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Abstract

Density estimation is essential for generative modeling, particularly with the rise
of modern neural networks. While existing methods capture complex data distri-
butions, they often lack interpretability and uncertainty quantification. Bayesian
nonparametric methods, especially the Pólya tree, offer a robust framework that
addresses these issues by accurately capturing function behavior over small in-
tervals. Traditional techniques like Markov chain Monte Carlo (MCMC) face
high computational complexity and scalability limitations, hindering the use of
Bayesian nonparametric methods in deep learning. To tackle this, we introduce the
variational Pólya tree (VPT) model, which employs stochastic variational inference
to compute posterior distributions. This model provides a flexible, nonparametric
Bayesian prior that captures latent densities and works well with stochastic gra-
dient optimization. We also leverage the joint distribution likelihood for a more
precise variational posterior approximation than traditional mean-field methods.
We evaluate the model performance on both real data and images, and demonstrate
its competitiveness with other state-of-the-art deep density estimation methods. We
also explore its ability in enhancing interpretability and uncertainty quantification.
Code is available at https://github.com/howardchanth/var-polya-tree.

1 Introduction

Density estimation has gained significant importance in generative modeling, particularly with the
advent of modern neural networks [3, 28], such as normalizing flows and autoregressive networks.
These techniques have found numerous applications, including image generation and large language
modeling, highlighting their versatility and effectiveness in capturing complex data distributions.
While many recent efforts focus on enhancing feature learning and transforming densities [46, 9],
these deep density estimation networks often struggle with interpretability, raising concerns about
their trustworthiness [30].
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Bayesian nonparametric methods provide an appealing alternative, enabling flexible modeling that
naturally adapts complexity according to data and rigorously quantifies uncertainty [32]. Incorporating
Bayesian nonparametric priors such as Dirichlet processes (DP) into deep neural architectures has
attracted substantial attention, yielding notable progress in regression [42] and clustering [26].
However, DP-based approaches inherently induce discreteness, making them suboptimal for directly
modeling continuous distributions.

In contrast, the Pólya tree (PT) is specifically suited to continuous distributions, producing probability
measures absolutely continuous with respect to the Lebesgue measure [35, 4, 29]. Yet, despite their
appealing theoretical properties, PT priors have rarely been combined with modern deep learning
frameworks due to computational challenges. Traditional posterior inference via Markov chain Monte
Carlo (MCMC) suffers scalability limitations, becoming prohibitively expensive as data scales [48, 4].

To bridge this gap, we propose the variational Pólya tree (VPT), the first variational Bayesian
integration of PT priors with deep neural networks. Our VPT leverages stochastic variational
inference, enabling scalable training via stochastic gradient optimization. Importantly, our method
does not rely on the simplifying independence assumptions typical of mean-field approximations.
Instead, we exploit the PT prior’s intrinsic hierarchical structure and conjugacy properties, allowing a
tractable and exact joint posterior over Beta-distributed node weights. This approach maintains the
rich dependency structure across tree nodes, facilitating efficient and precise backpropagation.

We validate VPT across diverse tasks, including high-dimensional tabular data and image density
estimation using normalizing flow architectures. Unlike existing deep density estimation works that
mainly focus on transformation and feature learning architectures [18, 6, 39, 15], we present a novel
prior and demonstrate how VPT can enhance interpretability and provide a measure of uncertainty.

Our contributions can be summarized as follows: (1) We introduce the first variational inference
framework that makes PT priors practically useful and can be used as plug-and-play components for
continuous density estimation and deep generative modeling, integrating seamlessly with modern
neural architectures, e.g., flows, variational autoencoders (VAEs). (2) We leverage the joint posterior
likelihood as the variational objective to provide an exact approximation of the posterior distribution
of the PT while minimizing computational complexity. (3) Empirical evaluations on various datasets
demonstrate that our VPT prior can achieve superior performance in density estimation compared to
existing methods. Additionally, ablation analysis reveals that a deeper tree generally leads to more
accurate density estimation. The framework incurs minimal overhead—less than 0.05% additional
memory and at most 1.3× runtime—while remaining end-to-end trainable with standard deep learning
architectures. (4) We demonstrate that with the VPT prior, the model can effectively learn both the
estimated density distributions and the associated uncertainties. Our findings also indicate that the
latent features acquired using the VPT prior are significantly more meaningful than those derived
from traditional distributions.

2 Related Works

2.1 Deep Density Estimation

Deep generative models have achieved significant success in density estimation, especially for high-
dimensional data like images [3, 28]. These models typically transform latent variables, sampled
from known distributions, into data points, enabling flexible and expressive density modeling.

Normalizing flows use sequences of invertible transformations, parameterized by neural networks, to
model complex distributions. They enable efficient likelihood evaluation by maintaining tractable
Jacobian computations. For example, NICE [8] uses coupling layers, while RealNVP [9] extends
this with additive and multiplicative coupling layers for improved expressiveness. Autoregressive
methods decompose a D-dimensional density into one-dimensional conditional densities, functioning
as a specialized form of normalizing flow. MAF [39] uses masked neural networks to model
these conditional distributions, while IAF [23] enables more efficient sampling through inverse
transformations. VAEs [20] introduce stochastic transformations to learn compact representations
but often suffer from posterior collapse due to the evidence lower bound (ELBO). Diffusion models
[17], a hierarchical extension of VAEs, use forward noise addition and reverse denoising processes to
generate data.
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Despite these advances, most deep density estimators still rely on parametric assumptions and lack
a principled way to encode interpretability and uncertainty about the distribution. Most recent
works in this area focus on learning powerful and tractable transformations from input to the latent
density. For example, Glow [22] introduces invertible 1× 1 convolutions to improve expressiveness.
Neural autoregressive flow (NAF) [18] employs autoregressive models within a normalizing flow
framework, allowing for efficient and expressive density estimation. MuLAN [41] utilizes adaptive
noise techniques within diffusion models to improve sample quality and diversity. We propose a
Bayesian nonparametric prior that can be compatible with these transformation approaches, which is
not only flexible to train but also provides interpretability and uncertainty quantification naturally.

