
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SAFEAUTO: KNOWLEDGE-ENHANCED SAFE AU-
TONOMOUS DRIVING WITH MULTIMODAL FOUNDA-
TION MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Traditional autonomous driving systems often struggle to harmonize high-level
reasoning with low-level control, leading to suboptimal and even unsafe driv-
ing behaviors. The emergence of multimodal large language models (MLLMs),
capable of processing visual and textual data, presents an opportunity to unify
perception and reasoning tasks within a single framework. However, integrat-
ing precise safety knowledge into MLLMs for safe autonomous driving remains
a significant challenge. To address this, we propose SafeAuto, a novel frame-
work that enhances MLLM-based autonomous driving systems by incorporating
both unstructured and structured knowledge. In particular, we first propose the
Place-Dependent Cross-Entropy (PDCE) loss function, which is specifically de-
signed to enhance the accuracy of low-level control signal predictions when treat-
ing numerical values as text. To explicitly integrate precise safety knowledge into
the MLLM to enable safe autonomous driving, we build a reasoning component
for SafeAuto, which first parses driving safety regulations into first-order logic
rules (e.g., “red light =⇒ stop”) and then integrates these rules into a proba-
bilistic graphical model, such as a Markov Logic Network (MLN). The environ-
ment attributes, identified by attribute recognition models (e.g., detecting a red
light), are used to form the predicates in MLN. In addition, the environmental at-
tributes utilized for reasoning are also considered factors in retrieval to construct a
Multimodal Retrieval-Augmented Generation (RAG) model, which aims to learn
from past similar driving experiences more effectively. Extensive experiments
demonstrate that SafeAuto significantly outperforms baselines across multiple
datasets. By bridging the gap between high-level reasoning and low-level control,
SafeAuto paves the way for more accurate, reliable, and safer autonomous driv-
ing, facilitating systems that learn effectively from experience, adhere to traffic
regulations, and execute precise control actions.

1 INTRODUCTION

Autonomous Driving (AD) systems (Kim et al., 2018; Jin et al., 2023; Hu et al., 2023) have made
significant strides in recent years, yet they often rely on separate modules for high-level decision-
making (e.g., “the car should slow to a stop”) and low-level control signal prediction (e.g., providing
the specific speed or steering angle for the next few moments). However, these two aspects are
inherently correlated, as high-level actions directly guide low-level control signals. This modular
design often overlooks this correlation, leading to inefficiencies and less cohesive driving behaviors.
Recent advancements in Multimodal Large Language Models (MLLMs) (Liu et al., 2023b;a; Lin
et al., 2023) offer a promising avenue to bridge the gap between high-level reasoning and low-level
control in AD. These models provide a unified framework capable of processing and reasoning over
multiple data modalities, such as images, videos, and text. Some recent works (Wang et al., 2023;
Xu et al., 2024; Wang et al., 2024) have begun to leverage MLLMs to generate both high-level action
descriptions and low-level control signals in an end-to-end manner. However, these approaches are
predominantly data-driven and often fail to perform at human levels due to several limitations.
Firstly, for low-level action prediction, current approaches in adapting MLLMs generally follow
two fashions. The first fashion treats the prediction of float numbers as text generation (Gruver
et al., 2024; Xu et al., 2024), directly training the MLLM using cross-entropy (CE) loss for token

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Current video driving scenario: <video>
Control Signal before current frame Sequence:
Speed: [3.35, 3.26, 3.17, 3.08, 2.96, 2.87, 2.78]
Curvature: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
Acceleration: [-0.92, -0.9, -0.88, -0.85, -0.82, -0.8, -0.77]
Course: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]

Multimodal Input: video, text

SafeAuto-Reasoning: Knowledge-Enhanced Post-Safety Verification (§ 3.2)

MLLM Action Predicate:
MLLMKeep(x)=1, MLLMStop(x) = 0, …
Environmental Predicates:
SolidRedLight(x)=1, StopSign(x)=0, …
Observed Action Predicates
Keep(x), Accelerate(x), Stop(x), …

10.02 SolidRedLight(x) => ¬Accelerate(x) ∧ ¬LeftPass(x) ∧ ¬Yield(x)
 8.03 StopSign(x) => Stop(x) ∨ Decelerate(x) ∧ ¬PullOver(x)
 8.47 NoLeftTurnSign(x) => ¬TurnLeft(x)
10.51 MLLMKeep(x) => Keep(x)
10.55 MLLMStop(x) => Stop(x)
 …

Video (8 image frames)

Control Signal (float vector)

Environmental Predicate
(binary vector) Unified

Embedding
rank

SafeAuto-RAG: Learn from Similar Driving Experience (§ 3.3)

Place-Dependent Cross-Entropy Loss (§ 3.1)

[Current Context] + [Retrieved Context]
Human: What is the action of ego car?
LLM: The car is moving forward
LLM: The car is slowing to a stop

Task 3: Low Level Action Query

Human: Predict the control signal of next frame.
LLM: Speed: 2.69 Course: 0.00

Human: Why does the ego car do this?
LLM: for the red light at the intersection ahead.

Task 1: High Level Action Query

Task 2: High Level Justification Query

Tasks of SafeAuto

The Weighted Target Token Probability for float number speed “2.69”

MLLM

Violate safety knowledge,
Should be Stop

[Retrieved Context]
Text

Embedding

Rank

Learning

MLLM

Predicates Weight Formula (Knowledge Rules)

Figure 1: Overview of our SafeAuto pipeline for end-to-end high-level and low-level prediction in au-
tonomous driving, featuring: (1) the Place-Dependent Cross-Entropy Loss (Section 3.1) for improved low-level
numerical predictions using soft, weighted digit probability distributions; (2) Knowledge-Enhanced Post-Safety
Verification (Section 3.2) with Markov Logic Networks to verify high-level actions against traffic rules; and (3)
a Multimodal RAG (Section 3.3) training method that incorporates similar driving experiences via text-based
rankings for better context-aware decision-making.
prediction. Some variations (Brohan et al., 2023; Sima et al., 2023) of this method involve tok-
enizing the prediction range into several bins and adding new tokens for each bin into the LLM’s
vocabulary, allowing the model to predict the corresponding bin token ID. However, these methods
remain somewhat coarse compared to traditional regression techniques (Hu et al., 2023) using Mean
Squared Error (MSE) loss. Alternatively, another fashion (Jin et al., 2024) employs a linear layer
to decode the float number from the output hidden embeddings of the MLLM, enabling the use of
MSE loss to train the model. While this approach may improve numerical accuracy, it compromises
the autoregressive capability of the LLM, as the model can then only be purely used for numerical
prediction and cannot perform any further QA-for example, handling high-level question-answering.
Additionally, regarding high-level action prediction, a significant limitation of current methods is
their inability to effectively utilize both structured and unstructured knowledge when making deci-
sions. Specifically, existing approaches often focus solely on data-driven techniques, inadequately
incorporating structured knowledge such as traffic rules and safety constraints. Although some meth-
ods (Sima et al., 2023; Mao et al., 2023; Wang et al., 2024) attempt to include traffic regulations by
embedding them into the model’s context, this implicit approach is insufficient. Due to the inherent
tendency of MLLMs to hallucinate, they may still generate unsafe or illegal actions. Meanwhile,
while RAG (Lewis et al., 2020) has been employed in language models (Semnani et al., 2023; Zhang
et al., 2024) to mitigate issues like hallucination by incorporating relevant information from exter-
nal sources, few works (Yuan et al., 2024) have fully exploited and combined the rich multimodal
data inherent in autonomous driving contexts—such as videos, images, and control signals—to learn
from past driving experiences as unstructured knowledge.
To address these challenges, we propose a novel framework SafeAuto that enhances MLLMs for
autonomous driving through three key contributions as shown in Figure 1: (1) Place-Dependent
Cross-Entropy (PDCE) Loss: We propose a PDCE loss that retains the autoregressive nature of the
MLLM while behaving like an MSE loss during training. This loss function improves numerical pre-
diction accuracy without compromising the model’s language generation abilities. (2) Knowledge-
Enhanced Post-Safety Verification: We employ Markov Logic Networks (MLNs) (Richardson
& Domingos, 2006) to explicitly encode domain knowledge and structured traffic rules into the
decision-making process of the MLLM. This knowledge-enabled reasoning allows us to verify and
correct the high-level actions suggested by the MLLM, ensuring they comply with traffic regulations
and safety constraints. (3) Multimodal RAG for Autonomous Driving: We introduce a method
that utilizes video data, control signals, and the environmental predicates used in the MLN to re-
trieve similar driving experiences. By learning a joint embedding across these modalities based
on the ranking derived from text description of the current scenario—which contain rich semantic
information—we can effectively leverage past experiences to inform current decision-making.
By integrating these components, SafeAuto provides a comprehensive solution to the challenges
faced by current MLLMs in autonomous driving. We evaluate our approach on two benchmark

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

datasets: BDD-X (Kim et al., 2018) and DriveLM (Sima et al., 2023), both featuring low-level
control signals and high-level action descriptions. Our experimental results demonstrate significant
improvements in both low-level control accuracy and high-level action prediction. First, for low-
level prediction on the BDD-X dataset, it reduces the Root Mean Square Error (RMSE) for speed
and course predictions from the state-of-the-art (SOTA) values of 0.69 and 4.48 to 0.65 and 3.85,
respectively. Furthermore, on the DriveLM dataset, it decreases the Average Displacement Error
(ADE) for motion prediction from 1.51 to 0.84. Second, for high-level prediction on the BDD-X
dataset, our method boosts the high-level action from SOTA of 260.8 to 337.4 under metric CIDEr,
while on the DriveLM dataset, the high-level behavior prediction accuracy is improved from the
SOTA value of 61.60% to 74.60%.

