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ABSTRACT

Navigating vast and visually intricate gaming environments poses unique chal-
lenges, especially when agents are deprived of absolute positions and orientations
during testing. This paper addresses the challenge of training agents in such envi-
ronments using a limited set of offline navigation data and a more substantial set
of offline position data. We introduce the Image-Goal Network (IG-Net), an inno-
vative solution tailored for these challenges. IG-Net is designed as an image-goal-
conditioned navigation agent, which is trained end-to-end, directly outputting ac-
tions based on inputs without intermediary mapping steps. Furthermore, IG-Net
harnesses position prediction, path prediction and distance prediction to bolster
representation learning to encode spatial map information implicitly, an aspect
overlooked in prior works. Our experiments and results demonstrate IG-Net’s
potential in navigating large-scale gaming environments, providing both advance-
ments in the field and tools for the broader research community.

1 INTRODUCTION

Visual navigation, the act of autonomously traversing and understanding environments based on
visual cues, has been at the forefront of robotics and artificial intelligence research (Shah et al.,
2021; 2023; Kwon et al., 2021). The ability to navigate is a fundamental skill for agents, making
it applicable in a wide range of scenarios, from virtual gaming environments to real-world robotic
applications. The challenge, however, lies in the complexity and variability of these environments,
especially when the scale is vast and the available data is limited. In this work, we consider the
ShooterGame environment constructed by Unreal Engine with realistic visual dynamics, as illus-
trated in Figure 1, which spans 10421.87 m2 across multiple floors, representing a scale approxi-
mately 50-100 times larger than preceding navigational environments.

Such a large-scale environment presents intricate navigational challenges, especially when the
agent’s access to navigation data is restricted to offline modes, in which the navigation data needs
(human) experts to control the agent to reach the goal. On the other hand, we can use some unla-
beled data (without action and noncontinuous, which can be accessed by random sample) to enhance
the model training, obeying the rule of weakly supervised learning (Zhou, 2017; Gong et al., 2022).
In such a case, during the training phase, the agent can access only a limited number of naviga-
tion (supervised) data, comprising positions and images, supplemented by a (unsupervised) dataset
containing merely positions and images. In contrast, the testing phase imposes further restrictions,
allowing the agent access solely to the current observational image and the goal image. The primary
objective of this research is to navigate the agent proficiently to reach the predefined goal, relying
exclusively on image observations. The observational data is limited to a 90-degree camera, posing
considerable challenges compared to the conventional 360-degree camera observations, making it
imperative to devise robust solutions to navigate efficiently with purely image-based observations
during the testing phase and training exclusively with offline data (Al-Halah et al., 2022).

To mitigate the challenges intrinsic to such constrained and expansive environments, we propose the
Image-Goal Network (IG-Net), an end-to-end solution specifically designed for large-scale visual
navigation tasks. This network amalgamates visual and positional information to guide the agent
towards its goal effectively. Besides, explicitly building a map for navigating on such a large-scale
environment is quite challenging, while we still need to fuse the map knowledge into the navigation
model training. To this end, we incorporate spatial information, representing the positional infor-
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(a) A bird view of ShooterGame (b) A sketch of the ShooterGame

Figure 1: A bird view and a sketch of usable space of ShooterGame.

mation of each image implicitly for a better representation, in enhancing the agent’s navigational
capabilities. Our experiments, conducted within the large-scale ShooterGame map, substantiate the
effectiveness of the proposed IG-Net in navigating through extensive and intricate environments
using offline, image-based data. The results demonstrate significant advancements in visual naviga-
tion, opening avenues for further research and development in autonomous navigation in large-scale,
complex environments.

2 RELATED WORKS

Image-goal visual navigation within large-scale maps, particularly when devoid of absolute posi-
tions during testing and online interactions during training, poses a profound challenge addressed by
numerous research endeavors. ViNG (Shah et al., 2021) is an exemplar model in this realm, predict-
ing steps and accessibility to a target while generating waypoints, utilizing a controller, constructing
trees, and planning paths via a weighted Dijkstra algorithm. The model’s distance function is adeptly
trained through temporal difference learning or supervised learning. Contrastingly, BADGR (Kahn
et al., 2021), and subsequent developments (Hahn et al., 2021), employ self-supervised learning
paradigms focusing on end-to-end learning from real-world data, devoid of simulations or human
demonstrations. The emphasis on “last-mile navigation” is brought forth by another study (Wasser-
man et al., 2022), accentuating goal discovery and exploitation post-object identification.