2.2 Bayesian Nonparametric Methods

Bayesian nonparametric (BNP) models provide a framework for adapting model complexity to data
[47, 40, 27, 16, 19, 43]. Classic examples include Dirichlet processes (DPs), which enable unbounded
mixture components, and have been extended to deep learning, such as stick-breaking VAEs and
Beta-Bernoulli processes for infinite latent features [33, 10]. However, DPs concentrate probability on
discrete distributions, making them unsuitable for continuous densities without additional smoothing
[35]. Variational inference for DPs also requires truncating the infinite process, which can result in
biased estimates.

Pólya trees, in contrast, naturally model continuous densities by recursively partitioning the domain
with random probabilities. With appropriate hyper-parameters, they place probability 1 on the space
of continuous distributions [25]. Unlike DPs, PTs avoid discreteness and external smoothing. Despite
this advantage, their use in modern machine learning has been limited, as prior applications relied on
computationally expensive methods like MCMC [2]. Crucially, no prior work has incorporated PT
priors into deep neural architectures with variational Bayes.

We address this gap by introducing a PT-based variational inference framework for deep generative
models. Our proposed framework is not a plug-and-play prior placement but a principled, nontrivial
integration that bridges classical Bayesian nonparametrics with modern deep learning. It leverages
the distinctive theoretical properties of PTs, enabling benefits such as robustness, interpretability,
generalization, and calibrated uncertainty estimation. PTs’ conjugacy allows efficient updates of
branch probabilities via Beta–Binomial computation, enabling a structured variational posterior
that retains dependencies across the tree. Unlike mean-field methods, which assume independence
[45, 11, 14], our approach preserves hierarchical coherence, avoiding oversimplified approximations.

By integrating the flexibility of BNP priors with the scalability of deep learning, our method enables
efficient end-to-end training of continuous density estimators. This approach overcomes the limita-
tions of DP-based priors for continuous data and advances adaptive, interpretable density modeling
in deep generative frameworks.

2.3 Tree-based Models

The use of binary trees is prevalent in machine learning [7, 42, 1]. In addition to well-known methods
like decision trees, random forests, boosting, and XGBoost [5], Bayesian approaches to tree models
have gained popularity, particularly with advancements in computational capacity.

Further, Bayesian inference has gained enormous popularity for modeling the distribution of trees,
as seen in Bayesian additive regression trees (BART) [1]. Salazar [42] introduces a variational tree
model for regression that establishes a Bayesian nonparametric prior on the tree space. However, like
traditional methods, it partitions the sample space rather than the probability space.

In contrast, our approach uses a PT prior to model continuous densities. A tree space that partitions
the probability space would offer greater modeling flexibility, accommodating a wider range of
probability measures and enabling various tasks beyond regression. Our variational algorithm
preserves dependencies across tree levels, ensuring coherent uncertainty propagation and avoiding
the limitations of the mean-field approximation.
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3 Methodology

3.1 The Pólya Tree Prior
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Figure 1: Graphical illustration of the Pólya tree
construction. The PT prior randomly splits Bϵ1:j
into two subintervalsBϵ1:j0 andBϵ1:j1 with Beta-
distributed probabilities.

The PT prior is a Bayesian nonparametric ap-
proach for constructing a random probability mea-
sure. The construction is based on a recursive
partition of the domain, which can be viewed as a
random histogram with the sizes of the bins made
sequentially smaller [38].

Consider the bins of a histogram defined by a par-
tition of the sample space into nonempty subsets
{Bϵ1:L}, with subsets indexed by anL-digit binary
number ϵ1:L = ϵ1 · · · ϵL, where each element ϵj
(j = 1, . . . , L) takes values of 0 or 1. We define
random probabilities P (Bϵ1:L) for each bin. Con-
sider refining the partition by splitting each bin
into left and right parts, Bϵ1:L = Bϵ1:L0 ∪Bϵ1:L1

and define random probabilities for the refined
histogram by conditional probabilities Yϵ1:L0 =
P (Bϵ1:L0|Bϵ1:L) and Yϵ1:L1 = P (Bϵ1:L1|Bϵ1:L).
For any integer L ≥ 0, this recursive refinement of bins defines a sequence of nested partitions.

A random probability measure P follows a PT distribution PT(A, {βj}Lj=1) with parameters A =

{αϵ} on the sequence of partitions {βj}Lj=1) where βj refers to the collection of Beta distribution
random variables (i.e., the branching probabilities) at level j of the tree, if there exist random
variables 0 ≤ Yϵ ≤ 1 such that for any ϵ: (1) The variables Yϵ0 are mutually independent and follow
a Beta(αϵ0 , αϵ1) distribution; (2) Yϵ1 = 1− Yϵ0 ; (3) For any L ≥ 0, P (Bϵ1:L) =

∏L
j=1 Yϵ1...ϵj .