2 RELATED WORK

Advancements in autonomous driving have produced comprehensive frameworks like UniAD (Hu
et al., 2023), which integrates modules for tracking, mapping, motion prediction, and occupancy
estimation for low-level planning. However, UniAD lacks high-level action descriptions and textual
justifications. To address high-level explanations, Kim et al. (2018) proposed an attention-based
video-to-text model generating explanations of current driving actions. Similarly, ADAPT (Jin et al.,
2023) employs a video Swin Transformer (Liu et al., 2022) to extract video tokens for separate high-
level and low-level action predictions.
The emergence of MLLMs enables unified end-to-end generation of both high-level and low-level
outputs. Most of these works often treat numerical control signals as text, training models using
token prediction with cross-entropy loss. For example, DriveGPT4 (Xu et al., 2024) just treats
low-level control signals as text, fine-tuning an MLLM to sequentially predict high-level and low-
level actions in a conversational manner using the BDD-X dataset. DriveLM-Agent (Sima et al.,
2023), influenced by RT-2 (Brohan et al., 2023), discretizes waypoints into bins, expanding the
tokenizer vocabulary accordingly and fine-tuning the BLIP-2 (Li et al., 2023). While this facilitates
end-to-end training, it remains coarse compared to UniAD (Hu et al., 2023), which uses MSE loss.
Time-LLM (Jin et al., 2024) decodes numerical predictions directly from output embeddings using a
linear layer with MSE loss but diminishes the language model’s autoregressive capabilities, limiting
high-level question-answering abilities. Additionally, Tan et al. (2024) suggest that employing the
LLM backbone in this way does not enhance regression performance. In contrast, we propose a
novel PDCE loss that adapts the cross-entropy loss for numerical training to behave more like MSE
loss while preserving the model’s ability to perform high-level question-answering.
Further advancements involve integrating perception and planning tools into the MLLM context.
Agent-Driver (Mao et al., 2023) incorporates modules from UniAD into an MLLM framework,
serving as a language agent for autonomous driving. OmniDrive (Wang et al., 2024) introduces
a framework combining 3D perception, reasoning, and planning. However, these methods remain
purely data-driven and lack explicit safety verification for generated actions. Given the safety-critical
nature of autonomous driving, ensuring that output actions are safe and compliant with traffic rules
is essential. To address this, we incorporate extracted knowledge—specifically structured traffic
rules—into a probabilistic graphical model like a Markov Logic Network (MLN) for explicit post-
safety verification. Besides, RAGDriver (Yuan et al., 2024) further enhances reasoning by retrieving
similar driving experiences through triplet loss-based metric learning. We extend this approach by
developing a more flexible and efficient retrieval system, directly training a joint embedding based on
multimodal inputs to learn relative rankings from text similarity. Most importantly, we find that the
incorporation of binary structured environmental predicates (e.g., the presence of a stop sign) from
the previous reasoning components, namely MLNs, significantly improves retrieval performance.

3 SAFEAUTO

Motivation. Recent studies have begun to explore the integration of MLLMs into autonomous
driving systems to enhance both high-level reasoning and low-level control actions. As illustrated
in Figure 1, the MLLM receives a sequence of current driving images or videos, accompanied by tex-
tual descriptions of historical control signals, including speed, curvature, acceleration, and course,
as inputs. Then, during the conversation, the model is expected to answer three types of queries: (1)
High-Level Action Queries: These queries request a textual description of the action that the current
ego vehicle is performing or should perform. For example, when asked “What is the action of the
ego car?”, the MLLM is expected to respond with an answer like “The car is slowing down to stop”.
(2) High-Level Justification Queries: These queries seek an explanation for the action provided by
the MLLM. For instance, “Why is the ego car doing this?” prompts the model to justify the action,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

such as “Because there is a red light at the upcoming intersection”. (3) Low-Level Action Queries:
These queries request specific control signals or trajectories that the vehicle should execute in the fu-
ture. For example, the query “Predict the control signals for the next frame” would elicit a response
like “Speed: 2.69, Course: 0.00”, which can then be translated into actual control commands for
the autonomous vehicle. Typically, low-level action queries follow high-level action and justifica-
tion queries, ensuring that generated control signals are conditioned on prior high-level actions for
more accurate and coherent driving control.
Overview. In this section, we detail the three main components proposed within this framework,
each elaborated in subsequent sections: (1) a Place-Dependent Cross-Entropy Loss function for im-
proved low-level action prediction (Section 3.1); (2) Knowledge-Enhanced Post-Safety Verification
using Markov Logic Network (MLN) for high-level action prediction (Section 3.2); (3) Multimodal
Retrieval-Augmented Generation (RAG) for learning from similar driving experiences (Section 3.3).
In summary, during training, we first fine-tune the underlying MLLM using the PDCE loss with the
retrieved context to enhance the accuracy of low-level action predictions. During evaluation, we
retrieve the top K similar driving experiences from the training database, generate high-level ac-
tions using the MLLM, and apply post-safety verification using the MLN to ensure that the actions
comply with traffic rules and safety constraints.

3.1 PLACE-DEPENDENT CE LOSS

In existing approaches that utilize MLLMs for autonomous driving, the next-token prediction loss-
specifically, the cross-entropy loss is commonly applied uniformly across all prediction tasks, in-
cluding numerical value predictions. However, for numerical regression tasks, it is standard practice
to use the Mean Squared Error (MSE) loss, as it directly penalizes the squared difference between
the predicted and true values. A fundamental difference between CE loss and MSE loss lies in how
they handle proximity to the target: MSE loss decreases as the prediction gets numerically closer to
the target value, whereas CE loss does not necessarily exhibit this property.
This issue is also empirically observed in the speed prediction distribution when using the original
CE loss to fine-tune the MLLM on the BDD-X dataset, as shown in Figure 3 (a), which displays
predictions over 200 samples given the same input driving context with temperature as 1.0. As we
can see, it reveals two distinct peaks, indicating that predictions closer to the ground truth value
of “12.46” do not necessarily occur with higher frequency or lower loss, contrary to the behavior
expected from MSE loss. A natural solution might be to append a MLP to the MLLM to decode the
output hidden embeddings into corresponding float values and thus use MSE loss for fine-tuning.
However, currently, incorporating an MLP in this manner usually disrupts the autoregressive token
generation capability of the MLLM, rendering it unable to perform high-level action queries or
engage in continued conversation. Essentially, the model becomes a pure transformer encoder (Tan
et al., 2024) used solely for regression tasks, losing its language generation functionalities critical
for interactive and interpretative tasks.
PDCE loss. To overcome these challenges, we adapt the CE loss to function more like MSE loss
while maintaining textual predictions. Consider the previous example of predicting the float number
“12.46.” Originally, the MLLM is trained to maximize the probabilities p(‘1′) · p(‘2′ | ‘1′) · p(‘.′ |
‘12′) · p(‘4′ | ‘12.′) · p(‘6′ | ‘12.4′) by minimizing the CE loss with one-hot labels. However, as
we see before, this does not ensure that predictions closer to the target value—such as “11.99” have
a lower loss compared to more distant predictions like “2.46,” because each digit’s probability is
treated separately and with equal importance (with all weights set to one).
To make the CE loss behave more like MSE loss, we make two modifications: (1) Digit-Level
Loss Adjustment: Instead of using one-hot hard target labels for each digit, we employ a soft target
discrete distribution D(µ, σ) centered around the target digit µ, which assigns higher probabilities to
digits closer to the target, allowing the loss to reflect numerical proximity. Specifically, we leverage
a Gaussian distribution G(µ, σ) to construct D(µ, σ) for each digit (ranging from 0 to 9), while
other distribution methods are also workable. We then compute the loss for each digit as the KL
divergence between the target distribution D(µ, σ) and the predicted probability distribution P on
all digits output by the MLLM. (2) Place-Level Weighting: Instead of treating all digits equally
important, we apply decreasing weights from the first-place digit to the last-place digit based on
cumulative probabilities. For example, for float number “12.46”, the weight for the loss on digit ‘2’
is the probability of ‘1’ under D(1, σ), and the weight for digit ‘4’ is the cumulative probability of
‘1’ multiplied by the probability of ‘2’ under D(2, σ). In this way, errors in more significant digits
have a greater impact on the loss, while other weighting designs can also be explored.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

str_num: a string representing a float number (excluding

the decimal point '.') with N digits

logits: the logits distribution output from MLLM for each

digit in str_num, with a shape of N * 10

sigma: the standard deviation of the Gaussian distribution

Precompute the digit-level probability distributions

from scipy.stats import norm

distribution_dict = {}

for num in range(10):

 prob_distribution = np.array([norm(num, sigma).cdf(i + 0.5)

- norm(num, sigma).cdf(i - 0.5) for i in range(10)])

 prob_distribution /= prob_distribution.sum()

 distribution_dict[str(num)] = prob_distribution

Calculate weights for each digit position

tgt_probs = []

Weight = 1.0

for digit in str_num:

 # The place-level weighting

 digit_probs = distribution_dict[digit] * weight

 weight *= digit_probs[int(digit)]

 tgt_probs.append(digit_probs)

tgt_probs = np.array(tgt_probs)

Compute the KL loss, constants are ignored

loss = - (tgt_probs * log_softmax(logits, axis=1)).sum()

Figure 2: Numpy-like pseudocode for the core implementation of
PDCE loss.

(b) Speed prediction distribution using PDCE loss.

(a) Speed prediction distribution using original CE loss.

Figure 3: Sampled speed prediction dis-
tribution under different losses.

