
Published as a conference paper at ICLR 2023

SE(3)-EQUIVARIANT ATTENTION NETWORKS FOR
SHAPE RECONSTRUCTION IN FUNCTION SPACE

Evangelos Chatzipantazis∗, Stefanos Pertigkiozoglou∗

University of Pennsylvania
{vaghat,pstefano}@seas.upenn.edu

Edgar Dobriban
University of Pennsylvania
dobriban@wharton.upenn.edu

Kostas Daniilidis
University of Pennsylvania
kostas@cis.upenn.edu

ABSTRACT

We propose a method for 3D shape reconstruction from unoriented point clouds.
Our method consists of a novel SE(3)-equivariant coordinate-based network (TF-
ONet), that parametrizes the occupancy field of the shape and respects the inherent
symmetries of the problem. In contrast to previous shape reconstruction methods
that align the input to a regular grid, we operate directly on the irregular point
cloud. Our architecture leverages equivariant attention layers that operate on local
tokens. This mechanism enables local shape modelling, a crucial property for
scalability to large scenes. Given an unoriented, sparse, noisy point cloud as input,
we produce equivariant features for each point. These serve as keys and values for
the subsequent equivariant cross-attention blocks that parametrize the occupancy
field. By querying an arbitrary point in space, we predict its occupancy score. We
show that our method outperforms previous SO(3)-equivariant methods, as well as
non-equivariant methods trained on SO(3)-augmented datasets. More importantly,
local modelling together with SE(3)-equivariance create an ideal setting for SE(3)
scene reconstruction. We show that by training only on single, aligned objects
and without any pre-segmentation, we can reconstruct novel scenes containing
arbitrarily many objects in random poses without any performance loss.

1 INTRODUCTION

Figure 1: (Above): A scene-level point cloud produced by individual SE(3)-transformations of three
sparse object point clouds. (Below): Our equivariant reconstruction. The whole scene is given as
input to our network. The network, trained only on single objects in canonical poses and agnostic
to the number, position and orientation of the objects is able to reconstruct the scene accurately.

With the advent of range sensors in robotics and in medical applications, research in shape recon-
struction from point clouds has seen an increasing activity (Berger et al., 2017). The performance
of classical optimization methods tends to degrade when point clouds become sparser, noisier, un-
oriented, or untextured. Deep learning methods have been proven useful in encoding shape priors,
and solving the reconstruction problem end to end (Riegler et al., 2017). Many of these deep learn-
ing methods operate on meshes (Wang & Zhang, 2022; Gong et al., 2019), voxels (Riegler et al.,
2017), and point clouds (Qi et al., 2016). While voxels are easy to manipulate, shape resolution
is limited by memory. On the other hand, meshes can guarantee watertight reconstructions, but

∗Equal Contribution

1



Published as a conference paper at ICLR 2023

they only handle a predefined topology. Point clouds are lightweight in terms of memory, but they
discard topology. Recently proposed deep learning methods represent the geometry via a learned
occupancy map, or a signed distance function (SDF). In particular, the seminal works of Mescheder
et al. (2019); Park et al. (2019) inspired many follow-up works (Chen & Zhang, 2019b; Genova
et al., 2020; Sitzmann et al., 2019). Such representations can encode arbitrary topologies with an
effectively infinite resolution.

According to Kendall, “Shape is the geometry of an object modulo position, orientation, and scale”
(Kendall, 1989). While intensive research in the field (Niemeyer & Geiger, 2021; Peng et al., 2020;
Niemeyer et al., 2020) has led to increasingly better results, very few of these methods incorporate
symmetries as an inductive bias for learning. Most translation-equivariant reconstruction methods
build on the convolutional occupancy network (Peng et al., 2020), while most SO(3)-equivariant ar-
chitectures (Zhu et al., 2021), and their extensions to SE(3) with GraphOnet (Chen et al., 2022), use
the equivariant modules from Vector Neurons (Deng et al., 2021). We propose TF-Onet, a novel
SE(3)-equivariant coordinate-based network for shape reconstruction. Motivated by the SE(3)-
transformer (Fuchs et al., 2020), we design a two-level network that uses equivariant attention mod-
ules. The first level, acting as an encoder, extracts local features from the point cloud by applying
self-attention in local neighborhoods around each point. The second level, a cross-attention occu-
pancy network, takes as input the extracted point features and the coordinates of a query point in
space, and outputs the value of the occupancy function at the specified query point.

Even unique objects consist of smaller primitive parts, whose subsets are subsequently composed
to form large collections of objects. This property extends naturally to scenes that are created by a
composition of objects. Our method performs local shape modeling by leveraging the expressivity
of equivariant local attention modules and generalizes to novel scenes with novel configurations of
objects from classes unseen during training. This property distinguishes our method from similar
equivariant works that either use global features (Deng et al., 2021) or per-point features that encode
long-range dependencies by using subsampling to expand their receptive field (Chen et al., 2022).
Additionally, as we describe in Section 3.3 the use of the Tensor Field framework allows our method
to utilize higher order representations in contrast to the previous works which use Vector Neurons
and thus are constrained to only use type-0 (scalars) and type-1 (vectors) representations. In Section
4, we provide experimental evidence showcasing how these differences benefit our method in the
reconstruction of single objects in arbitrary poses and in the reconstruction of novel scenes.

Our contributions can be summarized as follows:
• We propose TF-Onet, a novel SE(3)-equivariant, coordinate-based, attention network for learning

occupancy fields from sparse point clouds and use it for surface reconstruction.
• Experimentally, we outperform other equivariant coordinate-based networks (Vector Neurons,

GraphOnet) and non-equivariant networks (Occupancy Networks, Convolutional Occupancy Net-
works, IFNet, NeuralPull) trained with augmentations.

• The most compelling property of our method is that equivariance and local shape modeling allows
our network to produce high-quality reconstructions of novel scenes while being trained only on
single-aligned objects. These scenes contain an arbitrary number of objects in random poses.
We show quantitative 5a and qualitative 6a performance gap over previous methods in a synthetic
dataset of randomly placed objects (Seismic dataset). We also show qualitative results on the more
challenging Matterport3D (Chang et al., 2017) containing real scenes with unseen object classes.

2 RELATED WORK

In this section, we discuss previous work on surface reconstruction from input point clouds. We
focus on methods that reconstruct the surface of an object by using either an occupancy function or
a SDF. For oriented point clouds (with known normal vectors), the occupancy function or the SDF
can be constructed by classical methods that do not require learning (Alexa et al., 2003; Kazhdan &
Hoppe, 2013). These methods tend to fail in the presence of noise, or when the input point cloud
is sparse. To surpass such limitations, Mescheder et al. (2019); Chen & Zhang (2019a) proposed
to learn the occupancy function for each input point cloud. Similarly, Park et al. (2019) proposed
to learn to infer the SDF of the object’s surface from a sparse set of SDF values. A limitation of
the above methods is that they use a global feature vector—or code—to represent the whole object
(or scene), which limits their ability to generalize to novel scenes or objects. More recent methods

2



Published as a conference paper at ICLR 2023

Equivariant Layer Norm

𝑥𝑥
𝑦𝑦
𝑧𝑧

Input Pointcloud Linear

Output Occupancy Field

Multi-Head SE(3)-Attention

Key

𝑊𝑊𝐾𝐾(𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑖𝑖) 𝑊𝑊𝑉𝑉(𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑖𝑖) 𝑊𝑊𝑄𝑄

10 x

Point Features

2 x

Linear

Value

Linear

Query

Linear

Multi-Head SE(3)-Attention

Key

Linear

Value

Linear

Query

𝑊𝑊𝐾𝐾(𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑖𝑖) 𝑊𝑊𝑉𝑉(𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑖𝑖) 𝑊𝑊𝑄𝑄

Equivariant Layer Norm

𝐹𝐹
𝑥𝑥
𝑦𝑦
𝑧𝑧

𝒇𝒇𝒊𝒊𝓔𝓔

Query Features

𝑥𝑥
𝑦𝑦
𝑧𝑧

𝒇𝒇𝒒𝒒

K, V Q

𝓔𝓔 𝓣𝓣(self-attention) (cross-attention)

Figure 2: Our method consists of two networks E , T . First, to each point x⃗i in the point cloud, we
assign a simple local feature fi of type-1 (rotating as a vector) which can be the relative position
of the point x⃗i to the centroid of its local neighborhood. Similarly, to each query point q⃗ ∈ R3

we assign a local feature fq . Given a point cloud consisting of pairs (x⃗i, fi), the network E applies
SE(3)-equivariant attention to assign to each point x⃗i a learned feature fE

i . Finally, given the learned
feature-augmented point cloud and the query-feature pair (q⃗, fq), the network T applies SE(3)-
equivariant cross-attention to output the scalar value of the occupancy function at point q⃗.

leverage the similarities between local patches of different objects by learning either a combination
of local and global features (Genova et al., 2020; Erler et al., 2020), or only local ones (Jiang et al.,
2020; Chabra et al., 2020; Tretschk et al., 2020; Boulch & Marlet, 2022; Williams et al., 2022; Chen
et al., 2022). The composition of these local features allows the reconstruction of scenes containing
a variety of different objects. To define the local neighborhoods for which the local features are
extracted, Jiang et al. (2020); Chabra et al. (2020); Tretschk et al. (2020) voxelize the space into a
regular grid and learn a feature representation for each voxel, while Boulch & Marlet (2022); Chen
et al. (2022) learns a local feature representation for each input point. In our work, we follow the
latter approach by using local attention layers (Bahdanau et al., 2015) that dynamically change the
attention weights of each point to its neighbors. Attention layers were popularized with the intro-
duction of the transformer architecture (Vaswani et al., 2017), and were later applied in computer
vision tasks such as image classification (Dosovitskiy et al., 2021; Wu et al., 2021). Specifically
for point cloud processing tasks, Pan et al. (2021) used both local and global attention for object
detection, and Yu et al. (2021) used a transformer for point cloud completion.

There is a large body of work on incorporating known symmetries into the learning process, trac-
ing back to Fukushima (1980); LeCun et al. (1989) with the use of convolutional layers to build
translation-equivariant networks. More recent works extend this idea to discrete (Cohen & Welling,
2016) and continuous (Weiler et al., 2018b) rotationally invariant architectures. These methods
have also been applied beyond Euclidean domains, to spheres (Esteves et al., 2018), graphs (Maron
et al., 2019; Brandstetter et al., 2022), meshes (de Haan et al., 2021), and general manifolds (Co-
hen et al., 2019; Weiler et al., 2021). For transformer architectures, Fuchs et al. (2020) propose an
SE(3)-equivariant transformer by using the results of Tensor Field Networks (Thomas et al., 2018).
Romero & Cordonnier (2021) proposed a framework for constructing linear self-attention layers
that are equivariant to arbitrary discrete groups. Operating on point clouds, an SE(3)-equivariant
network (Chen et al., 2021) performs pose estimation and classification using SE(3) convolutions.
For the problem of surface reconstruction from point clouds, Convolutional Occupancy Networks
(Peng et al., 2020) and later methods (Lionar et al., 2021; Tang et al., 2021; Boulch & Marlet, 2022)
use convolutional layers to achieve translation-equivariance. Finally, Vector Neurons (Deng et al.,
2021) propose an architecture for SO(3)-equivariant reconstruction from point clouds, extended by
GraphOnet Chen et al. (2022) for the SE(3)-equivariant case.

3 METHOD

3.1 LEARNING THE OCCUPANCY FIELD

Consider a 3D point cloud P = {(x⃗i, fi)}Ni=1, where x⃗i ∈ R3 denotes the spatial location of a point
and fi ∈ RM is an (optional) associated feature. If the features include the normal vectors, the point
cloud is called oriented. Otherwise it is called unoriented. We denote the matrix of coordinates by
X = [x⃗1, · · · , x⃗N ] ∈ R3×N and the matrix of features by F = [f1, · · · , fN ] ∈ RM×N .

Given a point cloud, our goal is to infer the shape from which it was sampled. We represent this
shape with an occupancy function o∗ : R3 → {0, 1} whose 1-level set, {x⃗ ∈ R3|o∗(x⃗) = 1},

3



Published as a conference paper at ICLR 2023

encodes the volume occupied by the object and whose boundary encodes the surface of the ob-
ject. We approximate this function by learning an operator T that acts on an input point cloud and
produces a function ôP : R3 → [0, 1] that describes the occupancy score ôP (q⃗) of each position
q⃗ ∈ R3. Following Mescheder et al. (2019), we parametrize T by a coordinate-based neural net-
work. In other words, given a point cloud P = (X,F ), and an arbitrary point q⃗ in space, we predict
T [X,F ](q⃗) = ôP (q⃗) ∈ [0, 1]. In contrast to Mescheder et al. (2019), our architecture works directly
on the irregular point grid, extracting a local signature to describe the point cloud, and constraining
the model to achieve SE(3)-equivariance, thus respecting the symmetries of the problem.