Algorithm 1 Training Procedure of Variational
Pólya Tree (VPT)

1: Input: Data points {xi}Ni=1, dimension D,
tree level L, number of epochs nepoch, learning
rate η.

2: Compute total number of nodes per dimension:
nnodes = 2L − 1

3: Initialize Beta parameters for all nodes:
αϵ1:j−10 = 1, αϵ1:j−11 = 1

4: for epoch = 1, . . . , nepoch do
5: for each dimension d = 1, . . . , D do
6: for each node j = 1, . . . , nnodes do
7: Sample split:
8: Y

(d)
ϵ1:j−10

∼ Beta
(
α
(d)
ϵ1:j−10

, α
(d)
ϵ1:j−11

)
9: Compute partition intervals B(d)

ϵ1:j .
10: end for
11: end for
12: Compute joint posterior in Eq. (1),
13: p({βj}Lj=1,YL | x)
14: LVPT = − log p({βj}Lj=1,YL | x)
15: Update αϵ1:j−10, αϵ1:j−11.
16: end for

Figure 1 illustrates this recursive representa-
tion. In summary, the PT prior defines a random
probability distribution on distributions on [0, 1]
by assigning any partitioning subset Bϵ with
probability P (Bϵ) =

∏L
j=1,ϵj=0 Yϵ1...ϵj−10 ×∏L

j=1,ϵj=1(1− Yϵ1...ϵj−10). Algorithm 1 shows
the overall workflow of our VPT.

3.2 Variational Pólya Tree

Variational Objective. Our VPT approach
leverages the intrinsic hierarchical structure of
the Pólya tree prior to avoid traditional inde-
pendence assumptions common in mean-field
variational inference. Specifically, we parame-
terize the tree partitions {βj}Lj=1 by learnable
neural networks. Due to the conjugacy of the PT
prior, the posterior retains the PT form, allowing
closed-form updates for each node’s Beta pa-
rameters. This structural property preserves hi-
erarchical dependencies among latent variables
without any simplifying assumptions, which dis-
tinguishes VPT from the classical mean-field
approximation.

Let x = {xi}Ni=1 be the observed data, {βj}Lj=1

be the L-level tree partition probabilities corresponding to the i-th observation, and YL be the set of
all Yϵ1:j in the tree. Following Paddock et al. [38], the joint posterior distribution of an L-level tree
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given x can be written as

p
(
{βj}Lj=1,YL|x

)
=

N∏
i=1

1

ν
(
Bϵi1:L

) L∏
j=1

Yϵ1:jp(βij )
∏

∀{ϵ1:j−1}

Y
(αϵ1:j−10−1)

ϵ1:j−10
Y

(αϵ1:j−11−1)

ϵ1:j−11
, (1)

where ν
(
B{ϵi1:L}

)
=

∏L
j=1 βij

1−ϵij
(
1 − βij

)ϵij and p(βij ) is the prior distribution for βij . Data
points xi influence densities through two components, the probabilities Bϵ1:j indicating the likelihood
of xi falling into a specific subset, and the conditional probabilities Yϵ1:j that govern the likelihood of
xi in child subsets given its parent subset. The gradients can be computed and backpropagated to
update the parameters αϵ1:j−10 and αϵ1:j−11 of the Beta distributions within the Pólya tree.

We optimize VPT parameters by minimizing the negative log-likelihood (i.e., the ELBO) LVPT =
− log p(x|{βj}Lj=1,YL). Note that our method does not explicitly include a Kullback–Leibler (KL)
divergence term, and the corresponding entropy of the variational posterior acts as an implicit
regularization. This entropy term, which appears in the negative log-likelihood, plays a similar role
by controlling the spread of the variational distribution and balancing data fit versus uncertainty.
Nevertheless, incorporating an explicit KL (as shown in Appendix A) or entropy term can further
balance exploration of the prior.

Density Estimation with Flow-based Models. The VPT prior alone defines a flexible density over a
sample space. However, for complex high-dimensional data, we can further enhance its flexibility by
embedding the VPT with deep neural networks. Taking flow-based networks as an example, we use
the PT density as the base distribution and apply an invertible deep transformation f from the latent
space to the observed data space.

Formally, let x represent samples drawn from an unknown D-dimensional distribution. The goal of
density estimation is to model the underlying distribution function F (·). Instead of assuming a fixed
parametric form for F (·) as in the previous work [42], we follow a Bayesian nonparametric approach
by placing a VPT prior on F (·), thereby treating the distribution itself as random. Consider a bijective
function f : X → Z with the inverse function f−1 and Jacobian Jf (x). Under this transformation,
the density in the latent space Z can be computed as

pZ(z) = pX(f−1(z))
∣∣det (Jf (f−1(z))

)∣∣ ,
where pX(x) is modeled by our VPT prior. The determinant of the Jacobian ensures the validity of the
density transformation, which can be computed following Dinh et al. [8]. The model is optimized by
minimizing the negative log-likelihood: L = − log pZ(z). Unlike the standard flows with fixed base
distributions (e.g., Gaussian), our VPT base distribution is learned and updated via the posterior of
the PT. In practice, we alternate analytic posterior updates of the PT parameters with gradient-based
optimization of flow parameters.