Advancements in topologist-based methodologies have also been noteworthy. The Topological Se-
mantic Graph Memory (Kim et al., 2022) model, utilizing depth cameras, constructs graphs based on
images or objects and avoids reliance on positional information, employing a cross-graph mixer for
updates. Similarly, Visual Graph Memory (Kwon et al., 2021) leverages landmark-based topological
representations for zero-shot navigation in novel environments, and the Neural Topological SLAM
(Chaplot et al., 2020) updates graphs through nodes representing 360-degree panoramic views based
on agent observations. The visual representation R3M (Nair et al., 2022) demonstrates the poten-
tial of data-efficient learning for downstream robotic manipulation tasks using pre-trained visual
representations on diverse human video data. Moreover, PACT (Bonatti et al., 2022) introduces a
generative transformer-based architecture that builds robot-specific representations from robot data
in a self-supervised fashion, evidencing enhanced performance in tasks such as safe navigation,
localization, and mapping compared to training models from scratch.

On the other hand, some pretrained networks were proposed to solve visual navigation across a
variety of environments. PIRLNav (Ramrakhya et al., 2023) addresses the challenges of designing
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embodied agents that can interact effectively with their environment and humans by combining
behavior cloning (BC) and reinforcement learning (RL) to overcome the limitations inherent to each
method individually. Also, Majumdar et al. (2023) conducts an extensive empirical study focusing
on the design of an artificial visual cortex, aimed at enabling an artificial agent to convert camera
input into actions. Our proposed method shares the idea of representation learning of pretrained
network methods, but the problem settings are different.

Our approach, the Image-Goal Network (IG-Net), stands distinctively apart from these methods.
Unlike the aforementioned works, IG-Net is meticulously designed to navigate significantly larger
maps, where interactions are strictly confined to offline data, and there is an absence of online in-
teractions with the environment or position signals during testing. Furthermore, our emphasis on
amalgamating visual and positional information to guide the agent effectively through extensive
environments, as evidenced in the ShooterGame environment, presents a novel perspective in ad-
dressing visual navigation challenges.

3 PROBLEM SETTING

In this study, we tackle the intricate problem of visual navigation within a large-scale map, specif-
ically, within the ShooterGame environment. This game environment is significantly expansive,
featuring a 10421.87 m2 map with multiple levels, making it approximately 50-100 times larger
than previously utilized navigation environments, as illustrated in Table 1.

Environment Gibson SUNCG Matterport3D ShooterGame

Coverage of One Map (m2) 368.88 127.13 517.78 10421.87
Dynamic Objects # # # !

Pure RGB without depth # # # !

No Panoramic 360 camera view # # # !

Table 1: Comparison of ShooterGame with previous navigation environments, including Gib-
son (Xia et al., 2018), SUNCG (Song et al., 2017) (hand designed synthetic), Matterport3D (Chang
et al., 2017), and MINOS (Savva et al., 2017). The coverage of one task of ShooterGame is 50-100
times bigger than previous ones.

Environment. ShooterGame is a quintessential representation of a PC multiplayer first-person
shooter by Unreal Engine 4, providing a robust framework that includes diverse weapon implemen-
tations, game modes, and a simplistic front-end menu system, with observations further constrained
to 90-degree camera views 1. This restriction augments the challenge compared to preceding 360-
degree camera observations as in Figure 2. From the figure we can also observe that the distant craft,
clouds, sunlight, and even walls change dynamically over time, resulting in different observations of
the same position and angle at different moments in time, which renders the navigation within this
environment a complex endeavor. The lack of depth information also poses unique implementations
and challenges for navigation tasks.

𝑎𝑎𝑡𝑡 = 2 (turning right) 𝑎𝑎𝑡𝑡+1 = 2  (turning right) 𝑎𝑎𝑡𝑡+2 = 2  (turning right)

Figure 2: Four image observations from one fixed position with different view angles. Each ob-
servation only contains a 90-degree camera view, which can be more challenging than previous
360-degree-view environments.

