non-Functional Requirements (NFRs)
play a critical role in software quality assurance.
This RQ examines the functional correctness of the
generated code when using NFR-Integrated and
NFR-Enhanced to generate NFR-aware code.
Approach. We compute the Pass@1 when gener-
ating each of four types of NFR-aware code (i.e.,
design, reliability, readability, and performance) us-
ing NFR-Integrated and NFR-Enhanced. We also
compare the Pass@ 1 with our baseline (Function-
Only), where we generate the code by only con-
sidering the functional requirements. We conduct
the study across various model versions and four
benchmarks as discussed in Section 4.

Results. Incorporating NFRs results in lower
Pass@1 across all benchmarks by up to 26%.
Table 1 shows the Pass@]1 results on Function-
Only, NFR-Integrated, and NFR-Enhanced for
all four NFRs across all benchmarks. Overall,
adding NFRs lowers the Pass@1. For example,
in HumanEval, the average Pass@1 across all
LLMs (OpenAl and Anthropic) for Function-Only
is 84.61%, whereas the Pass@1 decreases by 1.3%
to 8.15% for NFR-Integrated, and 8.97% to 14.40%

for NFR-Enhanced. Compared to Function-Only,
the average decrease is from 1.2% and up to 26%.

NFR-Integrated almost always achieves better
Pass@1 than NFR-Enhanced. Our finding shows
that a two-step approach has a negative impact
on Pass@1, and the difference can be over 20%
(e.g., between NFR-Integrated and NFR-Enhanced
for Code Design in MBPP), depending on the spe-
cific NFR and dataset. For code design and read-
ability, the decrease is even more notable in NFR-
Enhanced (10% to over 20% compared to Function-
Only) compared to NFR-Integrated (1.3% t0 3.91%
over Function-Only). In contrast, even though ex-
ception handling (i.e., Reliability) has the largest
decrease in NFR-Integrated, the difference with
NFR-Enhanced is smaller. Performance has rela-
tively more stable results between NFR-Integrated
and NFR-Enhanced. Our findings show that the
one-step approach may allow the LLM to balance
the objectives better, and generative models may
perform worse at Pass@1 on a two-step code en-
hancement, especially if the NFR is more related
to re-structuring the code (i.e., code design and
readability).

Incorporating NFRs reduces the capability of
LLMs in stably generating functionally correct
code, resulting in more variable Pass@1, espe-
cially in earlier versions of the LLMs. NFR-
Integrated and NFR-Enhanced consistently exhibit
higher standard deviations (STDEV) of Pass@1
across all benchmarks compared to Function-
Only. For example, in HumanEval, the STDEV
for Pass@1 ranges from 1.84 to 2.64 for NFR-
Integrated and 2.70 to 7.54 for NFR-Enhanced,
both much higher than the STDEV of 0.70 for
Function-Only. Moreover, we find that NFR-
Enhanced exhibits higher variability in Pass@1
than NFR-Integrated, which aligns with our ear-
lier finding that LLMs are better at generating
Junctionally correct code in one-step approach.

Earlier versions of the LLMs also experience
a much larger STDEV of Pass@]1 after incorpo-
rating NFR-Integrated or NFR-Enhanced. For ex-
ample, comparing the results of Code Design in
HumanEval using GPT-3.5-1106 vs. GPT-40-0513,
the STDEV for Pass@1 decreases from 2.71 to 1.49
for NFR-Integrated, and from to 18.72 to 1.23 for
NFR-Enhanced. These findings suggest that some
model versions may struggle to balance functional
and non-functional requirements effectively, espe-
cially in two-step enhancements, highlighting the



Task Approach Model HumanEval HumanEval-ET MBPP MBPP-ET

Pass@1 A(%) Average Pass@1 A(%) Average Pass@1 A(%) Average Pass@1 A(%) Average
GPT3.5-1106 | 76.46x0.77 - 66.83+0.51 - 63.47+0.55 - 44.75+0.64 -
GPT3.5-0125 | 72.50£0.73 - 64.33£1.05 - 67.82+0.48 - 47.21%0.39 -
Function-Only GPT40-0513 | 92.56+0.85 - 81.52+1.00 - 75.3440.58 - 53.91x0.49 -

(Functional) GPT40-0806 | 90.55:1.16 - SHOIR0T0) o einos - THS0R0TA) o a0 ss S TLSTROAL g 0as L SLI92033
Claude3.5-0620| 89.39+0.33 - 78.5420.51 - 75.970.27 - 54.94+0.13 -
Claude3.5-1022| 86.22+0.33 - 75.61+0.43 - 72.37+0.00 - 52.93+0.00 -
GPT3.5-1106 | 72.44%271 -5.26 64.63+2.80 -3.29 66.53+1.05 4.82 46.49+0.85 3.89
GPT3.5-0125 | 72.87+1.82 0.51 64.5122.15 028 67.68+1.40 -0.21 47.61£1.08 0.85

NFR  GPT40-0513 | 90.731.49 -1.98 81.69+1.84| 80.12+1.93 -1.72 71.93+2.09| 73.79£0.74 -2.06 69.50+2.06| 52.95+1.04 -1.78 49.18+1.71

Integrated GPT40-0806 | 89.33x0.77 -1.35 1 3.46% | 79.63£1.08 -0.69 { 3.45% | 73.37x1.12 -142 1 2.89% | 52.58+1.10 -1.48 | 3.91%
Claude3.5-0620| 84.02+1.85 -6.01 72.56+1.93 -7.61 70.8742.58 -6.71 49.79+2.23 937
Code Design Claude3.5-1022| 80.73+2.42 -6.37 70.12+2.62 -7.26 64.73£5.47 -10.56 45.6743.93 -13.72
(NFR-Aware) GPT3.5-1106 |52.62+18.72 -31.18 47.62+17.28 -28.74 40.49+18.34 -36.21 28.22+12.82 -36.94
GPT3.5-0125 |55.85£12.36 -22.97 49.02+11.19 -23.80 43.77£12.48 -35.46 29.9348.29 -36.60

NFR  GPT40-0513 | 88.66£1.23 -4.21 72.43+7.54| 78.90+1.23 -3.21 64.02+6.84| 71.12+1.14 -5.60 53.48+12.12| 50.87+1.00 -5.64 37.73x8.64

Enhanced GPT40-0806 | 87.07+2.24 -3.84 | 14.40%| 77.0122.07 -3.95 4 14.07%| 70.56+1.6 -5.20 1 25.27% | 50.59+1.51 -5.21 | 26.28%
Claude3.5-0620| 76.83+5.91 -14.05 67.07£5.01 -14.60 50.82422.53 -33.11 35.13+16.31 -36.06
Claude3.5-1022| 73.54+4.77 -14.71 64.5134.26 -14.68 44.12+16.65 -39.04 31.66+11.91 -40.19
GPT3.5-1106 | 73.29%3.56 -4.15 64.82+2.88 -3.01 66.93£2.38 545 47.26£1.60  5.61
GPT3.5-0125 | 73.17£2.80 0.92 64.33x1.91  0.00 68.76+1.51 139 48.41£1.19 254