It is more common, especially in robotics applications, to receive featureless point clouds (for ex-
ample, from Lidar sensors). Our paper focuses on sparse, noisy, and featureless (in particular,
unoriented) point clouds. Since the performance of T depends on the expressivity of the input fea-
tures F , we first design a feature extractor (or encoder) E that produces a point cloud along with
features, E [X] = (X,F ). Overall, ôP (q⃗) = [T (E(X;ϕ))](q⃗; θ). Our design of T , E is founded on
two basic principles: local shape modelling and equivariance. Objects can be seen as a composition
of local parts and local surfaces. At this level, even dissimilar objects may share structure. Local
shape modelling leverages this compositionality to learn from multiple shapes in a more effective
way. This is particularly helpful for reconstructing novel object classes.

On the other hand, SE(3)-equivariance restricts models to produce consistent occupancy maps ir-
respective of the rigid transformations of the shape. This can further reduce sample complexity.
Together, these two properties create an ideal setting for scene reconstruction. Scenes are composed
of objects which appear in different orientations and positions. Without leveraging compositionality
and equivariance, every new configuration of objects would be seen as a novel scene by the network,
and thus learning would be hindered by the combinatorial explosion of these combinations. We
discuss how we impose the above properties on T , E in the next sections.

We note two more important properties of point cloud processing. First, there is no canonical order-
ing on the points, so a simultaneous permutation of the columns of X,F describes the same point
cloud (permutation equivariance) and second, the number N can vary between point clouds. Thus
the input has a set structure, irregularly embedded in a Euclidean domain. Two main architectures
that deal with such inputs are Point Cloud Convolutions (Wu et al., 2019) and Attention modules
(Yu et al., 2021). We opt for the latter in our design because point cloud convolutions, when con-
strained to be SE(3)-equivariant, result in very few free parameters (Thomas et al., 2018) and in
particular they eliminate the angular degrees of freedom from learning. Thus the performance is
highly dependent on ad-hoc non-linearities (Poulenard & Guibas, 2021). Attention modules on the
other hand are inherently non-linear and the attention kernel can be viewed as a modulation to the
angular profile of the weights, thus having more degrees of freedom (Fuchs et al., 2020).

3.2 USING ATTENTION FOR LOCAL SHAPE MODELLING

Preliminaries on Attention: We propose to construct our networks E , T as a composition of
equivariant attention modules. Given Nout query tokens Qi ∈ RdQ and Nin key-value pairs
K ∈ RdQ×Nin , V ∈ RdV ×Nin , an attention module can be described by the formula:

A(Qi,K, V ) = V softmax(KTQi) =

Nin∑
j=1

exp (QT
i Kj)∑Nin

j′=1 exp (Q
T
i Kj′)︸ ︷︷ ︸

α(Qi,Kj)

Vj , i ∈ [Nout].

where subscripts index columns. For each query token Qi, the output A is a linear combination of the
values Vj , modulated by the similarity α(Qi,Kj) of the query Qi to the corresponding key Kj , as
imposed by the attention kernel α. In self-attention layers the queries, keys and values are functions
of the same set of features, while in cross-attention the query features are distinct and only the keys
and values are functions of the same features. We design the feature extractor E as a composition of
L self-attention layers, and the occupancy operator T as a composition of L′ cross-attention layers.

Self-attention feature extractor E: We associate each point with a query token with the same
functional dependency

Q = Q(x⃗i, f) = WQf.

Moreover, we design the self-attention module so that not all queries have access to all the keys, but
a query attends only keys depending on its position. In particular, if x⃗j ∈ N (x⃗i), with N (x⃗i) the

4



Published as a conference paper at ICLR 2023

𝒯𝒯

𝒯𝒯

𝓛𝓛𝓛𝑔𝑔𝓛𝓛𝑔𝑔

Figure 3: (Up): Input point cloud, input query field (type-1), output occupancy field (type-0) and
(Down) their roto-translations. Here L′

g describes the action on both the query field (q⃗, S′(X, q))
depicted above and the point cloud field (X,FE) (described in the main text); T , E are equivariant
which is equivalent to the diagram being commutative, i.e., L′′

g ◦ T = T ◦ L′
g and E ◦ Lg = L′

g ◦ E .

k nearest neighbors of x⃗i, we assign to the pair (x⃗i, x⃗j) a key-value token. The functional form of
keys and values is

V (x⃗j , x⃗i, f) = WV (x⃗j − x⃗i)f, K(x⃗j , x⃗i, f) = WK(x⃗j − x⃗i)f.

The standard way to incorporate relative positional encoding is via concatenation or addition
(Vaswani et al., 2017). Our functional form WK(x⃗j − x⃗i)f can be understood as a more gen-
eral way to encode the positions of the tokens. This generalization will be important in our case
when we impose extra constraints to satisfy rotational equivariance.

The self-attention module of the encoder E at layer l ≥ 1 gets a feature-augmented point cloud
(X,F ) and produces a new feature-augmented pointcloud (X,F ′) where F ′ is computed as:

E l[X,F ]i =
∑

x⃗j∈N (x⃗i)

exp [(W l
Qfi)

T (W l
K(x⃗j − x⃗i)fj)]∑

x⃗j∈N (x⃗i)
exp [(W l

Qfi)
T (W l

K(x⃗j − x⃗i)fj)]
W l

V (x⃗j − x⃗i)fj , (1)

Since the input point cloud X includes only the locations of the points without additional features,
we design a function Ẽ0 that associates hand-designed (not learned) features to the points. In this
work, Ẽ0[X] = S(X) where S(X)i = x⃗i − 1/|N (xi)|

∑
xj∈N (xi)

x⃗j is the relative position from

the neighborhood’s centroid. Then, E = EL ◦ · · · ◦ E1 ◦ Ẽ0.

Cross-attention occupancy network T : We design the occupancy operator T as a composition of
L′ cross-attention layers. The input query to T can be any point q⃗ ∈ R3 to which we assign a token
Q(q⃗, fq) = W ′

Qfq . The output of T is the occupancy value of that query location. The keys and
values in T are constructed from the output of the feature extractor E [X] = (F E := [fE

1 , ..., f
E
N ]).

In particular, if x⃗j ∈ NX(q⃗), we create a key-value pair for (q⃗, x⃗j) with the form K(x⃗j , q⃗, f
E
j ) =

W ′
K(x⃗j − q⃗)fE

j and V (x⃗j , q⃗, f
E
j ) = W ′

V (x⃗j − q⃗)fE
j . Given a feature-augmented point ql := (q⃗, f l

q),
the cross-attention module T l outputs a new feature-augmented point ql+1 = (q⃗, f l+1

q ). These new
features are computed as:

T l[X,F E ](ql) =
∑

x⃗j∈NX(q⃗)

exp [(W
′l
Qf l

q)
T (W

′l
K(x⃗j − q⃗)fE

j ]∑
x⃗j∈NX(q⃗) exp [(W

′l
Qf l

q)
T (W

′l
K(x⃗j − q⃗)fE

j )]
W

′l
V (x⃗j − q⃗)fE

j , (2)

Since the input query includes only its location q⃗ and not additional features, first we associate it
with a fixed (not learned) feature f1

q := S′(X, q) = q⃗ − 1
|NX(q⃗)|

∑
x⃗j∈NX(q⃗) x⃗j , where NX(q⃗) =

N (argminx⃗i∈X ∥q⃗− x⃗i∥2). Then after passing the feature augmented point to the remaining layers
of T we get the output (q⃗, fL′+1

q ) which corresponds to the occupancy value at point q⃗. Thus the
self-attention and cross-attention modules process the features on the point cloud and the 3d field
respectively, without changing the topology and by performing local attention.

3.3 EQUIVARIANT ATTENTION FOR SHAPE RECONSTRUCTION

Shape reconstruction should be independent of the coordinate system used, including of the posi-
tion of the origin and the orientation of the coordinate axes. One way to capture this geometric
consistency is via SE(3)-equivariance, which can be formulated in the language of group theory. In
our setup, neither E nor T satisfy this property without additional constraints on (WQ, WK , WV )
and (W ′

Q,W
′
K ,W ′

V ). In this section we formulate and solve these constraints. We will assume
familiarity with equivariance, and defer a more extensive discussion to the Appendix.

5



Published as a conference paper at ICLR 2023

Equivariance constraints: In our formulation, the equivariance constraint is that the occupancy
field should be a type-0 (or scalar) field i.e., a simultaneous roto-translation of the point cloud and
the query should result in an invariant prediction. Formally, for all (T,R) ∈ SE(3), q⃗ ∈ R3,

T [E(RX +⊕NT )](Rq⃗ + T ) = T [E(X)](q⃗). (3)

This constraint has to be satisfied from input to output, not at every layer. For intermediate layers
we can relax the constraint and output more expressive vector or tensor fields, with pre-specified
transformation properties, so that the whole composition of layers results in a scalar field.

Per-layer equivariance constraints. We can think of a feature-augmented point cloud (X,F ) as a
feature field in R3 with finite support. Then, both E , T process fields in R3 at each layer. We need
to specify how these fields transform under a roto-translation of X . Different transformation laws in
the layers correspond to different constraints on their weights. We design the layers to transform as,

E l(RX +⊕NT, ρlE(R)F l) = ρl+1
E (R)F l+1 (4)

T l[E(RX +⊕NT )](Rq⃗ + T, ρlT (R)f l
q) = ρl+1

T (R)f l+1
q (5)

for all (T,R) ∈ SE(3), where ρlE(R), ρlT (R) are SO(3)-representations i.e., square invertible ma-
trices satisfying ρ(R1R2) = ρ(R1)ρ(R2), for all R1, R2 ∈ SO(3). The layers Ẽ0, T̃ 0 have also
been designed to admit this transformation law since:

Ẽ0(RX +⊕NT ) = RẼ0(X)

T̃ 0[E(RX +⊕NT )](Rq⃗ + T ) = RT̃ 0[E(X)](q⃗)

i.e., ρ1E(R) = ρ1T (R) = R (proof Appendix A.10). These per-layer constraints in Eqs. 4, 5 are
sufficient to solve Eq. 3, provided that ρL

′+1
T (R) = I . These transformation laws have the form of

the induced representation of SE(3) via SO(3) (Fulton & Harris, 2013) (Appendix A.8.4).

Per-layer constraints on the weights: Observe that the transformation laws above describe fields
whose features stay invariant under a translation of their domains (i.e., the point cloud and R3)
but when this domain rotates they are multiplied by a square matrix ρ(R). Such fields are called
ρ-fields. It is clear from Eq. 1, 2 that due to the use of relative positional encoding, each feature
is translation invariant; and thus each field is translation equivariant. We focus on rotations next,
discussing constraints on E , and adapting them to T . We prove in the Appendix that to solve Eq. 4,
it suffices to satisfy for all R ∈ SO(3) and x⃗i, x⃗j , j ̸= i the following constraints on the weights:

W l
Qρ

l
E(R) = ρl+1

E (R)W l
Q

W l
K(R(x⃗j − x⃗i))ρ

l
E(R) = ρl+1

E (R)W l
K(x⃗j − x⃗i)

W l
V (R(x⃗j − x⃗i))ρ

l
E(R) = ρl+1

E (R)W l
V (x⃗j − x⃗i).

(6)

This reduces the per-layer constraints in Eq. 4 to constraints on the weights of each layer. By solving
these constraints, we uncover the free parameters in each layer.

Feature types and irreducibles: To solve equation 6 it is necessary to exploit the structure of the
matrices ρlE , ρ

l
T , which is an object of study of representation theory (Appendix A.8). Specifically,

according to Peter-Weyl theorem we can block diagonalize a representation ρ : SO(3) → Rd×d as
ρ(R) = QT [⊕kDk(R)]Q

where Q is a change of basis matrix and Dk : SO(3) → R(2k+1)×(2k+1), k ∈ N is the k-th irre-
ducible representation—i.e., non-decomposable into smaller one—of SO(3). Those Dk(R) matrices
produced by the decomposition are called k-th Wigner-D matrices. If a field decomposes to a single
irreducible Dk, i.e., ρ = Dk for some k ∈ N, it is called a type-k field. We already discussed a
type-0 (or scalar) field ρ(R) = D0(R) = I , the occupancy field, as well as a type-1 (or vector) field
ρ(R) = D1(R) = R on the input point cloud (X,S(X)). In practice our feature fields f on each
point are composed of multiple copies (or multiplicities) of irreducibles of different types that form
complex ρ−fields i.e., f = ⊕k,ml

fk,ml
, where k indexes the type and mk its multiplicity.

Layer Parametrization: Given f l =
⊕

k∈K
⊕

mk
f l
k,mk

, and f l+1 =
⊕

k′∈K′
⊕

mk′ f
l+1
k′,mk′ , we

denote by W k′k a block of the matrix W that maps a k-type to a k′-type (there are many such blocks
depending on the multiplicities). For clarity, we drop the layer index l from the matrices, since all

6



Published as a conference paper at ICLR 2023

VNNConvOnetIF-Net OursNeuralPullONet GraphOnet

(a) Single Object Reconstruction

OccNet

VNN

TF-Onet (Ours)

Input

ConvOnet

GraphOnet

(b) Synthetic Scene Reconstruction

Figure 4: (a) Qualitative results for single object surface reconstruction for models trained and
evaluated in three modes: training and testing on aligned shapes (I/I), training on aligned shapes
and testing on rotated ones (I/SO(3)), training and testing on rotated shapes (SO(3)/SO(3)). (b)
Scene reconstructions from the Seismic dataset, using models trained on aligned single objects.

constraints are similar. By requiring that the attention kernel is a scalar field of the positions, we
find in Appendix A.10 the sufficient conditions :

W k′k
Q Dk(R) = Dk′(R)W k′k

Q

W k′k
K (R(x⃗j − x⃗i))Dk(R) = Dk′(R)W k′k

K (x⃗j − x⃗i)

W k′k
V (R(x⃗j − x⃗i))Dk(R) = Dk′(R)W k′k

V (x⃗j − x⃗i).