Offline Dataset. We collect a set of navigation data to train our models. At each step, the agent
is given the current 90-degree camera observation ot and the target 90-degree observation otar.
A human-expert action at is executed which leads to next observation. The trajectory ends when

1A public video demo: https://www.youtube.com/watch?v=xdS6asajHAQ
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agent navigates to target. Global positions and rotations pt = (xt, yt, zt, θt) are also collected but
only used for auxiliary tasks and visualizations, and the magnitude of coordinates (xt, yt, zt) is
normalized to zero-mean and unit-variance. Each trajectory in our dataset is represented as:

τ i = {oi
tar,o

i
0,p

i
0,a

i
0, . . . ,o

i
T i ,pi

T i ,ai
T i}, (1)

in which T i denotes the length of trajectory i; oi
t denotes the image observation in i-th trajectory at

time step t with image size 224× 224× 3; otar denotes the goal observation; pi
t denotes the current

position and current rotation in i-th trajectory at time step t with a tuple (xi
t, y

i
t, z

i
t, θ

i
t) coordinate in

the coordinate system; ait ∈ 0, 1, 2 denotes the current action for moving forward, turning left, and
turning right, respectively. A total of N = 200 trajectories are collected for training following this
manner. Each trajectory takes less than 2 minutes to collect and lasts an average of 75 steps.

We collect additional position data that includes the positions-images of the map. We uniformly
sample a set of M = 2000 points in the map, where each point is represented as the observation-
position-rotation pair {(oi,pi)|1 ≤ i ≤ M}, where pi = (xi, yi, zi, θi). This position dataset is
used solely for representation learning in the visual navigation training.

Training and Testing Phases. The agent is constrained to offline data during training, incorporat-
ing a limited number of navigation data and position-image data without any interactions with the
environment. The testing phase restricts the agent’s access to the current observation image o and
the goal image otar only. The target of the task is to navigate the agent from an initial position to a
goal position.

The problem of visual navigation within the large-scale and detailed ShooterGame environment
of Unreal Engine poses significant challenges due to the limited availability of offline data and
restrictive observations. In the following sections we will introduce our proposed solution, Image-
Goal Network (IG-Net), which navigates through this environment, emphasizing the importance of
spatial information in visual navigation tasks. The promising results from preliminary experiments
indicate the potential of our approach in addressing the challenges inherent in sophisticated game
environments like ShooterGame.

4 PROPOSED METHOD: IG-NET

Addressing the intricacies and challenges imposed by large-scale, constrained environments neces-
sitates a methodological paradigm shift. The Image-Goal Network (IG-Net) is developed to cater to
the nuanced demands of visual navigation within expansive and intricate gaming terrains.

4.1 FOUNDATION PRINCIPLES

Given the extensive scale of the map and the unavailability of online interaction with the environ-
ment, constructing a model explicitly based on the map, such as topological methods (Kim et al.,
2022), is not feasible. Accordingly, IG-Net is proposed with distinct properties to navigate profi-
ciently within such constrained settings:

• Image-Goal-Conditioned Behavior: IG-Net fundamentally operates as an image-goal-
conditioned navigation agent. In inference, it consumes an image and utilizes it as a navi-
gational goal, shaping its navigation behavior correspondingly.

• End-to-End Training: Distinct from conventional methodologies, which prioritize con-
structing a comprehensive map or graph of the environment initially, IG-Net adopts end-to-
end training. This approach allows IG-Net to directly interpret inputs and output actions,
bypassing intermediary mapping processes.

• Enhanced Representation Learning through Position and Navigation Information
Prediction: IG-Net utilizes the nuanced capabilities of position and navigation informa-
tion prediction to refine representation learning, a domain relatively untouched in preceding
studies. It employs spatial information prediction to enhance the agent’s internal environ-
mental depiction.

• Incorporation of Auxiliary Tasks: A variety of auxiliary tasks are integrated, including
local and global path planning and navigation distance prediction, to fortify visual naviga-
tion capabilities.
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4.2 LOSS FUNCTIONS

To optimize IG-Net, we devise a conglomerate of loss functions, each catering to different aspects of
navigation, such as positional accuracy, trajectory optimization, and alignment with the goal state.
The losses ensure the coherent learning of representations and navigational strategies, which are
crucial for effective navigation in complex environments. We denote the parameter of IG-Net as θ,
and each function of IG-Net parameterized by θ is detailed in the following sections.