NFR  GPT40-0513 | 92.74+1.30 0.19 83.51+2.42| 81.89+1.52 0.45 73.61+2.16| 73.72+1.32 -2.15 69.89+2.75| 52.67+0.74 -2.30 49.66+1.89

Integrated GPT40-0806 | 91.40+1.64 094 | 1.30% | 80.98+1.60 1.00 4 1.20% | 75.04+0.87 0.82 | 2.34% | 53.63x0.89 049 | 2.99%
Claude3.5-0620| 86.46+1.80 -3.28 75.85+1.81 -3.43 73.35£2.64 -3.45 51.66£1.52 -5.97
Readability Claude3.5-1022| 84.02+3.41 -2.55 737784326 -2.42 61.55+7.79 -14.95 44314541 -16.29
(NFR-Aware) GPT3.5-1106 [62.56+14.36 -18.18 55.30+12.76 -17.25 52.4428.67 -17.38 36.63+5.42 -18.15
GPT3.5-0125 | 62.20+6.10 -14.21 55.18+5.83 -14.22 57.3543.98 -15.44 39.442.39 -16.46

NFR  GPT40-0513 | 91.34£0.94 -1.32 76.05+5.96| 80.49+0.76 -1.26 66.87+5.29| 72.76+1.19 -3.42 57.41%8.08| 51.76+1.14 -3.99 40.67+5.51

Enhanced GPT40-0806 | 88.96x1.30 -1.76 + 10.12%| 78.66+1.15 -1.90 + 10.25%| 72.67+1.15 -236 1 19.78%| 52.15+0.85 -2.29 | 20.55%
Claude3.5-0620| 80.85+5.57 -9.55 70.85+4.73  -9.79 55.18425.14 -27.37 38.55+17.58 -29.83
Claude3.5-1022| 70.37+7.50 -18.38 60.73+6.50 -19.68 34.0548.32 -52.95 25.48+5.7 -51.86
GPT3.5-1106 | 65.73+4.29 -14.03 57.62+4.40 -13.78 45.11%11.71 -28.93 30.80+8.21 -31.17
GPT3.5-0125 | 68.29+3.50 -5.81 59.09+3.62 -8.15 42.93+13.93 -36.70 29.46+9.60 -37.60

NFR  GPT40-0513 | 89.09+1.92 -3.75 77.71%2.64| 76.4632.23 -6.21 66.95+2.79| 71.59+0.83 -4.98 58.00£5.56| 50.35+1.01 -6.60 39.91x4.03

Integrated GPT40-0806 | 88.29+1.25 -2.50 4 8.15% | 76.2241.52 -4.94 | 10.13% | 71.59+0.88 -3.82 | 18.96%| 50.02+0.7 -6.28 | 22.03%
Claude3.5-0620| 81.83+2.64 -8.46 70.12+2.96 -10.72 69.32+1.81 -8.75 46.79+1.96 -14.83
Reliability Claude3.5-1022| 73.05+2.26 -15.27 62.20+2.02 -17.74 4745421 -34.43 32.04+2.68 -39.47
(NFR-Aware) GPT3.5-1106 | 62.07+9.94 -18.82 53.48+9.17 -19.98 54.71£10.60 -13.80 38.417.58 -14.17
GPT3.5-0125 | 66.52+3.15 -8.25 58.96+3.40 -8.35 64.45£1.99 -4.97 43.65£1.68 -7.54

NFR  GPT40-0513 | 88.78+1.53 -4.08 72.75+4.54| 75.8521.71 -6.96 62.09+4.36| 72.97+1.13 -3.15 61.04+4.08| 50.82+0.77 -5.73 42.38+2.93

Enhanced GPT40-0806 | 86.1022.11 -4.91 1 14.02%| 74.51+1.46 -7.07 4 16.66%| 71.1720.88 -4.38 1 14.71%| 49.6320.69 -7.01 4 17.21%
Claude3.5-0620| 76.71+4.59 -14.19 63.54+6.12 -19.10 66.84+2.62 -12.02 46.09+1.79 -16.11
Claude3.5-1022| 56.34+5.89 -34.66 46.22+4.30 -38.87 36.11£7.24 -50.10 25.6745.05 -51.50
GPT3.5-1106 | 72.26x1.58 -5.49 63.54+2.13 -4.92 65.9542.16  3.91 47.14%1.41 534
GPT3.5-0125 | 70.79+3.45 -2.36 61.8332.93 -3.89 66.63+1.92 -1.75 47.8241.47 129

NFR  GPT40-0513 | 90.18+1.56 -2.57 81.32+1.98| 80.73x1.63 -0.97 72.04+1.78| 73.5420.47 -2.39 70.49+1.57| 52.95+0.67 -1.78 50.39+1.47

Integrated GPT40-0806 | 89.33x2.12 -1.35 1 3.89% | 80.18x1.61 0.00 | 3.30% | 74.07£0.72 -048 1 1.50% | 5356x0.8 0.36 | 1.56%
Claude3.5-0620| 83.29+1.53 -6.82 74.02+1.40 -5.76 72.04£1.76 -5.17 51.43£2.08 -6.39
Performance Claude3.5-1022| 81.32+1.98 -4.81 71.9520.96 -4.84 70.7322.36  -2.27 49.41%239 -6.65
(NFR-Aware) GPT3.5-1106 | 67.26+2.54 -22.33 54.09+5.95 -19.06 65.71£138  3.53 47.28£1.03  5.65
GPT3.5-0125 | 87.56%1.16 -7.23 59.39+2.61 -7.68 66.35+1.70 -2.17 47.00£1.18 -0.44

NFR  GPT40-0513 | 86.10£1.11 -5.40 77.02+2.70| 78.72+1.30 -3.43 68.23+2.49| 73.14+0.66 -2.92 68.53x2.01| 52.72+0.64 -2.21 48.98+1.67

Enhanced GPT40-0806 | 81.34+3.07 -491 | 8.97% | 77442086 -3.42 | 8.41% | 74.15+1.05 -038 | 4.24% | 53.82+092 0.84 1 4.30%
Claude3.5-0620| 80.49+1.22 -9.01 71712367 -8.70 70.82+1.11 -6.78 49.79£127 937
Claude3.5-1022| 77.02+2.70 -6.65 68.05£0.55 -10.00 61.03£6.14 -15.67 43.28+4.98 -18.23

Table 1: The Pass@1 column represents the Pass@1 scores along with their STDEV across 10 semantically
equivalent prompts. A indicates the percentage difference in Pass@1 of the same model version between the
NFR-aware results and the Function-Only result. The Average column provides the average Pass@1 scores and
STDEV across all models, as well as the percentage difference relative to the Function-Only results.

need for regression testing across versions.