 (7)

The solution of the first equation follows from Schur’s Lemma (Appendix A.8.1). The next two
have been studied in Weiler et al. (2018a); Thomas et al. (2018). Finally, the inner product in the
attention kernel can zero out some of the parameters in the keys:

W kk
Q = wkk

Q I2k+1,W
k′k
Q = 0, k ̸= k′

W k′k
V (x⃗j − x⃗i) =

∑k′+k
J=|k′−k| ϕ

k′k
J,V (∥x⃗j − x⃗i∥; θV )Ck′k

J (
x⃗j−x⃗i

∥x⃗j−x⃗i∥ )

W k′k
K (x⃗j − x⃗i) =

∑k′+k
J=|k′−k| ϕ

k′k
J,K(∥x⃗j − x⃗i∥; θK)Ck′k

J (
x⃗j−x⃗i

∥x⃗j−x⃗i∥ ), W k′k
K = 0, k′ /∈ K

(8)

where Ck′k
J (x̂) =

∑J
m=−J YJm(x̂)Qk′k

Jm, x̂ = x⃗/∥x⃗∥ and Qk′k
Jm ∈ R(2k′+1)×(2k+1) are slices from

the Clebsch-Gordan matrices Qk′k, Y J : S2 → R2J+1 is the j-th real-valued spherical harmonic
and YJm(x̂) = [YJ(x̂)]m is its m-th coordinate. The remaining free parameters are the, ϕJ -s which
we parametrize with small MLPs. (See Appendix A.7 for an example of these solutions)

The constraints for the cross-attention module T are similar to Eq. 7. However, we can further
restrict to type-1 features for the keys in the first layer, i.e., [WK ]i,j = 0, for i ̸= 1, without any loss.
The reason is that the input query field is of type-1. In Fig. 3 we visualize the equivariance constraint
on T , E by using a commutative diagram. For additional expressivity, we perform equivariant multi-
headed attention by splitting the channels, i.e., the multiplicities of the irreducible representations.
We also use skip connections and equivariant layer normalization as in Thomas et al. (2018), but
defer the details to the Appendix. See Fig. 2 for an overview of the method.

Irreducible types for shape reconstruction: In deep networks, the difference between stacked
channels and those forming a ρ-field is that the latter are equipped with transformation laws to
mix channels, providing a geometric meaning to the representations. We select the irreducibles
to describe our intuition about the geometric entities we look for. If we want to learn a feature that
behaves like a 3D Euclidean vector under rotation (for example a normal vector) we need to construct
a type-1 feature. If we want a feature that behaves like a symmetric matrix under rotations (such as
the inertial matrix), we need a 6-dimensional channel that comprises of one type-0 (scalar) channel
and five channels that compose a type-2 (traceless symmetric matrix) feature. We incorporate such
geometric entities in a distinct way from previous SO(3)-based methods in surface reconstruction,
which only handle vector fields (Deng et al., 2021; Zhu et al., 2021; Chen et al., 2022). In particular,
type-2 features can be useful in our problem to define the bending of the local surface in the receptive
field of the query. Thus they are useful to infer whether the query is inside the shape. Our intuitions
are supported by the experimental performance gain compared to Deng et al. (2021); Chen et al.
(2022) and the ablation study on the types of representations used in our network, shown in Table 1.

7



Published as a conference paper at ICLR 2023

(a) (b)
Figure 5: (a) Quantitative results of reconstruction on the Seismic dataset (synthetic scenes) for
models trained on single aligned objects. (b) Ablation study on the effect of point cloud density and
noise. All models are trained on 300 points with added normal noise of standard deviation 0.005
(black dashed line in the figure) and are evaluated on different sparsity and noise settings.

Table 1: Chamfer-L1 distance, F-Score and IoU achieved by different methods on single object
reconstruction from sparse point clouds (300 points) sampled from ShapeNet. We evaluate our
method (TF-Onet) on three different versions: (E:0-1,D:0-1) the encoder and the decoder use up
to type-1 representations, (E:0-2,D:0-1) the encoder uses up to type-2 and the decoder uses up to
type-1 representations, (E:0-2,D:0-2) the encoder and the decoder use up to type-2 representations

CHAMFER-L1 ↓ F-SCORE (τ = 1%) ↑ F-SCORE (τ = 2%) ↑ IOU ↑
I/I I/SO(3) SO(3)/SO(3) I/I I/SO(3) SO(3)/SO(3) I/I I/SO(3) SO(3)/SO(3) I/I I/SO(3) SO(3)/SO(3)

ONET 0.1 0.4 0.2 66.4% 21.4% 39.3% 89.7% 40.4% 65.6% 77.8% 30.9% 58.2%
CONVONET 0.093 0.16 0.12 71.7% 43.9% 58.9% 92.0% 73.8% 85.6% 77.2% 57.8% 71.2%
VNN 0.14 0.14 0.15 56.5% 56.5% 56.8% 81.2% 81.2% 79.6% 69.3% 69.3% 68.8%
IF-NET 0.095 0.17 0.13 68% 43.5% 55.9 % 91.7% 73.5% 84.5% 77.3% 49.4% 69.9%
NEURALPULL 0.18 0.17 0.17 50.4% 50.5% 50.5% 73.2% 73.6% 73.6% 64.8% 65.7% 65.7%
GRAPHONET 0.105 0.105 0.104 67.1% 67.1% 67.2% 88.7% 88.7% 88.7% 73.2% 73.2% 73.2%
TFONET(E:0-1,D:0-1) 0.105 0.105 0.105 66% 66% 66.1% 88.9% 88.9% 88.9% 73.8% 73.8% 73.9%
TFONET(E:0-2,D:0-1) 0.095 0.095 0.096 69.2% 69.2% 69.2% 90.9% 90.9% 90.4% 77.4% 77.4% 77.3%
TFONET(E:0-2,D:0-2) 0.093 0.093 0.093 71.2% 71.2% 71.1% 91.3% 91.3% 91.3% 78% 78% 78%

4 EXPERIMENTS

We perform experiments with surface reconstruction from unoriented sparse and noisy input point
clouds. We show the importance of SE(3)-equivariance by evaluating objects in various poses and
positions in space. Additionally, we show how local shape modeling and equivariance allows our
method to train only on single aligned objects and generalize to scenes containing multiple objects
in arbitrary locations and orientations.

4.1 SINGLE OBJECT RECONSTRUCTION FROM A SPARSE POINT CLOUD

In our first experiment, we train and evaluate our model on sparse point clouds sampled from single
objects in ShapeNet (Chang et al., 2015). For each input shape, we first uniformly sample 300 points
from the ground truth mesh, and then we add normal noise with zero mean and standard deviation
of 0.005. We note that this experimental setting of 300 points is more challenging compared to
previous works that used denser point clouds containing 3000 points.

First we train and evaluate on the original objects from ShapeNet, where both the training and test
data points are in their canonical position (the I/I case). Additionally, we follow Deng et al. (2021)
and evaluate on test data points transformed by random SO(3) rotations. We evaluate models that
were trained either on aligned training data (the I/SO(3) case), or on training data augmented
by SO(3) rotations (the SO(3)/SO(3) case). In the case of our method (TF-Onet), as shown in
Table 1, we experiment with different choices for the type of the intermediate representations used
by our encoder and decoder. By adjusting the number of channels we make sure that all of our
models have the same number of learnable parameters. We compare with the Occupancy Network
(Onet) (Mescheder et al., 2019)—a non-equivariant network that extracts a global feature; with the
Convolutional Occupancy Network (ConvOnet) (Peng et al., 2020) and the Implicit Feature Network
(IF-Net) (Chibane et al., 2020)—two translation equivariant networks that extract local features;
with Neural Pull (Baorui et al., 2021)—a method that focuses on reconstruction from dense point
clouds by performing only test time optimization; with Vector Neurons (VNN) (Deng et al., 2021),
—a SO(3) equivariant network that extracts a global feature; and with GraphOnet (Chen et al.,
2022), — a SE(3) equivariant network that subsamples the input point cloud to extract per point
features with long range dependencies. We note that in contrast to our method both VNN and
GraphOnet can only use up to type-1 equivariant features.

In Table 1, we present the F-Score (Tatarchenko et al., 2019), the Chamfer-L1 distance (Fan et al.,
2017) and the Intersection over Union (IoU) of the reconstruction, for models trained on the aligned
and SO(3)-augmented datasets. We refer to section A.1 of the Appendix for a more detailed de-

8



Published as a conference paper at ICLR 2023

(a) (b)
Figure 6: Examples of scene reconstructions using our method, trained only on aligned single objects
from ShapeNet. (a) Reconstruction of synthetic scenes from the seismic dataset, (b) Reconstructions
of realistic scenes from Matterport3D. (Chang et al., 2017)

scription of the evaluation metrics. Our method achieves consistent performance regardless of the
rotation of the training or testing data points. Additionally, the best performance is achieved when
we use up to type-2 representations in both the encoder and the decoder (E:0-2,D:0-2). When the
testing data are transformed by random SO(3) rotations, our method consistently outperforms the
compared methods, regardless of whether it is trained on rotated or aligned training data. In figure
4a, we show qualitative comparisons between the methods. Our model achieves consistently high
quality reconstruction in all settings (I/I , I/SO(3), SO(3)/SO(3)). Finally, to study how the point
cloud density and the added noise affects the reconstruction, we train in the original setting and eval-
uate on point clouds with different densities and levels of noise. As shown in figure 5b, our method
outperforms previous methods on sparser point clouds, and scales better to denser point clouds.

4.2 SCENE RECONSTRUCTION WITH SINGLE OBJECT TRAINING

In this section, we evaluate the ability of our model to reconstruct novel scenes with many different
objects, while trained only on single objects. Due to SE(3)-equivariance, performance is consistent
and independent of the pose and the position of the objects. Additionally, our method performs
computations in local neighborhoods that usually contain points from a single object. These two
factors allow us to reconstruct scenes that contain objects in arbitrary poses and positions, without
the need to train on similar scenes, or to segment into separate objects and reconstruct each one. We
construct a dataset of synthetic rooms with multiple objects from ShapeNet in arbitrary locations
and poses, similarly to the dataset constructed in Peng et al. (2020), but with the addition of random
SO(3) rotations on each object. We call this dataset the Seismic dataset.

In figure 5a we show a quantitative comparison between our method (TF-Onet [E:0-2,D:0-2]) and
previous methods that lack either the local shape modeling or the equivariant property. Figure 4b
shows a qualitative comparison between the reconstructions achieved by these methods, while Fig-
ure 6a shows more examples of the reconstruction achieved by our model for scenes from the seismic
dataset. Methods that perform global shape modeling (Onet, VNN) and are trained on single objects
fail to generalize to scenes containing multiple objects. On the other hand, methods that perform lo-
cal shape modeling but are not equivariant to SE(3) transforms (ConvOnet), can reconstruct objects
in novel poses, but with reduced quality. Finally, the SE(3) equivariant GraphOnet, that uses per-
point features with long range dependencies, cannot generalize well on novel scenes when it is only
trained on single objects. Our method benefits from both equivariance and local shape modeling, and
is able to generalize to novel scenes achieving quality similar to that on single object reconstruction.
In Figure 6b, we also show examples of reconstructions of realistic scenes captured from the Mat-
terport3D dataset (Chang et al., 2017). These scenes contain between 6000 to 13000 points. While
our method has only been trained with aligned single objects from ShapeNet represented as point
clouds of 300 points, it successfully reconstructs complicated realistic scenes containing multiple
objects in arbitrary positions and poses, even from unseen classes.

5 CONCLUSION

We proposed a novel SE(3)-equivariant coordinate-based model for shape reconstruction, consisting
of two attention-based networks. By incorporating equivariance and local shape modeling, our
method leverages the compositional structure of objects and scenes. These two properties allow
our model to train on single-aligned objects and reconstruct novel objects and scenes. We evaluate
our method against state-of-the-art SO(3)-equivariant and non-equivariant methods trained with
augmentations and compare favorably in the single shape reconstruction category. Additionally,
using our model trained on single aligned objects, we show that it can reconstruct novel scenes with
quality similar to single object reconstruction, a task where other methods fail.

9



Published as a conference paper at ICLR 2023

6 ACKNOWLEDGEMENTS

We gratefully acknowledge financial support by the following grants: NSF FRR 2220868, NSF IIS-
RI 2212433, NSF TRIPODS 1934960, NSF CPS 2038873, ARL DCIST CRA W911NF-17-2-0181,
ARO MURI W911NF-20-1-0080, ONR N00014-17-1-2093, and ONR N00014-22-1-2677.