3.3 Computation of Intervals

We use a tree data structure to compute the intervals of each leaf node [38]. For the i-th sample
xi, we first sample

{
βi,j}Lj=1 from its variational posterior distribution. For dimension d where

x
(d)
i ∈ R, the interval (0, 1] is split into two subintervals with probabilities β(d)

0 and 1− β
(d)
0 , so that

the subinterval B(d)
0 is of length β(d)

1 and B(d)
1 is of length 1− β

(d)
1 . Next, each of B(d)

0 and B(d)
1 is

further split into two subintervals where the splitting probability depends on β(d)
2 as follows,

B
(d)
00 = (0, β

(d)
1 β

(d)
2 ), B

(d)
01 = (β

(d)
1 β

(d)
2 , β

(d)
1 )

B
(d)
10 = (β

(d)
1 , β

(d)
1 + (1− β

(d)
1 )β

(d)
2 ), B

(d)
11 = (β

(d)
1 + (1− β

(d)
1 )β

(d)
2 , 1].

The intervals at level j are obtained iteratively by applying the above rule.

3.4 Posterior Inference and Interpretability

With the learned {βi,j}Lj=1 for the i-th sample xi with D dimensions, we can sample from the Beta
distribution to obtain the probability of splits. Due to the conjugacy of the PT prior, the posterior
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predictive distribution has an intuitive form,

p
(
xi
∣∣{βi,j}Lj=1

)
=

N∏
i=1

1

ν
(
B{ϵ(d)i1:L

}D
d=1

) D∏
d=1

L∏
j=1

Y (d)
ϵi1:j

,

where ν
(
B{ϵ(d)i1:L

}D
d=1

)
=

∏D
d=1

∏L
j=1 β

(d)
i,j

1−ϵ
(d)
ij

(
1 − β

(d)
i,j

)ϵij (d)

. This hierarchical organization of

posterior parameters makes the model highly interpretable. One can traverse the tree to see how
the model allocates probability at different scales and locations. Each level of the tree gives a
coarse-to-fine view of the density.

Uncertainty quantification. As a Bayesian nonparametric method, one of the key advantages of
our VPT is to learn a distribution over the density estimation. This allows us to obtain the variance of
the learned model. Given a trained L-level VPT, the posterior variance can be modeled as the mean
over the variances of terminal node distributions, where the posterior variance of each subinterval can
be computed easily from the Beta distribution.

4 Experiments

We evaluate VPT on multiple density estimation tasks. We first demonstrate the qualitative benefits
of VPT compared to traditional Gaussian and logistic priors using simple synthetic data. We then
assess VPT quantitatively on UCI and image datasets. Our findings indicate that models with VPT
priors not only achieve superior likelihood results but also provide robust uncertainty estimates.

Implementation details. Training a VPT involves optimizing a set of Beta distribution parameters
using backpropagation. To ensure the Beta distribution parameters remain positive, we reparameterize
them via a softplus(·) transformation. To integrate our VPT prior seamlessly with standard generative
networks, we use a sigmoid layer to project latent variables into the interval [0, 1]. This sigmoid
mapping is computationally efficient, adding minimal complexity since its Jacobian determinant can
be computed trivially.

4.1 Density Estimation with 2D Synthetic Data

We first illustrate the capability of our VPT prior using three common synthetic datasets,

Gaussian VPT (level=2) VPT (level=3)

Figure 2: Density estimation results of an
isotropic Gaussian prior, a 2-level VPT, and a
3-level VPT with 2D synthetic datasets.

a ring of 8 Gaussians, two interwoven spirals, and
a checkerboard pattern. For these experiments, we
adopt a simple block neural autoregressive flow
(Block-NAF) architecture as the feature learning
backbone, specifically employing one flow layer
consisting of two hidden layers, each with 50 units.
This modest architecture choice is intentional, as
our primary goal is not to achieve state-of-the-art
performance on synthetic benchmarks, but rather
to clearly demonstrate the benefit of the VPT prior
compared to standard priors (Gaussian and logis-
tic) under identical model complexity.

In Figure 2, we compare the learned densities
using three different priors, a 2-level VPT, a 3-
level VPT, and an isotropic Gaussian. While the
isotropic Gaussian prior allows the model to ap-
proximate the general shape of multimodal distri-
butions, it struggles to capture sharp boundaries
and disconnected regions accurately. In contrast,
both the 2-level and 3-level VPT priors clearly
yield more precise representations, effectively cap-
turing regions of low density and the multimodal
structure inherent in the data. Moreover, increas-
ing the level of the VPT prior from two to three
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Table 1: Log-likelihoods (standard deviations) on the test sets for density estimation using our VPT
and baseline methods on real datasets with 5 runs. Higher values indicate better estimation.

Methods POWER GAS HEPMASS MINIBOONE BSDS300

Real NVP [9] 0.17(0.01) 8.33(0.14) −18.71(0.02) −13.55(0.49) 153.28(1.78)
Glow [22] 0.17(0.01) 8.15(0.40) −18.92(0.08) −11.35(0.07) 155.07(0.03)
MADE MoG [39] 0.40(0.01) 8.47(0.02) −15.15(0.02) −12.27(0.47) 153.71(0.28)
FFJORD [15] 0.46(0.01) 8.59(0.12) −14.92(0.08) −10.43(0.04) 157.40(1.78)
MAF MoG [39] 0.30(0.01) 9.59(0.02) −17.39(0.02) −11.68(0.44) 156.36(0.28)
TAN [36] 0.60(0.01) 12.06(0.02) −13.78(0.02) −11.01(0.48) 159.80(0.07)
NAF-DDSF [18] 0.62(0.01) 11.96(0.33) −15.09(0.40) −8.86(0.15) 157.43(0.30)
Block-NAF [6] 0.57(0.01) 11.01(0.10) −15.06(0.08) −8.90(0.31) 156.33(0.81)
VPT (L = 4) 0.67(0.01) 11.92(0.10) −15.01(0.04) −8.71(0.25) 158.59(1.02)
VPT (L = 6) 0.61(0.01) 12.20(0.06) −13.94(0.05) −8.51(0.03) 162.72(0.94)

levels further enhances its modeling capacity, re-
sulting in notably improved density estimation and clearer separation among data clusters.