LLMs achieve better functional correctness when

the generated code by studying NFR metrics.

NFRs are specified in the same prompt. However,
incorporating NFRs generally reduces Pass@1,
which shows challenges for LLMs in balancing
NFRs and functional correctness.

RQ2: How Do NFR-Aware Workflows Affect
Non-Functional Code Quality?

Motivation. Apart from functional correctness (i.e.,
Pass@1), how NFRs are addressed is crucial in
NFR-aware coding workflows. This RQ evaluates

Approach. We follow the approaches and metrics
described in Section 3.4 to study the non-functional
code quality. We study whether incorporating
NFRs can enhance NFR metrics by comparing the
baseline (Function-Only) with NFR-Integrated and
NFR-Enhanced. We report only the results for Hu-
manEval and MBPP because they share the same
generated code with the ET version (the ET version
contains more test cases). Since the problems have
different difficulties and length, we measure the
execution time only for problems that successfully



Task A hModel HumanEval MBPP
as pproac ¢ code smell (A%) (A%) ion-handling (A %) time (A%)]  code smell (A%) ility (A%) ion-handling (A %) time (A%)
GPT3.5-1106 0.38£0.01 2.7740.04 0.01120.003 110.7846.55 0.3240.01 3.64£0.02 0.006£0.000 48.84+133
GPT3.5-0125 0.31£0.01 342004 0.036£0.003 112.63248.09 0.27£0.01 3442003 0.011£0.000 43.1847.96
Fune.-Onl GPT40-0513 0.13+0.01 2.50+0.04 0.040+0.002 77.40+13.78| 0.10+0.00 2.72+0.03 0.129+0.007 34.69+0.21
(Func’riona{) Raw GPT40-0806 0.12+0.01 2.62+0.03 0.026+0.005 75.92+4.23] 0.12+0.00 3.18+0.02 0.130+0.005 37.23+1.37
Claude3.5-0620 0.10£0.01 2.03£0.01 0.0370.003 57.06£2.93 0.08£0.00 2.6740.01 0.06920.002 40.92+3.68
Claude3.5-1022) 0.06£0.00 2.60£0.02 0.02240.000 7031£13.75 0.03£0.00 2.6940.00 0.041£0.000 34.40£0.30
Average 0.18+0.01 2.66+0.03 0.029+0.003 84.02+21.55 ‘ 0.1 .01 3.06+0.02 0.064+0.002 39.88+2.47
GPT3.5-1106 0.25+0.01 (-34.2%) 1.79+0.10 (-35.4%) 0.055+0.058 (400.0%)  97.55+49.53(-11.94%))| 0.35+0.04 (9.4%) 3.7120.18 (1.9%)  0.126+0.118 (2000.0%) 51.66+11.29(5.77%)
GPT35-0125 | 0224003 (-29.0%) 268020 (21.6%)  0.0510.038 (41.7%) 92.93232.03(-17.49%) 028003 (3.7%) 4684048 (36.0%)  0.11720.106 (963.6%) 58.78211.12(36.13%)
Ner  GPT40-0513 | 006001 (-538%) 1355017 (46.0%)  0.095:0.027(137.5%)  SL.5T625(539%) 0.06001 (-40.0%) 2234012 (180%)  036350.49 (1814%)  38.6424.47(11.39%)
Integrated GPT40-0806 | 0.06:0.00 (:50.0%) 127015 (515%)  0.091:0.018 (250.0%)  81.2246.32(6.98%) 0.05:0.00 (58.3%) 1794008 (43.7%) ~ 0.363:0.029(179.2%)  38.30£3.03(287%)
Claude3.5-0620] 0.0240.01 (-80.0%) 0.79+0.10 (-61.1%)  0.148£0.064 (300.0%) ~47.27+15.87(-17.16%)| 0.0320.01 (-62.5%) 1.66+0.18 (:37.8%)  0.454£0.142 (558.0%)  36.4220.18(-11.00%)
Claude3.5-1022 0.02£0.01 (-66.7%) 1.54£0.50 (-40.8%)  0.176£0.118 (700.0%)  55.95£1.23(-2042%) 0.0120.01 (-66.7%) 195:0.64 (-27.5%)  0.445:0.171 (985.4%)  35.18+1.83(227%)
Code Design Average 0.10£0.01 (| 44.4%)1.57£0.20 (| 41.0%) 0.103£0.054 (+ 255.2%) 76.08218.54 (| 9.45%)[0.1320.02 (| 13.3%)2.67£0.28 (| 12.7%) 0.31120.103 ( 385.9%) 43.16+5.32 (1 8.22%)
(NFR-Aware) GPT3.5-1106 | 0.14:0.05 (-632%) 1012033 (:63.5%)  0.015£0.017 (36.4%)  111.7989.17(0.91%) 0.10£0.05 (-68.8%) 283122 (-22.3%)  0.024£0.018 (300.0%)  49.19+457(0.72%)
GPT3.5-0125 0.07£0.03 (-77.4%)  1.30£0.21 (-62.0%) 0.032+0.012 (-11.1%) ~ 64.45+24.73(-42.78%)| 0.08+0.02 (-70.4%) 3.27+0.86 (-4.9%) 0.049+0.042 (345.5%) 43.46+3.36(0.65%)
GPT40-0513 | 0.05£0.01 (-61.5%) 1.48=0.10 (-40.8%) 0.064+0.017 (60.0%)  72.02£10.94(-6.95%)| 0.03x0.00 (-70.0%) 2.29+0.15 (-15.8%) 0.220£0.061 (70.5%)  41.55+0.69(19.78%)

EnER i GPT40-0806 | 0.05:0.01 (-58.3%) 1.60+0.08 (-38.9%)

Claude3.5-0620| 0.02+0.01 (-80.0%) 0.97+0.25 (-52.2%)
Claude3.5-1022) 0.02+0.00 (-66.7%)  1.00£0.24 (-61.5%)

0.075+0.022 (188.5%)
0.155+0.088 (318.9%)
0.196+0.076 (790.9%)

71.32£10.69(-6.06%)|  0.03£0.01 (-75.0%)  2.30£0.11 (-27.7%)
55.73+21.47(-2.33%)| 0.01£0.00 (-87.5%) 0.78+0.24 (-70.8%)
62.89+4.48(-10.55%)|  0.01£0.00 (-66.7%)  1.61£0.20 (-40.1%)

0.227+0.062 (74.6%)  41.69+0.28(11.98%)
0.384+0.076 (456.5%)  38.38+4.90(-6.21%)
0.437+0.097 (965.9%) ~ 43.84£19.54(27.44%)