REFERENCES

M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and C.T. Silva. Computing and rendering
point set surfaces. IEEE Transactions on Visualization and Computer Graphics, 9(1):3–15, 2003.
doi: 10.1109/TVCG.2003.1175093.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. In Yoshua Bengio and Yann LeCun (eds.), 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Con-
ference Track Proceedings, 2015. URL http://arxiv.org/abs/1409.0473.

Ma Baorui, Han Zhizhong, Liu Yu-Shen, and Zwicker Matthias. Neural-pull: Learning signed
distance functions from point clouds by learning to pull space onto surfaces. In International
Conference on Machine Learning (ICML), 2021.

Matthew Berger, Andrea Tagliasacchi, Lee M Seversky, Pierre Alliez, Gael Guennebaud, Joshua A
Levine, Andrei Sharf, and Claudio T Silva. A survey of surface reconstruction from point clouds.
In Computer Graphics Forum, volume 36, pp. 301–329. Wiley Online Library, 2017.

Alexandre Boulch and Renaud Marlet. Poco: Point convolution for surface reconstruction. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 6302–6314, June 2022.

Johannes Brandstetter, Rob Hesselink, Elise van der Pol, Erik J Bekkers, and Max Welling. Geomet-
ric and physical quantities improve e(3) equivariant message passing. In International Confer-
ence on Learning Representations, 2022. URL https://openreview.net/forum?id=
_xwr8gOBeV1.

Rohan Chabra, Jan E. Lenssen, Eddy Ilg, Tanner Schmidt, Julian Straub, Steven Lovegrove, and
Richard Newcombe. Deep local shapes: Learning local sdf priors for detailed 3d reconstruction.
In ECCV 2020: 16th European Conference, pp. 608–625, 2020.

Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Halber, Matthias Niessner, Manolis Savva,
Shuran Song, Andy Zeng, and Yinda Zhang. Matterport3d: Learning from rgb-d data in indoor
environments. International Conference on 3D Vision (3DV), 2017.

Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li,
Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi, and Fisher Yu.
ShapeNet: An Information-Rich 3D Model Repository. Technical Report arXiv:1512.03012
[cs.GR], Stanford University — Princeton University — Toyota Technological Institute at
Chicago, 2015.

Haiwei Chen, Shichen Liu, Weikai Chen, Hao Li, and Randall Hill. Equivariant point network for
3d point cloud analysis. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 14514–14523, 2021.

Yunlu Chen, Basura Fernando, Hakan Bilen, Matthias Nießner, and Efstratios Gavves. 3d equivari-
ant graph implicit functions, 2022. URL https://arxiv.org/abs/2203.17178.

Zhiqin Chen and Hao Zhang. Learning implicit fields for generative shape modeling. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2019a.

10

http://arxiv.org/abs/1409.0473
https://openreview.net/forum?id=_xwr8gOBeV1
https://openreview.net/forum?id=_xwr8gOBeV1
https://arxiv.org/abs/2203.17178


Published as a conference paper at ICLR 2023

Zhiqin Chen and Hao Zhang. Learning implicit fields for generative shape modeling. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5939–5948,
2019b.

Julian Chibane, Thiemo Alldieck, and Gerard Pons-Moll. Implicit functions in feature space for
3d shape reconstruction and completion. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). IEEE, jun 2020.

Christopher B Choy, Danfei Xu, JunYoung Gwak, Kevin Chen, and Silvio Savarese. 3d-r2n2: A uni-
fied approach for single and multi-view 3d object reconstruction. In Proceedings of the European
Conference on Computer Vision (ECCV), 2016.

Taco Cohen and Max Welling. Group equivariant convolutional networks. In International confer-
ence on machine learning, pp. 2990–2999, 2016.

Taco Cohen, Maurice Weiler, Berkay Kicanaoglu, and Max Welling. Gauge equivariant convolu-
tional networks and the icosahedral CNN. In Proceedings of the 36th International Conference
on Machine Learning, volume 97, pp. 1321–1330, 2019.

Pim de Haan, Maurice Weiler, Taco Cohen, and Max Welling. Gauge equivariant mesh cnns:
Anisotropic convolutions on geometric graphs. In 9th International Conference on Learning
Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021. URL
https://openreview.net/forum?id=Jnspzp-oIZE.

Congyue Deng, Or Litany, Yueqi Duan, Adrien Poulenard, Andrea Tagliasacchi, and Leonidas J.
Guibas. Vector neurons: A general framework for so(3)-equivariant networks. In Proceedings of
the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 12200–12209, October
2021.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recogni-
tion at scale. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=YicbFdNTTy.

Philipp Erler, Paul Guerrero, Stefan Ohrhallinger, Niloy J. Mitra, and Michael Wimmer.
Points2Surf: Learning implicit surfaces from point clouds. In Andrea Vedaldi, Horst Bischof,
Thomas Brox, and Jan-Michael Frahm (eds.), Computer Vision – ECCV 2020, pp. 108–124,
Cham, 2020. Springer International Publishing.

Carlos Esteves, Christine Allen-Blanchette, Ameesh Makadia, and Kostas Daniilidis. Learning so(3)
equivariant representations with spherical cnns. In The European Conference on Computer Vision
(ECCV), September 2018.

Haoqiang Fan, Hao Su, and Leonidas J. Guibas. A point set generation network for 3d object
reconstruction from a single image. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), July 2017.

Fabian B. Fuchs, Daniel E. Worrall, Volker Fischer, and Max Welling. Se(3)-transformers: 3d roto-
translation equivariant attention networks. In Advances in Neural Information Processing Systems
34 (NeurIPS), 2020.

Kunihiko Fukushima. Neocognitron: A self-organizing neural network model for a mechanism of
pattern recognition unaffected by shift in position. Biological cybernetics, 36(4):193–202, 1980.

William Fulton and Joe Harris. Representation theory: a first course, volume 129. Springer Science
& Business Media, 2013.

Kyle Genova, Forrester Cole, Avneesh Sud, Aaron Sarna, and Thomas Funkhouser. Local deep
implicit functions for 3d shape. In The IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pp. 4856–4865, 06 2020. doi: 10.1109/CVPR42600.2020.00491.

11

https://openreview.net/forum?id=Jnspzp-oIZE
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy


Published as a conference paper at ICLR 2023

Shunwang Gong, Lei Chen, Michael Bronstein, and Stefanos Zafeiriou. Spiralnet++: A fast and
highly efficient mesh convolution operator. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision Workshops, pp. 0–0, 2019.

Brian C Hall. Lie groups, Lie algebras, and representations: an elementary introduction, volume 10.
Springer, 2003.

Chiyu Max Jiang, Avneesh Sud, Ameesh Makadia, Jingwei Huang, Matthias Nießner, and Thomas
Funkhouser. Local implicit grid representations for 3d scenes. In Proceedings IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), 2020.

Michael Kazhdan and Hugues Hoppe. Screened poisson surface reconstruction. ACM Trans. Graph.,
32(3), jul 2013. ISSN 0730-0301. doi: 10.1145/2487228.2487237. URL https://doi.org/
10.1145/2487228.2487237.

David G Kendall. A survey of the statistical theory of shape. Statistical Science, 4(2):87–99, 1989.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings, 2015.

Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne Hub-
bard, and Lawrence D Jackel. Backpropagation applied to handwritten zip code recognition.
Neural computation, 1(4):541–551, 1989.

Stefan Lionar, Daniil Emtsev, Dusan Svilarkovic, and Songyou Peng. Dynamic plane convolutional
occupancy networks. In Winter Conference on Applications of Computer Vision (WACV), 2021.

William E Lorensen and Harvey E Cline. Marching cubes: A high resolution 3d surface construction
algorithm. ACM siggraph computer graphics, 21(4):163–169, 1987.

Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and equivariant graph
networks. In 7th International Conference on Learning Representations, ICLR 2019, New Or-
leans, LA, USA, May 6-9, 2019, 2019.

Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas Geiger.
Occupancy networks: Learning 3d reconstruction in function space. In Proceedings IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR), 2019.

Michael Niemeyer and Andreas Geiger. Giraffe: Representing scenes as compositional genera-
tive neural feature fields. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 11453–11464, 2021.

Michael Niemeyer, Lars Mescheder, Michael Oechsle, and Andreas Geiger. Differentiable volumet-
ric rendering: Learning implicit 3d representations without 3d supervision. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3504–3515, 2020.

Xuran Pan, Zhuofan Xia, Shiji Song, Li Erran Li, and Gao Huang. 3d object detection with point-
former. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 7463–7472, June 2021.

Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove.
Deepsdf: Learning continuous signed distance functions for shape representation. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June 2019.

Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc Pollefeys, and Andreas Geiger. Convolu-
tional occupancy networks. In European Conference on Computer Vision, pp. 523–540. Springer,
2020.

Adrien Poulenard and Leonidas J. Guibas. A functional approach to rotation equivariant non-
linearities for tensor field networks. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 13174–13183, June 2021.

12

https://doi.org/10.1145/2487228.2487237
https://doi.org/10.1145/2487228.2487237


Published as a conference paper at ICLR 2023

Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. Pointnet: Deep learning on point
sets for 3d classification and segmentation, 2016. URL http://arxiv.org/abs/1612.
00593. cite arxiv:1612.00593.

Gernot Riegler, Ali Osman Ulusoy, and Andreas Geiger. Octnet: Learning deep 3d representa-
tions at high resolutions. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 3577–3586, 2017.

David W. Romero and Jean-Baptiste Cordonnier. Group equivariant stand-alone self-attention
for vision. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=JkfYjnOEo6M.

Vincent Sitzmann, Michael Zollhöfer, and Gordon Wetzstein. Scene representation networks: Con-
tinuous 3d-structure-aware neural scene representations. Advances in Neural Information Pro-
cessing Systems, 32, 2019.

Jiapeng Tang, Jiabao Lei, Dan Xu, Feiying Ma, Kui Jia, and Lei Zhang. Sa-convonet: Sign-agnostic
optimization of convolutional occupancy networks. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, 2021.

Maxim Tatarchenko, Stephan R. Richter, Rene Ranftl, Zhuwen Li, Vladlen Koltun, and Thomas
Brox. What do single-view 3d reconstruction networks learn? In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), June 2019.

Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, and Patrick
Riley. Tensor field networks: Rotation-and translation-equivariant neural networks for 3d point
clouds. arXiv preprint arXiv:1802.08219, 2018.

Edgar Tretschk, Ayush Tewari, Vladislav Golyanik, Michael Zollhöfer, Carsten Stoll, and Chris-
tian Theobalt. PatchNets: Patch-Based Generalizable Deep Implicit 3D Shape Representations.
European Conference on Computer Vision (ECCV), 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural
Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

He Wang and Juyong Zhang. A survey of deep learning-based mesh processing. Communications
in Mathematics and Statistics, pp. 1–32, 2022.

Maurice Weiler, Mario Geiger, Max Welling, Wouter Boomsma, and Taco Cohen. 3d steerable cnns:
Learning rotationally equivariant features in volumetric data. In NeurIPS, 2018a.

Maurice Weiler, Fred A. Hamprecht, and Martin Storath. Learning steerable filters for rotation
equivariant cnns. In 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2018, Salt Lake City, UT, USA, June 18-22, 2018, pp. 849–858. IEEE Computer Society, 2018b.

Maurice Weiler, Patrick Forré, Erik Verlinde, and Max Welling. Coordinate independent convolu-
tional networks - isometry and gauge equivariant convolutions on riemannian manifolds. CoRR,
abs/2106.06020, 2021. URL https://arxiv.org/abs/2106.06020.

Francis Williams, Zan Gojcic, Sameh Khamis, Denis Zorin, Joan Bruna, Sanja Fidler, and Or Litany.
Neural fields as learnable kernels for 3d reconstruction. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pp. 18500–18510, June 2022.

Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, and Lei Zhang. Cvt:
Introducing convolutions to vision transformers. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), pp. 22–31, October 2021.

Wenxuan Wu, Zhongang Qi, and Li Fuxin. Pointconv: Deep convolutional networks on 3d point
clouds. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), June 2019.

13

http://arxiv.org/abs/1612.00593
http://arxiv.org/abs/1612.00593
https://openreview.net/forum?id=JkfYjnOEo6M
https://openreview.net/forum?id=JkfYjnOEo6M
https://arxiv.org/abs/2106.06020


Published as a conference paper at ICLR 2023

Xumin Yu, Yongming Rao, Ziyi Wang, Zuyan Liu, Jiwen Lu, and Jie Zhou. Pointr: Diverse point
cloud completion with geometry-aware transformers. In ICCV, 2021.

Minghan Zhu, Maani Ghaffari, and Huei Peng. Correspondence-free point cloud registration with
SO(3)-equivariant implicit shape representations. In 5th Annual Conference on Robot Learning,
2021. URL https://openreview.net/forum?id=KOq9qDgn-Ta.