4.2 Density Estimation with Real Data

We perform density estimation on five tabular UCI datasets, POWER, GAS, HEPMASS, MINI-
BOONE, and BSDS300. Detailed information about these datasets is summarized in Appendix B
(Table A1). We follow the preprocessing procedure outlined in [39]. For this experiment, we employ
a Block-NAF [6] as our feature learning architecture, which has fewer parameters compared to the
original neural autoregressive flow [18]. Consistent with the Block-NAF methodology, we train 5
stacked flows, each with 2 layers and 20D hidden units, where D represents the input dimension.
The model is trained using the Adam optimizer, with a learning rate of 10−2 for the Block-NAF flow
and 0.1 for the variational Pólya tree.

Results. Table 1 summarizes the reported log-likelihood values. With a 4-level VPT, our model
outperforms Block-NAF across all datasets. Additionally, with a 6-level VPT, our model demonstrates
an even greater margin of improvement over Block-NAF, except on the POWER dataset.

Table 2: Number of model parameters, relative to Block-NAF. Block-
NAF and NAF use Gaussian priors, while VPTs withL = 4 or 6 use the
Block-NAF backbone with the VPT prior. The notation “×” indicates
a multiplicative factor, while “+” indicates an additive increase.

Datasets Block-NAF NAF VPT(4) VPT(6)

POWER 414, 213 ×4.57 +180 +756
GAS 401, 741 ×2.60 +240 +1008
HEPMASS 9, 272, 743 ×35.88 +630 +2646
MINIBOONE 7, 487, 321 ×87.91 +1290 +5418
BSD300 36, 759, 591 ×16.48 +1890 +7938

By comparing our results
with deeper density esti-
mation models, we ob-
serve that our VPT models
achieve the state-of-the-art
performance across various
datasets, with the exception
of the HEPMASS dataset,
where we attain results com-
parable to TAN [36].

Number of parameters.
We compare model com-
plexity against NAF [18]
and Block-NAF [6]. Our
VPT adds only (2L − 1) × 2 × D parameters to Block-NAF, a negligible overhead compared
to NAF. Despite this minimal increase, VPT significantly surpasses Block-NAF in performance,
demonstrating superior modeling power and efficiency (see Table 2).

4.3 Image Density Estimation and Image Generation

We further test our method on two image datasets: MNIST and CIFAR-10 [24]. We employ a classic
flow-based network NICE [8] as our feature learning backbone, and we use the same settings as in
the original paper. Additional details of implementations are presented in the Appendix.
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MNIST Density Estimation

Bits Per Dim

NICE(Logistic)

NICE(Gaussian)

VPT (level=4)

VPT (level=2)

Real NVP

MADE MoG

MAF MoG

TAN

RNODE

4.64

6.42

0.94

1.43

0.97

1.19

1.52

1.41

2.02

CIFAR-10 Density Estimation

Bits Per Dim

NICE(Logistic)

NICE(Gaussian)

VPT (level=4)
VPT (level=2)

Real NVP
MADE MoG

MAF MoG

TAN
RNODE

4.18
4.27

2.06

4.54
5.93

3.98
3.38

2.55

2.65

MuLAN

VDM
ScoreFlow

2.53

4.37

2.83

Figure 3: Negative log-likelihood in bits-per-dimension on the MNIST and CIFAR-10 test sets. Our
method, VPT (shown in gray), shares the same architecture as NICE (shown in black). The results
from other methods (shown in light gray) are sourced from their respective papers.

(a) Gaussian Prior (b) Logistic Prior (c) VPT (L=4) Prior

Figure 4: Interpolation on the MNIST images. While with the Gaussian prior and logistic prior the
latent spaces are focused on the pixel-level features, the mixed latent features with our VPT prior
reveal how the particular tree nodes are structured.

Results. In Figure 3, we compare our VPT method with the vanilla NICE method [8] using two
priors, Gaussian and logistic distributions. It is important to note that the metric employed in the
original paper is log-likelihoods in the logit space, which is not directly comparable across different
estimation methods. Therefore, we re-implemented their experiments and report the normalized
negative log-likelihood in bits-per-dimension [39]: − 1

D log2 p(x). Our results indicate that the VPT
prior significantly enhances the likelihood for both datasets.

We also compare our results with a variety of density estimation methods in Figure 3. These include
flow-based methods such as Real NVP [9], MADE MoG [39], and MAF MoG [39]; RNN-based
transformation approaches like TAN [36]; the Neural ODE method (RNODE) [12]; and more recently
developed diffusion-based methods, including ScoreFlow [44], VDM [21], and MuLAN [41]. We
observe that our VPT prior performs best among all the flow-based density estimation methods, while
demonstrating comparable performance with the recently developed diffusion-based methods. With
the 4-level VPT, our VPT achieves a negative log-likelihood of 0.94 on MNIST, which is similar to
0.97 by RNODE. On the CIFAR-10 data, our results with the 2-level VPT are comparable to those of
MuLAN, while the performance can be further enhanced with the 4-level VPT.