Relative Position Prediction. The relative position prediction design allows IG-Net to learn to
inherit spatial representation given camera views on the map. Given any two states represented by
(o1,p1) and (o2,p2), we compute the relative position and orientation of these two states as:

relative(p2,p1) =
(
(x2 − x1, y2 − y1, z2 − z1)R(−θ1)

T , θ2 − θ1
)
, (2)

where R(θ) is the rotation matrix for angle θ. Qualitatively, relative(p2,p1) reflects the position
and rotation of o2 in the egocentric coordinates of o1. Given a pair of images, IG-Net is able
to predict the relative position of the images, and the following loss function is used for relative
position prediction in IG-Net:

Lrelative(o1,p1,o2,p2) = Lpos angle(f relative
θ (o1,o2), relative(p2,p1)), (3)

where

Lpos angle((x1, y1, z1, θ1), (x2, y2, z2, θ2))

= ∥(x2 − x1, y2 − y1, z2 − z1, cos(θ2)− cos(θ1), sin(θ2)− sin(θ1))∥22
evaluate how the predicted relative positions and rotations are close to the ground truth relative
positions and rotations.

One advantage of relative position is that any data with position information can be leveraged. We
use a mixture of position offline data and navigation offline data for training the relative position
prediction, detailed later in this section.

Absolute Position Prediction. We additionally use IG-Net to predict the absolute position and
rotations given a camera view, serving as an additional auxiliary loss for IG-Net. Given one state
represented by (o1,p1), the following loss function is used for training IG-Net is given by:

Labsolute pos(o1,p1) = Lpos angle(fabsolute pos
θ (o1),p1). (4)

We also use a mixture of offline navigation data and position data for training IG-Net.

Navigation distance prediction. For the navigation distance prediction task, IG-Net is given
a pair of states represented by image observations, and learns to predict the total distance that
takes the agent to navigate from the first state to the second state. When the loss is optimized,
the network captures the connectivity between different states in the map. Given a trajectory
τ = (otar,ptar,o0,p0,a0, . . . ,oT ,pT ,aT ) in the offline navigation dataset, we let oT+1 = otar

and pT+1 = ptar define the navigation distance between oi,oj , i ≤ j as follows:

nav distance(oi,oj , τ) =

j−1∑
k=i

∥(xk − xk+1, yk − yk+1, zk − zk+1)∥22. (5)

Given a pair of states in the offline navigation dataset, IG-Net predicts the navigation distance be-
tween them. The loss function for training IG-Net is given by:

Lnav distance(oi,oj , τ) =
[
fnav distance
θ (oi,oj)− nav distance(oi,oj , τ)

]2
(6)

Navigation path prediction. Given a pair of states represented by image observations, IG-Net
learns to construct the spatial navigation path between them, serving as a path-planning auxiliary
loss for IG-Net. For the local path prediction in IG-Net, the predicted path is the Npath = 5 next
consecutive steps in the navigation trajectory; for the global path prediction in IG-net, the predicted
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Auxiliary outputs
Observation Image

Image patch 
embedding

4-layer transformer

Goal Image
Actions

Positional & action 
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Figure 3: IG-Net architecture illustration, in which auxiliary outputs denote predictions on map
positions & orientations; ego positions & orientations; local & global paths.

path is the Npath = 5 intermediate relative positions, where the intermediate points are equally
spaced in time from current time t to the total path length T .

Formally, we define the local and global timesteps as

Slocal(t, τ) = (min(t+ 1, T ),min(t+ 2, T ), . . . ,min(t+Npath, T )), (7)

Sglobal(t, τ) =

(
t+ ⌊ T − t

Npath + 1
⌋, t+ ⌊ 2(T − t)

Npath + 1
⌋, · · · , t+ ⌊Npath(T − t)

Npath + 1
⌋
)
. (8)

We define the local and global path at timestep t in the trajectory τ as

local path(ot, τ) =
(
relative(Slocal(t, τ)1,pt), · · · , relative(Slocal(t, τ)Npath

,pt)
)
, (9)

global path(ot, τ) =
(
relative(Sglobal(t, τ)1,pt), · · · , relative(Sglobal(t, τ)Npath

,pt)
)
. (10)

Finally, the training loss on local and global paths for IG-Net is defined as:

Llocal path(ot, τ) =

Npath∑
k=1

[
Lpos angle(f local path

θ (ot,otar)k, local path(ot, τ)k)
]
, (11)

Lglobal path(ot, τ) =

Npath∑
k=1

[
Lpos angle(fglobal path

θ (ot,otar)k, global path(ot, τ)k)
]
. (12)

Action Loss. Besides all the above auxiliary loss, we use an additional action loss for training
IG-Net to generate navigation actions. Given one current image and one goal image, we train IG-Net
to predict the current action. The action prediction head of IG-Net is trained with behavior cloning
loss:

Laction(ot, τ) = cross entropy(faction(ot,otar), at) (13)

Training Loss. We add all the auxiliary loss and action prediction loss as a single loss function
to train IG-Net. We use w = 1.0 for each loss term in our experiment.