14

https://openreview.net/forum?id=KOq9qDgn-Ta


Published as a conference paper at ICLR 2023

A APPENDIX

A.1 EVALUATION METRICS

In table 1, we present the F-Score, Chamfer-L1 distance and Intersection over Union (IoU) of the
reconstruction achieved by various models. For the F-Score and Chamfer-L1 distance, we compute
the reconstructed mesh using the Marching Cubes algorithm (Lorensen & Cline, 1987). Then, we
uniformly sample 100,000 points from the reconstructed mesh, and compare them with the “ground
truth” points sampled similarly from the “ground truth” mesh. The standard deviation of the results
for both metrics due to the randomness introduced by the sampling of the 100,000 points is smaller
than 10−5. As defined in Tatarchenko et al. (2019), the F-Score here is the harmonic mean of the
precision and the recall of the reconstruction. Precision is the percentage of reconstructed points
that lie within a certain distance τ of the ground truth points, and recall is the percentage of ground
truth points that lie within a distance τ of the reconstructed points. We compute the F-Score with
τ equal to 1% of the side length of the reconstructed volume, and with τ equal to 2% of the side
length of the reconstructed volume. For the IoU metric, we uniformly sample 100,000 points from
the whole space, and compare the predicted occupancy to the ground truth occupancy. The IoU is
then computed by taking the ratio of points that are occupied according to both the predicted and
the ground truth occupancy to the points that are occupied according to either the predicted or the
ground truth occupancy.

A.2 MODEL ARCHITECTURE, TRAINING AND TESTING DETAILS

For the self-attention feature extractor network E , we use ten multi-headed SE(3) attention layers,
and for the cross-attention occupancy network T we use another two. All multi-headed SE(3) atten-
tion layers use eight heads. For each point x⃗i of the point cloud, we define the neighborhood N (x⃗i)
as its k nearest neighbors, where k is chosen to be 5% of the size of the point cloud (e.g., for 300
points, k=15). Each feature map in the layers of E , T uses irreducibles up to type-2.

We train our model on the ShapeNet (Chang et al., 2015) subset constructed in Choy et al. (2016).
We use the Adam (Kingma & Ba, 2015) optimizer with learning rate that starts at 2 · 10−4 and
linearly decreases to reach the value of 10−5. We train for 200,000 iterations using a batch size of
64. During training, we take as input a point cloud of 300 points and as ground truth the occupancy
value of 2048 points that are sampled uniformly inside a box that bounds the object. As a training
loss, we use the binary cross-entropy loss between the predicted and the ground truth occupancy of
the 2048 randomly sampled points.

During inference, recalling that the output of our model for one query point is in the range of [0, 1],
we classify a query point as occupied if the value of the learned occupancy function is above 0.2.
After we query the occupancy of points throughout the space, we reconstruct the object’s mesh using
the Marching Cubes algorithm (Lorensen & Cline, 1987).

A.3 EXTRACTING DIFFERENT TYPES OF REPRESENTATIONS AS FEATURES

An important quality of our method is its ability to use different types of representations as its
intermediate features. These different types determine the way that the features transform as the
input rotates. These transformation laws affect the shape properties that each type of features can
encode. For example type-0 features can encode properties of the shape that are invariant to the
rotation of the shape, type-1 features can encode properties that must rotate as 3d vectors (e.g. the
normal vectors at the surface) and type-2 features can encode properties that rotate as symmetric
matrices (e.g. the inertial matrix of the shape).

A type l feature consists of a 2l + 1 dimensional vector that rotates according to the corresponding
Wigner-D matrix Dl : SO(3) → R(2l+1)×(2l+1). In figure 7 we visualize the different types of
features extracted by our encoder for different cases of inputs. The difference between the type of
features can be clearly observed in the case of the symmetric sphere where features of higher type l
correspond to higher frequencies on the sphere.

15



Published as a conference paper at ICLR 2023

𝑚𝑚 = 0 𝑚𝑚 = −1 𝑚𝑚 = 0 𝑚𝑚 = 1 𝑚𝑚 = −2 𝑚𝑚 = −1 𝑚𝑚 = 2𝑚𝑚 =1𝑚𝑚 = 0
𝑡𝑡𝑦𝑦𝑡𝑡𝑡𝑡 1 𝑡𝑡𝑦𝑦𝑡𝑡𝑡𝑡 2𝑡𝑡𝑦𝑦𝑡𝑡𝑡𝑡 0

Figure 7: Visualization of each dimension of a type-l feature extracted by our TF-Onet encoder (with
l = 0, 1, 2). A type-l feature corresponds to a 2l + 1 dimensional vector where each dimension is
denoted with index m ∈ {−l, . . . , l}. The last right column shows the final reconstruction achieved
by our method for the corresponding input.

A.4 RECONSTRUCTIONS OF SCANNED SCENES

We further investigate the generalization of our method to novel scenes by reconstructing real objects
of different domains and levels of clutter (Fig. 8). The input is a sparse, unoriented point cloud
scanned from scenes consisting of an arbitrary number of randomly placed objects. The model is
agnostic to the number of objects in the scene and is trained only on synthetic single objects. The
model outputs high-quality reconstructions even in difficult settings with objects very close to each
other. We observe small artifacts in very cluttered scenes, localized in regions of incidence between
objects (e.g. mugs in line 4 of Fig. 8).

Figure 8: (Left): Reconstructions of real scans of randomly placed objects produced by our model
which is trained only on single synthetic objects. (Middle): Input scene-level point cloud. (Right):
RGB image of the scene.

A.5 ROBUSTNESS TO CLUTTER

We evaluate the model on the Seismic dataset (Sec. 4.2) which contains scenes with varying levels
of clutter. In Fig. 9 we measure the Intersection over Union (IoU) of the reconstruction versus the
minimum distance between any two objects in the scene (normalized with respect to the room size).

16



Published as a conference paper at ICLR 2023

The minimum distances range from around 6% to 20% of the room. The performance of the model
is relatively stable across all settings with a maximum performance decrease of 0.025 in IoU.

Figure 9: Intersection over Union (IoU) of the reconstructions from the Seismic dataset (Sec. 4.2)
with respect to the minimum distance of any two objects in the scene.

A.6 LIMITATIONS AND FUTURE WORK

A possible limitation of this work is the inherent memory overhead of the attention modules used
in the network. In our setting, this overhead is lowered due to the locality of the attention operation
but it can be further minimized with additional optimization of the attention modules. The optimiza-
tion of the attention modules is an active research direction that can also benefit our method. An
additional possible direction for future work is to extend our method to the problem of scene com-
pletion from partial observations. In this task, the model is required to hallucinate and reconstruct
unobserved areas of a scene and thus requires a combination of local and global information about
the scene configuration. While a significant methodological extension is required for our method to
tackle such a task we believe that the core principles of equivariance via higher-order representations
and local shape modeling can provide useful tools.

A.7 WEIGHT PARAMETRIZATION

Here, we present the parametrization of the weights of the queries, keys, and values that appear as
the solutions of Equation 7 (and written analytically in Equation 8). We focus on the specific case
where both the input and output feature maps are ρ-fields consisting of up to type-2 irreducibles.
Then, each feature in the feature maps can be decomposed into

fin =

2⊕
k=0

Mk⊕
mk=1

fk,mk

in , fout =

2⊕
k′=0

Nk′⊕
nk′=1

f
k′,nk′
out

For clarity, we start with multiplicities 1 i.e., Mk = Nk′ = 1 (and omit the index of the layer). Then
we extend to the general case.

The matrix WQ appearing in the query tokens Q(x⃗i, fin) = WQfin has the form:

17



Published as a conference paper at ICLR 2023



f0,1
out

f1,1
out

f2,1
out


=



w0,0 0 0

0 w1,1I3 0

0 0 w2,2I5


︸ ︷︷ ︸

WQ



f0,1
in

f1,1
in

f2,1
in



Similarly, we present the form of the function of matrices WK , that appear in the key tokens as
K(x⃗j , x⃗i, fin) = WK(x⃗j − x⃗i)fin . To simplify the notation we use x⃗ instead of x⃗j − x⃗i and
x̂ = x⃗/∥x⃗∥. To write WK in matrix form we first need to define:

Φk′,k
l−u(∥x⃗∥)⊗ Ck′,k

l−u (x̂) :=

u∑
i=l

ϕk′,k
i (∥x⃗∥)︸ ︷︷ ︸

learned

Ck′,k
i (x̂)︸ ︷︷ ︸

fixed

The functions ϕk′,k
i : R+ → R are parametrized by MLPs. Ck′,k

i (x̂) ∈ R(2k′+1)×(2k+1) are fixed
matrices defined in Section 8. Given the definition above we can write WK as:

Φ0,0
0−0(∥x⃗∥)⊗ C0,0

0−0(x̂) Φ0,1
1−1(∥x⃗∥)⊗ C0,1

1−1(x̂) Φ0,2
2−2(∥x⃗∥)⊗ C0,2

2−2(x̂)

Φ1,0
1−1(∥x⃗∥)⊗ C1,0

1−1(x̂) Φ1,1
0−2(∥x⃗∥)⊗ C1,1

0−2(x̂) Φ1,2
1−3(∥x⃗∥)⊗ C1,2

1−3(x̂)

Φ2,0
2−2(∥x⃗∥)⊗ C2,0

2−2(x̂) Φ2,1
1−3(∥x⃗∥)⊗ C2,1

1−3(x̂) Φ2,2
0−4(∥x⃗∥)⊗ C2,2

0−4(x̂)


︸ ︷︷ ︸

WK(x⃗)



f0,1
in

f1,1
in

f2,1
in



The form of the matrices WV appearing in the value tokens as V (x⃗j , x⃗i, fin) = WV (x⃗j − x⃗i)fin is
similar to WK above.

In the general case, if the input representation contains Mk copies of type-k irreducibles we need to
stack the corresponding blocks of WQ,WK , Mk times in the column dimension. Similarly, if the
output representation contains N ′

k copies of type-k′ irreducibles we need to stack the corresponding
blocks Nk′ times in the row dimension. Specifically,

• for WQ and k = k′:

[
wk,kI2k+1

]
7→


wk,k

(1,1)I2k+1 · · · wk,k
(1,Mk)

I2k+1

...
. . .

...
wk,k

(Nk′ ,1)
I2k+1 · · · wk,k

(Nk′ ,Mk)
I2k+1


• for WK and l = |k′ − k|, u = |k′ + k|:

[
Φk′,k

l−u ⊗ Ck′,k
l−u

]
7→


[Φk′,k

l−u ](1,1) ⊗ Ck′,k
l−u · · · [Φk′,k

l−u ](1,Mk) ⊗ Ck′,k
l−u

...
. . .

...
[Φk′,k

l−u ](Nk′ ,1) ⊗ Ck′,k
l−u · · · [Φk′,k

l−u ](Nk′ ,Mk) ⊗ Ck′,k
l−u


A.8 PRELIMINARIES

We recall some basic notions from group and representation theory, see e.g., Fulton & Harris (2013).
A group (G, ·) is a set G together with a binary operator “·”: G×G → G that satisfies the following
axioms:

18



Published as a conference paper at ICLR 2023

• Associativity: g · (h · f) = (g · h) · f for all g, h, f ∈ G

• Identity: there exists an element e ∈ G such that e · g = g · e = g

• Inverse: for all g ∈ G, there exists g−1 ∈ G such that g−1 · g = g · g−1 = e.

Given G, we say that each group element g ∈ G acts on the space X via an action Lg : X → X if
Lg satisfy the following two properties:

• If e is the identity element of G then Le[x] = x for all x ∈ G;
• Lg ◦ Lh = Lg·h for all g, h ∈ G.

If for any x, y ∈ X there exists g ∈ G such that Lg[x] = y, then we call X a homogeneous space
for the group G.

When X = V is a vector space, we can define the group action using a linear group representation
(V, ρ), where ρ : G → GL(V ) is a map from group G to the general linear group GL(V ). This
means that using the linear operator ρ(g) on V , we can define the group action Lg on the vector
space V as Lg[x] = ρ(g)x for all x ∈ V , g ∈ G. Then (V, ρ) is a linear group representation if ρ
is a group homomorphism, i.e., ρ(g · h) = ρ(g)ρ(h) for all g, h ∈ G, and ρ(e) = IV is the identity
operator over V . To simplify the notation, when the vector space V that the group acts on is easily
inferred from the context, we will use ρ to denote the representation (V, ρ).

Given a set of actions Lg : X → X for g ∈ G, and a set of actions Tg : Y → Y for g ∈ G, we say
that a map f : X → Y is (G,L, T )-equivariant if for every g ∈ G:

Tg[f(x)] = f(Lg[x]) for all g ∈ G, x ∈ X.

If f is linear and equivariant (with respect to (G,L, T )), then it is called an intertwiner (with respect
to (G,L, T )).

If there exists a subspace W ⊂ V such that for all g ∈ G and w ∈ W , we have that ρ(g)w ∈ W ,
then W is a G-invariant subspace of V , and (W,ρ) is a subrepresentation of (V, ρ). All representa-
tions (V, ρ) have at least two subrepresentations: (0, ρ) and (V, ρ). If a representation has no other
subrepresentations, then it is called irreducible. Otherwise it is called reducible. A fundamental
result is the following (Fulton & Harris, 2013).

A.8.1 SCHUR’S LEMMA

Let (V, ρV ), (W,ρW ) be irreducible representations of G acting on V and W , respectively.

• If V and W are not isomorphic, then there are no nontrivial intertwiners between them.
• If V = W are finite-dimensional vector spaces over C, and if ρV = ρW , then all intertwin-

ers are scalar multiples of the identity.