4.4 Uncertainty Analysis and Interpretation

Uncertainty analysis. We compare uncertainty calibration with other uncertainty estimation methods,
MC-dropout [13] and variational Bayesian neural network (BNN) with mean-field Gaussian weights
[34], using the standardized squared error (SSE). For every sample and every dimension d = 1, . . . , D,
we compute SSE =

∑N,D
i=1,d=1{z

(d)
i }2/ND, where z(d)i =

(
x
(d)
i − µ(d)

)
/σ(d). If the predictive

variance is perfectly calibrated then E(z) = 1, thus SSE = 1, otherwise SSE > 1 indicates under-
estimated variance, SSE < 1 indicates over-estimated variance.
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In Table 3, the SSE results show that VPT slightly over-estimates its variance, while keeping the best
calibration. MC-dropout and BNN underestimate their variances. The hierarchical structure of VPT
updates the shrunk leaf probabilities toward their parents when data are sparse. This automatically
inflates predictive variance in low-count regions. MC-Dropout [13] and mean-field BNNs [34]

Table 3: Predictive variance calibration with SSE
closer to 1 the better.

Datasets VPT MC-Dropout BNN

POWER 0.92 1.30 1.17
GAS 0.90 1.35 1.14
MNIST 0.92 1.27 1.08

variance often fails to fully propagate to the output,
leading to the systematic under-estimation.

Figure 5 visualizes posterior variance estimates
from our trained 4-level VPT on MNIST. Higher
uncertainty is observed around the central digit
region, aligning well with intuition—this area ex-
hibits greater variability across digits. This con-
firms our model’s capability to provide meaning-
ful uncertainty quantification alongside accurate
density estimation.

Figure 5: Posterior variance of the
trained 4-level VPT model on the
MNIST dataset. On each dimen-
sion/pixel (d = 1, . . . , D, where
D = 28 × 28), we visualize the
mean over the variances of terminal
node Beta distribution.

We emphasize that VPT’s variances are analytic, no Monte-
Carlo sampling is required at test time, whereas both baselines
need extra computation per input. Thus VPT offers better
calibration without extra computational burden.

Effectiveness of the tree structure. To evaluate the effec-
tiveness of the hierarchical structure of VPT, we compare it
with a learnable histogram (LH) prior. We set the number of
bins to K = 2L to match the number of nodes in an L-level
VPT. For each dimension d, we parametrize a increasing se-
quence b(d)0 < b

(d)
1 < · · · < b

(d)
K , by setting the lower boundary

b
(d)
0 and b(d)k = b

(d)
k−1 + softplus(δdk−1). The parameters δdk−1

are learned jointly with the backbone network, and softplus(·)
guarantees positive bin widths. Given one dimension x(d), we
can find the active bin index k∗, and compute the log-likelihood
as log p(x(d)) = log p

(d)
k∗

− log(b
(d)
k∗+1 − b

(d)
k∗

). All the hyper-
parameters are kept the same during training as those in VPT.

Table 4 shows the results on UCI datasets with the Block-NAF backbone. The LH prior is used as
a plug-in. We observe a clear advantage of VPT over LH, although they share the same number of
parameters. We compare LH with VPT on CIFAR-10 with the NICE network. With L = 4, VPT
obtains a result of 2.06 bits-per-dimension, and LH yields 2.57 BPD.

Table 4: Log-likelihoods (standard deviations) on the test set for density estimation using our VPT
and the learnable histogram (LH) prior under the same setting (L = 4 and K = 24) on three real
datasets with 5 runs. Higher values indicate better estimation.

Priors POWER GAS BSD300

Learnable histogram (LH) 0.62(0.01) 11.00(0.20) 156.98(0.93)
Variational Pólya tree (VPT) 0.67(0.01) 11.92(0.10) 158.59(1.02)

While a truncated factorized VPT may resemble a learnable histogram in terms of producing a
piecewise-constant density, VPTs are more robust. Unlike an LH, where bins are estimated inde-
pendently, VPT leverages the hierarchical conjugacy, enabling information sharing across scales.
Specifically, every Beta-distributed node in the VPT is coupled to its ancestors. This hierarchical
shrinkage allows small bins with few data points to borrow statistical strength from parent nodes,
automatically adjusting the degree of smoothing. The VPT’s variational posterior inference maintains
the joint posterior over tree splits. This enables a more coherent and uncertainty-aware density esti-
mate, especially in regions of sparse data. In contrast, LHs often suffer from overfitting in low-density
regions or collapsing of underpopulated bins.

Interpretation of VPTs. Besides density estimation, VPT naturally provides probability mass at
multiple scales, providing ‘coarse-to-fine’ insights. To better understand what the model has learned,
we perform interpolation by linearly mixing the latent representations of MNIST images. Figure 4
illustrates the interpolation paths between pairs of digits under different prior distributions.
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Figure 6: From left to right: images sampled from leaf nodes (nodes 3, 4, 5, 6) of a 3-level VAE-VPT.

Compared to Gaussian and logistic priors, VPT yields meaningful traversals in the latent space.
For example, when interpolating from ‘0’ to ‘3’, the intermediate representations pass through
recognizable ‘1’. Similarly, interpolating from ‘9’ to ‘8’ reveals a transition through ‘3’. These
patterns suggest that, under the VPT prior, the latent space is hierarchically organized, a node
corresponding to the digit ‘1’ likely resides between nodes representing ‘0’ and ‘3’, while a node
associated with ‘3’ is positioned between those representing ‘9’ and ‘8’. This hierarchical structure
offers an interpretable organization of latent representations compared to standard unimodal priors.