Average 0.0620.02 (1 66.7%)1.230.20 (. 53.8%) 0.090+0.039 ( 210.3%)73.03+26.91 (| 13.08%)|0.0520.02 (| 66.7%)2.18+0.46 (| 28.8%) 0.22420.059 (1 250.0%) 43.02+5.56 (1 7.87%)
GPT3.5-1106 | 0.21:0.04 (-44.7%) 1.58£0.09 (-43.0%) 0.015£0.007 (36.4%) ~ 97.58+46.15(-11.92%)|  0.30£0.03 (-6.3%)  3.42:0.28 (-6.0%)  0.012x0.005 (100.0%)  52.02+5.54(6.51%)
GPT3.5-0125 | 0.18:0.03 (-41.9%) 247+0.24(-27.8%)  0.016x0.005 (-55.6%)  120.41£49.29(6.91%) 0.240.02 (-11.1%) ~ 4.14x0.49 (20.3%) 0.013£0.006 (18.2%)  49.45+10.22(14.52%)

NFR  GPT40-0513 | 0.07£0.01 (46.2%) 1.3820.15 (44.8%) 0.038£0.012 (-5.0%) 81.52£9.24(5.32%) 0.08+0.01 (-20.0%) 2.26+0.10 (-16.9%) 0.122+0.031 (-54%)  37.39+2.32(7.78%)
Integrated GPT40-0806 | 0.06:0.01 (-50.0%) 1.25:0.07 (-52.3%) 0.029+0.007 (11.5%)  84.49+531(11.29%)| 0.0720.01 (-41.7%) 1.86£0.19 (41.5%)  0.107+0.033 (-17.7%)  36.39+2.33(-2.26%)

Claude3.5-0620| 0.04+0.02 (-60.0%) 0.97+0.20 (-52.2%)
Claude3.5-1022| 0.02+0.01 (-66.7%) 1.38+0.20 (-46.9%)

0.0840.042 (127.0%)
0.0880.040 (300.0%)

44.04%13
61.56+10.61(-12.44%) 0.02+0.01 (-33.3%) 1.61x0.10 (-40.1%)

54(-22.82%)| 0.05£0.02 (-37.5%) 1.5420.24 (-42.3%) 0.261x0.097 (278.3%)

0.22620.086 (451.2%)

39.048.94(-4.59%)
35.331.56(2.70%)

Readability Average 0.10£0.02 (| 44.4%)1.5120.16 (| 43.2%)  0.045£0.019 (1 55.2%) 81.60+22.35 (| 2.88%){0.1240.02 (| 20.0%)2.470.23 (| 19.3%) 0.124£0.043 (+ 93.8%) 41.60£5.15 (1 4.31%)
(NFR-Aware) GPT3.5-1106 | 0.18+0.05 (-52.6%) 1.16£0.27 (-58.1%)  0.007+0.004 (-36.4%)  96.66+51.73(-12.75%)| 0.20£0.05 (-37.5%)  3.46+0.55 (-4.9%) 0.009+0.004 (50.0%)  52.68+3.40(7.86%)
GPT3.5-0125 | 0.09:0.02(-71.0%) 146£0.14(-57.3%)  0.019+0.002 (-47.2%) 88.61£55.58(-21.33%) 0.140.02 (-48.1%) ~ 4.25:0.23 (23.5%) 0.0130.006 (18.2%)  45.40£10.62(5.14%)
GPT40-0513 | 0.05:0.01 (-61.5%) 148+0.08 (-40.8%)  0.032£0.006 (-20.0%)  78.37£11.33(1.25%) 0.040.01 (-60.0%) 2.230.05 (-18.0%) 0.147£0.013 (14.0%)  41.32+0.29(19.11%)

En]l\l’fnlied GPT40-0806 0.06+0.01 (-50.0%) 1.6120.11 (-38.5%) 0.020+£0.006 (-23.1%)

Claude3.5-0620| 0.02+0.01 (-80.0%) 0.90%0.18 (-55.7%) 0.083+0.024 (124.3%)
Claude3.5-1022| 0.02+0.00 (-66.7%) 0.86%0.15 (-66.9%) 0.173+0.037 (686.4%)

50.04£20.34(-12.30%)  0.020.01 (-75.0%)  0.88+0.40 (-67.0%)
60.46+4.04(-14.01%)|  0.01£0.00 (-66.7%)  1.10£0.06 (-59.1%)

76.72+4.10(1.05%)|  0.04+0.01 (-66.7%) 2.250.11 (-29.2%) 0.105+0.010 (-19.2%) ~ 41.66+0.23(11.90%)
0.2720.100 (294.2%) ~ 36.56%1.15(-10.65%)

0.36420.050 (787.8%)  47.31224.16(37.53%)

Average ‘0.07&0.02 (1 61.1%)1.2420.15 (] 53.4%)  0.056£0.013 (1 93.1%)75.14+24.52 (. 10.57%)‘0.0&0,02 (} 53.3%)2.3620.23 (] 22.9%) 0.152+0.031 (1 137.5%)44.156.64 (1 10.71%)
GPT3.5-1106 0.4020.10 (5.3%)  1.92+0.23 (-30.7%) 1.362+0.311 (12281.8%)  117.04£54.46(5.65%)| 0.45+0.12 (40.6%) 2.72+0.54 (-25.3%) 1.785£0.212(29650.0%)  42.01+3.51(-13.98%)
GPT3.5-0125 0.3420.10 (9.7%) 2.81£0.40 (-17.8%)  1.342£0.247 (3627.8%)  117.86241.17(4.64%)| 0.3620.07 (33.3%)  3.2530.62 (-5.5%) 1.601£0.222 (14454.5%)  40.960.67(-5.14%)
GPT40-0513 0.10£0.03 (-23.1%)  1.66£0.19 (-33.6%)  0.9100.136 (2175.0%) 87.69+1.44(13.29%)|  0.18+0.08 (80.0%) 2.75£0.15 (1.1%) 1.588+0.192 (1131.0%) 35.44+1.81(2.16%)

NFR

Integrated GPT40-0806 | 0.10£0.04 (-16.7%)  1.45:0.16 (-44.7%)

Claude3.5-0620| 0.05+0.01 (-50.0%) 1.07+0.05 (-47.3%)
Claude3.5-1022) 0.03+0.01 (-50.0%) 1.7620.16 (-32.3%)

0.9420.157 (3523.1%)
1.1770.152 (3081.1%)
1.006+0.079 (4472.7%)

90.48+4.98(19.18%)|
53.22+7.62(-6.73%)|  0.05:0.01 (-37.5%) 1.98+0.45 (-25.8%)
81.29+41.04(15.62%)  0.01£0.00 (-66.7%)  1.48+0.20 (-45.0%)

0.170.08 (41.7%)  2.61£0.19 (-17.9%)  1.58420.204 (1118.5%)
1.3540.107 (1862.3%)