Now we list a number of fundamental examples, see e.g., Fulton & Harris (2013); Hall (2003).

A.8.2 THE TRANSLATION GROUP (R3,+):

R3 equipped with the addition operator “+” is a group that is isomorphic to the group of translations
in the 3D space.

A.8.3 THE SPECIAL ORTHOGONAL GROUP SO(3):

SO(3) is the group of 3× 3 orthogonal matrices with determinant +1 equipped with multiplication;
and is isomorphic to the group of all 3D rotations about the origin. SO(3) is a compact group and as
a result of the Peter-Weyl theorem, its linear representations can be decomposed into a direct sum of
finite-dimensional, unitary, irreducible representations. Specifically a linear representation of SO(3)
decomposes as:

ρ(g) = QT

⊕
J≥0

DJ(g)

Q for all g ∈ G,

19



Published as a conference paper at ICLR 2023

where Q is a change of basis matrix and J = 0, 1, . . . DJ are (2J + 1)× (2J + 1) matrices known
as the Wigner D-matrices. The Wigner D-matrices are the irreducible representations of SO(3). In
the context of the features of a neural net, the representations (viewed as vectors) that transform
according to DJ are called type-J vectors.

A.8.4 THE SPECIAL EUCLIDEAN GROUP SE(3):

SE(3) is the group of proper rigid transformations of 3D space, and is isomorphic to the semidirect
product (R3,+)⋊SO(3). An element of SE(3) can be represented as (T,R) where T is an element
of the group of translations and R is an element of the group SO(3) of 3D rotations. For two
elements (T1, R1), (T2, R2) ∈ SE(3), the group law is defined as:

(T1, R1) · (T2, R2) = (T1 +R1T2, R1R2).

Since every point in R3 can be transformed into any other point with a proper rigid transformation,
we have that R3 is a homogeneous space for SE(3).

In addition to the action of SE(3) on vectors in R3, we can also define the action of SE(3) on func-
tions f : R3 → RM , for any given integer M > 0. This action is called the induced representation
π = Ind

SE(3)
SO(3)ρ of SE(3). It acts on f as follows:

[π((T,R))f ](x) = ρ(R)f(R−1(x− T )),

where (T,R) ∈ SE(3), x ∈ R3 and ρ is a representation of SO(3). Especially in the context
of neural nets where functions are viewed as feature fields, a function that transforms according
to π = Ind

SE(3)
SO(3)ρ is called a ρ-field, and if ρ corresponds to the l-th irreducible representation of

SO(3), it is also called a field of type-l.

A.9 ARCHITECTURE DETAILS

A feature-augmented point cloud P = (X,F ) where X := [x⃗1 · · · x⃗N ] ∈ R3×N and F :=
[f1 · · · fN ] ∈ R3×M for some M ∈ N can be associated with a 3d field f : R3 → RM of fi-
nite support by writing f(x) =

∑N
i=1 fiδ(x⃗ − x⃗i). This association will be useful to define the

group action on the feature-augmented point cloud and will unify the inputs and outputs of T , E in
the sense that both of them process fields in R3 and output fields in R3. We will interchangeably use
(X,F ) and f for the point cloud in the next sections. We will call f the point cloud function when
the distinction is not clear.

The main module in our architecture is an SE(3)-equivariant attention block. Each block consists of
a multi-head SE(3)-equivariant attention module followed by a skip connection and an equivariant
layer normalization step.

A.9.1 MULTI-HEAD SE(3)-EQUIVARIANT ATTENTION MODULE:

This module consists of multiple heads that implement either self-attention (input features for keys,
values and queries are the same) or cross-attention (input features for keys and values are the same
and different from the inputs for the queries). We will first describe the self-attention variant of the
module and then describe the changes that are required for the cross-attention version.

The self-attention SE(3)-equivariant module takes as input a function f (describing the point cloud
as discussed above) defined by f(x⃗) =

∑N
i=1 fiδ(x⃗− x⃗i). Each one of the fi vectors can be decom-

posed into irreducible representations of SO(3) appearing with different multiplicities. This means
that a single vector fi can be decomposed as fi =

⊕
l≥0

⊕
ml≥0 fil,ml

, where fil,ml
corresponds

to the ml-th multiplicity of the irreducible component of type-l. Since we perform self-attention,
the keys, values and queries are computed using the same input function f . Specifically, for pairs of
key and query points (x⃗j , x⃗i), we compute the keys K(x⃗j , x⃗i, fj) = WK(x⃗j − x⃗i)fj , the queries
Q(x⃗i, fi) = WQfi, and the values V (x⃗j , x⃗i, fj) = WV (x⃗j − x⃗i)fj . To ensure equivariance, WK ,
WQ, WV must satisfy the conditions described in Section 3.3.

Suppose that for the computed key and query features, the l-th irreducible appears with multiplicity
Ml, and for the computed value features the k-th irreducible appears with multiplicity Nk. For each

20



Published as a conference paper at ICLR 2023

irreducible, we split its multiplicities across the different heads of the attention block. Assuming
that we have H heads in total, each head h receives keys K(h)(x⃗j , x⃗i, fj) and queries Q(h)(x⃗i, fi)

containing irreducibles with multiplicities Ml/H and receives values V (h)(x⃗j , x⃗i, fk) containing
irreducibles appearing with multiplicities Nk/H . After this split, the output of the self-attention for
each head can be computed as:

SA(h)[X, f ](x⃗i) =
∑

x⃗j∈N (x⃗i)

αX

(
Q(h)(x⃗i, fi),K

(h)(x⃗j , x⃗i, fj)
)
V (h)(x⃗j , x⃗i, fj),

where

αX (Q(x⃗i, fi),K(x⃗j , x⃗i, fj)) =
exp [(Q(x⃗i, fi))

TK(x⃗j , x⃗i, fj)]∑
x⃗j∈N (x⃗i)

exp [(Q(x⃗i, fi))TK(x⃗j , x⃗i, fj)]
.

Similar to the keys, values and queries, the output can have irreducibles and multiplicities that differ
from the input and decompose as:

SA(h)[X, f ] =
⊕
k

⊕
nk

SA(h)[X, f ]k,nk
,

where SA(h)[X, f ]k,nk
is the nk-th multiplicity of the k-th irreducible.

After the application of the self-attention layer, we concatenate the output of all the heads to cre-
ate SA[X, f ] =

⊕
h SA

(h)[X, f ]. Then we pass the concatenated output through a linear SE(3)-
equivariant layer to take SAout[X, f ] = WPSA[X, f ]. Since this linear layer also needs to be
equivariant, it must follow the same constraints as the query matrix WQ. By Schur’s lemma, it
follows that WP can only mix feature vectors that correspond to the same irreducibles.

For implementing cross-attention, we use the same process as with self-attention, with the only
difference that the inputs for the queries are different from the inputs for the keys and the values. As
a result, the output of the cross-attention for a single head h is computed as:

CA(h)[X, f ](fq, q⃗) =
∑

x⃗j∈NX(q⃗)

αX

(
Q(h)(q⃗, fq),K

(h)(x⃗j , q⃗, fj)
)
V (h)(x⃗j , q⃗, fj).

A.9.2 SKIP CONNECTION:

The skip connection concatenates the output features of the multi-headed SE(3)-equivariant module
with the features of the input query. To respect the type of each feature, this concatenation must
happen between features corresponding to the same irreducible.

Suppose that fout is the output of the multi-head attention, decomposing into irreducibles and their
multiplicities as fout =

⊕
k

⊕
nk

fout
k,nk

. Similarly suppose that fq is the input query, decomposing
into irreducibles and their multiplicities as fq =

⊕
l

⊕
ml

fq,(l,ml). The application of the skip
connection gives an output

f skip =
⊕
k

[(⊕
nk

fout
k,nk

)
⊕

(⊕
mk

fq⃗,(k,mk)

)]
.

To keep the output at the same types and multiplicities as specified by the user (i.e., to be a ρout-
field) we only concatenate multiplicities from the input that exist in the output. Also, after the skip
connection we apply an equivariant linear layer between irreducibles of the same type to project the
features to the correct dimensions.

A.9.3 EQUIVARIANT LAYER NORM:

Suppose that fl,m denotes the m-th type-l irreducible of the input vector f . As proposed in Fuchs
et al. (2020), for each vector fl,m, we apply layer normalization and a nonlinearity on the norm of
fl,m, leaving its direction unchanged. Thus, the equivariant normalization layer can be written as:

EqLayerNorm(f)l,m = ReLU

(
LayerNorm

(⊕
m

∥fl,m∥

))
m

fl,m
∥fl,m∥

,

21



Published as a conference paper at ICLR 2023

where LayerNorm corresponds to layer normalization, proposed in Ba et al. (2016).

We use the SE(3)-equivariant attention block to construct both the network E that assigns to each
point in the point cloud a learned feature, and the network T , that outputs the occupancy value
of a query point in space. The network E consists of ten SE(3)-equivariant self-attention blocks,
and T consists of two SE(3)-equivariant cross-attention blocks. Figure 2 shows a diagram of this
architecture.

In both networks, we use blocks with eight heads and intermediate representations that contain
features up to type-2. Additionally, for each type we set the multiplicity of the corresponding irre-
ducible to 32. Finally, for the computation of the local neighborhood N (x⃗) around each point x⃗, we
use the k nearest neighbors, where k is chosen to be 5% of the size of the point cloud (e.g., for 300
points, k=15).

Although it is possible for T to output a single scalar that corresponds to the occupancy value at a
queried point, we observe in the experiments an increase in performance when T outputs 32 scalar
values that we then pass through a simple MLP to get the final occupancy value.

A.10 PROOFS ON EQUIVARIANCE FROM SEC.3.3

1. Input-output equivariance (Eq. 3): We will formalize the equivariance constraints in the
language of group theory. We have a map ô that takes as input a point cloud X ∈ R3×N and outputs
an occupancy field ô(X) : R3 → R. First we need to define the actions of SE(3) on the input point
cloud and the occupancy map which we denote by Lin, Lout respectively. Those have the following
form for (T,R) ∈ SE(3):

Lin,(T,R)[X] = RX +⊕NT (9)

[Lout,(T,R)ô(X)](q⃗) = [ô(X)](R−1(q⃗ − T )), (10)
where ⊕N on vectors denotes concatenation column-wise. The first equation describes N standard
representations of SE(3) and the second the induced representation of SE(3) via SO(3) with ρ(R) =
I , i.e., the map ô is a scalar (or type-0) field.

For completeness we show that Lin indeed describes an action of SE(3) on X . Letting (I,⊕N0) be
the identity element of SE(3), we can check that

Lin,(I,⊕N0)[X] = IX +⊕N0 = X.

Also, for any (T1, R1), (T2, R2) from SE(3), we can check that
Lin,(T2,R2)[L(T1,R1)[X]] = R2(R1X +⊕NT1) +⊕NT2 =

= R2R1X +R2(⊕NT1) +⊕NT2

= R2R1X +⊕N (R2T1 + T2)

= Lin,R2T1+T2,R2R1
[X]

= Lin,[(T2,R2)·(T1,R1)][X].

Using the vector space isomorphism associating X ∈ R3×N with the unrolled vector vec(X) ∈
R3N , we can view this action as the direct sum of N standard representations. Moreover, Lout is
also an action, and in fact an induced representation of SE(3) via SO(3) with ρ(R) = I,R ∈ SO(3),
according to the definition A.8.4.

Now that we have the input and output actions, we can define the equivariance constraint for our
problem. Informally, a simultaneous roto-translation of the point cloud and the query results in an
invariant prediction. Formally,

ô(Lin,(T,R)[X]) = Lout,(T,R)ô(X) ⇐⇒ (11)

[ô(Lin,(T,R)[X])](q⃗) = [Lout,(T,R)ô(X)](q⃗), ∀q⃗ ∈ R3 ⇐⇒ (12)

[ô(RX +⊕NT )](q⃗) = [ô(X)](R−1(q⃗ − T )), ∀q⃗ ∈ R3 ⇐⇒ (13)

[ô(RX +⊕NT )](Rq⃗ + T ) = [ô(X)](q⃗), ∀q⃗ ∈ R3. (14)
Now we recall that we have parametrized ô as a composition of a feature extractor E and an occu-
pancy network T , i.e., [ô(X)](q⃗) = [T (E(X))](q⃗). Thus we arrive to Eq. 3:

[T (E(RX +⊕NT ))](Rq⃗ + T ) = [T (E(X))](q⃗). (15)

22



Published as a conference paper at ICLR 2023

2. Per-layer equivariance (Eq. 4, 5): Next, we need to prove that the per-layer equivariance
constraints in Eq. 4, 5 are sufficient to satisfy the input-output equivariance constraint from Eq. 3,
provided that ρL

′+1
T (R) = I,R ∈ SO(3). We recall that the forms of the feature extractor E and

the occupancy network T are:

E [X] = EL · · · ◦ E2 ◦ E1 ◦ Ẽ0[X] (16)

Ẽ0[X] = (X,S(X)) (17)

T [X,F ](q⃗) = T L′
· · · ◦ T 2 ◦ T 1 ◦ T̃ 0[X,F ](q⃗) (18)

T̃ 0[X,F ](q⃗) = (q⃗, S′(X, q⃗)). (19)

All E1, E2, · · · , EL take as input and produce as output a feature field on the point cloud and satisfy
the constraints in Eq. 4. Similarly, all T 1, T 2, · · · , T L′

take as input a feature field on the point
cloud and a feature field in R3 and pass the point cloud feature field unaltered to the next layer.
They transform the feature field in R3 and satisfy the constraints in Eq. 5. Thus, by composing
these constraints in Eq. 4.5 we immediately find:

EL · · · ◦ E2 ◦ E1(RX +⊕NT, ρ1E(R)F 1) = (RX +⊕NT, ρL+1
E (R)FL+1), (20)

T L′
· · · ◦ T 1[RX +⊕NT, ρL+1

E (R)FL+1](Rq⃗ + T, ρ1T (R)f1
q ) = (Rq⃗ + T, ρL

′+1
T (R)fL′+1

q ),

where ρL
′+1

T (R) = I as discussed. The equations above show that if every layer transforms an
input ρ-field to an output ρ-field, then the composition also transforms an input ρ-field to an output
ρ-field. Thus, it remains to show that the fixed layers Ẽ0, T̃ 0, namely (X,S(X)) and (q⃗, S′(X, q⃗))
respectively are ρ-fields as well. Then, the equations in Eq. 20 would not only apply from the first
layer to the output, but from the input to the output. In other words, we need to check that the
features produced by S, S′ do not translate when the point cloud translates but they do rotate (under
suitable representations) when the point cloud rotates.