5 VAEs with the VPT Prior

Beyond the above experiments, we demonstrate the flexibility of our VPT prior by integrating it
into a VAE. We use a vanilla VAE architecture with fully connected encoder and decoder networks,
each consisting of two hidden layers of 400 neurons and a latent space dimension of 2. By simply
replacing the Gaussian prior with our VPT prior, we define a modified ELBO objective as

LVPT-VAE = Eqϕ(z|x)[log pθ(x|z)]− λ
∑

v∈nodes

KL(qϕ(zv|x)∥p(zv)),

where the first term is the reconstruction error as in the standard VAE and each node v has a KL term
comparing the approximated posterior qϕ(zv|x) to the VPT prior p(zv).

Specifically, we implement a 3-level VPT prior using a tree with 7 nodes, where node 0 is the root,
nodes 1–2 are intermediate nodes, and nodes 3–6 are leaf nodes. After training, we generate images
by directly sampling latent variables conditioned on each leaf node (see Figure 6). The leaf nodes
naturally cluster visually similar digit images. For instance, node 3 generates digit images resembling
‘1’, ‘2’ and ‘7’, while node 4 produces ‘9’ and ‘4’. Leaf node 5 tends to generate curved digits like
‘3’, ‘5’ and ‘8’, and node 6 generates looped digits such as ‘0’ and ‘6’. This demonstrates that the
hierarchical partitioning induced by the VPT prior effectively captures meaningful groupings within
the latent space, which enhances the interpretability compared to a VAE with a Gaussian prior.

6 Conclusion

We introduce the variational Pólya tree, the first deep generative framework to integrate continuous
Pólya tree priors with neural architectures. VPT effectively captures complex, high-dimensional
densities and scales to large datasets. While classical BNP models such as Mondrian forests [31]
adaptively grow deeper with more data to guarantee universal consistency, we compensate for the
fixed tree level L using expressive neural transformations that allow shallow trees to capture complex
structures in latent space. Although a fixed L may limit asymptotic consistency, our approach
maintains key theoretical properties. As supported by Orbanz [37], a truncated PT can still achieve
local α-Hölder continuity at non-dyadic points, preserving approximation capability without requiring
strong continuity assumptions. Furthermore, we learn the Beta parameters via variational inference
rather than fixing them the priori, enhancing adaptivity while preventing overfitting.

Extensive experiments show that VPT significantly improves density estimation performance across
various datasets. Beyond enhanced predictive accuracy, our approach provides meaningful uncertainty
quantification and improved interpretability. Our findings demonstrate that VPT delivers competitive
performance at different levels of the tree. This research opens promising avenues for advancing
density estimation models using Bayesian nonparametric methods.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly state and accurately reflect our novel
contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We include the discussion of the potential limitations of our work in the
conclusions section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: All theoretical results are accompanied by clearly stated assumptions and
complete proofs in the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide detailed descriptions of data processing and bootstrap-based
confidence interval computations to enable full reproducibility.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All code and data are provided in the anomonymized repository, with clear
instructions for reproduction.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We specify data splits, hyperparameters, optimizers, hardware details, in the
Implementation Details section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the standard deviations over 5 random runs as described in the main
text.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We detail GPU types, memory for all experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We confirm that our research adheres fully to the NeurIPS Code of Ethics
guidelines.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss positive applications in interpretable deep learning models and
uncertainty quantification.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We determine that our work poses no high-risk assets requiring special release
safeguards.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We credit all reused code and datasets with explicit citations.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The code of our model is documented with usage details and licensing infor-
mation.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Not applicable as our work does not involve human subject research or
crowdsourced data.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Not applicable since our paper does not involve human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Not applicable as we did not use LLMs in the core method development.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Distributions and KL-Divergences

Beta distribution. Let X ∼ Beta(α, β) and Y ∼ Beta(γ, δ) with α, β, γ, δ > 0, and let p and q
denote their densities. The KL-divergence between the two Beta distributions is

KL(p ∥ q) = log
B(γ, δ)

B(α, β)
+ (α− γ)

[
ψ(α)− ψ(α+ β)

]
+ (β − δ)

[
ψ(β)− ψ(α+ β)

]
,

where B(·, ·) is the Beta function and ψ(·) is the digamma function.

For X ∼ Beta(α, β), the variance is

Var[X] =
αβ

(α+ β)2(α+ β + 1)
.

Multivariate Gaussian Distribution

The density of a multivariate Gaussian distribution is defined as

p(x;µ,Σ) =
1

(2π)
p
2 |Σ| 12

exp
{
− 1

2
(x− µ)⊤Σ−1(x− µ)

}
,

where µ ∈ Rp is a p-dimensional mean vector and Σ ∈ Rp×p is the covariance matrix. The
KL-divergence between two multivariate normal distributions N (µ1,Σ1) and N (µ2,Σ2) is

KL(N (µ1,Σ1)∥N (µ2,Σ2)) =
1

2

[
log

|Σ2|
|Σ1|

− p+ tr{Σ−1
2 Σ1}+ (µ2 − µ1)

⊤Σ−1
2 (µ2 − µ1)

]
.

B Experiment Details

The VPT is implemented with PyTorch. All experiments are conducted on a single RTX-3090 GPU.

Density estimation with real data.

The details of the dataset used in this experiment are summarized in Table A1.

Table A1: Summary of five real UCI datasets.