Sampling in position and navigation dataset for training IG-Net. All the position prediction
losses are trained with both position and navigation datasets. In contrast, navigation distance and
path prediction loss rely solely on the navigation dataset. In our experiment, we sample the position
dataset with ppos = 0.4 probability and the navigation dataset with 1 − ppos = 0.6 probability.
When sampled on the position dataset, the navigation distance and path prediction loss are masked
in training. Our approach enables leveraging both the position and navigation datasets for training
different auxiliary tasks without losing data efficiency.

4.3 ARCHITECTURAL DESIGN

IG-Net integrates a transformer-based structure, specifically tailored for navigation tasks, with a
forward process described as follows:

1. Image Encoding: A pretrained Masked Auto-Encoder (MAE) is employed for encoding
the current and goal images independently, ensuring a rich representation of visual infor-
mation.
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2. Embedding Concatenation: The encoding embeddings procured from the first step are
concatenated to form a unified representation, encompassing both current state and goal
state information.

3. Positional and Action Decoding: Utilizing position, path, distance, and action decoders,
the network predicts corresponding positional information and navigational actions, lever-
aging the concatenated embeddings.

An illustration of the architecture of IG-Net is shown in Figure 3.

4.4 TRAINING AND INFERENCE

During training, IG-Net is exposed to a plethora of offline navigation data, enriched with positional
and visual information. The network learns to intertwine visual and spatial cues to formulate ro-
bust navigational policies. In inference, the network, confined to current observational and goal
images, generates actions to navigate the agent proficiently toward the predefined goal, overcoming
the constraints imposed by limited observational data and expansive environments. The training
hyperparameters for IG-Net are detailed in Appendix A.1.

5 EXPERIMENT

5.1 EXPERIMENT SETTING

We evaluate our models in three levels of difficulties according to the euclidean distance to goal (D)
at the start of the episode. We run 50 episodes under each setting with a maximum of 200 steps
per episode. Success is marked by agent locating within a fixed range of the goal, regardless of its
orientation.

Our model is compared against Visual-Graph-Memory (VGM), a powerful end-to-end visual navi-
gation algorithm. VGM aims to progressively build and update a topological graph representation
of the environment during execution purely based on visual information. We deliberately select
VGM from various baselines (Shah et al., 2021) (Kahn et al., 2021) (Kim et al., 2022) to compare
an end-to-end explicit graph construction method with our implicit map features learning through
auxiliary tasks. We train VGM variants with 90 FoV and mask out the depth input. When evaluating
the “loaded” variants, we pre-load the model with nodes from a training episode. Other details can
be found in A.2.

5.2 EVALUATION METRICS

Three metrics are used in this paper: success rate (SR), success weighted by path length (SPL), and
distance decrement rate (DDR).

SPL measures the efficiency of navigation and can be written as SPL = 1
N

∑N
i=1 Si

di

max(di,pi)

where Si = 1 if navigation is successful and Si = 0 otherwise. N is the total number of evaluation
episodes, di is shortest distance to target, and pi is the actual trajectory length. Since optimal
geodesic distance is not available in ShooterGame, we use Euclidean distance for di.

DDR measures the closest distance achieved between the agent and the target towards to and can be
written as DDR = d0−dmin

d0
where d0 represents the initial Euclidean distance from agent to goal

and dmin is the minimum Euclidean distance throughout the navigation trajectory.

5.3 RESULTS

The overall results are presented in Table 2. Under the easiest setting, IG-Net’s success rate out-
performs the best VGM variant by a margin of 69% (from 0.32 to 0.54) and is 71% more efficient
in SPL (from 0.14 to 0.24). More remarkably, IG-Net achieves a reasonable success rate of 0.24
to 0.26 under more challenging settings whereas variants of VGM almost completely fail the tasks
with success rates consistently below 0.1, despite our tuning efforts.
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Moreover, results show that training IG-Net with auxiliary tasks significantly improves performance
in both success rate and navigation efficiency. Therefore, we conclude the learning objectives pro-
posed in 4.2 help IG-Net to establish an implicit and transferable understanding of the map.