As a result, the final loss is the weighted sum of the KL divergence between the probabilities gener-
ated by the MLLM and the target digit-level soft probability distributions. Mathematically, it can be
expressed as:

∑n
i=1 wi · KL(Pi ∥ D(µi, σ)), where n is the number of digits, µi is the i-th digit, Pi

represents the probability distribution over the possible digits for the i-th digit position from MLLM,
wi represents the weight based on the iterative probability calculation of previous digits for the i-th
digit, the pseudo-code for implementing this loss during practice is provided in Figure 2. Notice that
when σ is set to 0, the loss reduces to the original definition of joint CE loss for the entire numeric
string. The new prediction distribution using the new loss with σ = 0.35 is demonstrated in Figure 3
(b). As shown, the distribution exhibits higher frequencies for predictions closer to the ground truth,
aligning with the desired outcome and verifying the intuition behind our method.
3.2 KNOWLEDGE-ENHANCED POST-SAFETY VERIFICATION WITH SAFEAUTO-REASONING

Currently, most methods for autonomous driving that utilize MLLMs are still purely data-driven.
While these data-driven approaches have led to significant advancements, they may not be entirely
suitable for safety-critical scenarios like autonomous driving, where reliability and strict adherence
to safety regulations are paramount. To address this concern, we propose incorporating Probabilistic
Graphical Models (PGMs) to verify the safety of the high-level actions suggested by the underlying
MLLM. Specifically, in this paper, we focus on demonstrating how to adopt Markov Logic Net-
works to integrate domain knowledge and traffic rules into the decision-making process, while other
variants are also applicable. In this section, we begin by explaining what MLNs are and how they
apply to our autonomous driving context.
Definition. Essentially, an MLN consists of a set of first-order logic formulas, each associated with
a weight that reflects the strength or confidence of that formula. These weights allow us to model
uncertainty and handle exceptions in real-world knowledge. In our autonomous driving scenario,
we use MLNs to model traffic rules and safety constraints. For example, a traffic rule like “If there
is a stop sign, then the vehicle should stop or decelerate” can be represented as the logical formula:
StopSign(x) =⇒ Stop(x) ∨ Decelerate(x), where x represents the current driving
scenario. Here, predicates such as StopSign(x), Stop(x), and Decelerate(x) are logical
functions that return true or false, indicating whether the condition holds in scenario x.
Formally, in MLNs, predicates are logical functions defined over a set of constants V =
{v1, v2, . . . , vN}, where each vi represents an object or concept in the domain, such as “stop
sign” or “red light.” A predicate takes these constants as arguments and returns a truth value:
k(·) : V × · · · × V → 0, 1. While formulas are logical statements composed of predicates and
logical connectives (e.g., =⇒ , ∧, ∨), with each formula f associated with a weight wf indicating
its importance. Then, an MLN defines a joint probability distribution over all possible assignments
of truth values to the ground predicates (predicates with specific constants assigned). The prob-

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

ability of a particular world (an assignment of truth values to all ground predicates) is given by:
P (X) = 1

Z exp
(∑

f∈F wf

∑
af∈Af

ϕf (af)
)

, where X is the set of all ground predicates, F is the
set for all formulas f , Z is the partition function ensuring the distribution sums to one, ϕf (af) is
the potential function for formula f with assignment af (which equals 1 if f is true under af and 0
otherwise), and Af is the set of all possible assignments to the arguments of formula f .
Autonomous Driving Context. In our case, we categorize predicates into unobserved pred-
icates (U) and observed predicates (O). Specifically, the unobserved predicates U , are the
Main Action Predicates that encompass potential actions a vehicle might or should take, such as
Accelerate(x), Stop(x), and TurnLeft(x), among others. While observed predicates
O include: (1) MLLM Action Predicates: This set also includes the number of predicates for
the main action such as MLLMAccelerate(x), MLLMStop(x), and MLLMTurnLeft(x),
which indicate the high-level actions suggested by the MLLM. Generally, we would prompt
GPT4o to map the high-level action descriptions generated by the MLLM to the corresponding
truth values of each predicate. Then, we introduce formulas like MLLMAccelerate(x) ⇒
Accelerate(x) to reflect the influence of the original high-level action decision made by the
MLLM. (2) Environmental Predicates: These predicates describe the surrounding environment.
For example, StopSign(x) indicates whether there is a stop sign in the current driving sce-
nario, and SolidRedLight(x) indicates whether the traffic light ahead is red. The truth val-
ues of these predicates can be extracted from video data using any object detector. These ob-
ject predicates are combined with the main action predicates to form logical formulas based on
traffic rules extracted from the California Driver Handbook 1. Specifically, we first crawled the
handbook and used GPT4o to map the rules into corresponding first-order logical formulas, e.g.,
StopSign(x) =⇒ Stop(x) ∨ Decelerate(x) ∧ ¬PullOver(x), details are deferred
to Appendix A. In addition to object-related predicates, we define predicates associated with his-
torical control signals. For instance, the predicate HCSTurnLeft(x) determines whether the ego
vehicle had recently turned left, based on historical control signals. These predicates are integrated
with main action predicates to effectively reflect the vehicle’s inherent tendencies in its actions.
Inference. Our goal is to infer the most probable assignment of the unobserved main action predi-
cates U given the observed predicates O. To determine the safest and most appropriate action, we
perform inference by maximizing the conditional probability P (U|O). Specifically, we seek the as-
signment to the main action predicates U that maximizes this probability U∗ = argmaxU P (U|O).
Since the possible worlds for U (i.e., the possible assignments to the main action predicates) are in-
herently limited—a vehicle cannot simultaneously accelerate and decelerate or turn left and right—
the inference process is thus computationally efficient. The detailed specifics of the possible worlds
can be found in Appendix A.6.
Training. The training of the MLN is straightforward and involves learning the weights wf of the
formulas to maximize P (U|O). In our approach, we utilize a mix of real and simulated data for
training. The real data serves as the ground training data, provided by datasets such as BDD-X,
while the simulated data allows us to model various driving conditions. This includes rare or dan-
gerous scenarios not present in the real data, by simulating different truth values for the predicates
to perform inference. Details are deferred to Appendix A.4.
Safety Verification. Initially, we collect observed grounded environmental predicates and the
MLLM action predicates from high-level actions generated by the MLLM, extracted through ob-
ject detector and prompting with GPT4o. These predicates undergo inference within the trained
MLN. If the MLN’s final main action predicate output contradicts the MLLM’s suggested action—
suggesting a potential safety violation or a breach of critical traffic rules, we overwrite the original
high-level action query based on the MLN’s output and re-prompt the MLLM to generate a new
high-level action, as depicted in Figure 1. Further details are available in Appendix A.5.
In this way, the MLN serves as a post-verification layer that can override unsafe suggestions from
the MLLM, enhancing the overall reliability of the autonomous driving system.

3.3 SAFEAUTO-MULTIMODAL RETRIEVAL-AUGMENTED GENERATION

In this section, we introduce a novel training method for constructing a unified embedding that
effectively integrates multiple modalities—current driving videos, historical control signals, and ob-
served environmental predicate information from Section 3.2. Specifically, we aim to train the joint
embedding to mirror the similarity rankings derived from the embedding of the textual descriptions

1https://www.dmv.ca.gov/portal/handbook/california-driver-handbook/

6

https://www.dmv.ca.gov/portal/handbook/california-driver-handbook/

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

for the current driving scenarios, which encapsulate the semantic information of all modalities dur-
ing training. This approach facilitates the retrieval of similar driving experiences, enabling the ego
vehicle to make more informed and context-aware decisions in current driving situations.

Different Modality. (1) Image/ Video Embedding: for the image or video modality, we utilize
the pre-trained LanguageBind encoder (Zhu et al., 2024). This encoder processes an input im-
age in R256×1024, while processing video into eight frames and generates a video embedding in
R2048×1024. For simplicity and to reduce computational complexity, we apply global average
pooling over the first dimension for both modalities here, resulting in a compressed embedding
Zv ∈ R1×1024 for use in subsequent experiments. (2) Control Signal Vector: the control sig-
nals are numerical values representing various aspects of the ego vehicle’s historical state, such
as speed, curvature, acceleration, and course. In datasets like BDD-X, each of these four types of
control signals contains seven historical values (excluding the current frame), resulting in a total of
N = 4 × 7 = 28 values. We concatenate these values into a single vector Zc ∈ R1×N , which
serves as the initial control signal vector. (3) Environmental Predicate Vector: These environmental
predicates introduced in Section 3.2 are binary indicators of certain conditions or observations (e.g.,
presence of a stop sign, status of a traffic light). We encode these predicates into a single binary vec-
tor Zp ∈ {0, 1}1×M , where M is the number of the whole environmental predicates. Empirically,
we found that including this explicit binary representation significantly boosts retrieval performance,
as demonstrated in Section 5. This enhancement may be attributed to the reduction of noise inherent
in the raw video embeddings or control signals; the binary predicates provide a clearer and more
robust representation of essential environmental information.

Unified Embedding Construction. The central question is: How can we train a unified embedding
that effectively combines these different modalities for similarity computation and retrieval? A key
insight is that textual descriptions of the current driving scenario typically encompass all relevant
semantic information, reflecting aspects of the video, control signals, and predicates. For instance, a
text that concatenates action and justification—such as “The car is slowing to a stop for the red light
at the intersection ahead” as shown in Figure 1 captures the essence of all three modalities. This
comprehensive representation is particularly valuable for ranking the most similar driving scenarios.
However, such ground text descriptions are often not available during evaluation. Building on this
intuition, we propose learning a unified embedding that aligns these modalities in a shared space,
akin to how text embeddings represent semantic information.

Training. Specifically, we first utilize individual projectors to map each input vector—Zv , Zc, and
Zp—into aligned embeddings Z ′

v , Z ′
c, and Z ′

p, each with the same dimension and normalized to
a unit ℓ2 norm. We then introduce weighting factors wv , wc, and wp to modulate the contribution
of each modality in the input aligned embedding. The final unified embedding is then computed
as Zu = Projector(wvZ ′

v + wcZ ′
c + wpZ ′

p) ∈ R1×H . While other design choices are also
feasible, we found through experimentation that this configuration provides better controllability.
Let Zt ∈ R1×I represent the text embeddings of scenario descriptions, e.g., the concatenation
of high-level actions and justifications. Our goal is for the unified embedding Zu to mirror the
relational properties of text embeddings derived from scenario descriptions, particularly in terms
of similarity rankings. Then, during training, we will first randomly sample a batch of cases with
unified embeddings Z ′

u ∈ RB×H and the corresponding text embeddings Z ′
t ∈ RB×I with batch

size B. We then minimize the KL divergence between the inter-similarity distributions derived from
the unified embeddings Z ′

u and those from the text embeddings Z ′
t. In specific, we compute the

similarity matrices (assuming each row in both Z ′
u and Z ′

t have been normalized to unit ℓ2 norm)
as follows: Su = Z ′

u(Z ′
u)

⊤ and St = Z ′
t(Z

′
t)

⊤. Then, the loss function aims to minimize the
mean of the divergence between the logits S′

u and the target logits S′
t/τ across each row. Here,

τ is a temperature parameter that adjusts the sharpness of the target probability distributions. A
lower τ focuses learning on the most similar (positive) examples, crucial for retrieval tasks where
pinpointing the closest matches is essential. By aligning the similarity distributions, we ensure the
unified embeddings preserve the relative rankings observed in text embeddings, enabling effective
retrieval without relying on the unavailable ground textual descriptions during inference.