1.115+0.075 (2619.5%)

35.09£0.27(-5.75%)
43.66:15.62(6.70%)
34.69+0.43(0.84%)

Reliability Average 0.17£0.05 (1. 5.6%)1.78+0.20 (| 33.1%)1.1230.180 (1 3772.4%) 91.27+25.12 (1 8.63%)[0.20+0.06 (1 33.3%)2.47+0.36 (| 19.3%)1.504+0.169 (1 2250.0%) 38.64+3.72 (| 3.11%)
(NFR-Aware) GPT3.5-1106 0.19+0.05 (-50.0%)  0.98+0.18 (-64.6%)  0.726+0.250 (6500.0%)  93.26+64.29(-15.82%)|  0.30£0.10 (-6.3%) 2.52+0.56 (-30.8%) 1.653+0.345 (27450.0%) 50.54+3.06(3.48%)
GPT3.5-0125 0.15+0.04 (-51.6%) 1.7320.22 (-49.4%)  0.675+0.163 (1775.0%)  106.82+31.82(-5.16%)  0.27#0.08 (0.0%)  4.03x0.37 (17.2%) 1.448+0.264 (13063.6%)  46.30£11.45(7.23%)

GPT40-0513 0.07+0.02 (-46.2%)  1.76£0.12 (-29.6%)  0.797+0.128 (1892.5%) 78.57£5.62(1.51%)| 0.07+0.05 (-30.0%) 2.3020.11 (-15.4%) 1.190£0.168 (822.5%)  41.09+0.25(18.45%)

EaeR o GPT40-0806 | 0.08£0.02(-33.3%) 1.9320.14 (-26.3%)

Claude3.5-0620| 0.04+0.01 (-60.0%) 0.94+0.25 (-53.7%)
Claude3.5-1022| 0.01+0.00 (-83.3%)  1.09+0.07 (-58.1%)

0.9970.134 (3734.6%)
1.036+0.142 (2700.0%)
0.9000.086 (3990.9%)

48.61x11.23(-14.81%)  0.04£0.01 (-50.0%) 0.91x0.08 (-65.9%)
83.95+46.81(19.40%)  0.01£0.00 (-66.7%)  1.1720.19 (-56.5%)

77.81£3.87(2.49%)| 0.08+0.05 (-

.3%)  2.4440.15 (-23.3%) 1.32240.156 (916.9%)
1.323+0.098 (1817.4%)

1.0270.062 (2404.9%)

37.0122.69(-0.59%)
35.641.74(-12.90%)
36.113.57(4.97%)

Average 0.09£0.02 (. 50.0%)1.4120.16 (1 47.0%)0.855+0.150 (1 2848.3%) 81.50+27.27 (| 3.00%)0.1320.05 (| 13.3%)2.230.24 (| 27.1%)1.32740.182 (1 1973.4%) 41.1243.79 (1 3.11%)
GPT3.5-1106 | 0.32:0.06 (-15.8%) 2.41x0.18 (-13.0%) 0.014x0.003 (27.3%) ~ 62.87+3.01(-43.25%)|  0.32:0.05 (0.0%)  5.180.22 (42.3%) 0.01120.003 (83.3%)  47.05£6.29(-3.67%)
GPT3.5-0125 | 027:0.04 (-12.9%) 3212022 (-6.1%)  0.016x0.005 (-55.6%) 63.48+33.85(-43.64%)  0.28+0.06 (3.7%)  5.99£0.30 (74.1%) 0.01120.002 (0.0%)  51.61+10.93(19.52%)

NFR GPT40-0513 | 0.07+0.01 (-46.2%) 13820.11 (44.8%)  0.023£0.008 (-42.5%) 79.44+8.68(2.64%)  0.13£0.02 (30.0%) 3.31x0.19 21.7%)  0.107£0.039 (-17.1%)  36.25+2.48(4.50%)
Integrated GPT40-0806 | 0.08£0.00(:33.3%) 1.6420.13 (:37.4%) 0.027+0.010 (3.8%)  74.34:1.00(-208%)  0.120.02 (0.0%)  3.26+0.18 (2.5%)  0.103£0.026 (-20.8%)  34.50£0.43(-7.33%)

Claude3.5-0620| 0.05+0.02 (-50.0%) 1.67+0.11 (-17.7%)
Claude3.5-1022) 0.02+0.01 (-66.7%) 2.330.08 (-10.4%)

0.028+0.005 (-24.3%)
0.033+0.008 (50.0%)

35.20£1.72(-38.31%)| 0.05+0.00 (-37.5%)
98.39+24.43(39.94%)|  0.020.00 (-33.3%) 2.42+0.11 (-10.0%)

2.5120.12 (-6.0%) 0.096+0.047 (39.1%)

0.070+0.027 (70.7%)

34.62+0.64(-15.40%)
37.19+2.53(8.11%)

Performance Average 0.14£0.02 (| 22.2%)2.1120.14 (| 20.7%)  0.02420.006 (|, 17.2%)68.95+12.11 (| 17.94%)| 0.15:0.02 (| 0.0%)3.78£0.19 (1 23.5%)  0.066x0.024 (1 3.1%) 40212388 (1 0.83%)
(NFR-Aware) GPT3.5-1106 | 0.17+0.04 (-55.3%) 1.25+0.15 (-54.9%)  0.007+0.003 (-36.4%) 72.26x34.20(-34.77%)  0.29+0.06 (-9.4%) 4.42+0.26 (21.4%)  0.01320.003 (116.7%)  47.277.24(-3.21%)
GPT3.5-0125 | 0.21:0.04 (-32.3%) 0.11(-26.0%)  0.019:0.005 (47.2%) ~ 53.59+29.05(-52.42%)  0.25:0.04 (-7.4%)  5.04+0.29 (46.5%) 0.018:0.008 (63.6%)  44.76+2.69(3.66%)
GPT40-0513 | 0.07:0.01 (-46.2%) 1.26+0.06 (-49.6%)  0.0300.011 (:25.0%)  88.52+8.30(14.37%) 0.080.01 (-20.0%)  2.8020.16 (2.9%)  0.112£0.041 (-13.2%)  40.7620.19(17.50%)

EER o GPT40-0806 | 0.08:0.01 (333%) 1.46+0.11 (-44.3%)

Claude3.5-0620| 0.03+0.00 (-70.0%) 1.30%0.09 (-36.0%)
Claude3.5-1022) 0.03+0.01 (-50.0%) 1.90%0.08 (-26.9%)

0.036+0.008 (38.5%)
0.057+0.018 (54.1%)
0.062+0.019 (181.8%)

67.80£29.01(18.82%)  0.0420.01 (-50.0%) 2.21%0.13 (-17.2%)
111.85£10.65(59.08%)| 0.01+0.00 (-66.7%) 1.750.15 (-34.9%)