Difficulty 1500 < D < 4000 4000 < D < 8000 D > 8000
Metric SR SPL DDR SR SPL DDR SR SPL DDR

VGM 0.24 0.09 0.40 0.00 0.00 0.30 0.00 0.00 0.27
VGM-Tuned 0.20 0.09 0.39 0.08 0.05 0.39 0.00 0.00 0.32
VGM-Loaded 0.32 0.14 0.49 0.04 0.02 0.26 0.00 0.00 0.27

VGM-Tuned-Loaded 0.20 0.08 0.32 0.04 0.02 0.36 0.08 0.05 0.42
IG-Net 0.54 0.24 0.75 0.26 0.17 0.65 0.24 0.15 0.75

IG-Net (no auxiliary) 0.18 0.09 0.36 0.14 0.08 0.42 0.00 0.00 0.44

Table 2: IG-Net experiment results. SR: success rate. SPL: success-weighted by path length. DDR:
distance decrement rate.

5.4 CASE STUDY

5.4.1 VISUALIZATION OF NAVIGATION PATH OF IG-NET

To demonstrate IG-Net’s proficiency in visual navigation, especially with purely visual inputs in
complex environments such as ShooterGame, we present case studies depicting the navigation paths
executed by IG-Net during the evaluation phase, as illustrated in Figure 4. From its initial position,
IG-Net successfully executes its planning paths and executes low-level actions seamlessly, navi-
gating through stairs and corridors while avoiding collisions with obstacles. These observations are
consistent across various evaluation episodes, showcasing IG-Net’s capability to navigate accurately
towards the goal image and execute precise low-level navigational maneuvers to follow the correct
path.

Figure 4: Illustration of IG-Net’s navigation path in ShooterGame during evaluation. The bottom-
left figure represents the agent’s starting position, and the top-right figure displays the goal image,
serving as input to IG-Net. Purple dots trace the path navigated by IG-Net, and red dots represent
key frames in the navigation, with corresponding images visualized.
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5.4.2 ROBUSTNESS OF IG-NET

To assess IG-Net’s robustness, we conduct a case study introducing Gaussian noises, denoted as n,
to the positions. We normalize of the position to zero-mean and unit-variance, and add a noise on all
position training signals with standard derivation of n. Table 3 reveals that IG-Net maintains sub-
stantial performance even amidst high noise levels. Intriguingly, noise appears to enhance IG-Net’s
performance in challenging tasks (D > 8000), a phenomenon akin to utilizing noise to augment
agents’ exploration capability in RL scenarios (Eberhard et al., 2023; Plappert et al., 2018; Fortu-
nato et al., 2018). This unexpected benefit opens up promising avenues for future enhancements to
IG-Net’s performance.

Difficulty 1500 < D < 4000 4000 < D < 8000 D > 8000
Metric SR SPL DDR SR SPL DDR SR SPL DDR

IG-Net 0.54 0.24 0.75 0.26 0.17 0.65 0.24 0.15 0.75
IG-Net (n = 0.1) 0.26 0.13 0.47 0.22 0.14 0.61 0.16 0.11 0.64
IG-Net (n = 0.2) 0.42 0.18 0.58 0.16 0.09 0.58 0.30 0.20 0.74
IG-Net (n = 0.4) 0.26 0.12 0.52 0.18 0.09 0.61 0.20 0.12 0.70

Table 3: Performance of IG-Net under different noise levels.

5.4.3 WHY VGM FAILS

VGM, along with several other methodologies (Kim et al., 2022), strives to represent environments
using nodes and vertices, relying solely on visual information. Our findings suggest that in expan-
sive gaming environments like ShooterGame, graph construction is prone to failure and necessitates
meticulous hyperparameter tuning (refer to A.2). Moreover, the nodes in VGM often encompass
only a minor section of the large-scale map, hindering the algorithm from utilizing prior map infor-
mation to facilitate new navigation tasks.

(a) Too sparse (th = 0.75) (b) Too sparse (th = 0.85) (c) Too dense (th = 1.25)

Figure 5: Illustration of failed VGM node construction under varying parameters.

Furthermore, VGM nodes often only cover a minor section of the large-scale map, which prevents
the algorithm from leveraging prior map information to guide new navigation tasks.