Datasets Dimensions No. Samples

POWER 6 2, 049, 280
GAS 8 1, 052, 065
HEPMASS 21 525, 123
MINIBOONE 43 36, 488
BSDS300 63 1, 300, 000

In this experiment, we use Block-NAF [6] as
the backbone feature learning network for VPT.
We train the backbone network using Adam with
Polyak averaging and apply an exponentially de-
caying learning rate schedule, starting at the learn-
ing rate of 10−2 with a decay rate of λ = 0.5
and a patience of 20 epochs for no improvement.
In contrast, our VPT is trained with a constant
learning rate of 0.1. All models are trained until
convergence, with a maximum of 1, 000 epochs,
stopping if there is no improvement on the valida-
tion set for 100 epochs.

Density estimation and image generation. We use NICE [8] as the backbone network for this
experiment, employing a dequantized version of the data. The architecture consists of a stack of four
coupling layers, with a diagonal positive scaling for the last stage. Each coupling function follows
the same architecture: five hidden layers of 1,000 units for MNIST, and four layers of 2,000 units for
SVHN and CIFAR-10.

The NICE models are trained with Adam with learning rate 10−3, momentum 0.9, β2 = 0.01, λ = 1
and ϵ = 10−4. Our VPT models are trained with Adam with learning rate 0.5.

Computational complexity analysis. Our complexity analysis shows that the computational cost of
VPT scales primarily with the number of nodes per dimension, which is O(2LD) for a tree of level L
and the feature dimension of D. In our implementation, we mitigate this cost by choosing a small
value of L (e.g., 2–4) and leveraging the independence across dimensions to parallelize computation.
The recursive structure does introduce overhead due to tree traversal and node splitting, while these
operations can be optimized via parallel processing across dimensions and nodes.
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Table A2: Empirical profiling: training time per epoch for different datasets and configurations.
Datasets No. Samples D Model Tree Level (L) Train Time/Epoch

GAS 1, 052, 065 8
Block-NAF – 1 min 30 sec
VPT 4 2 min 10 sec
VPT 6 2 min 20 sec

POWER 2, 049, 280 6
Block-NAF – 3 min
VPT 4 3 min 50 sec
VPT 6 4 min

MNIST 60, 000 784
NICE – 30 sec
VPT 2 35 sec
VPT 4 50 sec

CIFAR10 60, 000 1024
NICE – 50 sec
VPT 2 1 min
VPT 4 1 min 20 sec

Empirical profiling indicates that, when implemented on modern hardware, the additional overhead
from VPT is modest compared to that of the normalizing flow backbone. Further optimizations—such
as batch processing of tree nodes, caching intermediate results, and efficient tree traversal algo-
rithms—can reduce computational burden even more. Future work will include a detailed benchmark
over various D and L settings to quantify these improvements.

Furthermore, the additional memory footprint introduced by VPT is negligible, as shown in Table A3.
The memory overhead remains below 0.05%, demonstrating that memory usage stays essentially
constant when using VPT.

Table A3: Peak GPU memory usage (in gigabytes) during training with Adam and a batch size of
128 using Block-NAF as the backbone. Compared to vanilla Block-NAF with a Gaussian prior, VPTs
do not introduce any additional memory overhead.

Datasets Gaussian Prior VPT (L = 4) VPT (L = 6)

POWER 0.22 0.22 0.22
GAS 0.22 0.22 0.22
HEPMASS 5.00 5.00 5.00
MINIBOONE 4.04 4.04 4.04
BSD300 19.83 19.83 19.84

It is important to note that the dimensionality D referenced in the complexity analysis O(2LD)
typically corresponds to the latent representation rather than raw pixel dimensions. For image
datasets, standard dimensionality reduction techniques such as convolutional layers effectively reduce
D, making it practically manageable even for high-dimensional inputs.

C Additional Experiment Results on Density Estimation

Density estimation and image generation on the SVHN dataset.

In addition to the experiments in Section 4.3, we also conduct experiments on the SVHN dataset.

Figure A1 presents the density estimation results evaluated on the test set, while randomly generated
images are shown in Figure A2. Similar to our findings with MNIST and CIFAR-10, our VPT
enhances density estimation on SVHN without sacrificing perceptual quality.

MNIST interpolation. Figure A3 presents more results on the MNIST interpolations. Similar to
Figure 4, we can observe that the interpolation images with VPT are more clear and meaningful than
those with the traditional Gaussian and logistic prior distributions.
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SVHN Density Estimation

Bits Per Dim

NICE(Logistic)

NICE(Gaussian)

VPT (level=4)

VPT (level=2) 0.547

0.517

2.915

2.446

Figure A1: Negative log-likelihood in bits-per-dimension on the SVHN test set.

(a) Gaussian Prior (b) Logistic Prior (c) VPT (L=4) Prior

Figure A2: Randomly generated SVHN images with the NICE backbone under different priors.

Perceptual quality. Although perceptual quality is not our primary focus, Figure A4 shows that ran-
domly sampling from our VPT prior produces images with clarity comparable to standard Gaussian or
logistic priors. This indicates that VPT improves log-likelihood without sacrificing image generation
quality, providing an advantageous balance between interpretability, uncertainty quantification, and
generation performance.

(a) Gaussian Prior (b) Logistic Prior (c) VPT (L=4) Prior

Figure A3: Interpolation on the MNIST images with the NICE backbone under different priors.
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(a) Gaussian Prior (b) Logistic Prior (c) VPT (L=4) Prior

Figure A4: Randomly generated MNIST images with the NICE backbone under different priors.
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