76.42+2.33(0.66%)  0.08+0.01 (-33.3%) 2.590.15 (-18.6%)  0.11420.046 (-12.3%)
0.1420.055 (105.8%)

0.135+0.062 (229.3%)

41.35+0.27(11.07%)
38.561.56(-5.77%)
34.82+1.96(1.22%)

Average

\1).11&0.02 (1 44.4%)1.62+0.10 (. 39.1%)  0.035£0.011 (1 20.7%) 78.41+18.92 (| &68%)‘(].I3illl)2 (1 13.3%) 3.14£0.19 (+ 2.6%)  0.089+0.036 (1 39.1%) 41.25+2.32 (1 3.44%)

Table 2: Columns code smell density, unreadability density, exception-handling density, and execution time
(millisecond) represent the NFR metrics (Section 3). Each metric includes standard deviations and A%, which
indicates the percentage difference between NFR-aware results and Function-Only results. Average summarizes
mean scores, standard deviations, and percentage differences relative to the Function-Only results across all models.

pass the tests across all workflows.

Result. Incorporating NFRs consistently en-
hances NFR metrics. Table 2 presents the NFR
results for Function-Only, NFR-Integrated, and
NFR-Enhanced across all four NFRs and bench-
marks. Notably, incorporating NFRs consistently
improves all NFR metrics, irrespective of the spe-
cific NFRs. For example, considering code de-
sign NFRs enhances exception-handling density by
210.3%-255.2%, suggesting that incorporating
even just one NFR may improve other dimensions
of non-functional code quality .

Unlike Pass@1, NFR-Enhanced leads to a
larger improvement in certain non-functional

code quality than NFR-Integrated. While NFR-
Integrated outperforms NFR-Enhanced at Pass@1
(RQ1), NFR-Enhanced excels in improving NFR
metrics. For code smell density, NFR-Integrated
achieves a reduction of 13.3% and 44.4% on Hu-
manEval and MBPP, respectively, whereas NFR-
Enhanced reduces by 66.7% for both datasets. Sim-
ilarly, for readability, NFR-Integrated improves
by 19.3%—-43.2%, while NFR-Enhanced achieves
22.9%-53.4% enhancements. Interestingly, an
inverse pattern emerges for reliability, where
NFR-Integrated outperforms NFR-Enhanced with
improvements of 2250.0%-3772.4% for Hu-
manEval and MBPP, compared to NFR-Enhanced’s



1973.4%-2848.3%. A similar trend is observed for
performance metrics, with NFR-Integrated reduc-
ing execution time by 17.94% compared to NFR-
Enhanced’s 6.68% in HumanEval, but no statis-
tically significant difference in MBPP (t-test’s p-
value > 0.05). Our findings suggest that the two
NFR-aware workflows have varying benefits de-
pending on the NFRs. While NFR-Enhanced is
more effective for improving readability and reduc-
ing code designs, NFR-Integrated may be better
suited for addressing runtime-related requirements
like exception handling and performance.

On average, NFR-Integrated and NFR-
Enhanced share similar levels of stability in the
NFR metrics, yet some versions of the models
show much higher variability. Function-Only has
the lowest STDEV across all NFR metrics, partly
because of its lack of consideration of NFRs. In
comparison, NFR-Integrated and NFR-Enhanced
have larger STDEVs, but the values are often
stable. For example, code smell density has an
STDEV of 0.01-0.02, and unreadability density
has an STDEV of 0.15-0.23 for both NFR-aware
workflows. Similar to RQ1, some versions of the
LLMs have much larger variability across all work-
flows. For instance, in HumanEval, the STDEV
for code smell density (the NFR-Integrated row
in Readability) is 0.24 for GPT3.5-0125 and 0.07
for GPT40-0806, whereas the newer model shows
much lower variability. However, a slightly older
model, GPT3.5-1106, shows a lower STDEV of
0.09. Yet, NFR-Enhanced in Readability has an
opposite finding, where GPT3.5-1106 has a larger
STDEV than GPT3.5-0125 (0.27 vs. 0.14). This
finding suggests that NFR’s stability can be af-
fected by specific model refinements, and the ef-
fect can be different for different NFR-aware
workflows, which may not always correlate with
the model’s general improvements. Future research
should consider regression testing and data selec-
tion strategies during fine-tuning and model train-
ing to consider NFR and improve stability.

Incorporating NFRs improves the metrics of
NFRs, with NFR-Enhanced excelling in readabil-
ity and code structure-related design, and NFR-
Integrated in exception handling and runtime-
related performance. Variability across models
highlights the need for careful regression testing
and data selection to ensure consistent perfor-
mance.

5 Discussion & Conclusion

5.1 Discussion of Implications

Our findings highlight implications for two key
groups of stakeholders: (i) practitioners and (ii)
LLM developers.

For Practitioners. Our findings suggest that
practitioners should prioritize the NFR-Integrated
when aiming to optimize both functional and non-
functional requirements within a single iteration.
This approach demonstrates lower variability and
improved balance between competing objectives
(i.e., Pass@1 vs. non-functional code quality).
For LLM Developers. The observed trade-offs
between functional correctness and non-functional
quality highlight the future direction to improve
training process and fine-tuning. Future studies on
LLMs may focus on enabling models to effectively
address both functional and non-functional require-
ments, thereby reducing the observed trade-offs
and variability. Moreover, future research could in-
vestigate advanced prompt engineering techniques
or optimization mechanisms to mitigate perfor-
mance variability and achieve superior alignment
with complex software requirements.

5.2 Conclusion

This study investigates the challenges and opportu-
nities associated with integrating NFRs into code
generation workflows using LLMs. We propose
NFRGen, a generalizable framework for evaluating
LLM-generated code, which incorporates diverse
workflows and non-functional quality metrics. The
findings from our results underscore significant
trade-offs between functional correctness and non-
functional code quality attributes, such as design,
readability, reliability, and performance.

Our study demonstrates that while incorporat-
ing NFRs reduces the functional correctness met-
ric (i.e., Pass@1), notable improvements are ob-
served in non-functional code quality metrics, in-
cluding reductions in code smells and enhanced
exception-handling density. The analysis of work-
flows reveals complementary strengths: the NFR-
Integrated performs better in runtime-oriented as-
pects, such as performance and exception handling,
whereas the NFR-Enhanced demonstrates higher
efficiency in addressing structural aspects, such as
readability and design improvements. By provid-
ing real-time feedback, NFRGen can be used to
improve code quality, reduce manual testing, and
enhance development efficiency.



Limitations

We use a certain set of widely used LLMs to con-
duct the experiments. The results may not apply
to all models, as results may vary across different
architectures and training methods. Future studies
could benefit from incorporating a broader range
of models to validate the results.