5.5 ABLATION STUDY

In this section, we explore the auxiliary tasks’ contribution to representation learning and the sub-
sequent enhancement of IG-Net’s navigation capabilities. The results are detailed in Table 4. It
is evident that the absence of various auxiliary tasks leads to performance degradation to varying
degrees. The IG-Net (no aux) variant, lacking all auxiliary losses, exhibits the most considerable
performance decline. These results conclusively show that the designed auxiliary tasks significantly
enrich IG-Net’s representation and, consequently, elevate its navigation performance.
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Difficulty 1500 < D < 4000 4000 < D < 8000 D > 8000
Metric SR SPL DDR SR SPL DDR SR SPL DDR

IG-Net 0.54 0.24 0.75 0.26 0.17 0.65 0.24 0.15 0.75
IG-Net (no position) 0.30 0.14 0.43 0.28 0.14 0.59 0.12 0.07 0.55

IG-Net (no path and dist) 0.38 0.17 0.58 0.26 0.14 0.62 0.30 0.20 0.66
IG-Net (no auxiliary) 0.18 0.09 0.36 0.14 0.08 0.42 0.00 0.00 0.44

Table 4: Ablation study on the impact of auxiliary losses.

6 CONCLUSION

In this study, we tackled the intricate challenges of visual navigation in expansive gaming environ-
ments with the introduction of the Image-Goal Network (IG-Net). IG-Net is a testament to the syn-
ergy of cutting-edge deep learning and specialized navigation strategies, emphasizing image-goal-
conditioned behavior and the implicit encoding of spatial map information, a facet underexplored in
preceding works. The network’s proven adaptability and robustness in the expansive ShooterGame
environment underscore its potential in navigating large-scale, visually rich domains using solely
offline, image-centric data. The significant advancements delivered by IG-Net are not confined to
enhancing visual navigation but extend to enriching representation learning, providing invaluable
insights and tools for ongoing and future investigations in both virtual and real-world autonomous
navigation applications. The foundational principles of IG-Net are poised to influence the develop-
ment of more sophisticated navigation agents.
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REPRODUCIBILITY STATEMENT

We have attached IG-Net code with our submission. The authors are also committed to release the
training and evaluation datasets upon paper being accepted.

A TRAINING DETAILS

A.1 IG-NET PARAMETERS

The hyperpameters of training IG-Net is provided as follows:

Param Name IG-Net

Learning Rate 5e−5

Batch Size 16
N (Number of Navigation Trajectories) 200

M (Number of Position Data) 2000
Visual Dim 224× 224× 3

Visual Backbone MAE
Max Epoch 100
Action Dim 3

Path prediction length 5
Loss weights for each auxiliary loss 1.0

Loss weights action loss 1.0

A.2 VGM PARAMETERS

We mostly follow the default VGM training procedure by keeping the architecture of the model the
same as in the original publication. To train under ShooterGame, we cut panoramic observations to
90 FoV and mask the depth input. To overcome the issue of having sparse nodes during training, we
tune the th parameter to different values to loosen node generation criteria. Finally, we train for a
maximum of 250 epochs and choose the model checkpoint when validation loss achieves the lowest.

Param Name Default Tuned

Learning Rate 1e−4 -
Batch Size 4 -

Th 0.75 0.85
Visual Dim 64× 64× 3 -

Visual Backbone ResNet-18 -
Max Epoch 250 -
Action Dim 3 -

B DATASET DETAILS

B.1 TRAINING DATASET

All training navigation trajectories are collected by human experts. There are a total of 200 tra-
jectories and each takes less than 2 minutes to collect. Human experts have prior experience with
the game environment and are given additional information such as goal location on the map and
distance to the goal to facilitate efficient collection. We here provide some descriptive details of the
dataset.
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Stats Name Val

Num of Trajs 200
Total Nav Steps 10617
Avg Nav Steps 55.87
Max Traj Len 130
Min Traj Len 9

Avg D0 to Goal 5800
Max D0 to Goal 13386
Min D0 to Goal 809

B.2 EVALUATION DATASET

Evaluation are carried out in 3 difficulties: easy, medium, and hard distinguished by the initial Eu-
clidean distance to goal D0. The specific ranges are: 1500 < Deasy

0 < 4000, 4000 < Dmedium
0 <

8000, and 8000 < Dhard
0 . Notice success is marked by the agent’s Euclidean distance to the goal is

within 800. We here provide some descriptive details of the dataset

Stats Name Easy Medium Hard

Avg D0 2673 5888 9404
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