4 EXPERIMENTS
In this section, we present our experimental results on two datasets: the BDD-X dataset (Kim et al.,
2018) and the DriveLM dataset (Sima et al., 2023), both of which contain high-level action questions
and low-level control questions. Specifically, we find that: (1) when using the Place-Dependent

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: High-level action and justification evalu-
ation on BDD-X dataset. B4, C, and M represent
BLEU4, CIDEr, and METEOR, respectively.

Method Action Justification
B4 ↑ C ↑ M ↑ B4 ↑ C ↑ M ↑

ADAPT 34.6 247.5 30.6 11.4 102.6 15.2
DriveGPT4 30.0 214.0 29.8 9.4 102.7 14.6
RAGDriver 34.3 260.8 30.7 11.1 109.1 14.8
SafeAuto 38.6 337.4 35.5 9.4 96.0 14.0

Table 2: High-level behavior and low-level motion
prediction evaluation on DriveLM dataset.

Method High-Level Behavior Motion
Acc ↑ Speed ↑ Steer ↑ ADE ↓

UniAD-Single - - - 1.80
UniAD-Full - - - 0.80
BLIP-RT-2 - - - 2.63

DriveLM-Agent 61.60 65.40 81.61 1.51
SafeAuto 74.60 81.61 81.90 0.84

Table 3: Low-level control signal prediction evaluation on BDD-X dataset.

Method Speed Course
RMSE ↓ A0.1 ↑ A0.5 ↑ A1.0 ↑ A5.0 ↑ A10.0 ↑ RMSE ↓ A0.1 ↑ A0.5 ↑ A1.0 ↑ A5.0 ↑ A10.0 ↑

ADAPT 2.68 11.77 31.79 47.48 92.75 95.87 5.87 54.49 86.39 91.06 97.36 98.20
DriveGPT4 1.09 56.93 77.77 87.97 99.00 99.57 4.57 69.22 79.14 84.47 95.72 96.74
RAGDriver* 0.69 51.12 85.54 94.49 99.81 99.91 4.48 74.32 88.69 93.12 98.30 99.10
SafeAuto 0.65 55.49 88.84 95.34 99.81 99.91 3.85 76.26 89.68 94.11 98.30 99.25
* Notice, RAGDriver leveraged the test data for training the retriever.

Cross-Entropy loss, the numerical prediction of float numbers is significantly improved; (2) with
the post-safety knowledge-enhanced verification via MLN, many dangerous high-level actions have
been corrected; (3) the incorporation of Multimodal RAG, specifically integrating environmental
predicate information from the MLN component, leads to significant improvements in the MLLM’s
high-level prediction performance. Notably, our framework is plug-and-play and can be directly
applied to any new methods based on MLLMs. All experiments are conducted on eight NVIDIA
A6000 GPUs.
Datasets and Tasks. (a) BDD-X: In this work, we adopt the processed version from RAG-
Driver (Yuan et al., 2024), where the task involves using an input video along with control signals
from the past seven frames as context for a conversation that focuses on three types of questions: (i)
high-level action queries, (ii) high-level justification queries, and (iii) low-level action predictions
for speed and course in the next frame. This processed dataset contains 16,390 training video QA
conversations and 2,123 test conversations. (b) DriveLM: The DriveLM dataset is built upon the
nuScenes dataset (Caesar et al., 2020). In this work, we primarily focus on tasks that involve using
six multi-view images from the current frame, control signals, and trajectory positions from the past
three seconds as input context. The conversation concentrates on: (i) planning for possible high-
level safe actions, (ii) high-level behavior involving predicting speed and steering actions, which
serve as multiple-choice questions, and (iii) low-level motion, predicting 2D trajectories for the next
three seconds, similar to UniAD (Hu et al., 2023). We filter instances to include only those with a
prediction horizon of at least 3 seconds, resulting in a final dataset of 3,447 training conversations
and 685 test conversations.
Model. We use the pretrained Video-LLaVA (Lin et al., 2023) with Vicuna 1.5 7B (Zheng et al.,
2023) as the base LLM for fine-tuning. We fine-tune the model for 2 epochs with a batch size of
128 on the BDD-X dataset and for 4 epochs with a batch size of 64 on the DriveLM dataset, using a
learning rate of 5× 10−2.
Experimental Details. (a) PDCE loss: During the fine-tuning of the MLLM, we initialize σ in
D(µ, σ) at a small value of 0.01 and geometrically increase it after each optimization step until it
reaches the predefined value of σ = 0.35. This gradual increase helps stabilize the training pro-
cess. Besides, to balance the loss among various float numbers, we standardize their representation
by using consistent digit lengths in text form. For instance, on the BDD-X dataset, each number
is formatted to five digits, such as representing 8.1 as ”08.100” during training, whereas for the
DriveLM dataset, we use a four-digit format. (b) Post-safety verification via MLN: we fine-tune
YOLOv8 (Jocher et al., 2023) as the object detector for both traffic lights and signs. For the BDD-
X dataset, we define 16 action predicates, 20 environmental predicates, and 35 formulas based on
traffic rules. Similarly, for the DriveLM dataset, we define 7 action predicates, 29 environmental
predicates, and 29 formulas. Among these, 10 environmental predicates are specifically derived
from the nuScenes map expansion and pertain to lane markings. Further details are provided in Ap-
pendix A. (c) Multimodal RAG: we consistently employ four-layer multilayer perceptrons (MLPs) as
projectors to obtain aligned embeddings for each modality and to generate the final unified embed-
ding, and we use sentence-t5-xl (Ni et al., 2022) as our text encoder. The weighting factors
wv and wc are both set to 0.4, while the weight for the predicate embedding wp is set to 0.2. We
consistently set the learning rate to 0.001 and the temperature parameter τ to 0.5. For the BDD-X

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 4: Ablation study of the contribution from
each module in SafeAuto focusing on high-level
action and justification assessment on the BDD-X
dataset. “Acc” denotes the high-level action predi-
cates accuracy.

Method Action Justification
B4 ↑ C ↑ M ↑ Acc ↑ B4 ↑ C ↑ M ↑

Base 30.8 221.5 29.2 61.75 7.8 85.4 13.2
PDCE 31.4 231.4 29.3 61.94 7.9 84.2 13.2

PDCE + MLN 31.5 232.2 29.4 62.97 7.9 84.5 13.2
PDCE + RAG 38.2 334.8 35.3 91.00 9.4 95.5 13.9
PDCE + MLN

+ RAG 38.6 337.4 35.5 92.18 9.4 96.0 14.0

Table 5: Ablation study of the contribution from
each module in SafeAuto on both high-level and
low-level predictions using the DriveLM dataset.

Method
High-Level Behavior Motion

Acc ↑ Speed ↑ Steer ↑ ADE ↓
Base 60.58 64.67 80.29 0.86

PDCE 63.21 67.88 79.27 0.85
PDCE + MLN 66.86 71.39 80.29 0.85
PDCE + RAG 74.01 79.27 81.61 0.84

PDCE + MLN + RAG 74.60 79.85 81.90 0.84

dataset, the model is trained for 100 epochs with a batch size of 2,048 and uses K = 2 retrieval
examples. For the DriveLM dataset, the model is also trained for 100 epochs but with a batch size
of 512 and uses K = 1 retrieval example.
Baselines. (a) On the BDD-X dataset, we compare our method with several baselines: (1)
ADAPT (Jin et al., 2023), a state-of-the-art video transformer-based method that provides high-level
and low-level answers using two separate branches; (2) DriveGPT4 (Xu et al., 2024), the first work
to provide both high-level action descriptions and low-level vehicle control signals in an end-to-end
fashion using an MLLM; and (3) RAGDriver (Yuan et al., 2024), a state-of-the-art method that lever-
ages triplet loss to train multimodal retrieval models for autonomous driving. (b) For the DriveLM
dataset, we use: (1) DriveLM-Agent, the current state-of-the-art method that employs graph-based
visual question answering to improve high-level responses and uses motion tokenization for low-
level prediction; (2) UniAD (Hu et al., 2023), the state-of-the-art method on the nuScenes dataset
used here for comparing low-level predictionswe consider two versions: UniAD (Full), which uti-
lizes the entire historical video input, and UniAD (Single), a variant modified to use only the current
frame’s input for a fair comparison; and (3) BLIP-RT-2, which fine-tunes BLIP-2 (Li et al., 2023)
on the DriveLM data and utilizes trajectory tokenization as proposed in RT-2 (Brohan et al., 2023).
Metrics. (a) For the BDD-X dataset, we adopt widely used metrics for high-level prediction, in-
cluding 4-gram BLEU (B4) (Papineni et al., 2002), METEOR (M) (Banerjee & Lavie, 2005), and
CIDEr (C) (Vedantam et al., 2015). For low-level prediction, we use the Root Mean Square Error
(RMSE) for both steering angle (in degrees) and speed (in meters per second). We also present
“tolerant accuracy” metrics, Aδ , representing the accuracy of predictions when binarized as being
within a tolerance threshold δ of the ground truth. (b) For the DriveLM dataset, the high-level be-
havior questions are multiple-choice problems concerning speed and steering. We report the overall
accuracy, as well as individual accuracies for speed and steering predictions. For low-level trajec-
tory prediction, we use the Average Displacement Error (ADE), as in UniAD, which indicates the
average ℓ2 distance between the predicted trajectory and the ground truth trajectory and is calculated
as the average of the errors at the 1st, 2nd, and 3rd seconds.
Results. (a) BDD-X Dataset: The final results for high-level prediction, including both action and
justification, are presented in Table 1, while the low-level predictions for speed and course are shown
in Table 3. For high-level action prediction, SafeAuto improves performance by 11.6%, 29.4%,
and 15.6% for the BLEU4, CIDEr, and METEOR metrics, respectively. Although the justification
performance is slightly lower than the state-of-the-art method, it still significantly outperforms the
vanilla fine-tuned Video-LLaVA model, as demonstrated in Section 5. For low-level control signal
prediction, SafeAuto achieves further reduction of 5.8% in RMSE for speed prediction and 14.1%
in RMSE for course prediction. The contributions of each component to the overall performance
are detailed in Section 5. (b) DriveLM Dataset: The final results are demonstrated in Table 2. For
high-level behavior prediction, SafeAuto improves accuracy by 13.00% compared to the SOTA
baseline DriveLM-Agent. For low-level motion prediction, it achieves a further reduction of 44.4%
in ADE over the DriveLM-Agent. Notably, the ADE of SafeAuto is even comparable to UniAD
(Full) which is trained purely for low-level prediction.