2.1. Input point cloud field and input query field are type-1 fields: For the i-th point at position
x⃗i, we construct a feature fi as input to the first self-attention layer of E . We select the feature fi
as the relative position of the i-th point, x⃗i, to the centroid of a neighborhood constructed from its k
nearest neighbors in the point cloud in Euclidean norm, i.e.,

fi := S(X)i = x⃗i −
1

|N k
i (X)|

∑
j∈Nk

i (X)

x⃗j , X = ⊕N
i=1[x⃗i],

where

N k
i (X) = {j ∈ [N ] | ∥x⃗i − x⃗j∥2 ≤ ∥x⃗i − x⃗

(i)
k ∥2}

is the neighborhood of the i-th point in the point cloud. Also, (x⃗(i)
j )j∈[N ] is a sorting of the points

in the point cloud in increasing Euclidean distance to the i-th point, i.e, ∥x⃗i − x⃗
(i)
1 ∥2 ≤ · · · ≤

∥x⃗i − x⃗
(i)
N ∥2. In case of ties, we assign numbers randomly. Due to the use of “ ≤ ” (instead of the

strict inequality symbol “ < ”), in the definition of the neighborhoods, if there are ties for x⃗(i)
k , we

include all tied points in the neighborhood.

Now we study how the features fi transform when the points in the point cloud transform via
Lin,(T,R), discussed in the first step. Since

Lin,(T,R)[X] = ⊕N
i=1(Lin,(T,R)[X]i) = ⊕N

i=1[Rx⃗i + T ],

we find:

S(Lin,(T,R)[X])i = Lin,(T,R)[X]i −
1

|N k
i (Lin,(T,R)[X])|

∑
j∈Nk

i (Lin,(T,R)[X])

Lin,(T,R)[X]j

= (Rx⃗i + T )− 1

|N k
i (X)|

∑
j∈Nk

i (X)

(Rx⃗j + T ),

23



Published as a conference paper at ICLR 2023

where we used the claim, proved below, that

N k
i (Lin,(T,R)[X]) = N k

i (X). (21)

Thus, S(Lin,(T,R)[X])i further equals:

R

x⃗i −
1

|N k
i (X)|

∑
j∈Nk

i (X)

x⃗j

 = RS(X), for all (T,R) ∈ SE(3).

We now prove 21. When all x⃗i are mapped as x⃗i

Lin,(T,R)−−−−−−→ Rx⃗i+T , the Euclidean distance between
any two points is preserved, i.e., ∥(Rx⃗i + T ) − (Rx⃗j + T )∥2 = ∥x⃗i − x⃗j∥2. Thus, if before the
transformation ∥x⃗i − x⃗

(i)
k ∥2 = dk, then after the transformation we also have ∥Lin,(T,R)[X]i −

Lin,(T,R)[X]
(i)
k ∥2 = dk. This is because all nearest neighbors preserve their distances, and thus

sorting returns the same indices up to random tie breaking. Thus,

j ∈ N k
i (X) ⇐⇒ ∥x⃗i − x⃗j∥2 ≤ dk

⇐⇒ ∥(Rx⃗i + T )− (Rx⃗j + T )∥2 ≤ dk

⇐⇒ ∥Lin,(T,R)[X]i − Lin,(T,R)[X]j∥2 ≤ dk

⇐⇒ ∥Lin,(T,R)[X]i − Lin,(T,R)[X]j∥2 ≤ ∥Lin,(T,R)[X]i − Lin,(T,R)[X]
(i)
k ∥2

⇐⇒ j ∈ N k
i (Lin,(T,R)[X]).

The first and fourth equivalence hold because we include all tied neighbors in the neighborhood.
Thus, the neighborhood is defined by the distance dk, and not by the identity of the k-neighbors.

Thus fi = S(X)i transforms according to the standard representation of SO(3) when each point
in the point cloud transforms according to the standard representation of SE(3). If we view the
features as a function on the point cloud extended to the homogeneous space R3 ∼= SE(3)/SO(3),
i.e., f(x) =

∑N
i=1 fiδ(x−xi), then this function transforms according to the induced representation

as:

L(ind)
(T,R)[f ](x⃗) = Rf(R−1(x⃗− T )) =

N∑
i=1

(Rfi)δ((R
−1(x⃗− T )− x⃗i)).

Recall that functions transforming according to the above law are called type-1 fields. We
will keep the name, but use a matrix notation instead of the Dirac notation. By concate-
nating the features column-wise, we find the map, described in the main text as S, i.e.,
S(RX +⊕NT ) = ⊕N

i=1Rfi = RS(X).

Now we turn to the second network, T . For each point q⃗ ∈ R3 whose occupancy value we wish to
find, we first construct a feature f1

q := S′(X, q⃗) and then use the pair (q⃗, f1
q ) as the query to the first

cross-attention layer of T . We will show that, when the query q⃗ and the point cloud X transform
according to the standard representation of SE(3), this input feature f1

q also transforms according to
the standard representation of SO(3).

We again construct the feature f1
q as the relative position between q⃗ and the centroid of its neighbor-

hood NQ
X (q⃗). We consider NQ

X (q⃗) to be the same as the neighborhood of its closest—in Euclidean
distance—point in the point cloud, and write (if the closest point is defined uniquely)

NQ
X (q⃗) := N k

argmini∈[N](∥q⃗−x⃗i∥2)
(X).

We discuss at the end of this step the case where the nearest neighbors are tied. At the moment, let
the unique closest point be c = argmini∈[N ](∥q⃗ − x⃗i∥2). Then, the query feature becomes:

f1
q := S′(X, q⃗) = q⃗ − 1

|NQ
X (q⃗)|

∑
j∈NX(q⃗)

x⃗j

= q⃗ − 1

|N k
c (X)|

∑
j∈Nk

c (X)

x⃗j , X = ⊕N
i=1[x⃗i]. (22)

24



Published as a conference paper at ICLR 2023

The proof that
S′(RX +⊕NT,Rq⃗ + T ) = RS′(X, q⃗)

is the same as the one for S before. Viewed again as a function defined on R3, the map q⃗ 7→ S′(X, q⃗)
constitutes a type-1 field. The transformation law of this field is depicted in Fig. 3.

2.2. Remark: When there are ties, i.e., the set argmini∈[N ](∥q⃗ − x⃗i∥2) contains more than one
point, we form all neighborhoods

NQ
X (q⃗) = {N k

c (X) | c ∈ arg min
i∈[N ]

∥q⃗ − x⃗i∥2}.

Then, we consider a query token for each pair (q⃗c, f c
q ), where q⃗c = q⃗ and f c

q are constructed as in
22, using the neighborhood N k

c (X) ∈ NQ
X (q⃗).

If fq transforms as a type-1 field, then, after the roto-translation of the point cloud and the query,
we could identify the same c as a closest neighbor. However, since those points are equivalent as
nearest neighbors, we will process the whole set of fields independently, producing a set of fields in
the output. A different order of selection of nearest neighbors after the roto-translation corresponds
to a permutation of the set of the output fields. Since attention modules are permutation equivariant,
this permutation propagates to the output.

We only need to discuss how to combine these outputs on the tokens q⃗c that correspond to the same
position q⃗ in the occupancy field. Since the output is a scalar field (as we prove next), we can
take the maximum across the same channels to construct a new scalar field that is also invariant to
any permutation. The idea is that taking the maximum corresponds to an “OR” operation, since
both the usual non-linearities (such as the sigmoid) and the thresholding operations that follow are
increasing functions of their inputs. Thus, when the network predicts that the position of the query
is “occupied”, even based on one neighborhood, the position is likely to be considered occupied.

3. From per-layer constraints 4, 5 to constraints on the weights 6: We focus now on each
layer of E , T separately. Now we need to prove that Eq. 6 provide sufficient conditions on the
weights to satisfy the per-layer constraints 4, 5. Every layer is composed of a multi-headed attention
layer, a skip connection and a normalization layer. We prove the result for the self-attention and
cross-attention layers (focusing on one attention head for simplicity). It will be clear from the
proof that a concatenation of the heads and a subsequent linear transformation mixing channels
that correspond to the same irreducible preserves equivariance, as well as a skip connection that
concatenates irreducibles of the same type.

We start with the self-attention layers in E described in A.9.1. We drop the layer index l for clarity
and denote the actions ρlE , ρ

l+1
E by ρin, ρout.

At the i-th token. we have

SA[X,F ]i =
∑

j∈Nk
i (X)

αX [Q(x⃗i, fi),K(x⃗j , x⃗i, fj)]WV (x⃗j − x⃗i)fj︸ ︷︷ ︸
V (x⃗j ,x⃗i,fj)

,

where the attention kernel αX takes the form:

αX [Q(x⃗i, fi),K(x⃗j , x⃗i, fj)] =
exp [(Q(x⃗i, fi))

TK(x⃗j , x⃗i, fj)]∑
j∈Nk

i (X) exp [(Q(x⃗i, fi))TK(x⃗j , x⃗i, fj)]

=
exp [(WQfi)

T (WK(x⃗j − x⃗i)fj)]∑
j∈Nk

i (X) exp [(WQfi)T (WK(x⃗j − x⃗i)fj)]
, i ∈ [N ].

Then, we are given {
WQρin(R) = ρout(R)WQ

WK(R(x⃗j − x⃗i))ρin(R) = ρout(R)WK(x⃗j − x⃗i)
WV (R(x⃗j − x⃗i))ρin(R) = ρout(R)WV (x⃗j − x⃗i)

(23)

and we need to prove:

SA(RX +⊕NT, ρin(R)F ) = ρout(R)SA(X,F ).

25



Published as a conference paper at ICLR 2023

For the attention layer, we have for X = ⊕N
i=1[x⃗i] and for each output token i ∈ [N ]:

SA[RX +⊕NT, ρin(R)F ]i = (24)

=
∑

j∈Nk
i (RX+⊕NT )

αRX+⊕NT [Q(Rx⃗i + T, ρin(R)fi),K(Rx⃗j + T,Rx⃗i + T, ρin(R)fj)]·

WV ((Rx⃗j + T )− (Rx⃗i + T ))ρin(R)fj

=
∑

j∈Nk
i (X)

αRX+⊕NT [WQρin(R)fi,WK(R(x⃗j − x⃗i))ρin(R)fj ]WV (R(x⃗j − x⃗i))ρin(R)fj ,

where we used 21 for the invariant neighborhoods, N k
i (RX + ⊕NT ) = N k

i (X). Now using the
constraints for the matrices 23, we find for each term j ∈ N k

i (X) that the individual terms in the
sum above equal:

αRX+⊕NT [ρout(R)WQfi, ρout(R)WK(x⃗j − x⃗i)fj ]ρout(R)WV (x⃗j − x⃗i)fj

= ρout(R)αRX+⊕NT [ρout(R)WQfi, ρout(R)WK(x⃗j − x⃗i)fj ]WV (x⃗j − x⃗i)fj , (25)

where in the second equation we used that the attention kernel gives a scalar output. Now, the
attention kernel from the last equation transforms as

αRX+⊕NT [ρout(R)WQfi, ρout(R)WK(x⃗j − x⃗i)fj ] =

=
exp [(ρout(R)WQfi)

T (ρout(R)WK(x⃗j − x⃗i)fj)]∑
j∈Nk

i (RX+⊕NT ) exp [(ρout(R)WQfi)T (ρout(R)WK(x⃗j − x⃗i)fj)]
=

=
exp [(WQfi)

T (WK(x⃗j − x⃗i)fj)]∑
j∈Nk

i (X) exp [(WQfi)T (WK(x⃗j − x⃗i)fj)]
= αX [Q(x⃗i, fi),K(x⃗j , x⃗i, fj)], (26)

where we used again the properties of the invariant neighborhoods and that ρout is a unitary repre-
sentation, i.e., ρout(R)T ρout(R) = I for all R ∈ SO(3).