In this study, we have primarily examined
Python datasets. While Python is a widely used
language, the generalizability of our framework to
other programming languages remains to be fully
explored. However, our framework is not inher-
ently language-specific. It is expected to be appli-
cable to other languages and can be further verified
by future studies.

The main objective of our framework is to evalu-
ate the impact of different NFR-aware coding work-
flows on Pass@1 and non-functional code quality.
Although NFRGen is not explicitly pre-trained for
code refinement, it aligns with how developers use
LLMs (e.g., zero-shot) for both code generation
and refinement tasks. The insights derived from
our evaluation can guide improvements in future
model architectures, help prioritize areas for code
optimization, and inform strategies for more effec-
tive handling of NFRs in generated code. Future
work could investigate adjusting model training
processes or providing more targeted NFR opti-
mization during code generation and refinement.

Ethics Statement

We declare that all authors of this paper adhere to
the ACM Code of Ethics and uphold its code of con-
duct. The aim of our work is to assess the robust-
ness of LLMs in incorporating non-functional re-
quirements (NFRs) to improve both functional cor-
rectness (Pass@1) and non-functional code qual-
ity. Our findings demonstrate that LLMs are capa-
ble of enhancing both dimensions, providing valu-
able insights for future research, and potential im-
plications for industrial adoption, as commercial
projects must adhere to various quality assurance
practices, including non-functional requirements.
Nevertheless, our results indicate that LLMs still re-
quire further refinement to achieve a better balance
between functional and non-functional quality.
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Error-handle Code Smell

Readability Performance

Incorporate various error handling techniques
Implement multiple exception handling strategies
Apply different error handling mechanisms
Investigate different methods of managing exceptions
Integrate diverse error handling approaches

Utilize multiple error management techniques
Experiment with various ways to handle exceptions

Minimize code smell

Eliminate code smell

Identify and address different code smells
Apply best practices to reduce code smell
Mitigate code smell

Tackle different code smell issues
Imol ~hni

Investigate various strategies to handle code smell

Combine different error handling practices
Evaluate multiple exception management strategies
Develop a range of error handling solutions

Resolve code smell problems
Optimize code to avoid code smell

to prevent code smell

Evaluate different coding practices for readability
Investigate various techniques to enhance readability
Improve the code readability

Ensure the code is readable

Apply coding practices that enhance dability
Focus on readability

Enhance the readability of the code

Optimize for performance

Focus on enhmrmance
Ensure the code runs efficiently
Prioritize runtime optimization

Keep performance in mind while solving
Aim for high-performance execution
Reduce computational overhead
Implement strategies to make the code more lable | Emphasize speed and efficiency
Optimize the code for better readability Ensure minimal resource consumption
Adopt coding practices for improved readability Maximize performance in your solution

Table 3: LLM generated prompt templates to consider non-functional requirements in code generation.

B Discussion on Metric Selection and
Pylint

We measure the ability of LLMs to generate code
based on non-functional requirements (NFRs) by
focusing on specific dimensions such as maintain-
ability, reliability, and performance. These dimen-
sions are commonly used in software quality as-
surance and directly influence the quality of the
generated code (Glinz, 2007). Morover, given the
nature of datasets, generating function-level code,
these NFRs are reasonable to evaluate compared to
other NFRs such as portability and scalability.

In our study, we chose code design as a proxy for
maintainability. For code design, some prior stud-
ies use metrics like cyclomatic complexity (Shep-
perd, 1988), where high complexity makes it hard
to maintain code. However, in our research, we
utilize code smell and readability as separate prox-
ies for code design. We differentiate code design
and readability since maintainability is too broad
and may encompass both dimensions. Moreover,
for LLM-generated code, factors such as readabil-
ity, adherence to coding standards, and code smell
(recurring bad design patterns) provide more inter-
pretable and valuable meaning for maintainability
for developers as opposed to control flow complex-
ity (Shepperd, 1988).

We rely on Pylint, the most popular Python-
based linter, to measure code smells and readabil-
ity (Pylint, 2024). It identifies readability issues
as "convention", which detects common coding
errors like unused imports, and inconsistent nam-
ing conventions (PyCQA, 2024b). It also identi-
fies code smell issues as "refactoring”" (PyCQA,
2024a). Refactoring is a small structural charac-
teristic in code that indicates a potential problem
(code smells), suggesting that the code should be
structurally changed, without changing its behavior,
to improve design (Fowler, 2018).

Reliability is another NFR we study in LLM-
generated code. Reliability may involve respond-
ing to unexpected events when a computer pro-
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gram runs (Pham, 2000). In particular, we measure
whether the generated code includes exception-
handling mechanisms, such as try-catch blocks,
to gain insight into how well the code anticipates
and manages potential errors.

C Failure Examples When The LLM
Attempts To Address Both Functional
And Non-Functional Requirements

In this section, we present a few code examples ex-
posed by NFRGen, demonstrating that LLMs make
some mistakes when addressing non-functional re-
quirements such as reliability, readability, perfor-
mance, and code design.

C.1 Reliability

To enhance reliability, LLMs often include addi-
tional exception-handling statements in the code.
However, they sometimes make errors, such as us-
ing incorrect try-except formats or raising generic
exceptions instead of returning specific results as
described in the problem requirements.

Here is an example where the LLM made an
error in the try-except format. As shown in Code 1,
although the LLM attempted to incorporate error-
handling logic, it failed to include the required
except statements. This oversight caused the code
to malfunction and resulted in an IndentationError
when executed during evaluation.

def find_char_long(text):
>?’’Write a function to find all words which are
at least 4 characters long in a string.

P

try:

words = text.split()

long_words = [word for word in words if len(word
) >= 4]

return long_words
print("Input must be a string")
print("An error occurred:", e)

Code 1: MBPP-7 Test Failure: LLM Added Error
Handling but Made a Format Error.