5 ABLATION STUDY

In this section, we conduct various ablation studies on our framework to investigate the impact of
each module and different hyperparameters, as described in Section 3. For simplicity, we denote the
base modeltrained directly on conversation data using Video-LLaVA without incorporating any of
the modules introduced in our paperas ‘Base’.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0.15 0.20 0.25 0.30 0.35 0.40 0.45
the for PDCE loss

0.60

0.65

0.70

0.75

0.80

Sp
ee

d
Pr

ed
ict

io
n

RM
SE

3.80

3.90

4.00

4.10

4.20

Course Prediction RM
SE

Figure 4: RMSE variation of low-level speed and
course predictions with different PDCE loss σ val-
ues on the BDD-X dataset. The dashed line repre-
sents the result of using the original CE loss.

Table 6: The impact of incorporating Environmental
Predicates (EP) information for retrieval, along with the
number of retrieved examples K in Multimodal RAG,
on high-level action and justification performance in the
BDD-X dataset.

Method K Action Justification
B4 ↑ C ↑ M ↑ Acc ↑ B4 ↑ C ↑ M ↑

Base - 30.8 221.5 29.2 61.75 7.8 85.4 13.2
RAG w/o EP 1 29.4 219.2 28.5 59.06 7.3 74.8 12.6
RAG w/o EP 2 29.7 218.6 28.7 59.91 7.3 73.7 12.5
RAG w/ EP 1 38.1 334.8 35.4 91.47 8.8 89.2 13.5
RAG w/ EP 2 38.2 334.8 35.3 91.00 9.4 95.5 13.9

Contribution from Each Module. The influence of incorporating each module on high-level pre-
diction using the BDD-X dataset is shown in Table 4. The results for low-level prediction are
deferred to Appendix B.1. Additionally, to better reflect the action performance improvement, we
introduce a new metric, termed high-level action predicate accuracy, for the BDD-X dataset, which
maps high-level action descriptions into one of the 16 predefined actions using GPT4o prompting
and calculates accuracy accordingly. Our results indicate that: (1) the adoption of PDCE loss for
low-level prediction does not negatively impact high-level prediction performance; (2) post-safety
verification via MLN helps correct some unsafe actions, although the base model tends to behave
conservatively; (3) multimodal RAG significantly boosts performance, with high-level action pred-
icate accuracy improving by at least 30%. Similar observations are made in the ablation study for
the DriveLM dataset, as shown in Table 5.
PDCE Loss with Different σ Values. We investigate the impact of varying σ values on low-
level predictions in the BDD-X dataset, as demonstrated in Figure 4. Our findings reveal that the
incorporation of PDCE loss consistently yields lower RMSEs for both speed and course predictions
compared to the base one which uses the original CE loss. Moreover, performance exhibits minimal
sensitivity to changes in σ, indicating stability under the PDCE loss framework.
Case study on post-safety verification w/ MLN. In the BDD-X dataset, the most critical traffic
rule is expressed as SolidRedLight(x) =⇒ ¬Accelerate(x) ∧ ¬LeftPass(x) ∧
¬Yield(x), while for the DriveLM dataset, the key traffic rule is RedYieldSign(x) =⇒
¬Fast(x). These two rules hold the highest weights in their respective MLN. Although DriveLM
contains a significant number of lane-related traffic rules, their relative importance is diminished due
to the high frequency of straight-driving scenarios, which constitute 76.95% of the dataset, leaving
lane-changing scenes as a minor subset. A specific instance of rejecting and correcting aggressive
driving behavior using MLN is depicted in Figure 5.
Influence of Environmental Predicates on Retrieval. Unlike RAGDriver (Yuan et al., 2024) that
unified only video and control signal information for retrieval, our approach also incorporates ex-
plicit Environmental Predicate (EP) information (e.g., presence of a stop sign) extracted from both
video and control signals, as demonstrated in Section 3.2. Specifically, as shown in Table 6, remov-
ing environmental predicates from the retrieval process results in performance similar to the base
model. However, including these explicit predicates significantly enhances high-level prediction per-
formance, which indicates substantial noise in the original video and control signal data, suggesting
that extracting explicit binary environmental predicates for retrieval could be highly promising.
Multimodal RAG with Different K. We explore the impact of varying top K selections for BDD-
X dataset in Table 6. As we can see, significant improvements in high-level action prediction are
achieved even with K = 1, and the performance is already comparable to the K = 2 scenario.
Furthermore, selecting a larger K value enhances performance in high-level justification prediction.

6 LIMITATION
There are still some limitations for SafeAuto that could be addressed in future work. For example,
(1) the design of the distribution D(µ, σ) for the PDCE loss could be further optimized to enhance
performance. (2) The effectiveness of the safety verification depends on the quality of predicate
extraction, which may be challenging when few predicates are available in certain scenarios. (3)
Additionally, exploring the multimodal RAG with larger values of K in the MLLM context could
improve retrieval performance but may also increase computational complexity.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Satanjeev Banerjee and Alon Lavie. Meteor: An automatic metric for mt evaluation with improved
correlation with human judgments. In Proceedings of the acl workshop on intrinsic and extrinsic
evaluation measures for machine translation and/or summarization, pp. 65–72, 2005.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choroman-
ski, Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, et al. Rt-2: Vision-language-action
models transfer web knowledge to robotic control. arXiv preprint arXiv:2307.15818, 2023.

Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu, Anush
Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal dataset for
autonomous driving. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 11621–11631, 2020.

Nate Gruver, Marc Finzi, Shikai Qiu, and Andrew G Wilson. Large language models are zero-shot
time series forecasters. Advances in Neural Information Processing Systems, 36, 2024.

Yihan Hu, Jiazhi Yang, Li Chen, Keyu Li, Chonghao Sima, Xizhou Zhu, Siqi Chai, Senyao Du,
Tianwei Lin, Wenhai Wang, et al. Planning-oriented autonomous driving. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 17853–17862, 2023.

Morten Bornø Jensen, Mark Philip Philipsen, Andreas Møgelmose, Thomas Baltzer Moeslund, and
Mohan Manubhai Trivedi. Vision for looking at traffic lights: Issues, survey, and perspectives.
IEEE transactions on intelligent transportation systems, 17(7):1800–1815, 2016.

Bu Jin, Xinyu Liu, Yupeng Zheng, Pengfei Li, Hao Zhao, Tong Zhang, Yuhang Zheng, Guyue Zhou,
and Jingjing Liu. Adapt: Action-aware driving caption transformer. In 2023 IEEE International
Conference on Robotics and Automation (ICRA), pp. 7554–7561. IEEE, 2023.

Ming Jin, Shiyu Wang, Lintao Ma, Zhixuan Chu, James Y Zhang, Xiaoming Shi, Pin-Yu Chen, Yux-
uan Liang, Yuan-Fang Li, Shirui Pan, et al. Time-llm: Time series forecasting by reprogramming
large language models. In The Twelfth International Conference on Learning Representations,
2024.

Glenn Jocher, Jing Qiu, and Ayush Chaurasia. Ultralytics YOLO, January 2023. URL https:
//github.com/ultralytics/ultralytics.

Jinkyu Kim, Anna Rohrbach, Trevor Darrell, John Canny, and Zeynep Akata. Textual explanations
for self-driving vehicles. In Proceedings of the European conference on computer vision (ECCV),
pp. 563–578, 2018.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented genera-
tion for knowledge-intensive nlp tasks. Advances in Neural Information Processing Systems, 33:
9459–9474, 2020.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
pre-training with frozen image encoders and large language models. In International conference
on machine learning, pp. 19730–19742. PMLR, 2023.

Bin Lin, Bin Zhu, Yang Ye, Munan Ning, Peng Jin, and Li Yuan. Video-llava: Learning united
visual representation by alignment before projection. arXiv preprint arXiv:2311.10122, 2023.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning, 2023a.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning, 2023b.

Ze Liu, Jia Ning, Yue Cao, Yixuan Wei, Zheng Zhang, Stephen Lin, and Han Hu. Video swin trans-
former. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 3202–3211, 2022.

11

https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jiageng Mao, Junjie Ye, Yuxi Qian, Marco Pavone, and Yue Wang. A language agent for autonomous
driving. arXiv preprint arXiv:2311.10813, 2023.

Jianmo Ni, Gustavo Hernandez Abrego, Noah Constant, Ji Ma, Keith Hall, Daniel Cer, and Yinfei
Yang. Sentence-t5: Scalable sentence encoders from pre-trained text-to-text models. In Findings
of the Association for Computational Linguistics: ACL 2022, pp. 1864–1874, 2022.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th annual meeting of the Association
for Computational Linguistics, pp. 311–318, 2002.

Matthew Richardson and Pedro Domingos. Markov logic networks. Machine learning, 62:107–136,
2006.

Sina Semnani, Violet Yao, Heidi Zhang, and Monica Lam. Wikichat: Stopping the hallucination of
large language model chatbots by few-shot grounding on wikipedia. In Findings of the Association
for Computational Linguistics: EMNLP 2023, pp. 2387–2413, 2023.

Chonghao Sima, Katrin Renz, Kashyap Chitta, Li Chen, Hanxue Zhang, Chengen Xie, Ping Luo,
Andreas Geiger, and Hongyang Li. Drivelm: Driving with graph visual question answering. arXiv
preprint arXiv:2312.14150, 2023.

Mingtian Tan, Mike A Merrill, Vinayak Gupta, Tim Althoff, and Thomas Hartvigsen. Are language
models actually useful for time series forecasting? arXiv preprint arXiv:2406.16964, 2024.

Ramakrishna Vedantam, C Lawrence Zitnick, and Devi Parikh. Cider: Consensus-based image
description evaluation. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4566–4575, 2015.