Using 25, 26, and 24, we find:

SA[RX +⊕NT, ρin(R)F ]i

= ρout(R)
∑

j∈Nk
i (X)

αX [Q(x⃗i, fi)K(x⃗j , x⃗i, fj)]WV (x⃗j − x⃗i)fj

= ρout(R)SA[X,F ]i.

Thus each self-attention layer in E is equivariant. The proof for each cross-attention layer in T
is similar. Again, note that if the closest neighbor of the query is not uniquely defined, then—as
discussed above—we output the entire set of fields for every equivalent neighborhood. Then, the
output is also a set of fields and a roto-translation of the input will only result in a permutation of
these fields. Then, the “max” operation in the output will eliminate the permutation, making the
output equivariant.

4. From the constraints on the weights (Eq. 6) to their solutions (Eq. 7): Again, we focus on
each layer separately as we did in the previous section. The goal is to solve Eq. 23.

By the Peter-Weyl theorem, ρin decomposes into unitary, irreducible representations of SO(3), pos-
sibly with multiplicities. Thus,

ρin(R) = QT
in

(⊕
l

⊕
ml

Dl(R)

)
Qin, R ∈ SO(3),

where in our case Qin = I ,
⊕

for matrices denotes a concatenation along the diagonal and l
indexes the irreducible types and ml indexes the multiplicity of the l-th irreducible. Then, for each
x⃗ in the point cloud (where we suppress the index i for clarity), we have f in =

⊕
l

⊕
ml

f inl,ml
. We

also consider an output field transforming according to ρout(R) = QT
out(

⊕
k

⊕
nk

Dk(R))Qout—
Qout = I in our case—that decomposes as fout =

⊕
k

⊕
nk

foutk,nk
. Recall that each of the matrices

WQ,WK ,WV are of dimension
∑

k nk(2k + 1)×
∑

l ml(2l + 1).

26



Published as a conference paper at ICLR 2023

1. For WQ, we have for all R ∈ SO(3):

ρout(R)WQ = WQρin(R) ⇐⇒

[
⊕
k,nk

Dk(R)]WQ = WQ[
⊕
l,ml

Dl(R)] ⇐⇒

Dk(R)WQ = WQDl(R). (27)

By Schur’s Lemma (A.8.1), for each block [WQ]
k,nk

l,ml
that multiplies f inl,ml

to create foutk,nk

(after adding all contributions), we have, for some constants ck,nk

l,ml
:

[WQ]
k,nk

l,ml
=

{
0 if l ̸= k

ck,nk

l,ml
I2l+1 if l = k.

(28)

Intuitively, the solution above says that the query cannot transform an irreducible type to a
different irreducible type (e.g., a scalar to vector), but only mix channels that correspond to
the same irreducible.

2. For WV , the constraint is that for all R ∈ SO(3), the following set of equivalent statements
holds:

WV (R(x⃗j − x⃗i))ρin(R) = ρout(R)WV (x⃗j − x⃗i) ⇐⇒

WV (R(x⃗j − x⃗i))[
⊕
l,ml

Dl(R)] = [
⊕
k,nk

Dk(R)]WV (x⃗j − x⃗i) ⇐⇒

[WV (Rr(x⃗j − x⃗i))]
k,nk

l,ml
Dl(R) = Dk(R)[WV (x⃗j − x⃗i)]

k,nk

l,ml
.

The solution, as discussed in the main text and solved in Weiler et al. (2018a); Thomas
et al. (2018) is:

[WV (x⃗j − x⃗i)]
k,nk

l,ml
=

l+k∑
J=|l−k|

ϕ
(k,nk)
V,(J,l,ml)

(∥x⃗j − x⃗i∥; θ)Ck,l
J

(
x⃗j − x⃗i

∥x⃗j − x⃗i∥

)
,

where Ck,l
J (x̂) =

∑J
m=−J YJm(x̂)Qkl

Jm, Qkl
Jm ∈ R(2k+1)×(2l+1) are the slices from the

Qkl Clebsch-Gordan matrices, YJ : S2 → R(2J+1), is the J-th real spherical harmonic,
YJm(x̂) = [YJ(x̂)]m is its m-th coordinate, and x̂ = x⃗/∥x⃗∥.

3. For WK , we have the same equation as for WV above:

WK(R(x⃗j − x⃗i))ρin(R) = ρout(R)WK(x⃗j − x⃗i),

but in addition we can constrain the blocks that transform to an irreducible that does not
appear in the input to be zero without impacting the result. The reason is the form of WQ in
Eq. 28. In particular, if l′, k are different irreducibles in the input and output respectively,
then the blocks [WK ]k,nk

l′,ml′
that transform a type-l′ to a type-k only contribute as terms to

the total inner product in the attention kernel as follows.
For all (l,ml):

⟨[WQ]
k,nk

l,ml
Dl(R)fl, [WK(x⃗j − x⃗i)]

k,nk

l′,ml′
Dl(R)fl⟩

The above inner product is zero if l ̸= k due to Eq. 28. If k /∈ K, where K is the set of
irreducibles appearing in the input (i.e. the range of l) then the inner product is zero for all
l,ml. So, we might as well choose:

[WK(x⃗j − x⃗i)]
k,nk

l′,ml′
= 0, if k /∈ K.

since parametrizing those blocks will not contribute to the result. For the rest of the blocks
we have, similar as before,

[WK(x⃗j − x⃗i)]
k,nk

l,ml
=

l+k∑
J=|l−k|

ϕ
(k,nk)
K,(J,l,ml)

(∥x⃗j − x⃗i∥; θ)Ck,l
J

(
x⃗j − x⃗i

∥x⃗j − x⃗i∥

)
,

27



Published as a conference paper at ICLR 2023

The parametrization of the weights of the cross-attention module T is similar to Eq. 7. The only
difference is that we can further reduce the number of parameters without impacting the result by
using only the type-1 features of the keys in the first layer, i.e., [WK ]k,nk

l,ml
= 0, for k ̸= 1. This is

due to the same equation involving the inner product between the key and the query we saw above,
and the fact that the input query field is of type-1. In Fig. 3, we visualize the equivariance constraint
on T , E by using a commutative diagram.

6. Additional Equivariant Layers: Clearly, the concatenation of multiple attention heads with
the same irreducible types, as well as skip connection layers as defined in section A.9, preserve
equivariance. Since they add the multiplicities of each irreducible type independently, they only
change the output representation by increasing the multiplicities of its irreducibles.

The subsequent mixing of channels of the same irreducible type by a linear map performed in the
multi-headed attention module corresponds to the same operation that the query performs, thus it
also preserves equivariance.

Finally, the equivariant layer-norm layer also operates on each irreducible type independently. Since
the irreducibles are unitary transforms—i.e., ∥fl,ml

∥2 = ∥Dlfl,ml
∥2 for all fl,ml

and all Dl—any
non-linear operation on the norm of a type-l vector produces a type-0 vector. Since fl,ml

/∥fl,ml
∥2 is

again a type-l vector, the final result is a type-l vector.

7. Attention as a set operation: In addition to SE(3)-equivariance, our model inherits the properties
of the standard attention layers. Thus, it is equivariant to any permutation of the points in the point
cloud, and to the order of the queries. Moreover, the number of output tokens can vary. We use
this property for scene reconstruction, by reconstructing scenes of a variable number of points (and
point clouds) even by training on single objects of a fixed number of points. The input (key-value)
tokens can also change during inference, which we can use to adapt the neighborhoods dynamically
during inference. This can counter that super-sampling a point cloud may reduce the receptive field.

8. On independent SO(3) rotations. Our local attention neighborhoods and equivariant reconstruc-
tions are particularly important properties when reconstructing scenes. Here the point clouds can be
independently placed in arbitrary positions. It is natural to ask if we can connect the performance
of our model in a particular scene to the performance in another scene, where the same point clouds
have been independently roto-translated. For a single object, the true occupancy function should be
the same under a simultaneous roto-translation of the point cloud and the query. Our equivariant
pipeline respects this property, by outputting a scalar field. Thus, the performance of our model is
consistent independently of the SE(3) transformations of a single point cloud.

Following a similar approach for scenes with multiple objects, one can associate an independent
copy of SO(3) acting on each point cloud, i.e., an action Xi 7→ Lri [X

i], for all objects i ∈ I . We
can ask if there is a transformation of the query q⃗, that, after the rotation of the point clouds, results in
the same occupancy value. Also, can this implemented without knowing the segmentation function
that assigns the points to their point clouds? A reasonable first approach would be to transform the
query q⃗ with the rotation matrix Ri used to transform its closest neighbor.

Unfortunately, this transformation does not correspond to a group action. To understand this, con-
sider two unit spheres at positions (0, 0, 0) and (1, 0, 0) in three-dimensional space, and the query
point q⃗ = (−10, 0, 0). Then, consider the product group action L1 = Lr1,r2 = L(0,0,π),e that rotates
the first sphere around the z-axis by 180 degrees—r1 = (0, 0, π)—and fixes the second sphere—
r1 = e. Next, consider the reverse action L2 = L(0,0,−π),e. If we first multiply the corresponding
group elements together, we find L = L1 ◦ L2 = Le,e = I . If we then find the nearest sphere and
apply the identity action to the query, it will remain at (−10, 0, 0). On the other hand, if we first
find the nearest neighbor—in this case, the first sphere–and apply the corresponding action, then
the query will rotate around the z-axis by 180-degrees, moving to (10, 0, 0). If we then apply the
second action by finding again the nearest neighbor—now the second sphere—the identity action
will be applied and the query point stays at (10, 0, 0). Thus, this transformation does not satisfy the
“compatibility” property and thus it is not a group action.

Even though the conditions are not met for all query points in space, there are subsets of R3 that are
closed under these transformations and for which these transformations indeed form group actions.
We will consider equivariance only in those subsets. We construct them geometrically for two point

28



Published as a conference paper at ICLR 2023

clouds for simplicity. Consider the point clouds X1, X2 rotating around points c1, c2, respectively.
We construct the equivariant zone for the point cloud X1. First take the point in X2 that has the
maximum distance (in Euclidean norm), say d2, to its center of rotation c2. Form the sphere S2

around X2, with a radius d2 and center c2. All of X2 is contained in S2. Connect the centers c1, c2,
and denote the point of intersection of this segment with S2 as p. Then, draw the segment between p
and c1 and name the distance of c1 to the middle point of this segment D1. Every point in the sphere
S1 of radius D1 and center c1 is in the equivariant zone of X1, called Z1.

We prove that in the equivariant zone, our model is equivariant, for any independent rotation of the
point clouds. By construction, every query q⃗ in the first equivariant zone Z1 has its closest neighbor
in the point cloud X1. This holds for any rotation of any point cloud. Then, by definition, the
action on the query is the same rotation Rr1 that transformed the points in X1. Since the point cloud
and the query both rotate with the same transformation, the query neighborhood constructed within
the cross-attention layers is invariant—leading to the same closest neighbor—as we proved for the
single object case.

Now, suppose each point in X1 has its k nearest neighbors in X1, for any rotation of the point
clouds; this is reasonable for sufficiently dense or separated point clouds. Then these point cloud
neighborhoods are also invariant after the individual rotations. Under these conditions, a direct
product action of SO(3)-s on the point clouds with a simultaneous action of R1 on the query in
the first equivariant zone is viewed by the attention network as a simultaneous rotation of the point
cloud X1 and the query q⃗. This is because N (q⃗) contains only points from X1, so the attention
module uses only key-value tokens from points in X1. Further, the neighborhood of the query is
invariant to a simultaneous rotation of X1 and q⃗. Thus, as we proved in the single-object case, the
occupancy value prediction for this transformed query is invariant to the transformation. Thus, for
all queries in an equivariant zone, equivariance to the direct product action of SO(3) holds, i.e., for
all r1, r2, · · · , rI ∈ SO(3), and for all q⃗ ∈ Zj , with j ∈ [I],

T [(Lr1 [X1],Lr2 [X2], · · · ,LrI [XI ]), Rj q⃗] = T [(X1, X2, · · · , XI), q⃗].

29


	Introduction
	Related Work
	Method
	Learning the Occupancy Field
	Using Attention for Local Shape Modelling
	Equivariant Attention for Shape Reconstruction

	Experiments
	Single Object Reconstruction from a Sparse point cloud
	Scene Reconstruction with Single Object Training

	Conclusion
	Acknowledgements
	Appendix
	Evaluation Metrics
	Model Architecture, Training and Testing Details
	Extracting Different Types of Representations as Features
	Reconstructions of Scanned Scenes
	Robustness to clutter
	Limitations and Future Work
	Weight Parametrization
	Preliminaries
	Schur's Lemma
	The translation group (R3,+):
	The special orthogonal group SO(3):
	The special Euclidean group SE(3):

	Architecture Details
	Multi-head SE(3)-equivariant Attention Module:
	 Skip connection:
	Equivariant Layer Norm:

	Proofs on Equivariance from Sec.3.3