Even when the LLM ensures the correct for-
mat, the additional exception-handling statements
may sometimes contradict the functional require-



N

3. The months should not be less than 1 or

ments. For example, as shown in Code 2, the error-
higher than 12.

handling code introduces extra checks for the tri- | 4. The date should be in the format: mm-dd-yyyy
angle inequality theorem on lines 23-24, leading ° fer exemple:
10 valid_date(’03-11-2000’) => True

to failure. Specifically, the function’s docstring 11 valid_date(’15-01-2012") => False
. 12 valid_date(’04-0-2040’) => False
states that such inputs should return False. How- ; valid_date(’06-04-2020°) => True

ever, the error-handling logic raises a ValueError ! valid_date(’06/04/2020") => False

instead, resulting in failure. This discrepancy high- i« # Check if the date string is empty
17 if not date:

lights that while NFR-aware code generation can s et False
produce functionally correct logic, it may conflict " LS S LS B G  C
with the specified evaluation criteria. 20 A e 1S AR ar deielal gs =t e detell
| def right_angle_triangle(a, b, c): 21 return False
2 v 22 # Split the date string into month, day, and
3 Given the lengths of the three sides of a year
triangle. Return True if the three 23 try:
4 sides form a right-angled triangle, False 24 month, day, year = map(int, date.split(’-’))
otherwise. 25 except ValueError:
5 A right-angled triangle is a triangle in which 26 return False
one angle is right angle or 27 # Check if the month is valid
6 90 degree. 28 if month < 1 or month > 12:
7 29 return False
8 Example: 30 # Check if the day is valid based on the month
9 right_angle_triangle(3, 4, 5) == True 31 if month in {1, 3, 5, 7, 8, 10, 12}
10 right_angle_triangle(1, 2, 3) == False 32 if day < 1 or day > 31:
11 r 33 return False
12 34 elif month in {4, 6, 9, 11}:
13 # Type checking 35 if day < 1 or day > 30:
14 for side in (a, b, c¢): 36 return False
15 if not isinstance(side, (int, float)): 37 elif month == 2:
16 raise TypeError(f”Invalid type: {side}. 38 if day < 1 or day > 29
All sides must be numbers (int or float).") 39 return False
17 40 # If all checks pass, the date is valid
18 # Value checking 41 return True
19 if a <= @ or b <= 0 or c <= 0:
20 raise ValueError("All sides must be positive Code 3: HumanEval-124 correct but has code smell.
numbers.")
21
22 i i i ey .
I ’;‘J;li”ﬁliﬁﬂejﬁailiyct2§°gezr b+ c <= a: LLMs may have the capability to avoid code
2 formra;fri";:g”ff"[;"( e glven eides o mot smells, but they can sometimes make mistakes dur-
25 ing the process. For instance, as shown in Code 4,
26 # Check for right angle using Pythagorean . .
heeren when prompted to avoid a specific code smell, the
27 sides = sorted([a, b, c # Sort the sides to L : :
T 1((Eng'e5£ o LLM attempted to mitigate it by using a regular
28 return sides[01**2 + sides[11x*2 == sides[2]*2 expression pattern. However, it failed to produce

Code 2: HumanEval-157 Test Failure Due to raise  a correct and functional pattern. These inaccura-
ValueError Which Violates the Functional Requirement. cies resulted in AssertionError exceptions during

evaluation when the function was executed.
C.2 Code Design

When provided with only functional requirements,
the LLM can generate correct code; however, the
generated code may still exhibit code smell issues. :
K K . # Define the regex pattern for the date format
For instance, as shown in Code 3, the function-only ¢ date_pattern = re.compile(r’*(0[1-91]1[0-21)
. . . . -(0[1-91|1[121L0-9113[011)-(\d{43})$’)
solution passes the evaluation but relies heavily on o

multiple if-else statements for validation checks, !) ! theck if the date matches the pattern
match = date_pattern.match(date)

1 import re

2 def valid_date(date):

3 # Check if the date string is empty
4 if not date:

5 return False

introducing potential maintainability concerns. 12 if not match:
13 return False
I def valid_date(date): 14
2 """You have to write a function which validates 15 # Extract month, day, and year from the date
a given date string and 16 month, day, year = map(int, match.groups())
3 returns True if the date is valid otherwise 17
False. 18 # Define the number of days in each month
4 The date is valid if all of the following rules 19 days_in_month = {
are satisfied: 20 1: 31, 2: 29, 3: 31, 4: 30, 5: 31, 6: 30,
5 1. The date string is not empty. 21 7: 31, 8: 31, 9: 30, 10: 31, 11: 30, 12: 31
6 2. The number of days is not less than 1 or 22 }
higher than 31 days for months 1,3,5,7,8,10,12. 23
And the number of days is not less than 1 or 24 # Check if the day is valid for the given month
higher than 30 days for months 4,6,9,11. And, 25 if day < 1 or day > days_in_month[month]
the number of days is not less than 1 or higher 26 return False
than 29 for the month 2. 27 return True



28

IS

1
N
3

10
11
12

13

14
15

True # match fail

assert candidate("03-15-957")

Code 4: HumanEval-124 Test Failure while LLM using
re to avoid code smell but introduce other error.

C.3 Readability

Similar to its ability to address code design, LLMs
can enhance the readability of generated code.
However, we observed that LL.Ms sometimes pri-
oritize suggesting strategies over producing more
readable code. For example, as shown in Code 5,
while the LLM attempted to improve code readabil-
ity, it occasionally failed to generate valid code. In-
stead, it returned strategy descriptions as responses,
which led to evaluation failures. When executed,
this resulted in a SyntaxError during evaluation.

One way to enhance readability and improve the code
is to add comments to explain the logic and
steps of the algorithm. This will make it
easier for others (and yourself) to understand
the code.

Another way to improve the code is to use more
descriptive variable names. For example,
instead of using "1"” as the variable name for
the list, you could use a more descriptive name

such as "input_list".

Additionally, you could extract the logic inside the
function into smaller, more descriptive
functions. For example, you could create a

function to check if a triple of elements sum
to zero, and then call that function inside the
main function.

Lastly, you could add type hints to the function
signature to make it clear what type of input
the function expects and what type of output it

returns. This can improve readability and help
catch potential errors early on.

Code 5: HumanEval-40 Test Failure while LLM
improve readability.

C.4 Performance

In the absence of specific requirements for code
generation, LLMs may prioritize generating correct
code while overlooking other critical factors, such
as execution time. For instance, as shown in Code 6,
the function-only solution implements an O(n?)
algorithm. While the code is functionally correct,
it is computationally inefficient.

def car_race_collision(n: int):

Simulates the car collisions explicitly and

calculates the number of collisions.

Arguments:

n -- Number of cars in each group (left-to-right
and right-to-left)

Returns:

int -- Number of collisions

# Initialize collision count
collisions = 0@

# Iterate through each car in the left-to-right
group
for _ in range(n):

# Each car collides with all cars in the
right-to-left group

16
17
18

13

_ in range(n):
collisions += 1
return collisions

for

Code 6: HumanEval-41, Function-only, correct but
slow.

When tasked with optimizing an algorithm’s run-
time, the LLM occasionally makes mistakes, such
as using incorrect formulas to solve the problem.
For instance, in Code 7, the correct formula for
calculating the number of collisions is n x n. How-
ever, the LLM sometimes employed alternative
mathematical formulas, resulting in incorrect out-
puts. During evaluation, these inaccuracies led to
AssertionError exceptions when the function was
executed.

Correct and Efficient
int):

# Performance-Code-1:
def car_race_collision(n:
return n * n

# Performance-Code-2: Efficient but Incorrect
def car_race_collision(n: int):
return n * (n - 1) // 2

Code 7: HumanEval-41 Test Failure while LLM
improve performance but use wrong formula.