Shihao Wang, Zhiding Yu, Xiaohui Jiang, Shiyi Lan, Min Shi, Nadine Chang, Jan Kautz, Ying Li,
and Jose M Alvarez. Omnidrive: A holistic llm-agent framework for autonomous driving with 3d
perception, reasoning and planning. arXiv preprint arXiv:2405.01533, 2024.

Wenhai Wang, Jiangwei Xie, ChuanYang Hu, Haoming Zou, Jianan Fan, Wenwen Tong, Yang Wen,
Silei Wu, Hanming Deng, Zhiqi Li, et al. Drivemlm: Aligning multi-modal large language models
with behavioral planning states for autonomous driving. arXiv preprint arXiv:2312.09245, 2023.

Zhenhua Xu, Yujia Zhang, Enze Xie, Zhen Zhao, Yong Guo, Kwan-Yee K Wong, Zhenguo Li, and
Hengshuang Zhao. Drivegpt4: Interpretable end-to-end autonomous driving via large language
model. IEEE Robotics and Automation Letters, 2024.

Jianhao Yuan, Shuyang Sun, Daniel Omeiza, Bo Zhao, Paul Newman, Lars Kunze, and Matthew
Gadd. Rag-driver: Generalisable driving explanations with retrieval-augmented in-context learn-
ing in multi-modal large language model. arXiv preprint arXiv:2402.10828, 2024.

Jiawei Zhang, Chejian Xu, Yu Gai, Freddy Lecue, Dawn Song, and Bo Li. Knowhalu: Hallucination
detection via multi-form knowledge based factual checking. arXiv preprint arXiv:2404.02935,
2024.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36:46595–46623, 2023.

Bin Zhu, Bin Lin, Munan Ning, Yang Yan, Jiaxi Cui, WANG HongFa, Yatian Pang, Wenhao Jiang,
Junwu Zhang, Zongwei Li, et al. Languagebind: Extending video-language pretraining to n-
modality by language-based semantic alignment. In The Twelfth International Conference on
Learning Representations, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

APPENDIX

A DETAILS ON SAFEAUTO-REASONING

A.1 TRAFFIC RULE MAPPING

This section outlines the methodology for extracting first-order logic formulas from the California
Driver Handbook 2. Initially, all traffic rules are transformed into a structured format using GPT4o,
based on the template: ’When [conditions], you should/should not [action] (unless [conditions]).’
Subsequently, GPT4o is utilized again to translate the structured traffic rules into first-order logic
formulas. The complete set of prompts is provided in Table 7 and Table 8.

What is the action of ego car? The car accelerates

The ego vehicle should stop.
What is the action of ego car?

The car slows to a stop

Why does the ego car doing this? Because the light is red

Predict the control signal for
next frame.

Speed: 02.510 Course: 00.000

1. High-Level Action Queries

2. High-Level Justification Queries

3. Low-Level Action Queries

MLLMAccelerate(x)=1, MLLMKeep(x)=1 …

MLLM Action Predicate:

Predicate Extraction

SolidRedLight(x)=1, StopSign(x)=0, …

Environmental Predicates:

YOLOv8 GPT4o

MLN Weight Formula(Knowledge Rules)

10.02
8.03
8.47
8.77
…

SolidRedLight → ¬Accelerate∧¬LastPass∧¬Yield
StopSign(x) => Stop(x) ∨ Decelerate(x) ∧ ¬PullOver(x)
NoLeftTurnSign(x) => ¬TurnLeft(x)
MLLMAccelerate(x) => Accelerate(x)

Inference Observed Action Predicates
Accelerate(x)

Stop(x)
…

Probability

0.02
0.88 The ego car should stop

Suggestion

Re-prompt

extract

extract

overwrite

Post-Safety Verification

Figure 5: An example of rejecting and correcting aggressive behavior through MLN

A.2 YOLOV8 FINE-TUNING

We fine-tuned the YOLOv8 model using the LISA dataset (Jensen et al., 2016), which contains
annotations for both traffic signs and traffic signals. The dataset includes four daytime sequences
and two nighttime sequences, primarily designated for testing, with a total duration of 23 minutes
and 25 seconds of driving footage recorded in Pacific Beach and La Jolla, San Diego. It consists
of 43, 007 frames, with annotations for 113, 888 traffic lights and 7, 855 traffic signs across 6, 610
frames. The YOLOv8m model was fine-tuned for 500 epochs, utilizing an input image resolution of
640× 640 pixels.

A.3 PREDICATE EXTRACTION

For environmental predicates, we utilize YOLOv8 for detection, as described in Appendix A.2, for
detection. To ensure consistency with RagDriver (Yuan et al., 2024), we uniformly divide video seg-
ments into 8 frames and select the final frame as the input. Additionally, in DriveLM, We leveraged
the nuScenes map expansion to extract lane line information for both sides of the lane in which the
ego vehicle is positioned. ”For environmental predicates related to control signals in BDD-X and

2https://www.dmv.ca.gov/portal/handbook/california-driver-handbook/

13

https://www.dmv.ca.gov/portal/handbook/california-driver-handbook/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

As an agent for autonomous driving, your task is to extract pertinent rules from the provided text concerning
autonomous driving, while simultaneously filtering out irrelevant information. In specific, please extract
rules from the text relating to specific driving maneuvers listed as follows: keep, accelerate, decelerate,
stop, make left turns, make right turns, reverse, merge, change lanes, park, make U-turns, overtake, yield,
follow different traffic signs. Disregard unrelated actions for autonomous driving like "looking around/
checking mirrors" or similar non-quantifiable action.

Use the structured format: 'When [conditions], you should/should not [action] (unless [conditions]).' Utilize
'OR' or 'AND' to connect multiple conditions that may trigger the same action. Optionally, include 'unless
[conditions]' where exceptions apply. Each rule should be direct and applicable, ensuring it aids in the
precise and safe execution of self-driving maneuvers. If the text does not provide relevant advice for the
actions listed, respond with 'None'.

Here is one example:

#Title#: Double Solid Yellow Lines
#Passage#: Do not pass over double solid yellow lines. Stay to the right of these lines unless you are:
In a high-occupancy vehicle (HOV) carpool lane that has a designated entrance on the left.
Instructed by construction or other signs to drive on the other side of the road because your side is closed

or blocked.
Turning left across a single set of double yellow lines to enter or exit a driveway or private road or make a

U-turn.
Two sets of solid double yellow lines spaced two or more feet apart are considered a barrier. Do not drive on
or over this barrier, make a left turn, or make a U-turn across it, except at designated openings.
#Extracted Rules#: When driving near double solid yellow lines, you should stay to the right of these lines
unless: (i) You are in a high-occupancy vehicle (HOV) carpool lane that has a designated entrance on the left;
(ii) You are instructed by construction or other signs to drive on the other side of the road because your
side is closed or blocked; (iii) You are turning left across a single set of double yellow lines to enter or
exit a driveway or private road, or to make a U-turn.
When two sets of solid double yellow lines spaced two or more feet apart are present, you should not drive on
or over this barrier, make a left turn, or make a U-turn across it, unless there is a designated opening for
such maneuvers.

Now, extract the rules for the following passage:
#Title#: {title}
#Passage#: {passage}
#Extracted Rules#:

Table 7: Prompt for converting traffic rules to structured format

Your goal is to transform natural language driving rules into first-order logical rules for autonomous driving
systems, start by identifying the relevant actions and conditions from the text. Actions must choose from
predefined predicates like Keep, Accelerate, Decelerate, Stop, MakeLeftTurn, MakeRightTurn, Reverse, Merge,
ChangeToLeftLane, ChangeToRightLane, Park, MakeUTurn, LeftPass, RightPass and Yield.

First, analyze the natural driving rules to identify clear obligations (required actions) and prohibitions
(banned actions), explicitly ignoring any actions described as conditional permissions ("may"). Each rule will
either dictate required actions under specific conditions or explicitly ban certain actions in defined
scenarios. For each rule:

Identify Required Actions (Obligations): If a rule specifies an action that must be taken under certain
conditions, formulate this into a logical statement using the format "Condition Action." This represents an
obligatory action.

Identify Prohibited Actions (Bans): If a rule bans certain actions in specific circumstances, express this as
a logical statement using the format "Condition Action." This captures actions that are explicitly forbidden.

Here is one example:

#Natural Rules#: When driving near double solid yellow lines, you should stay to the right of these lines
unless: (i) You are in a high-occupancy vehicle (HOV) carpool lane that has a designated entrance on the left;
(ii) You are instructed by construction or other signs to drive on the other side of the road because your
side is closed or blocked; (iii) You are turning left across a single set of double yellow lines to enter or
exit a driveway or private road, or to make a U-turn.
When two sets of solid double yellow lines spaced two or more feet apart are present, you should not drive on
or over this barrier, make a left turn, or make a U-turn across it, unless there is a designated opening for
such maneuvers.
#Logical Rules#: (1) LeftSingleSetDoubleYellow InHOVCarpoolWithLeftEntrance Construction ChangeToLeftLane
LeftPass
AdjacentSingleSetDoubleYellow EnterOrExitDriveway EnterOrExitPrivateRoad MakeLeftTurn
(2) LeftDoubleSetsDoubleYellow DesignatedOpeningLeftTurn MakeLeftTurn
LeftDoubleSetsDoubleYellow DesignatedOpeningUTurn MakeUTurn

Now, extract the first-order logical rules for the following natural rules, and label each logical rule
clearly with #Logical Rules# and include an index that corresponds to the index of the original rule as shown
in the example. Besides when there are only conditioanl permissions ("may") and no clear obligations or
progibitions, you can simply output None.
#Natural Rules#: {rules}

Table 8: Prompt for further converting traffic rules to first-order logic formulas

DriveLM(for exanple, HCSKeep(x)), we also employ GPT4o for extraction. The specific details
of the prompts utilized for this extraction process are provided in Table 9 and Table 10

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

With respect to MLLM action predicates, since the output of MLLM consists of high-level action
descriptions such as “The car is slowing down to stop, we map these to predicates represented as
(MLLMDecelerate(x), MLLMStop(x)). In the BDD-X dataset, due to the increased number
and complexity of high-level action descriptions for MLLM action predicates, we employ GPT4o
with specifically designed prompts to extract these predicates, with detailed prompts provided in Ta-
ble 11. In DriveLM, given that the question-and-answer format comprises multiple-choice questions
with fixed option descriptions, we predefine mapping rules to translate high-level action descriptions
into predicates, as described in Table 12.

Given the current speed, curvature, acceleration, and course of the car, use one velocity predicate and one
directional predicate to best describe the behavior of the car.
The velocity predicates are: Keep, Accelerate, Decelerate, Stop, Reverse.
The directional predicates are: Straight, Left, Right.
Output the predicates directly without any additional information.
Here are some examples:
#Speed#: [7.18, 5.76, 4.45, 3.30, 2.24, 1.20, 0.36]
#Curvature#: [1.32, 0.88, 0.58, 1.85, 2.74, 1.61, 0.64]
#Acceleration#: [-1.22, -1.85, -2.39, -2.22, -2.01, -1.46, -0.87]
#Course#: [0.00, -10.03, -8.33, -3.23, -0.97, -0.32, -0.08]
#Predicate#: HCSStop, HCSLeft
#Speed#: [12.31, 9.51, 7.24, 5.38, 3.67, 2.76, 3.00]
#Curvature#: [-0.00, 0.00, 0.00, -0.05, -0.18, -0.67, -0.79]
#Acceleration#: [-1.85, -2.79, -2.73, -2.23, -1.67, -0.47, 0.71]
#Course#: [0.00, 0.00, 0.00, 0.00, -20.26, -60.78, 7.17]
#Predicate#: HCSDecelerate, HCSRight
#Speed#: [1.27, 4.18, 6.83, 8.87, 10.44, 12.22, 14.45]
#Curvature#: [0.00, 0.00, 0.00, -0.00, -0.01, -0.00, -0.00]
#Acceleration#: [2.27, 2.15, 1.81, 1.35, 1.28, 1.56, 1.45]
#Course#: [0.00, -0.09, 0.00, 0.00, 0.20, 0.00, 0.00]
#Predicate#: HCSAccelerate, HCSStraight
#Speed#: {speed}
#Curvature#: {curvature}
#Acceleration#: {acceleration}
#Course#: {course}
#Predicate:

Table 9: Prompt for Extracting High-level Control Signal Environmental Predicates from the BDD-
X Dataset

Given the current speed and course of the car, use one velocity predicate and one directional predicate to
best describe the behavior of the car.
The velocity predicates are: Normal, Fast, Slow, Stop.
The directional predicates are: Straight, Left, Right.
Output the predicates directly without any additional information.
Here are some examples:
#Speed#: [(4.54, 0.0), (5.34, 0.0), (5.67, 0.0), (5.7, 0.0), (6.46, 0.0), (6.63, 0.0)]
#Course#: [(1.0, 0.0), (1.0, 0.0), (1.0, 0.0), (1.0, 0.0), (1.0, 0.0), (1.0, 0.0)]
#Predicate#: HCSFast, HCSStraight
#Speed#: [(10.01, 0.0), (9.88, 0.0), (9.52, 0.0), (9.39, 0.0), (9.15, 0.0), (8.94, 0.0)]
#Course#: [(0.84, 0.0), (0.84, 0.0), (0.86, 0.0), (0.89, 0.0), (0.93, 0.0), (0.95, 0.0)]
#Predicate#: HCSFast, HCSRight
#Speed#: [(2.51, 0.0), (2.49, 0.0), (2.45, 0.0), (2.43, 0.0), (2.43, 0.0), (2.37, 0.0)]
#Course#: [(0.85, 0.0), (0.85, 0.0), (0.86, 0.0), (0.85, 0.0), (0.82, 0.0), (0.75, 0.0)]
#Predicate#: HCSSlowly, HCSLeft
#Speed#: [(1.65, 0.0), (1.37, 0.0), (0.73, 0.0), (0.09, 0.0), (0.0, 0.0), (0.0, 0.0), (0.0, 0.0), (0.0, 0.0)]
#Course#: [(0.86, 0.0), (0.86, 0.0), (0.87, 0.0), (0.86, 0.0), (0.86, 0.0), (0.86, 0.0), (0.85, 0.0), (0.84,
0.0)]
#Predicate#: HCSStop, HCSStraight
#Speed#: {speed}
#Course#: {course}
#Predicate#:

Table 10: Prompt for Extracting High-level Control Signal Environmental Predicates from the Driv-
eLM Dataset

A.4 TRAINING DETAILS

The learning rate for the Markov Logic Network (MLN) is set at 1 × 10−5. To mitigate the risk
of overfitting and to avoid excessive reliance on frequently occurring scenarios, such as straight
movements, regularization is incorporated into the training process, also set at 1×10−5. The models
are trained for a total of 300 epochs, unless interrupted by a predefined early stopping criterion:
specifically, if the model’s accuracy fails to improve by more than 1 × 10−6 over 10 consecutive
epochs, training will be terminated.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Given the current behavior of the car, please use predicates below to best describe the behavior of the car.
The predicates are:
Keep, Accelerate, Decelerate, Stop, Reverse, TurnLeft, TurnRight, UTurn, Merge, LeftPass, RightPass, Yield,
ChangeToLeftLane, ChangeToRightLane, Park, PullOver.
Here are some examples:
#Current Behavior#: The car is travelling down the road.
#Predicates#: Keep
#Current Behavior#: The car is making left turn.
#Predicates#: TurnLeft
#Current Behavior#: The car is slowing down and then comes to a stop.
#Predicates#: Decelerate, Stop
#Current Behavior#: The car is accelerating and then turns right.
#Predicates#: Accelerate, TurnRight
#Current Behavior#: The car is making a left turn and accelerates.
#Predicates#: TurnLeft, Accelerate
#Current Behavior#: The car decelerates and stops.
#Predicates#: Decelerate, Stop

Now the current behavior of the car is described, provide the predicates that best describe the behavior of
the car.

#Current Behavior#: {action}
#Predicates#:

Table 11: Prompt for Extracting Environmental Predicates from the BDD-X Dataset

High-level Action Description MLLM Action Predicate
Going straight

MLLMStraight(x)Slightly steering to the left
Slightly steering to the right
Driving fast

MLLMFast(x)
Driving very fast
Driving slowly MLLMSlow(x)
Driving with normal speed MLLMNormal(x)
Not moving MLLMStop(x)
Steering to the left MLLMLeft(x)
Steering to the right MLLMRight(x)

Table 12: Mapping of High-level Action Descriptions to MLLM Action Predicates

A.5 POST-VERIFICATION DETAILS

As outlined in Section 3.2, during safety verification, we initiate the process by extracting ob-
served grounded environmental predicates and MLLM action predicates using the object detector
and GPT4o. If the final main action predicate output of the Markov Logic Network (MLN) conflicts
with the suggested action from MLLM, we modify the high-level action query based on the output
of the MLN. In the BDD-X dataset, we replace the original high-level action queries with new ac-
tions inferred from the MLN. For example, if the MLN predicts the possible world represented as
“Stop(x) = 1” with the highest probability, we append the suggestion “The ego vehicle should
stop” to the high-level action query. This approach facilitates the mapping back to the corresponding
high-level action description and ensures the flow of conversation for subsequent queries.

In DriveLM, as high-level action queries are presented in a multiple-choice format, the final main
action predicate output from the Markov Logic Network (MLN) may not always align directly to
one of the options. In such cases, we filter the available options by the probability of possible worlds.
Given that MLLM action predicates may map to multiple high-level action descriptions, it is feasible
for multiple valid options to arise simultaneously. We then overwrite the high-level action queries
by removing incorrect options and prompt the MLLM to regenerate an option.

A.6 PREDICATES AND TRAFFIC RULES

This section provides a detailed overview of the specific aspects of the MLN construction for both
the BDD-X and DriveLM datasets.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A.6.1 BDDX

Predicates
• Unobserved Predicates:
Keep(x), Accelerate(x), Decelerate(x), Stop(x), Reverse(x), TurnLeft(x),
TurnRight(x), UTurn(x), Merge(x), LeftPass(x), RightPass(x), Yield(x),
ChangeToLeftLane(x), ChangeToRightLane(x), Park(x), PullOver(x)

• Observed Predicates:
– MLLM Action Predicates:
MLLMKeep(x), MLLMAccelerate(x), MLLMDecelerate(x), MLLMStop(x),
MLLMReverse(x), MLLMTurnLeft(x), MLLMTurnRight(x), MLLMUTurn(x),
MLLMMerge(x), MLLMLeftPass(x), MLLMRightPass(x), MLLMYield(x),
MLLMChangeToLeftLane(x), MLLMChangeToRightLane(x), MLLMPark(x),
MLLMPullOver(x)

– Environmental Predicates:
SolidRedLight(x), SolidYellowLight(x), YellowLeftArrowLight(x),
RedLeftArrowLight(x), MergingTrafficSign(x), NoLeftTurnSign(x),
NoRightTurnSign(x), PedCrossingSign(x), StopSign(x), RedYieldSign(x),
SlowSign(x), SolidGreenLight(x), HCSKeep(x), HCSAccelerate(x),
HCSDecelerate(x), HCSStop(x), HCSReverse(x), HCSStraight(x),
HCSLeft(x), HCSRight(x)

Possible Worlds
(Keep), (Accelerate), (Decelerate), (Stop), (TurnLeft), (TurnRight), (UTurn), (PullOver), (Reverse), (Park),
(Merge), (LeftPass), (RightPass), (ChangeToLeftLane), (ChangeToRightLane), (Yield), (ChangeToRight-
Lane, Merge), (Accelerate, ChangeToRightLane), (Decelerate, Stop), (Keep, Stop), (Accelerate, Keep),
(Merge, Stop), (Accelerate, LeftPass), (ChangeToLeftLane, Merge), (Stop, Yield), (Accelerate, TurnRight),
(Decelerate, Keep), (Decelerate, PullOver), (ChangeToLeftLane, PullOver), (ChangeToRightLane, Stop),
(Keep, TurnRight), (PullOver, Stop), (Park, Stop), (Decelerate, TurnRight), (Keep, LeftPass), (Accelerate,
ChangeToLeftLane), (Accelerate, TurnLeft), (Accelerate, Stop), (Keep, TurnLeft), (Accelerate, Merge), (De-
celerate, TurnLeft), (Park, PullOver), (Keep, Merge), (Keep, Park), (TurnLeft, TurnRight), (TurnLeft, Re-
verse), (TurnRight, Stop), (ChangeToLeftLane, Decelerate), (ChangeToRightLane, Decelerate), (TurnLeft,
Stop), (TurnRight, Park), (ChangeToLeftLane, ChangeToRightLane), (Keep, RightPass), (ChangeToLeft-
Lane, Stop), (Keep, PullOver), (LeftPass, RightPass), (ChangeToRightLane, Keep), (TurnRight, PullOver),
(ChangeToLeftLane, Keep), (TurnRight, Reverse), (PullOver, Reverse), (ChangeToRightLane, TurnLeft),
(Accelerate, Decelerate), (TurnRight, Yield), (Decelerate, Yield), (ChangeToRightLane, PullOver), (Turn-
Left, PullOver), (Decelerate, TurnLeft, Stop), (Decelerate, Merge, Stop), (Decelerate, PullOver, Stop),
(ChangeToRightLane, Decelerate, Stop), (ChangeToLeftLane, Decelerate, Stop), (Decelerate, TurnRight,
Stop), (Accelerate, ChangeToLeftLane, ChangeToRightLane), (ChangeToRightLane, Decelerate, Merge),
(ChangeToRightLane, Decelerate, Merge, Stop)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Traffic Rules
• SolidRedLight(x) =⇒ ¬Accelerate(x) ∧ ¬LeftPass(x) ∧ ¬Yield(x)
• SolidYellowLight(x) =⇒ TurnLeft(x) ∨ TurnRight(x) ∨ Keep(x) ∨ Stop(x) ∨
Decelerate ∧ ¬Accelerate(x)

• YellowLeftArrowLight(x) =⇒ Stop(x) ∨ Decelerate(x)
• RedLeftArrowLight(x) =⇒ ¬(TurnLeft(x) ∨ UTurn(x))
• MergingTrafficSign(x) =⇒ Decelerate(x)
• NoLeftTurnSign(x) =⇒ ¬TurnLeft(x)
• NoRightTurnSign(x) =⇒ ¬TurnRight(x)
• RedYieldSign(x) =⇒ Decelerate(x)
• SlowSign(x) =⇒ ¬Accelerate(x)
• StopSign(x) =⇒ Stop(x) ∨ Decelerate(x) ∧ ¬PullOver(x)
• HCSKeep(x) =⇒ Keep(x) ∨ Accelerate(x)
• HCSAccelerate(x) =⇒ Keep(x) ∨ Accelerate(x)
• HCSDecelerate(x) =⇒ Decelerate(x) ∨ Stop(x)
• HCSStop(x) =⇒ Decelerate(x) ∨ Stop(x)
• HCSReverse(x) =⇒ Reverse(x)
• HCSLeft(x) =⇒ TurnLeft(x) ∨ ChangeToLeftLane(x)
• HCSRight(x) =⇒ TurnRight(x) ∨ ChangeToRightLane(x)
• HCSLeft(x) ∧ MLLMChangeToRightLane(x) =⇒ ChangeToLeftLane(x)
• HCSRight(x) ∧ MLLMChangeToLeftLane(x) =⇒ ChangeToRightLane(x)
• MLLMKeep(x) =⇒ Keep(x)
• MLLMAccelerate(x) =⇒ Accelerate(x)
• MLLMDecelerate(x) =⇒ Decelerate(x)
• MLLMStop(x) =⇒ Stop(x)
• MLLMReverse(x) =⇒ Reverse(x)
• MLLMTurnLeft(x) =⇒ TurnLeft(x)
• MLLMTurnRight(x) =⇒ TurnRight(x)
• MLLMUTurn(x) =⇒ UTurn(x)
• MLLMMerge(x) =⇒ Merge(x)
• MLLMLeftPass(x) =⇒ LeftPass(x)
• MLLMRightPass(x) =⇒ RightPass(x)
• MLLMYield(x) =⇒ Yield(x)
• MLLMChangeToLeftLane(x) =⇒ ChangeToLeftLane(x)
• MLLMChangeToRightLane(x) =⇒ ChangeToRightLane(x)
• MLLMPark(x) =⇒ Park(x)
• MLLMPullOver(x) =⇒ PullOver(x)

A.6.2 DRIVELM

Predicates
• Unobserved Predicates:
Normal(x), Fast(x), Slow(x), Stop(x), Left(x), Right(x), Straight(x)

• Observed Predicates:
– MLLM Action Predicates:
MLLMNormal(x), MLLMFast(x), MLLMSlow(x), MLLMStop(x), MLLMLeft(x),
MLLMRight(x), MLLMStraight(x)

– Environmental Predicates:
SolidRedLight(x), SolidYellowLight(x), YellowLeftArrowLight(x),
RedLeftArrowLight(x), MergingTraffic(x), NoLeftTurnSign(x),
NoRightTurnSign(x), PedCrossingSign(x), StopSign(x), RedYieldSign(x),
SlowSign(x), SolidGreenLight(x), DoubleDashedWhiteLineLeft(x),
DoubleDashedWhiteLineRight(x), SingleSolidWhiteLineLeft(x),
SingleSolidWhiteLineRight(x), DoubleSolidWhiteLineLeft(x),
DoubleSolidWhiteLineRight(x), SingleZigzagWhiteLineLeft(x),
SingleZigzagWhiteLineRight(x), SingleSolidYellowLineLeft(x),
SingleSolidYellowLineRight(x), HCSNormal(x), HCSFast(x), HCSSlow(x),
HCSStop(x), HCSLeft(x), HCSRight(x), HCSStraight(x)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Possible Worlds
(Normal, Left), (Normal, Right), (Normal, Straight), (Fast, Left), (Fast, Right), (Fast, Straight), (Slow, Left),
(Slow, Right), (Slow, Straight), (Stop, Left), (Stop, Right), (Stop, Straight),

Traffic Rules
• SolidRedLight(x) =⇒ ¬Fast(x)
• SolidYellowLight(x) =⇒ ¬Fast(x)
• YellowLeftArrowLight(x) =⇒ Stop(x) ∨ Slow(x)
• RedLeftArrowLight(x) =⇒ ¬Left(x)
• MergingTrafficSign(x) =⇒ ¬Fast(x)
• NoLeftTurnSign(x) =⇒ ¬Left(x)
• NoRightTurnSign(x) =⇒ ¬Right(x)
• RedYieldSign(x) =⇒ ¬Fast(x)
• SlowSign(x) =⇒ ¬Fast(x)
• SingleSolidWhiteLineLeft(x) =⇒ ¬Left(x)
• SingleSolidWhiteLineRight(x) =⇒ ¬Right(x)
• DoubleSolidWhiteLineLeft(x) =⇒ ¬Left(x)
• DoubleSolidWhiteLineRight(x) =⇒ ¬Right(x)
• SingleZigzagWhiteLineLeft(x) =⇒ ¬Stop(x)
• SingleZigzagWhiteLineRight(x) =⇒ ¬Stop(x)
• HCSNormal(x) =⇒ Normal(x)
• HCSFast(x) =⇒ Fast(x)
• HCSSlow(x) =⇒ Slow(x)
• HCSStop(x) =⇒ Stop(x)
• HCSLeft(x) =⇒ Left(x)
• HCSRight(x) =⇒ Right(x)
• HCSStraight(x) =⇒ Straight(x)
• MLLMNormal(x) =⇒ Normal(x)
• MLLMFast(x) =⇒ Fast(x)
• MLLMSlow(x) =⇒ Slow(x)
• MLLMStop(x) =⇒ Stop(x)
• MLLMLeft(x) =⇒ Left(x)
• MLLMRight(x) =⇒ Right(x)
• MLLMStraight(x) =⇒ Straight(x)

B EXTRA ABLATION STUDY

B.1 LOW-LEVEL PREDICTION ON BDD-X

Table 13 presents an ablation study evaluating the contribution of each module in SafeAuto to the
low-level control signal prediction on the BDD-X dataset. Interestingly, we find that the MLN
reasoning and RAG modules have only a minimal impact on the low-level prediction accuracy, with
the primary improvement stemming from the PDCE loss, as expected. Additionally, we observe that
incorporating RAG slightly increases the RMSE for speed prediction but decreases the RMSE for
course prediction.

Table 13: Ablation study of the contribution from each module in SafeAuto focusing on low-level control
signal assessment on the BDD-X dataset.

Method Speed Course
RMSE ↓ A0.1 ↑ A0.5 ↑ A1.0 ↑ A5.0 ↑ A10.0 ↑ RMSE ↓ A0.1 ↑ A0.5 ↑ A1.0 ↑ A5.0 ↑ A10.0 ↑

Base 0.76 53.65 87.38 95.10 99.76 99.81 4.18 76.31 89.87 94.49 98.21 99.15
PDCE 0.63 55.63 88.04 95.24 99.86 99.91 3.89 76.64 89.97 94.35 98.21 99.20

PDCE+MLN 0.64 55.58 87.99 95.24 99.81 99.91 3.89 76.68 90.01 94.35 98.21 99.20
PDCE+RAG 0.65 55.49 88.79 95.34 99.81 99.91 3.85 76.31 89.68 94.07 98.30 99.25

PDCE+MLN+RAG 0.65 55.49 88.84 95.34 99.81 99.91 3.85 76.26 89.68 94.11 98.30 99.25

19

	Introduction
	Related Work
	SafeAuto
	Place-Dependent CE loss
	 Knowledge-Enhanced Post-Safety Verification with SafeAuto-reasoning
	SafeAuto-Multimodal Retrieval-Augmented Generation

	Experiments
	Ablation Study
	Limitation
	Details on SafeAuto-Reasoning
	Traffic Rule Mapping
	YoloV8 Fine-tuning
	Predicate Extraction
	Training Details
	Post-verification Details
	Predicates and Traffic Rules
	BDDX
	DriveLM

	Extra Ablation Study
	Low-Level Prediction on BDD-X

